Схема моргающего светодиода. Схема мигающего светодиода: как сделать простую мигалку своими руками

Как собрать простую схему мигающего светодиода. Какие компоненты потребуются для создания мигалки. Как работает схема мигающего светодиода. Какие бывают варианты схем для мигающих светодиодов. Где можно применить самодельную мигалку на светодиоде.

Содержание

Принцип работы мигающего светодиода

Мигающий светодиод представляет собой электронное устройство, которое периодически включается и выключается, создавая эффект мигания. Существует два основных способа реализации мигающего светодиода:

  1. Использование готового мигающего светодиода со встроенной микросхемой
  2. Сборка схемы мигалки на обычном светодиоде с дополнительными компонентами

В первом случае внутри корпуса светодиода уже имеется микросхема-генератор, которая управляет миганием. Во втором варианте мигание обеспечивается внешней схемой.

Компоненты для создания простой мигалки

Для сборки простейшей схемы мигающего светодиода своими руками потребуются следующие компоненты:


  • Светодиод (обычный или мигающий)
  • Резистор 330-1000 Ом
  • Конденсатор 10-100 мкФ
  • Транзистор NPN (например, BC547)
  • Источник питания 3-12В

При использовании готового мигающего светодиода схема упрощается и требуется только резистор для ограничения тока.

Простая схема мигалки на обычном светодиоде

Рассмотрим принцип работы простой схемы мигающего светодиода:

  1. Конденсатор заряжается через резистор
  2. При достижении порогового напряжения открывается транзистор
  3. Транзистор включает светодиод и разряжает конденсатор
  4. Процесс повторяется, создавая мигание

Частота мигания зависит от номиналов резистора и конденсатора. Увеличение их значений замедляет мигание, уменьшение — ускоряет.

Варианты схем мигающих светодиодов

Существует множество вариантов схем для создания мигающих светодиодов. Некоторые популярные схемы:

  • На микросхеме NE555 — позволяет точно задавать частоту мигания
  • С несколькими светодиодами — для создания световых эффектов
  • На транзисторах — простые и недорогие схемы
  • С фоторезистором — мигание управляется освещенностью
  • С регулировкой яркости и частоты — более функциональные устройства

Выбор конкретной схемы зависит от требуемых параметров и сложности реализации.


Применение самодельных мигалок

Простые мигающие светодиоды, собранные своими руками, могут найти различное применение:

  • Декоративная подсветка и световые эффекты
  • Имитация охранной сигнализации
  • Маячки для моделей и игрушек
  • Индикаторы в самодельных устройствах
  • Обучающие проекты по электронике

Самодельные мигалки позволяют понять принципы работы электронных схем и развить навыки пайки.

Преимущества использования готовых мигающих светодиодов

Хотя самостоятельная сборка схемы мигалки интересна с точки зрения обучения, использование готовых мигающих светодиодов имеет ряд преимуществ:

  • Компактность — вся схема встроена в корпус светодиода
  • Простота подключения — требуется только резистор
  • Стабильность работы — параметры мигания заданы производителем
  • Широкий выбор цветов и режимов мигания
  • Низкое энергопотребление

Готовые мигающие светодиоды удобны для быстрого создания световых эффектов без пайки сложных схем.

Советы по сборке схемы мигающего светодиода

При самостоятельной сборке схемы мигалки следует учитывать несколько моментов:


  1. Правильно рассчитайте номинал токоограничивающего резистора для светодиода
  2. Соблюдайте полярность при подключении светодиода и электролитического конденсатора
  3. Используйте транзистор с достаточным коэффициентом усиления
  4. Для стабильной работы применяйте качественные компоненты
  5. При отладке схемы используйте переменные резисторы для подбора оптимальных параметров

Соблюдение этих рекомендаций поможет собрать надежно работающую схему мигающего светодиода.

Заключение

Сборка простой схемы мигающего светодиода своими руками — отличный способ познакомиться с основами электроники. Такой проект позволяет на практике изучить работу основных электронных компонентов и принципы создания простых схем. При этом результат работы сразу виден в виде мигающего огонька.

Готовые мигающие светодиоды упрощают создание световых эффектов, но самостоятельная сборка схемы дает больше возможностей для экспериментов и обучения. Выбор между готовым решением и самодельной схемой зависит от конкретной задачи и уровня навыков.



Мигающий светодиод своими руками

Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции осталось подключить батарейку — попробуйте собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг. Подключая светодиод, узнайте минимум теории — портал ВашТехник готов помочь.


Поиск данных по Вашему запросу:

Мигающий светодиод своими руками

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Самостоятельное изготовление мигающего светодиода
  • :: КАК СДЕЛАТЬ МИГАЛКУ ::
  • Как сделать мигающий светодиод?
  • Простые схемы мигалок на основе мигающих светодиодов для сборки своими руками
  • Схемы на светодиодах и их подключение
  • Делаем мигающий светодиод своими руками: простейшие и сложные схемы
  • Мигающий светодиод или поделки для авто
  • Цветомузыка на мощных светодиодах со стробоскопом. Схемы на светодиодах
  • Как сделать мигающий светодиод
  • Световой декор – как сделать мигающий светодиод

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Простая мигалка на КТ315

Самостоятельное изготовление мигающего светодиода


Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом.

Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками. Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета. У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте.

Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе. Скорость мерцания частота зависит от заданной программы. При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током уровнем потенциала. То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах. Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.

Трёхцветный RGB мигающий светодиод с четырьмя выводами имеет общий анод катод и три вывода для управления каждым цветом отдельно. Эффект мигания достигается путём подключения к соответствующей системе управления. Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR или CR и резистор на — Ом, который следует припаять на любой вывод.

Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом. Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов.

Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Питается вся схема от источника напряжения 12В. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:. В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1.

В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод. В обоих вариантах можно применить транзисторы pnp проводимости, но с коррекцией схемы подключения. Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

Следует помнить, что питания от 3В будет недостаточно, чтобы зажечь светодиод с высоким значением прямого напряжения. Например, для светодиода белого, синего или зелёного цвета потребуется большее напряжение.

Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода. Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы. Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд.

Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления.

Достаточно только подключить гирлянду через диодный мост. Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние вкл.

Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей. Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например — бегущую волну. Светодиодная лента SMD , её особенности и разновидности.

Как правильно подключить светодиодный прожектор к сети вольт? Срок службы светодиодных ламп и светильников: реалии и сказки производителей. Стабилизаторы тока на lm, lm, lm и их применение для светодиодов. Чем отличаются светодиодные лампы от энергосберегающих? Какие лампы лучше для дома — светодиодные или энергосберегающие? Простые схемы мигалок на основе мигающих светодиодов для сборки своими руками. Читайте так же. Последние публикации Самые популярные статьи Последние комментарии.


:: КАК СДЕЛАТЬ МИГАЛКУ ::

Мигающие светодиоды применяются в различных сигнальных схемах, в рекламных щитах и вывесках, электронных игрушках. Сфера их применения достаточно широка. Простая мигалка на светодиоде может быть также использована для создания автосигнализации. Надо сказать, что моргать этот полупроводниковый прибор заставляет встроенная микросхема ЧИП.

Семицветный мигающий светодиод оранжевый для машины: мигающий, Делаем Простой Мигающий Светодиод Для Мигалки Своими Руками.

Как сделать мигающий светодиод?

Множество устройств дополняются мигающими светодиодами, обеспечивая подачу необходимых сигналов или простую подсветку. Прежде чем сделать оригинальный мигающий светодиод, необходимо узнать некоторые моменты относительно этих устройств. Для создания своими руками мигающего устройства можно воспользоваться платформой Ардуино. Ардуино — это аппаратная вычислительная платформа. Что самое интересно, Ардуино предназначена для аматорского использования, позволяет создавать всевозможные схемы. Чтобы создать красный, синий, желтый или любой другой светодиод или полноценную светодиодную ленту, сделать это путем подключения к сети на Вольт — не самое лучшее решение. На практике подобные схемы через питание на Вольт существуют, но самостоятельно добиться эффекта мигания крайне сложно. Далее следует непосредственное подключение. Если сделать все правильно, мигающий светодиод будет работать.

Простые схемы мигалок на основе мигающих светодиодов для сборки своими руками

Пользователь интересуется товаром MP — Встраиваемый цифровой термометр с выносным датчиком. Пользователь интересуется товаром BM — Датчик уровня воды. Пользователь интересуется товаром MPS — Извещатель дымовой с радиомодулем диапазона МГц до метров. Приглашаем Вас в фирменные магазины в Москве Подробнее.

Иногда в автомобиле бывает необходимость сделать мигающий светодиод или два светодиода по очереди, а возможно и фары. В этой статье описаны простые способы и схемы , которые делают светодиод мигающим.

Схемы на светодиодах и их подключение

Мигающий светодиод может быть реализован и использован несколькими способами, от чего зависит и его дальнейшая область применения. Схемы могут состоять из нескольких диодов, транзисторов, подключаться к различным источникам питания, даже к батарейкам, по-разному моргать. Собрать большинство из них можно своими руками, но иногда нужно подогнать теоретическую базу. Один из самых простых способов реализации моргающих светодиодных индикаторов может успешно имитировать сигнализацию для автомобиля. Для авто премиум-класса это не очень актуально, а для менее элитной техники, общая стоимость которой не окупает установку дорогостоящей системы оповещения, такая схема будет в самый раз. Мигалка на светодиодах в таком случае будет оптимальным вариантом.

Делаем мигающий светодиод своими руками: простейшие и сложные схемы

Мигающие светодиоды применяются в различных сигнальных схемах, в рекламных щитах и вывесках, электронных игрушках. Сфера их применения достаточно широка. Простая мигалка на светодиоде может быть также использована для создания автосигнализации. Надо сказать, что моргать этот полупроводниковый прибор заставляет встроенная микросхема ЧИП. Основные достоинства готовых МСД: компактность и разнообразие расцветок, позволяющее красочно оформлять электронные устройства, например, рекламное табло с целью привлечения внимания покупателей. Но можно изготовить мигающий светодиод самостоятельно. Используя простые схемы, это сделать несложно. Как сделать мигалку, имея небольшие навыки работы с полупроводниковыми элементами, описано в этой статье.

Мигающий светодиод или поделки для авто схема поделки для авто Частоту мигания Ремонт генератора своими руками. Устройство.

Мигающий светодиод или поделки для авто

Мигающий светодиод своими руками

Множество устройств дополняются мигающими светодиодами, обеспечивая подачу необходимых сигналов или простую подсветку. Прежде чем сделать оригинальный мигающий светодиод, необходимо узнать некоторые моменты относительно этих устройств. Для создания своими руками мигающего устройства можно воспользоваться платформой Ардуино. Ардуино — это аппаратная вычислительная платформа.

Цветомузыка на мощных светодиодах со стробоскопом. Схемы на светодиодах

ВИДЕО ПО ТЕМЕ: Простейшая Led мигалка

Сразу, оговорюсь, идея не моя, она была взята на сайте chipdip. Это простая мигалка на 6 светодиодах, особенностью которой является полное отсутствие дополнительных активных управляющих элементов транзисторы, микросхемы. Основой устройства является мигающий светодиод красного свечения HL3 последовательно, с которым включено два обычных красных светодиода HL1 и HL2. Затем весь цикл повторяется.

Принцип работы основан на лавинном пробое p-n перехода биполярного транзистора.

Как сделать мигающий светодиод

Для того чтобы подключить светодиод в простейшем случае, необходимо плюсовой вывод блока питания вольт подсоединить к аноду светодиода, а минусовой к катодному. А вот, в случае если напряжение источника питания выше, чем номинальное напряжение светодиода, то напрямую подключить к нему LED нельзя. Необходимо использовать, как минимум схему в которую последовательно с светодиодом включен LED резистор. Во многих радиолюбительских конструкциях и разработках часто поднимается вопрос о индикации питания. Лампы накаливания устарели морально и физически, неонки хороши только в подсветках выключателей и розеток, поэтому отличным элементом индикации служит светодиод.

Световой декор – как сделать мигающий светодиод

Ремонт телефона. Купить аккумуляторные батареи. Забыл пароль? Ремонт телефона Недорогой ремонт смартфонов!


Типовые схемы включения мигающих светодиодов типа МСД.

Продолжая знакомить с устройством мигающих светодиодов типа МСД необходимо дополнить данный материал тем, чтобы показать правильность включения и практическое применение данного типа светодиодов в радиолюбительских конструкциях. После тщательного ознакомления со множеством различной документации было выявлено следующее, что ни одна из фирм-разработчиков МСД не потрудилась привести в файлах Datasheet рекомендуемые схемы включения.

Расчет не публиковать полные справочные данные, видимо простой, зачем публиковать и так очевидную информацию, как знать, может быть, эта “очевидность” усыпила бдительность разработчиков и не дала повода исследовать нестандартные области их применения.

Рис.1.

Максимум приводимых сведений — это наличие встроенного ограничительного резистора (built-in resistor) и возможность подключения МСД напрямую к выходам ТТЛ и КМОП-микросхем (easily be driven by TTL & CMOS circuit).

Если перевести язык текста в язык графики, то получится три варианта типовых схем включения — рис.1,2,3. Условное графическое обозначение МСД выполнено по аналогии с обычным светодиодом, но с заменой сплошных стрелок излучения пунктирными.

Итак, пои подаче на анод положительного, а на катод отрицательного напряжения — рис.1, светодиод HL1 начинает постоянно мигать с частотой, определяемой техническими характеристиками согласно таблица 1. Длительности светящегося и несветящегося состояний примерно одинаковы.

Рис.2. Рис.3.

Инвертор DD1 на рис.6 может быть как стандартной ТТЛ, так и буферизированной КМОП-микросхемой, например, К561ЛН2. Инвертор DD1 — рис.3 должен иметь выход с открытым коллектором или открытым стоком, при этом напряжение, питающее светодиод HL1, может быть значительно больше, чем необходимо для микросхемы DD1.

Автогенераторная схема

Кроме типовых, известен целый класс нестандартных схем включения МСД. К примеру, он может служить не только генератором световых “вспышек”, но и автогенератором электрических импульсов [1, 3, 4]. На рис.4, 5 приведены две основные схемы, использующие при работе область микротоков на ВАХ светодиодов.

Рис.4. Рис.5.

Схема на рис.4 более практична, поскольку допускает широкое варьирование номинала резистора R1 (0,1…300 кОм) и применение в качестве DD1 ТТЛ- или КМОП-микросхемы. В схеме на рис.5 можно применять только КМОП-логику (резистор R1 от единиц до сотен килоом).

На выходе инвертора DD1 образуются импульсы, имеющие в первом приближении частоту следования “вспышек” МСД. Скважность импульсов отличается от меандра и в небольших пределах может регулироваться резистором R1. Вместе со скважностью меняется и частота “вспышек”. Небольшой нюанс.

Рис.6. Рис.7.

При внимательном прочтении статьи вы вправе задать вопрос: “Почему форма выходного сигнала не меандр, хотя согласно эквивалентной схеме на электронный ключ МСД подаются импульсы со скважностью 2?” Все дело в разном напряжении, которое прикладывается к МСД в светящемся и несветящемся состоянии.

Виной тому нагрузочный резистор R1 — рис.4, 5, на котором в первом случае падает напряжение значительно большее, чем во втором. Это, в свою очередь, приводит к частотной модуляции сигнала задающего ВЧ-генератора и, как следствие, к изменению отношения длительностей сигналов после счетчиков.

Рис.8. Рис.9.

МСД в качестве ждущего мультивибратора

Если МСД устойчиво генерирует электрические импульсы, то логично предположить возможность его работы в схемах одновибраторов и управляемых мультивибраторов (“заторможенных” генераторов). Однако прежде чем приступить к синтезу подобных схем, необходимо детально исследовать четыре возможных варианта управления МСД от внешнего логического элемента.

Таблица 1.

Серия м/сх DD1

Рисунок 10

Рисунок 11

Рисунок 12

Рисунок 13

R1, кОм

F, Гц

R1, кОм

F, Гц

R1, кОм

F, Гц

R1, кОм

F, Гц

К155

0,06-1,5

1,8-1,66

0,25-1,9

1,7-1,56

К555

0,05-3,7

1,8-1,52

0. 26-3.5

1,7-1,5

КР1533

0,07-2,4

1,8-1,38

1,2-65

1,6-1,3

КР

1531

0,08-3,6

1,8-1.56

0,7-5

1,66-1. 47

КР1554

0,6-180

1,7-1.27

0,6-180

1,7-1,27

0.6-170

1,7-1.25

0.6-170

1,7-1,25

К561ЛН2

0,15-110

1,75-1,35

1,9-360

1,6-1,16

0,6-110

1,72-1.3

1. 2-330

1.6-1.13

К561ЛА7

0,05-160

1,8-1,28

1,1-220

1,66-1,2

1,2-130

1,6-1.28

0,05-150

1.72-1.28

В таблице 1 приведены сводные результаты опытов по варьированию номинала резистора R1 в схемах рис.6, 7, 8, 9 для разных серий ТТЛ и КМОП-микросхем. В целях объективности во всех случаях применялись одни и те же экземпляры микросхем и МСД.

Если приглядеться повнимательнее, то конфигурация включения цепочек R1-HL1 очень напоминает известные схемы дифференцирования и интегрирования импульсов, следует только поставить вместо светодиода конденсатор. Дальнейшее направление экспериментов очевидно — попытаться заменить времязадающие конденсаторы в схемах одновибраторов и мультивибраторов “мигающими” светодиодами и посмотреть, что из этого получится.

Рис.10. Рис.11. Рис.12.

На рис.10, 11, 12, 13, 14 приведены схемы ждущих мультивибраторов на логических элементах с МСД. По выполняемым функциям это расширители импульсов с дополнительной возможностью генерации одиночной серии импульсов.

Сказанное поясняет временная диаграмма — рис.15, относящаяся к схеме на рис.11. При длительности входного импульса менее 250-300 мс на выходе формируется одиночный импульс длительностью 80 мс. Это стандартный режим работы одновибратора.

При длительности входного импульса более 300 мс начинается постоянная генерация импульсов с частотой, определяемой параметрами МСД и сопротивлением резистора R1. Итого, получается уникальное устройство, формирующее укороченный первый импульс длительностью 80 мс, а все последующие — расширенные до 200-300 мс.

Рис.13. Рис.14. Рис.15.

Аналогичные процессы происходят и в схемах рис. 10-14. Здесь и далее номиналы резисторов R1 выбираются в зависимости от серии микросхем и варианта включения согласно таблице 1. Если заменить логические элементы D-триггером, то получится триггерный одновибратор — рис.16. Номинал резистора R1 влияет на частоту генерации серии расширенных импульсов и может меняться в широких пределах.

Рис.16.

Преимущества схем с МСД.

  • Во-первых, при низких номиналах нагрузочных резисторов R1 50…600 Ом одновременно с генерацией импульсов будут наблюдаться достаточно яркие световые “вспышки”.
  • Во-вторых, малые габариты по сравнению с электролитическими конденсаторами. Для сравнения, чтобы получить импульсы с частотой 1,5-2,5 Гц в RC-генераторах на ИМС, требуются конденсаторы емкостью от 5-10 мкФ (серия микросхем К561) до 500-1000 мкФ (серия микросхем К155) или применение дополнительных транзисторов, микросхем.
  • В-третьих, крутые фронты выходных сигналов, что недостижимо при замене МСД конденсаторами большой емкости.

Экзотические схемы включения

Рис.17.

МСД могут применяться в устройствах, функционально весьма далеких друг от друга. Например, амплитудный и частотный модулятор [4], стереобипер [3], индикатор полярности напряжения [4], переключатель елочных гирлянд [5]. В последнем примере МСД используется как своеобразный “паровоз”, за которым следуют “вагоны” из обычных светодиодов рис.17.

В итоге вся последовательно соединенная цепочка излучателей мигает в едином ритме. Собрав три такие гирлянды с тремя разноцветными МСД, можно получить устройство, иллюминация которого подчиняется закону псевдослучайных чисел с большим периодом повторения.

МСД выгодно применять для подавления “дребезга” контактов механической кнопки — рис.18. При коротком нажатии на кнопку SB1 на выходе образуется четкий одиночный импульс отрицательной полярности длительностью около 80 мс.

При длительном удержании кнопки будут генерироваться импульсы с частотой “вспышек” светодиода HL1. Такую схему удобно использовать при тестировании сложных микропроцессорных систем, подавая сигнал от МСД на вход сброса. Удерживая кнопку SB1, можно будет проанализировать, как ведет себя система при периодическом обнулении ее параметров.

Схему на рис.10 допускается использовать не только в качестве одновибратора, но и делителя частоты следования входных импульсов. Коэффициент деления равен отношению частоты входных импульсов к частоте «мигания» МСД.

Рис.18.

В отличие от ее прототипа, в котором вместо не применен электролитический конденсатор, значительно повышается стабильность коэффициента деления и увеличивается крутизна фронтов выходного сигнала.

На рис.19 МСД работает совместно с триггером Шмитта, выполненном на инверторе DD1. В результате такого “сотрудничества” на выходе схемы генерируются пачки высокочастотных импульсов. Частота заполнения зависит от номинала резистора R1: 120 кГц при 100 кОм, 1 МГц при 15 кОм. Побочный эффект — небольшая широтно-импульсная модуляция.

Схема управляемого генератора пачек импульсов изображена на рис.20. Функционирование устройства начинается после подачи на вход ВЧ сигнала тактовой частоты, при этом выходной сигнал оказывается промодулированным с частотой “вспышек” HL1.

Если на вход будет подан логический “0”, то генерация импульсов прекращается, а если логическая “1”, то генерация “вспышек” возобновляется, но без ВЧ тактового заполнения.

Рис19.

На рис.21 изображена схема, предназначенная для организации импульсного питания различных устройств. Ток нагрузки зависит от типа МСД и приложенного напряжения.

Для светодиодов фирмы Kingbright этот ток составляет от 3-5 мА при напряжении 5-8В до 40 мА при напряжении 15 В. МСД работает как электронный ключ. Частота включения определяется в первом приближении частотой его “вспышек”.

Если установить в схему электролитический конденсатор С1, то получится режим пилообразного питания устройства, который можно использовать для игрушек типа “сирена”. Еще один вариант на эту тему приведен на рис.22.

Амплитуда выходного пилообразного сигнала регулируется резистором R1 и составляет 2-3 В. На рис.23 приведена схема, иллюстрирующая работу МСД в качестве частотного детектора. На элементах DD1.1-DD1.4 собран генератор с изменяемой частотой следования импульсов.

Если их частота не превышает 5 Гц, то МСД “мигает” в своем родном ритме. При повышении частоты до 20 Гц происходит полная засветка МСД! В дальнейшем, начиная со значения 300-400 Гц, светодиод опять становится “мигающим”.

Рис.20. Рис.21. Рис.22.

Интересное наблюдение. При подаче на МСД импульсов частотой около 100 Гц он начинает реагировать на уровень внешней засветки от обычных ламп накаливания и ламп дневного света. В этом режиме МСД превращается в фотодиод. Достаточно заслонить рукой свет от лампы и МСД вместо полной засветки будет “мигать”.

Итоги

Появление МСД стало заметной вехой в преодолении очередного технологического барьера в электронной технике. Союз оптики и микроэлектроники доказал свою прочность на деле. Для фирм-изготовителей освоение производства МСД явилось хорошей рекламой потенциальных возможностей.

Пока что МСД не стали широко распространенными приборами такими, как стали простые светодиоды, и их до сих пор можно отнести к разряду экзотических. Причина кроется в их относительно высокой цене. По сравнению с обычными светодиодами МСД стоят в 5-10 раз дороже.

Рис.23.

Сфера их применения — миниатюрные устройства охранной сигнализации, индикаторы аварийных ситуаций. Нестандартные схемы включения могут быть рекомендованы в случае доработок аппаратуры, когда требуются малые габариты устройства и повышенная крутизна фронтов выходных сигналов.

С. Рюмик

Литература:

  1. Рюмик С. Генераторы импульсов на мигающем” светодиоде. — Радио, 2000, №2, с. 45.
  2. Рюмик С. Мигающие светодиоды (справочный материал). — РА, 1999, №12, с. 26.
  3. Рюмик С. Бипер без конденсаторов. — Радиолюбитель, 1999, №8, с. 24.
  4. Рюмик С. Необычные применения мигающих светодиодов. — РА, 1998, Null-12, с. 23.
  5. Рюмик С. Что мигает на елке? — Моделист-конструктор, 1999, N912, с. 20,21.

Светодиодная мигающая схема: Ultimate Guide

Bob Lory

Факты, проверенные по Bob Smith

Flashing Leds Leads Leads Lasts Lasters, особенно отличный отображение, особенно отличное отображение, особенно отличное отображение, особенно отличное отображение, особенно отличное отображение. праздничные сезоны катятся вокруг. Кроме того, они служат аварийными устройствами, когда пользователь может оказаться в затруднительном положении. Мало того, они также обеспечивают стабильные уровни яркости в темной области. Светодиодная мигалка обычно работает через определенный контроль времени. В этом случае каждый светодиод будет последовательно активироваться в электронной схеме. Конечно, эта конфигурация зависит от некоторых важных компонентов для создания такого эффекта.

Мы написали это руководство, чтобы помочь вам понять возможности схемы светодиодного мигания. Итак, давайте посмотрим!

1. Что такое схема мигания светодиодов?

(Схема мигания светодиодов создает шаблоны мигания.)

Схема мигания светодиодов состоит из светодиодов, которые мигают в определенном ритме, создавая визуально привлекательный эффект. Эта электронная схема в основном состоит из резисторов и конденсаторов, которые предназначены для уменьшения времени мигания. Обычно он служит многим целям в реальных приложениях, включая рождественские украшения.

2. Примеры схем мигания светодиодов

Мы предоставили пять примеров схем мигания светодиодов со схемами:

Схема мигания светодиодов с использованием простого реле: . )

Приведенная выше схема использует батарею 9 В, реле, встроенный светодиод, поляризованный конденсатор и два резистора для создания мигающих эффектов. Встроенные резистор и конденсатор сокращают время переключения реле; в противном случае он будет меняться слишком быстро, из-за чего будет трудно увидеть мигание светодиода.

Батарея 9В будет заряжать конденсатор через резистор R2 100k. После этого катушка реле переключает реле в противоположное положение. Фактически светодиод будет мигать. Кроме того, заряженный конденсатор фиксирует реле в заданном положении. Однако он может питать электромагнит реле только в течение короткого периода времени, после чего разрядится.

Когда конденсатор разрядится, реле вернется в исходное положение, в результате чего светодиод погаснет. Далее цикл повторяется.

Транзистор для мигающего светодиода:

(Схема, показывающая мигающий светодиод с двумя транзисторами.)

Теперь мы представим простую схему с двумя NPN-транзисторами, которые работают как переключатель, вызывая последовательное мигание обоих светодиодов. Он также использует два конденсатора для этого эффекта. Во-первых, источник напряжения распределяет ток по цепи. Затем этот ток проходит через LED1, резистор R1 и вывод коллектор-эмиттер транзистора Q1.

Далее ток проходит через LED2 и резистор R4. Затем он полностью зарядит конденсатор C2. В частности, весь этот процесс происходит вскоре после первой вспышки светодиода. Через некоторое время уровень напряжения VBE базового эмиттера упадет ниже 0,7 В, что приведет к выключению светодиода 1 при деактивации транзистора Q1 NPN.

Уровень яркости светодиода 2 увеличится после активации транзистора Q2 NPN. Пока уровень яркости LED2 увеличивается, конденсатор C1 начинает заряжаться до тех пор, пока Q2 не отключится. Наконец, LED2 выключается, когда VBE становится меньше 0,7 В.

Мигание светодиода с инвертором:

(Схема мигания светодиода с инвертором.)

Эта первичная схема мигания обычно использует несколько компонентов для обеспечения мигания. Он оснащен инвертором триггера Шмитта, резисторами, поляризованным конденсатором, светодиодом и 9батарея В.

Резистор 10 кОм образует соединение с выходом и входом инвертора. Следовательно, высокое входное напряжение приведет к низкому выходному напряжению. Однако входное напряжение остается низким, поскольку оно соединяется с выходом. И это приведет к высокому производству. В свою очередь, это дает высокий ввод. В результате весь процесс переключается с высокого на низкий.

 На вход инвертора также подключается поляризованный конденсатор, что замедляет процесс переключения. Другой резистор, R1, управляет уровнем тока, который заряжает конденсатор. Следовательно, размеры резистора и конденсатора будут определять, как быстро мигает светодиод.

Схема мигающих светодиодов с микроконтроллером:

(Схема с микроконтроллером ATMEGA8535.)

Микроконтроллер обеспечивает простоту использования и эффективность в отношении мигания светодиодов. На принципиальной схеме восемь светодиодов и резисторы подключены к микроконтроллеру ATMEGA8535, обеспечивая шаблоны мигания. От D0 до D7 каждый светодиод определяется справа налево. ПОРТ. A служит выходом, который подает 5 В на каждый светодиод, что заставляет их мигать.

Очень простое мигание светодиода со звуком:

(Простая схема мигания светодиода со звуком). . Он использует батарею 4,5 В в качестве основного источника питания, распределенного по светодиоду FRL 4403.

3. Применение светодиодных схем

(Стробоскопы оснащены светодиодной схемой.)

. В целом, схемы светодиодного мигания обеспечивают отличные преимущества для любого пользователя. Из-за их способности быстро моргать они служат практическим приложением. Кроме того, светодиодная мигалка поможет улучшить праздничное оформление. В этом случае он обеспечивает световой эффект, который привлекает внимание прохожих, позволяя им еще больше оценить дисплей. Вы также можете самостоятельно создать и использовать базовый флешер для любого проекта, что обеспечит полезный опыт!

У вас есть вопросы относительно схемы мигающего светодиода? Не стесняйтесь связаться с нами!

Нужны специальные светодиодные услуги?

Цепь автоматического мигания светодиодов с использованием микросхемы таймера 555

555 Timer Projects

AdminПоследнее обновление: 2 октября 2022 г.

2 12 197 2 минуты чтения


Содержание

Введение:

Приступая к работе с электроникой, было бы неплохо провести некоторые базовые эксперименты, связанные с микросхемой таймера 555. Базовый эксперимент включает автоматическую схему мигания светодиодов с использованием микросхемы таймера 555. Это простая схема, предназначенная для объяснения работы и использования микросхемы таймера 555. Эта схема разработана с использованием выходного устройства с низким энергопотреблением, красного светодиода.

Вот расширенная версия этого проекта: Схема светодиодной мигающей лампы в форме сердца с использованием таймера 555


Схема автоматического мигания светодиодов с использованием микросхемы таймера 555:

Требуемые компоненты:
    9

    1

    2

    3

    4

    5

    6

    1. Таймер IC 555

    2. Резистор 1K — 2 шт.

    3. Резистор 470K — 1 шт.

    4. Электролитический конденсатор 1 мкФ

    5. Светодиод

    6. Аккумулятор 9 В

    Принципиальная схема:

    Вот принципиальная схема цепи автоматического мигания светодиодов с использованием микросхемы таймера 555. Соберите схему на макетной плате и подключите питание, светодиод автоматически начнет мигать.


    555 Таймер IC:

    555 Таймер IC — это дешевое, популярное и точное устройство синхронизации, используемое в различных приложениях. Он получил свое название от трех резисторов 5 кОм, которые используются для генерации двух опорных напряжений компаратора. Эта ИС работает как моностабильный, бистабильный или нестабильный мультивибратор для различных приложений.

    Эта микросхема поставляется в биполярном 8-контактном корпусе с двойным расположением выводов. Он состоит из 25 транзисторов, 2 диодов и 16 резисторов, образующих два компаратора, триггеры и сильноточный выходной каскад.

    См. спецификацию таймера NE555.

    Описание контактов
    Ниже приводится описание контактов микросхемы таймера 555.

    Штырек 1-Заземление: Подключен к земле как обычно. Для работы таймера этот контакт должен быть соединен с землей.

    Контакт 2-TRIGGER: Отрицательный входной компаратор № 1. Отрицательный импульс на этом контакте «устанавливает» внутренний триггер, когда напряжение падает ниже 1/3 В пост. «ВЫСОКОЕ» состояние.

    Контакт 3-ВЫХОД: Этот контакт также не имеет специальной функции. Этот вывод взят из конфигурации PUSH-PULL, образованной транзисторами. Этот контакт дает выход.

    Контакт 4-Сброс: В микросхеме таймера 555 IC имеется триггер. Выход триггера напрямую управляет выходом микросхемы на выводе 3. Этот вывод подключен к Vcc, чтобы триггер не перезапускал аппаратно.

    Контакт 5-Управляющий контакт: Управляющий контакт подключен к отрицательному входному контакту первого компаратора. Функция этого вывода — предоставить пользователю прямой контроль над первым компаратором.

    Контакт 6-THRESHOLD: Пороговое напряжение на контакте определяет, когда сбрасывать триггер в таймере. Пороговый вывод берется с положительного входа компаратора1.

    Контакт 7-РАЗРЯД: Разрядный контакт подключен непосредственно к коллектору внутреннего NPN-транзистора, который используется для «разряда» времязадающего конденсатора на землю, когда выход на контакте 3 переключается на «НИЗКИЙ».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *