Схема подключения оин 1. Защита электрооборудования от импульсных перенапряжений: типы УЗИП и схемы подключения

Как защитить бытовую технику от скачков напряжения. Какие бывают ограничители импульсных перенапряжений. Как правильно подключить УЗИП в частном доме и квартире. Какие схемы защиты от перенапряжений наиболее эффективны.

Содержание

Причины возникновения импульсных перенапряжений в электросети

Импульсные перенапряжения представляют серьезную угрозу для современной бытовой электроники и оборудования. Основными причинами их возникновения являются:

  • Удары молнии в линии электропередач или близлежащие металлические конструкции
  • Коммутационные процессы при включении/отключении мощных потребителей
  • Короткие замыкания в электросети
  • Электромагнитные помехи от работы промышленного оборудования

Наиболее опасны грозовые перенапряжения, когда амплитуда импульса может достигать десятков и сотен киловольт. Даже при наличии молниезащиты здания, индуцированные токи способны вывести из строя чувствительную электронику.

Типы устройств защиты от импульсных перенапряжений (УЗИП)

Для защиты электрооборудования от импульсных перенапряжений применяются специальные устройства — УЗИП (ограничители импульсных перенапряжений). Различают следующие основные типы УЗИП:


  • Разрядники (газонаполненные, вакуумные)
  • Варисторы
  • Комбинированные устройства

По принципу действия УЗИП делятся на:

  • Коммутирующего типа — кратковременно замыкают цепь при превышении порогового напряжения
  • Ограничивающего типа — плавно снижают напряжение до безопасного уровня

Наибольшее распространение в бытовых электросетях получили варисторные УЗИП ограничивающего типа благодаря их быстродействию и надежности.

Классификация УЗИП по уровням защиты

В зависимости от места установки и уровня защиты УЗИП разделяются на 3 класса:

  • Класс I — устанавливаются на вводе в здание, защищают от прямых ударов молнии
  • Класс II — монтируются в распределительных щитах, защищают от наведенных перенапряжений
  • Класс III — устанавливаются непосредственно возле оборудования для его тонкой защиты

Для комплексной защиты необходимо использовать каскадную схему из УЗИП разных классов. Это позволяет последовательно снижать уровень перенапряжений до безопасных значений.

Схемы подключения УЗИП в частном доме и квартире

Существует несколько базовых схем подключения УЗИП в бытовых электроустановках:


  • Схема «3+1» — защита фазных и нулевого проводников относительно земли
  • Схема «4+0» — защита между всеми проводниками
  • Комбинированная схема

Выбор конкретной схемы зависит от системы заземления, наличия молниезащиты здания и других факторов. Для частного дома оптимальной является трехступенчатая защита:

  1. УЗИП класса I на вводе в дом
  2. УЗИП класса II в главном распределительном щите
  3. УЗИП класса III для защиты отдельных потребителей

В городской квартире обычно достаточно двух ступеней защиты — УЗИП II и III классов.

Особенности монтажа и эксплуатации УЗИП

При установке УЗИП необходимо соблюдать ряд важных правил:

  • Размещать УЗИП как можно ближе к защищаемому оборудованию
  • Использовать проводники минимальной длины для подключения
  • Обеспечить надежное заземление устройств
  • Соблюдать координацию между ступенями защиты
  • Регулярно проверять исправность УЗИП

Правильно спроектированная и смонтированная система защиты от импульсных перенапряжений способна эффективно защитить бытовую технику и электронику от повреждений.


Выбор УЗИП для бытового применения

При выборе УЗИП для защиты бытового электрооборудования следует учитывать следующие параметры:

  • Максимальное длительное рабочее напряжение
  • Номинальный разрядный ток
  • Максимальный импульсный ток
  • Уровень напряжения защиты
  • Время срабатывания

Для большинства бытовых применений подойдут УЗИП со следующими характеристиками:

  • Максимальное рабочее напряжение: 275-320 В
  • Номинальный разрядный ток: 5-20 кА
  • Уровень напряжения защиты: менее 1,5 кВ
  • Время срабатывания: менее 25 нс

При выборе конкретных моделей рекомендуется отдавать предпочтение продукции известных производителей, имеющей необходимые сертификаты.

Экономическая целесообразность установки УЗИП

Установка системы защиты от импульсных перенапряжений требует определенных затрат. Возникает вопрос — насколько это экономически оправдано? Рассмотрим основные аргументы в пользу применения УЗИП:

  • Защита дорогостоящей бытовой техники и электроники от повреждений
  • Предотвращение пожаров, вызванных перенапряжениями
  • Повышение надежности электроснабжения
  • Увеличение срока службы электрооборудования

По оценкам специалистов, стоимость качественной системы защиты от перенапряжений для частного дома составляет 3-5% от стоимости защищаемого оборудования. При этом срок службы современных УЗИП достигает 10-15 лет.


Учитывая высокую стоимость современной бытовой техники и электроники, а также возможные косвенные убытки от ее повреждения, установка УЗИП представляется экономически оправданной мерой для большинства домохозяйств.


УЗИП и схемы его подключения


Чтобы бытовая техника работала долгосрочно и исправно, необходимо качественно подавать электроэнергию на вход каждого устройства. К сожалению, сейчас многие дома хорошо укомплектованы, но владельцы не заботятся о защите своего имущества от внезапных скачков напряжения. Удар молнии может прийти в сеть не только при попадании в сам дом или участок. Она может пробить воздух как раз над линией, подходящей к вашему домовладению. А это означает потерю всех дорогостоящих приборов и бытовой техники одним махом.

Уповать на встроенные стабилизаторы напряжения не стоит, ведь они способны только немного корректировать ток. Если произойдет скачок с показателем в несколько киловольт, то всё дружно выгорит в доли секунды. Особенно опасно так называемое импульсное избыточное напряжение, возникающее в момент грозы. Воздействие оказывается не только на электрическую проводку, но также и на коммутационные каналы. Поэтому лучше всего устанавливать в щиток так называемый УЗИП. Его название расшифровывается как устройство защиты от импульсных перенапряжений.

Ложное мнение

Люди, далекие от электротехники, считают, что это защита на все случаи жизни. Но это не так. От обычного перенапряжения УЗИП никак не поможет. Если напряжение выросло с 220 до 400 вольт, то он не сработает. Ему необходим импульс, резкий скачок. А постепенно эта величина может расти практически бесконечно долго. Поэтому лучше устанавливать в цепь также классический стабилизатор напряжения.

Проблемы с проверяющими органами

УЗИП не разрешено устанавливать перед счетчиком. Считается, что он может стать точкой подключения для воровства электроэнергии. Для этого также имеется собственное решение. Нужно приобрести специальный опечатываемый бокс для устройства, а потом уже вызывать проверку. Они могут поставить свою печать на любую закрываемую коробку. Так можно будет обезопасить от скачка импульсного перенапряжения счетчик. А это очень актуально в загородных домах, деревнях, на дачах. В некоторых районах России приборы учёта можно считать расходным материалом. Поэтому лучше защитить всё своё имущество.

Основные варианты подключения в щитке

Лучше доверить эту задачу профессионалу, потому что ошибка может привести к отсутствию защиты. Технический паспорт изделия обычно содержит простейшую схему, которой нужно следовать для достижения успеха. Способ сильно меняется в зависимости от наличия системы заземления и количества фаз в сети. Рассмотрим всё для однофазного варианта.

Наиболее простая и надежная схема, строго соответствующая всем требованиям, это TN-S. В ней нулевой провод рабочий, а защитный канал подключается отдельно. Они обозначаются как Т и PE соответственно.

Рис. 1 – Схема TN-S

Если говорить о более сложном варианте, то это TN-C-S. Он нужен тогда, когда нейтральный провод и защитный канал объединены в одну оболочку, подключаясь синхронно к распределительному устройству дома. Уже после разделителя начинается сепарация проводников. Но у этой схемы есть один существенный недостаток. Она не работает без заземления. Особенно часто случается так, что владелец надеется на данную схему в условиях старого жилого фонда, но при попадании молнии всё выгорает.

Более простым вариантом является TN-C. Она может использоваться в любой однофазной сети.


Рис. 2 – Схема TN-C

Любой из этих вариантов имеет право на существование, но выбор должен осуществлять профессионал на базе инженерных расчётов. Если не учесть все нюансы, то защита сработает лишь частично. Особенно это касается электроники.

Где приобрести качественный УЗИП

Эти устройства в широком ассортименте представлены в нашем интернет-магазине «ПрофЭлектро». У нас имеются самые лучшие решения для квартир, домов и офисов. Особенно актуальна установка этого оборудования для предотвращения выхода из строя коммутационного компьютерного оборудования. Каждая серверная комната должна быть оснащена целым рядом УЗИП, желательно отдельно на каждый узел. Тогда можно будет избежать больших проблем со сбоями в работе сверхточных систем. Доставка УЗИП возможна в любой город и регион России.

Схема подключения оин 1 в трехфазную сеть. Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений


Схема подключения ограничителя импульсных перенапряжений

Ограничитель импульсных перенапряжений

  1. Преимущества в использовании ОПН
  2. Технические характеристики ОПН
  3. Устройство ограничителей импульсных перенапряжений
  4. Защита от импульсных перенапряжений

Среди множества защитных устройств широко известен такой высоковольтный аппарат, как ограничитель импульсных перенапряжений. Импульсные перенапрежения возникают в результате нарушений в атмосферных или коммутационных процессах и способны нанести серьезный вред электрооборудованию.

Основным средством защиты дома при попадании молнии служит громоотвод или молниеотвод. Но он не способен справиться с разрядом, проникшим в сеть через воздушные линии. Поэтому проводник, принявший на себя этот импульс, становится основной причиной выхода из строя электрооборудования и домашней аппаратуры, подключенной к данной сети. Чтобы избежать подобных неприятностей рекомендуется их полное отключение на период грозы. Гарантированная защита обеспечивается путем установки ограничителей перенапряжения (ОПН).

Преимущества в использовании ОПН

В обычных средствах защиты установлены карборундовые резисторы, а также соединенные последовательно искровые промежутки. В отличие от них в ОПН устанавливаются нелинейные резисторы, основой которых является окись цинка. Они объединяются в общую колонку, помещенную в фарфоровый или полимерный корпус. Таким образом, обеспечивается их эффективная защита от внешних воздействий и безопасная эксплуатация устройства.

Особенности конструкции оксидно-цинковых резисторов позволяют выполнять ограничителям перенапряжения более широкие функции. Они свободно выдерживают, независимо от времени, постоянное напряжение электрической сети. Размеры и вес ОПН значительно ниже, чем у стандартных вентильных разрядников.

Технические характеристики ОПН

Основной величиной, характеризующей работу ограничителя перенапряжения ОПН, является максимальное действие рабочего напряжения, которое может подводиться к клеммам прибора без каких-либо временных ограничений.

Ток, проходящий через защитное устройство под действием напряжения, называется током проводимости. Его значение измеряется в условиях реальной эксплуатации, а основными показателями служит активность и емкость. Общая величина такого тока может составлять до нескольких сотен микроампер. По этому параметру оцениваются рабочие качества ОПН.

Все импульсные ограничители способны устойчиво переносить медленно изменяющееся напряжение. То есть, они не должны разрушаться в течение определенного времени при повышенном уровне напряжения. Значения, полученные при испытаниях, позволяют настроить защитное отключение прибора по истечению установленного срока.

Величина предельного разрядного тока является максимальным значением грозового разряда. С ее помощью устанавливается предел прочности импульсного ограничителя при прямом попадании молнии.

Нормативный ресурс ОПН определяется и токовой пропускной способностью. Он рассчитывается для работы в наиболее тяжелых условиях, когда присутствуют максимальные грозовые или коммутационные перенапряжения.

Устройство ограничителей импульсных перенапряжений

Производители электротехники пользуются технологией и конструкторскими решениями, которые применяются в других электроустановочных изделиях. Прежде всего, это материал корпуса и габаритные размеры, внешний вид и прочие параметры. Отдельно решаются технические вопросы, связанные с установкой ОПН и его подключением к общим электроустановкам потребителей.

Существуют отдельные требования, предъявляемые именно этому классу устройств. Корпус ограничителя перенапряжений должен обеспечивать защиту от прямых прикосновений. Полностью исключается риск возгорания защитного устройства из-за перегрузок. При его выходе из строя на линии не должно быть коротких замыканий.

Современный ограничитель импульсных перенапряжений оборудуется простой и надежной индикацией. К нему может подключаться сигнализация дистанционного действия.

Защита от импульсных перенапряжений

Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений

Просмотров 1 856

Причины возникновения импульсных перенапряжений

Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.

Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты. разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.

Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.

Устройство защиты от импульсных перенапряжений УЗИП

Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.

Схема подключения УЗИП к сети TNC и сети TNS

Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА. Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.

Защита от импульсных перенапряжений тремя ступенями УЗИП

Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).

Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП

Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.

Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита ,

Схема подключения одного УЗИП в частном доме

УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии. Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.

Тоже интересные статьи

Принцип работы стабилизатора напряжения

Скачки напряжения в электросети

Схема подключения реле напряжения

Как выбрать стабилизатор напряжения для дома

Любое электротехническое оборудование создается для работы с определённой электрической энергией, зависящей от тока и напряжения в сети. Когда их величина становится больше запроектированной нормы, то возникает аварийный режим.

Предотвратить возможность его образования или ликвидировать разрушение электрооборудования призваны защиты. Они создаются под конкретные условия возникновения аварии.

Особенности защит домашней электропроводки от повышенного напряжения

Изоляция бытовой электрической сети рассчитывается на предельное значение напряжения чуть выше одного-полутора киловольт. Если оно возрастает больше, то через диэлектрический слой начинает проникать искровой разряд, который может перерасти в дугу, образующую пожар.

Чтобы предотвратить его развитие создают защиты, работающие по одному из двух принципов:

1. отключения электрической схемы дома или квартиры от повышенного напряжения;

2. отвода опасного потенциала перенапряжения от защищаемого участка за счет быстрого его перенаправления на контур земли.

При незначительном повышении напряжения в сети исправить положение призваны также стабилизаторы различных конструкций. Но, в большинстве своем они создаются для поддержания рабочих параметров электроснабжения в ограниченном диапазоне его регулирования на входе, а не как защитное устройство. Их технические возможности ограничены.

В домашней проводке напряжение может повыситься:

1. на относительно продолжительный срок, когда происходит отгорание нуля в трехфазной схеме и потенциал нейтрали смещается в зависимости от сопротивления случайно подключенных потребителей;

2. кратковременным импульсом.

С первым видом неисправности успешно справляется реле контроля напряжения. Оно постоянно занимается мониторингом входных параметров сети и при достижении ими уровня верхней уставки отключает схему от питания до момента устранения аварии.

Причинами появления кратковременно возникающих импульсов перенапряжения могут быть две ситуации:

1. одновременное отключение нескольких мощных потребителей на питающей линии, когда трансформаторная подстанция не успевает мгновенно стабилизировать систему;

2. ударе грозового разряда молнии в электрооборудование ЛЭП, подстанции или дома.

Второй вариант развития аварии представляют наибо́льшую опасность, чем во всех предыдущих случаях. Сила тока молнии достигает огромных величин. При усредненных расчетах ее принимают в 200 кА.

Она при ударе в молниеприемник и нормальной работе молниезащиты здания протекает по молниеотводу на контур заземления. В этот момент во всех рядом расположенных проводниках по закону индукции наводится ЭДС, величина которой измеряется киловольтами.

Она может появиться даже в отключенной от сети проводке и сжечь ее оборудование, включая дорогостоящие телевизоры, холодильники, компьютеры.

Молния может ударить и в питающую здание воздушную ЛЭП. В этой ситуации нормально работают разрядники линии, гася ее энергию на потенциал земли. Но полностью ликвидировать его они не способны.

Часть высоковольтного импульса по проводам подключенной схемы станет растекаться во все возможные стороны и придет на ввод жилого дома, а с него — ко всем подключенным приборам чтобы сжечь их наиболее слабые места: электродвигатели и электронные компоненты.

В итоге мы получили два варианта повреждения дорогостоящего бытового электрооборудования жилого здания при нормальном ликвидации штатными защитами последствий удара молнии в молниеприемник собственного здания или питающую ЛЭП. Напрашивается вывод: необходимо устанавливать для них автоматическую защиту от импульсных разрядов .

Виды ограничителей перенапряжения для домашней электропроводки

Ассортимент подобных защит создается для работы в разных условиях, отличается конструкцией, применяемыми материалами, технологией работы.

Принципы формирования элементной базы ОПН

При создании защит от перенапряжения учитываются технические возможности различных конструкторских решений. Для газонаполненных разрядников характерно то, что они после окончания прохождения импульса разряда поддерживают протекание дополнительного тока, близкого по величине к нагрузке короткого замыкания. Его называют сопровождающим током.

Разрядники, обеспечивающие ток сопровождения порядка 100÷400 ампер, сами могут стать источником пожара и не обеспечить защиту. Их нельзя устанавливать для защиты изоляции от пробоя между любой фазой, рабочим и защитным нулем. Модели других типов разрядников работают вполне надежно внутри сети 0,4 кВ.

В домашней проводке приоритет в защитах от перенапряжения получили варисторные устройства. При нормальных условиях эксплуатации электроустановки они создают очень маленькие токи утечек до нескольких миллиампер, а во время прохождения высоковольтного импульса напряжения максимально быстро переводятся в туннельный режим, когда способны пропускать до тысяч ампер.

Классы стойкости изоляции домашней электропроводки к импульсным перенапряжениям

Электрооборудование жилых зданий создается по четырем категориям, которые обозначаются римскими цифрами IV÷I и характеризуются предельной величиной допустимого перенапряжения в 6, 4, 2,5 и 1,5 киловольта. Под эти зоны и проектируются защиты от импульсных перенапряжений.

В технической литературе их принято называть «УЗИП». что расшифровывается как устройство защиты от импульсного перенапряжения. Производители электрооборудования в маркетинговых целях ввели более понятное для простого населения определение — ограничители. В интернете можно встретить и другие названия.

Поэтому, чтобы не запутаться в используемой терминологии, рекомендуется обращаться к техническим характеристикам устройств, а не только к их наименованию.

Основные параметры взаимосвязи категорий стойкости изоляции с зонами опасности здания и применением для них трех классов УЗИП поможет понять приведенный ниже рисунок.

Он демонстрирует, что на участке от трансформаторной подстанции по линии электропередач до вводного щита может прийти импульс в 6 киловольт. Его величину должен снизить ограничитель перенапряжения класса I в зоне 1 до четырех кВ.

В распределительном щитке зоны 2 работает ограничитель класса II, снижая напряжение до 2,5 кВ. Внутри жилой комнаты с зоной 3 УЗИП класса III обеспечивает итоговое снижение импульса до 1,5 киловольта.

Как видим, все три класса ограничителей работают комплексно, последовательно и поочередно снижают импульс перенапряжения до допустимой для изоляции электропроводки величины.

Если хоть один из составных элементов этой цепочки защит окажется неисправным, то откажет вся система и возникнет пробой изоляции на конечном приборе. Использовать их необходимо комплексно, а в процессе эксплуатации требуется проверять исправность технического состояния хотя бы внешним осмотром.

Подбор варисторов для разных классов ограничителей перенапряжений

Производители оборудования устройства УЗИП снабжают моделями варисторов, подобранных по вольт-амперным характеристикам. Их вид и рабочие пределы показаны на соответствующем графике.

Каждому классу защиты соответствует свое напряжение и ток открытия. Устанавливать их можно только на свое место.

Принципы формирования схем включения ограничителей перенапряжения

Для защиты линии электроснабжения квартиры могут использоваться различные принципы подключения УЗИП:

В первом случае выполняется продольный принцип защиты каждого провода от перенапряжений относительно контура земли, а во втором — поперечный между каждой парой проводов. На основе сбора статистических данных обработки неисправностей и их анализа выявлено, что возникающие противофазные импульсные перенапряжения создают бо́льшие повреждения и поэтому считаются самыми опасными.

Комбинированный способ позволяет объединять оба предшествующих метода.

Варианты схем подключения ограничителей перенапряжения для системы заземления TN-S

Схема с электронными УЗИП и разрядниками

В этой схеме УЗИП всех трех классов устраняют импульсы перенапряжений между фазами линии и рабочим нулем N по цепочкам «провод — провод». Функция снижения синфазных перенапряжений возложена на разрядники определённого класса за счет их подключения между рабочим и защитным нулем.

Этот способ позволяет гальванически разъединять PE и N между собой. Положение нейтрали трехфазной сети зависит от симметрии приложенных нагрузок по фазам. Она всегда имеет какой-то потенциал, который может быть от долей до нескольких десятков вольт.

Если в системе работают блоки питания с импульсной нагрузкой, то от них высокочастотные помехи могут передаваться по цепям уравнивания потенциалов и заземления через РЕ-проводник к чувствительным электронным приборам, мешать их работе.

Включение разрядников в этом случае уменьшает воздействие перечисленных факторов за счет лучшей гальванической развязки, чем у электронных ограничителей на варисторах.

Схемы с электронными УЗИП в классах защит I и II

В этой схеме зашита от импульсных напряжений в вводном и распределительном щитах выполняется только электронными ОПН.

Они устраняют все синфазные перенапряжения (любых проводов относительно контура земли).

В классе III работает предыдущая схема с электронным ОПН и разрядником, обеспечивая защиту (провод — провод) для оконечного потребителя.

Особенности использования различных моделей ОПН с учетом очередности работы каскадов

При эксплуатации ступеней защит от импульсного перенапряжения требуется их согласование, координация. Она осуществляется удалением ступеней по кабелю на расстояние более 10 метров.

Объясняется это требование тем, что при попадании в схему высоковольтного импульса с крутой формой волны за счет индуктивного сопротивления жил на них происходит падение напряжения. Оно сразу прикладывается к первому каскаду, вызывает его срабатывание. Если это требование не выполнять, то происходит шунтирование ступеней, когда защита работает неправильно.

По такому же принципу подключаются и последующие каскады защит.

Когда по конструктивным особенностям оборудования оно расположено близко, то в схему искусственно включают дополнительные разделительные дроссели импульсного типа, создающие цепочку задержки. Их индуктивность настраивают в пределах 6÷15 микрогенри в зависимости от типа используемого ввода электропитания в здание.

Вариант такого подключения при близком расположении вводного и распределительного щитов и удаленном монтаже оконечных потребителей показан на схеме.

Монтируя дросселя по такой системе следует учитывать их возможность надежно работать при создаваемых нагрузках, выдерживать их предельные значения.

В целях удобства обслуживания защиты от импульсного перенапряжения вместе с дроссельными устройствами могут быть помещены в отдельный защитный щиток, последовательно связывающий вводное устройство с ГРЩ дома.

Один из вариантов подобного исполнения для здания, выполненного по системе зазамления TN-C-S, показан на схеме ниже.

При таком монтаже можно все три класса ограничителей размещать в одном месте, что удобно при обслуживании. Для этого надо последовательно между ступенями защит смонтировать разделительные дроссели.

Конструктивно вводное устройство, ГРЩ и защитный щиток при таком способе монтажа схемы следует располагать как можно ближе.

Комбинированное расположение УЗИП и дросселей в одном месте — защитном щитке позволяет исключить попадание импульсов перенапряжения уже на оборудование ГРЩ, в котором выполняется разделение PEN проводника.

Подключение силовых кабелей к ГЗЩ имеет особенности: их необходимо прокладывать по кратчайшим путям, избегая совместного соприкосновения для участков защищенной схемы и без защит.

Современные производители постоянно модифицируют свои разработки УЗИП, используя встроенные импульсные разделительные дроссели. Они позволили не только располагать ступени защит на близком расстоянии по кабелю, но и объединять их в отдельном блоке.

Сейчас на рынке, с учетом реализации этого метода, появились конструкции УЗИП комбинированных классов I+II+III или I+II. Различный ассортимент моделей таких разрядников выпускает российская копания Hakel.

Они создаются под разные системы заземления здания, работают без установки дополнительных ступеней защит, но требуют выполнения определенных технических условий монтажа по длине подключаемого кабеля. В большинстве случаев он должен быть менее 5 метров.

Для нормальной работы электронного оборудования и защиты его от помех высокой частоты выпускаются различные фильтры, в которые включают УЗИП класса III. Они нуждаются в подключении к контуру заземления через РЕ проводник.

Особенности защиты сложной бытовой техники от импульсов перенапряжений

Жизнь современного человека диктует необходимость использования различных электронных устройств, обрабатывающих и передающих информацию. Они довольно чувствительны к высокочастотным помехам и импульсам, плохо работают или вообще отказывают при их появлении. Для устранения подобных сбоев используют индивидуальное заземление корпуса прибора, называемое функциональным.

Его электрически отделяют от защитного РЕ проводника. Однако, при ударе молнии в молниезащиту между заземлениями здания или линии и функциональным электронного прибора по контуру земли потечет ток разряда, вызванный приложенным высоковольтным импульсом перенапряжения.

Устранить его можно выравниванием потенциалов этих контуров за счет монтажа специального разрядника между ними, который будет выравнивать потенциалы контуров при авариях и обеспечивать гальваническую развязку в повседневных условиях эксплуатации.

На выпуске подобных разрядников также специализируется копания Hakel.

Дополнительное требование к защите ОПН от коротких замыканий

Все УЗИП включаются в схему для выравнивания потенциалов между различными ее частями в критических ситуациях. При этом необходимо учитывать, что они сами, несмотря на наличие встроенной тепловой защиты варисторов, могут быть повреждены и стать из-за этого источником короткого замыкания, перерастающего в пожар.

Защита на варисторах может отказать при длительном превышении номинального напряжения, связанного, например, с отгоранием нуля в трехфазной питающей сети. Разрядники же, в отличие от электроники, вообще не снабжаются тепловой защитой.

По этим причинам все конструкции УЗИП дополнительно защищаются предохранителями, работающими при перегрузках и коротких замыканиях. Они обладают специальной сложной конструкцией и сильно отличаются от моделей с простой плавкой вставкой.

Применение автоматических выключателей для таких ситуаций не всегда оправданно: они повреждаются от импульсов грозовых разрядов, когда происходит сваривание силовых контактов.

Используя схему защиты УЗИП предохранителями необходимо соблюдать принцип создания ее иерархии методами селективности.

Как видим, чтобы обеспечить надежную защиту домашней электропроводки от импульсных перенапряжений необходимо скрупулезно подойти к этому вопросу, проанализировать вероятность возникновения аварий в проектной схеме с учетом работающей системы заземления и под нее выбрать наиболее подходящие ограничители ОПН.

Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.

Информация и обучающие материалы для начинающих электриков.

Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.

Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+

Перепечатка материалов сайта запрещена.

Источники: http://electric-220.ru/news/ogranichitel_impulsnykh_perenaprjazhenij/2015-02-26-841, http://electricavdome.ru/zashhita-ot-impulsnyx-perenapryazhenij.html, http://electrik.info/main/electrodom/1179-ogranichiteli-perenapryazheniya-vidy-i-shemy.html

electricremont.ru

Ограничители импульсных напряжений (ОИН) ОИН1, ОИН2

ОИН1, ОИН2

РМЕА 656111.011 ТУ Предназначены для защиты электрооборудования и бытовых приборов от грозовых и импульсных перенапряжений. ОИН1 — без индикатора рабочего состояния; ОИН2 — с индикатором рабочего состояния.

Нормативно-правовое обеспечение

  • Отвечают требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования», других стандартов и ПУЭ».
  • Отвечает требованиям к защите от перенапряжений по ГОСТ Р 50571.19

Функциональные возможности

ОИН1 — ограничитель импульсных напряжений моноблок с варистором; по заказу световой индикатор наличия напряжения сети. ОИН2 — ограничитель импульсных напряжений моноблок с варистором, световой индикатор рабочего состояния, световая индикация напряжения сети.

Конструктивные особенности

Ограничитель импульсных напряжений (ОИН) обеспечивает:

  • Максимальное длительное рабочее напряжение 275 В частотой 50 Гц
  • Рабочий потребляемый ток при напряжении 275 В не превышает 0,7 мА
  • Выполнен в виде унифицированного модуля шириной 17,5 мм для монтажа на рейке 35/7мм
  • Выдерживает воздействие импульсов комбинированной волны с напряжением разомкнутой цепи 10,0 кВ и с током короткозамкнутой цепи 5 кА
  • Обеспечивает защиту оборудования от импульсного перенапряжения категории II по ГОСТ Р 50571.19-2000 (уровень напряжения защиты 2,0 кВ)
  • Выдерживает без повреждений воздействие временного перенапряжения 380 В
  • Классификация по тепловой защите: ОИН1 и ОИН2 — без тепловой защиты.
  • Классификация по наличию индикатора состояния: ОИН1 — без индикатора; ОИН1С (по дополнительному заказу) — со световым индикатором наличия напряжения сети; ОИН2 — со световым индикатором рабочего состояния.
  • Классификация по ремонтопригодности: ОИН1 и ОИН2 — моноблочные (неремонтируемые в условиях эксплуатации).
  • Допускает присоединение проводников сечением от 4 до 16 мм
Наименование характеристики Значение параметров
Номинальное напряжение питающей сети, В 220
Номинальный разрядный ток, кА 5; 10; 20
Максимальный разрядный ток, кА 12,5; 25; 50
Остаточное напряжение при номинальном токе не выше, В 2000
Класс испытаний по ГОСТ Р 51992 II
Степень защиты, обеспечиваемая оболочками не ниже IP20
Температура окружающего воздуха, С от -45 до 55
Габаритные разметы, мм 80 x 17,5 x 65,5
Масса, не более, кг 0,12
Гарантийный срок эксплуатации, лет 3

www.energomera.ru

Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений

Причины возникновения импульсных перенапряжений

Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.

Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты, разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.

Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.

Устройство защиты от импульсных перенапряжений УЗИП

Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.

Схема подключения УЗИП к сети TNC и сети TNS

Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА.  Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.

Защита от импульсных перенапряжений тремя ступенями УЗИП

Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).

Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП

Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.

Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита,

Схема подключения одного УЗИП в частном доме

УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии.  Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.

Тоже интересные статьи

electricavdome.ru

Как организовать защиту от перенапряжения сети в частном доме: схемы, приборы, оборудование

Наличие в доме дорогостоящей электробытовой и электронной технике, природные катаклизмы и низкое качество электроснабжения в городских сетях вынуждают собственников жилья принимать меры, чтобы минимизировать возможный ущерб от вышеуказанных факторов.

В данной статье речь пойдёт о практических мерах по защите от перенапряжения, которые можно реализовать при организации электроснабжения частного дома. Причём эти работы можно выполнить как при новом строительстве, так и при модернизации существующих систем электроснабжения частного дома.

Я выполнял указанные работы при переводе электропитания дома с однофазной на трёхфазную схему. Причём работы были не только выполнены, но и приняты представителями горэлектросетей без замечаний, а правильное функционирование приборов и эффективность защиты от перенапряжения проверена на практике в процессе эксплуатации. Известно, что основным условием подключения к городским электросетям является выполнение технических условий (ТУ), которые выдаются собственнику жилья. Как показал личный опыт, надеяться на то, что в данных ТУ будут отражены все мероприятия по безопасной эксплуатации электрооборудования, можно с определённым скептицизмом. На фото ниже показаны ТУ, выданные мне в горэлектросетях.

Примечание: пункты, помеченные на фото красным цветом, были мной реализованы самостоятельно ещё до получения тех. условий. Пункт, помеченный синим цветом, больше обусловлен интересами самих горсетей (защитить себя от ответственности за ущерб перед собственником дома по причине возможных проблем в зоне их ответственности).

Поэтому при разработке проекта схемы электроснабжения частного дома было решено использовать дополнительные меры по защите электрооборудования, которые не были отражены в ТУ. Ниже на фото показан фрагмент проекта электроснабжения моего жилого дома.

Как видно из фото, в учётно-распределительном шкафу (ЩР1), устанавливаемом внутри дома, предусмотрено устройство защиты от импульсных перенапряжений (УЗИП-II) согласно требованиям ТУ, выданных городскими электрическими сетями.

Так как ввод в дом осуществляется по воздушной линии, то с учётом требований ПУЭ (правил устройства электроустановок), на вводе в дом должны устанавливаться ограничители перенапряжений, что и было мной учтено в проекте (УЗИП-I на фото), которые установлены в шкафу (ЩВ1) на фасаде здания. Для защиты индивидуальных электроприёмников в доме используются ИБП (источники бесперебойного питания) и стабилизаторы напряжений.

Таким образом, защита электрооборудования дома от перенапряжений реализована в трёх зонах (уровнях):

  • на вводе в дом
  • внутри дома, в учётно-распределительном шкафу
  • индивидуальная защита электроприборов внутри помещений дома

Защита от перенапряжения

Что важно учесть при выполнении работ

В первую очередь должен отметить специфические особенности, предъявляемые к выполнению электромонтажных работ со стороны представителей городских электросетей. Для примера с точки зрения учёта потребляемой электроэнергии достаточно поверить и опечатать счётчик электроэнергии. Но поскольку в каждом из нас они видят «потенциальных расхитителей электроэнергии», то всё, что касается монтажа оборудования, присоединений на участке от городской опоры и до счётчика включительно, должно быть «недоступным для потребителя», закрытым (в боксы, шкафы) и опломбированным. Причём даже в том случае, если эти «требования» противоречат требованиям технической документации на установленное оборудование, создают риск возникновения отказов в работе оборудования и т. д. Более подробно об этих «специфических требованиях» будет сказано ниже.

Теперь о технической стороне вопроса:

Для защиты электрооборудования, установленного в доме, я использовал следующие приборы и аппараты.

1. В качестве УЗИП (устройства защиты от импульсных перенапряжений) — I уровня мной были использованы ограничители перенапряжений нелинейные (ОПН), российского производства (Санкт-Петербург), в количестве трёх штук (по одному, на каждый фазный проводник). Заводское обозначение данных приборов — ОПНд-0,38. Установлены они в опечатанном пластиковом боксе в стальном шкафу на фасаде дома.

Что важно отметить по данному оборудованию:
  • Данные приборы защищают только от импульсных (кратковременных) перенапряжений, возникающих при грозах, а также от кратковременных коммутационных перенапряжений, причём в обе стороны. При длительных перенапряжениях, вызванных авариями и неполадками в городской электросети, данные приборы защиту дома не обеспечат.
  • В техническом плане ОПН представляет собой варистор (нелинейный резистор). Прибор подключается параллельно нагрузке между фазным и нулевым проводом. При появлении бросков (импульсов) напряжения, внутреннее сопротивление прибора моментально снижается, при этом ток через прибор резко и многократно возрастает, уходя в землю. Таким образом, происходит сглаживание (снижение) амплитуды импульсного напряжения. В связи с вышесказанным, при монтаже данных приборов нужно обратить особое внимание на устройство контура заземления и надёжного подключения ОПН к нему.
  • В зависимости от схемы электроснабжения дома, количество используемых ОПН может варьироваться. Например, для однофазного воздушного ввода достаточно установить один такой прибор, при питании от городской сети по двухпроводной линии. Для трёхфазного воздушного ввода в большинстве случаев достаточно установить три прибора (по числу фаз). Если ввод в дом осуществляется по трёхфазной, но пяти проводной схеме, или приборы ставится на участке после разделения общего проводника на нулевой рабочий (N) проводник и защитный проводник (PE), то потребуется установка дополнительного прибора между нулевым и защитным проводником.

2. В качестве УЗИП — II уровня я использовал аппараты УЗМ-50 М (устройство защитное многофункциональное) российского производства.

Из особенностей данных аппаратов можно отметить следующее:
  • В отличие от ОПН, данные аппараты обеспечивают защиту не только от импульсных перенапряжений, но и защиту от длительных (аварийных) перенапряжений и просадок (недопустимого падения напряжения).
  • В конструктивном отношении представляют собой реле контроля напряжения, дополненное мощным реле и варистором, заключенным в один корпус.
  • Для однофазной сети необходимо установить один аппарат, для трёхфазной сети потребуется три аппарата, не зависимо от числа проводников питающей линии.

3. Третий немаловажный момент, касающийся правильного монтажа и работы УЗИП при их последовательном включении (показаны на фото красными прямоугольниками УЗИП-1 и УЗИП-2) заключается в том, что расстояние между ними (по длине кабеля) должно быть не менее 10 метров. В моём случае оно равно 20 метрам.

Примечание: приобрести указанное оборудование (ОПН и УЗМ) в моём городе оказалось невозможным, ввиду его отсутствия в продаже, заказывал через интернет. Такой расклад навеял мысль о том, что вопросу защиты электрооборудования, по крайней мере, в нашем городе, внимания практически никто не уделяет.

Практическое выполнение работ

Практическое выполнение работ не представляет собой большой сложности и показано на фото ниже, с небольшими пояснениями.

Монтаж ОПН-0,38 на вводе в дом

На фото показан монтаж ОПН в пластиковом боксе. Из особенностей нужно учесть, что специальных боксов для ОПН не существует, ибо конструктивно они крепятся на опорной конструкции и по типу своего исполнения могут устанавливаться открыто. Установка ОПН в боксе — мера вынужденная. Бокс должен иметь возможность для пломбировки. Для установки ОПН в боксе сделана самодельная конструкция из оцинкованной стали толщиной 1 мм, которая закреплена вместо штатной дин рейки, установленной в боксе на заводе-изготовителе.

При монтаже ОПН и подключении к ним проводов использование граверных шайб — обязательно. По требованиям ТУ, вводной автомат должен устанавливаться в боксе с возможностью пломбировки. Использовался аналогичный бокс, как для ОПН, что и показано на фото ниже (верхний пластиковый бокс в металлическом шкафу).

Такое нагромождение конструкций (пластиковых боксов в металлическом шкафу) на фасаде дома, обусловлено, как я отмечал ранее, именно специфическими требованиями горэлектросетей и вызывает не только заметное удорожание работ, но и дополнительных затрат сил, времени и нервов. На мой взгляд, правильное в техническом плане выполнение работ при воздушном вводе, выполненное проводом СИП, должно бы быть следующим: от опоры горэлектросетей до фасада дома прокладываем провод СИП, крепим на фасаде дома и обрезаем с небольшим напуском. Затем на каждый провод СИП крепим прокалывающий зажим с отводом из медного провода сечением 10 мм2, который заводится в шкаф (или бокс) на клеммы вводного автомата. Срезы проводов СИП закрываем герметичными колпачками. Таким образом, мы правильно «перешли» с алюминия (провод СИП) на медь. При этом у нас не возникло бы проблем с подключением медного провода (сечением 10 мм2) к клеммам модульного вводного автомата. Но такую работу представители горсетей не примут.

Поэтому провод СИП сечением 16 мм2 необходимо завести непосредственно на клеммы вводного автомата, который должен быть установлен в пластиковый бокс. Сделать это на практике очень сложно, так как нужно сохранить степень защиты бокса (для наружной установки не ниже IP 54), при этом провод СИП должен быть зафиксирован по отношению к пластиковому боксу и т. д.

На практике пришлось просто купить ещё один стальной шкаф, в котором установил сами пластиковые боксы, затем провод СИП был заведён в шкаф и закреплён в нём. Ниже на фото показаны завершающие работы по монтажу шкафа и его крепления на фасаде дома. Работы были приняты без замечаний и претензий.

Ещё один важный момент, на который нужно обратить внимание, связан с тем, что ОПН при работе во время грозы отводит ток в землю посредством подключения самого ОПН к контуру заземления. При этом токи могут достигать значительных величин: от 200 — 300 А и до нескольких тысяч ампер. Поэтому важно обеспечить кратчайший путь от самих ОПН до контура заземления медным проводником сечением не менее 10 мм2. Ниже на фото показано, как данное подключение выполнил я. Для надёжности работы ОПН я сделал подключение приборов к контуру заземления двумя медными проводами сечением 10 мм2 каждый. На фото провод в желто-зеленой трубке ТУТ (термоусаживающаяся трубка).

Монтаж аппаратов УЗМ-50М в учётно-распределительном шкафу

Выполнение электромонтажных работ проблем не доставляет, поскольку аппараты имеют штатное крепление на DIN-рейку. Фрагмент выполнения работ по монтажу УЗМ-50М в шкафу показан на фото ниже. Аппараты также должны устанавливаться в пластиковый бокс с возможностью пломбирования. На фото верхняя крышка бокса не показана.

С точки зрения электрической схемы подключения (хотя схема имеется в паспорте на аппарат и на корпусе самого аппарата) у неподготовленного читателя могут возникнуть вопросы. Чтобы пояснить особенности подключения аппарата, ниже на рисунке приводится схема подключения, приведённая в паспорте на УЗМ-50М, с некоторыми моими пояснениями.

Во-первых, как видно из схемы, УЗМ-50М является однофазным коммутирующим аппаратом и для своего функционирования требует обязательного подключения проводников L и N к верхним клеммам. Это показано на схеме подключения в обоих случаях (а и б). Далее, между схемой а и схемой б появляется различие, о котором производитель не даёт ни какого пояснения и приходится потребителю самостоятельно додумывать, как и в каких случаях какую схему использовать.

Различие заключается в том, что по верхней схеме (а) нагрузка подключается к аппарату по двум проводам (L и N). Т. е. в случае аварийного срабатывания аппарата цепь будет разорвана как по фазному проводнику (L), так и по проводнику (N).

В нижней схеме (б) нагрузка к аппарату подключается только по одному фазному проводнику (L), а второй провод (N) подключается к нагрузке напрямую, минуя аппарат. Т. е. в случае аварийного срабатывания аппарата он разомкнёт только фазный проводник, а проводник N остаётся подключенным всегда. Исходя из вышесказанного, а также зная, в каком случае допускается разрывать проводник N, а в каком — не допускается, можно сделать следующий вывод:

В случае подключения дома (квартиры) по двухпроводной линии (система TN-C), необходимо подключать аппарат УЗМ-50М по нижней схеме (б), так как в этом случае провод N выполняет две функции (нулевого рабочего проводника и нулевого защитного проводника), и его разрывать ни в коем случае нельзя.

В случае если подключение дома (квартиры) выполнено по трёхпроводной схеме (TN-S), либо аппарат установлен в системе (TN-C-S), на участке после разделения общего (PEN) проводника (на N и PE), то провод N можно разрывать. В этом случае аппарат УЗМ-50М нужно подключать по верхней схеме (а). Почему аппарат, согласно схеме производителя, нужно подключать после счётчика (на рисунке поставил знак вопроса) — мне малопонятно. Я, например, свои аппараты в шкафу подключал до счётчика, что бы они защищали всё оборудование, установленное в доме, в том числе и оборудование, установленное в самом шкафу. Кроме того, поскольку разделение общего PEN выполнено в шкафу (ЩР1) в доме, то подключал аппараты защиты по схеме а, т. е. с отключением как фазных, так и нулевого проводников. Что и показано на фото ниже.

Ещё один важный момент: поскольку данные аппараты не предназначены для использования в многофазной сети то необходимо знать и учитывать следующее.

В случае трёхфазного подключения дома и использования данных аппаратов, если в доме имеются только однофазные электроприёмники, никаких проблем с использованием и работой данных аппаратов быть не должно. Но если в доме имеются трёхфазные потребители, например, трёхфазный электродвигатель, то в случае аварийного срабатывания аппаратов (одного или двух), трёхфазный электроприёмник (например, электродвигатель) может выйти из строя. Таким образом, в данном случае потребуются дополнительные технические мероприятия по отключению трёхфазных потребителей при аварийном срабатывании аппаратов УЗМ.

Использование индивидуальных защитных приборов

Применение ИБП стабилизаторов напряжения для защиты отдельных электроприёмников в доме (телевизор, компьютер и т. д.) настолько стало привычным и распространённым, что какого-либо особого пояснения не требует, поэтому здесь не приводится.

Выводы

1. Опыт эксплуатации показал, что при сильной грозе защита может работать неоднократно, на относительно небольшом промежутке времени. С учётом этого можно смело утверждать, что при сильных грозах и при отсутствии защиты, электрооборудование, установленное в доме, может быть выведено из строя с достаточно высокой степенью вероятности.2. В случае невозможности выполнения аналогичных работ в своём доме, в качестве защитной меры при грозовых разрядах необходимо хотя бы отключать электроприборы от сети, что, кстати, делают далеко не все.

Данный вариант защиты электрооборудования является недорогим бюджетным решением, но вполне работоспособным, надёжным и проверенным на практике. В случае применения аналогичного оборудования импортного производства и приглашения для выполнения работ специалистов цена вопроса может увеличиться в разы, что даже для средне обеспеченной семьи может быть накладно.

www.diy.ru

Трехфазное подключение дома. Что следует учесть

   Если вы столкнулись с проблемой электроснабжение дома, или же просто хотите заменить электропроводку, тогда перед вами представится необходимость сделать выбор, какой тип электрического питания лучше использовать (однофазный или трехфазный). От выбранного типа питания напрямую будет завесить схема электрической сети. И так, сегодня давайте разберемся, что такое трехфазное подключение дома. 

   Решая эти вопросы владелец сталкивается с многочисленными задачами, которые требуется решать техническими и организационными способами.

Сравнение преимуществ и недостатков однофазного и трехфазного подключения дома

   При выборе схемы следует учесть ее влияние на конструкцию проводки и условия эксплуатации, создаваемые разными системами.

   Однофазная сеть
   Трёхфазная сеть
Потребляемая мощность

   Та величина разрешенной мощности, которую вам предоставит организация продающая электроэнергию, станет основой для создания проекта электропроводки. За счет распределения ее по двум проводам в однофазной схеме толщина сечения жил кабеля всегда требуется больше, чем в трёхфазной цепи, где нагрузка равномерно разнесена по трем симметричным цепочкам.

   При одинаковой мощности в каждой жиле трехфазной схемы будут протекать меньшие номинальные токи. Под них потребуются уменьшенные номиналы автоматических выключателей. Несмотря на это их габариты, как и других защит и электросчетчика, все равно будут больше за счет применения утроенной конструкции. Потребуется более емкий распределительный щит. Его размеры могут значительно ограничивать свободное пространство внутри небольших помещений.

Трёхфазные потребители

   Асинхронные электродвигатели механических приводов, электрические нагревательные котлы, другие электроприборы, рассчитанные на эксплуатацию в трехфазной сети, эффективнее, оптимально работают в ней. Чтобы их запитать от однофазного источника необходимо создавать преобразователи напряжения, которые будут потреблять дополнительную энергию. Причем, в большинстве случаев происходит снижение КПД таких механизмов и расход мощности на преобразователе.

   Использование трехфазных потребителей основано на равномерном распределении нагрузки в каждой фазе, а подключение мощных однофазных приборов способно создать пофазный перекос токов, когда часть их начинает протекать по жиле рабочего нуля.

   При большом перекосе токов на перегруженной фазе снижается напряжение: начинают тускло светиться лампы накаливания, наблюдаются сбои электронных устройств, хуже работают электродвигатели. В этой ситуации владельцы трехфазной электропроводки могут перекоммутировать часть нагрузки на ненагруженную фазу, а потребителям двухпроводной схемы требуется эксплуатировать стабилизаторы напряжения или резервные источники.

Условия работы изоляции электропроводки

   Владельцы трехфазной схемы должны учитывать действие линейного напряжения 380, а не фазного 220 вольт. Его номинал представляет бо́льшую опасность для человека и изоляции электропроводки или приборов.

Габариты оборудования

   Однофазная электропроводка и все входящие в нее компоненты более компактны, требуют меньше места для монтажа. На основе сравнения этих характеристик можно сделать вывод, что трехфазное подключение частного дома зачастую может быть в современных условиях нецелесообразным. Его имеет смысл применять в том случае, если существует необходимость эксплуатации мощных трехфазных потребителей типа электрических котлов или станочного оборудования для постоянной работы в определённые сезоны. Большинство же бытовых электрических потребностей вполне может обеспечить однофазная электропроводка.

Как выполнить трехфазное подключение дома

   Когда вопрос трехфазного подключения частного дома стоит остро, то придется:

  1. заниматься подготовкой технической документации
  2. решать технические вопросы
Какие документы необходимо подготовить

   Обеспечить законность трехфазного подключения могут только следующие свидетельства и паспорта:

  1. технические условия от энергоснабжающей организации
  2. проект производства электроснабжения здания
  3. акт разграничения по балансовой принадлежности
  4. протоколы измерений основных электрических параметров собранной схемы подключения дома электротехнической лабораторией (монтаж разрешено выполнять после получения первых трех документов) и акт осмотра электротехнического оборудования
  5. заключение договора с энергосбытовой организацией, дающее право на получение наряда на включение
Технические условия

   Для их получения требуется заранее подать заявку в электроснабжающую организацию, где должны быть отражены требования к абоненту и электроустановке с указанием:

  • способов подключения
  • использования защит
  • мест размещения электроприборов и щитов
  • ограничение доступа посторонних лиц
  • характеристики нагрузки
Проект производства электроснабжения

   Разрабатывается проектной организацией на основе действующих нормативов и правил эксплуатации электроустановок с целью предоставления бригаде электромонтажников подробной информации по технологии монтажа электрической схемы.

   В состав проекта входят:

  1. пояснительная записка с отчетом
  2. исполнительные принципиальные и монтажные схемы
  3. ведомости
  4. требования нормативных документов и предписаний
Акт разграничения по балансовой принадлежности

   Определяются границы ответственности между электроснабжающей организацией и потребителем, указывается разрешенная мощность, категория надежности электроприемника, схема электропитания, некоторые другие сведения.

Протоколы электротехнических замеров

   Они выполняются электрической измерительной лабораторией после полного окончания монтажных работ. В случае получения положительных результатов измерений, отраженных в протоколах, предоставляется акт осмотра оборудования с заключением, дающим право на обращение в электросбытовую организацию.

Договор с энергосбытом

   После его заключения на основе документов от электротехнической лаборатории можно обращаться в электроснабжающую организацию на включение смонтированной электроустановки в работу по специальному наряду.

Трехфазное подключение дома, технические вопросы

   Принцип подвода электрической энергии к отдельно стоящему жилому зданию осуществляется по следующему принципу: от трансформаторной подстанции по линии электропередачи подается напряжение по четырем проводам, включающим три фазы (L1, L2, L3) и один общий нулевой проводник PEN. Подобная система выполняется по стандартам схемы TN-C, которая максимально распространена до сих пор в нашей стране.

   Линия электропередачи чаще всего может быть воздушной или реже кабельной. На обоих конструкциях могут возникнуть неисправности, которые быстрее устраняются у воздушных ЛЭП.

Особенности разделения PEN проводника

   Старые линии электропередач энергетики постепенно начинают модернизировать, переводить на новый стандарт TN-C-S, а строящиеся сразу создают по нормативам TN-S. В нем четвертый проводник PEN от питающей подстанции подается не одной, а двумя разветвленными жилами: РЕ и N. В итоге у этих схем используется уже пять жил для проводников.

   Трехфазное подключение дома по TN-S

   Трехфазное подключение дома основано на том, что все эти жилы подключаются к вводному устройству здания, а от него электроэнергия поступает на электрический счетчик и далее — в распределительный щит для осуществления внутренней разводки по помещениям и потребителям здания.

   Практически все бытовые приборы работают от фазного напряжения 220 вольт, которое присутствует между рабочим нулем N и одним из потенциальных проводников L1, L2 или L3. А между линейными проводами образовано напряжение 380 вольт.

   Внутри вводного устройства, использующего стандарт TN-C-S, делается выделение рабочего нуля N и защитного РЕ из проводника PEN, который соединяют здесь же с ГЗШ — главной заземляющей шиной. Ее подключают к повторному контуру заземлению здания.

   От вводного устройства рабочие и защитные нули идут изолированными цепочками, которые запрещено объединять в любой другой точке схемы электропроводки.

   По старым правилам, действовавшим в схеме заземления TN-C, расщепление проводника PEN не делалась, а фазное напряжение бралось прямо между ним и одним из линейных потенциалов.

   Конечный промежуток линии между ее опорой до ввода в дом прокладывают по воздуху или под землей. Его называют ответвлением. Оно находится на балансе электроснабжающей организации, а не хозяина жилого здания. Поэтому все работы по подключению дома на этом участке должны выполняться с ведома и по решению владельца ЛЭП. Соответственно, законодательно они потребуют согласования и оплаты.

    У подземной кабельной линии ответвление монтируют в металлическом шкафу, который размещают поблизости с трассой, а для воздушной ЛЭП — непосредственно на опоре. В обоих случаях важно обеспечить безопасность их эксплуатации, закрыть доступ посторонних людей и выполнить надежную защиту от повреждения вандалами.

Выбор места расщепления PEN проводника

   Оно может быть выполнено:

  1. на ближайшей опоре
  2. или на вводном щите, расположенном на стене либо внутри дома

   В первом случае ответственность за безопасную эксплуатацию несет электроснабжающая организация, а во втором — владелец здания. Доступ жильцов дома к работам на конце PEN проводника, расположенного на опоре, запрещен правилами.

   При этом надо учесть, что провода на воздушной линии способны обрываться по различным причинам и на них могут возникать неисправности. Во время аварии на питающей ЛЭП с обрывом PEN проводника ее ток потечет через провод, подключенный к дополнительному контуру заземления. Его материал и сечение должны надежно выдерживать такие повышенные мощности. Поэтому их выбирают не тоньше, чем основная жила линии электропередачи.

   Трехфазное подключение дома, обрыв PEN проводника на КТП

   Когда расщепление выполняется прямо на опоре, то к нему и контуру прокладывают линию, называемую повторным заземлением. Ее удобно изготавливать из металлической полосы, заглубленной в землю на 0,3÷1 м.

   Поскольку через нее в грозу создается путь протекания молнии в землю, то ее надо отводить от дорожек и мест возможного размещения людей. Рационально прокладывать ее под забором здания и в подобных труднодоступных местах, а все соединения выполнять сваркой.

    Когда расщепление производится в водном щите здания, то через линию ответвления с подключенными проводами будут протекать аварийные токи, которые могут выдержать только проводники с сечением фазных жил ЛЭП.

Вводное распределительное устройство электроэнергии

   Оно отличается от простого вводного устройства тем, что в его конструкцию внесены элементы, осуществляющие распределение электричества по группам потребителей внутри здания. Его монтируют на вводе электрического кабеля в пристройке или каком-то отдельном помещении.

   ВРУ устанавливают внутри металлического шкафа, куда заводят все три фазы, PEN проводник и шину контура повторного заземления в схеме подключения здания по системе TN-C-S.

   Внутри шкафа вводного распределительного устройства фазные проводники подключаются к клеммам входного автоматического выключателя или силовых предохранителей, а PEN проводник к своей шине. Через нее выполняется его расщепление на PE и N с образованием главной заземляющей шины и ее подключением к повторному контуру заземления.

   Ограничители повышения напряжения работают по импульсному принципу, защищают схему цепей фаз и рабочего нуля от воздействий возможного проникновения посторонних внешних разрядов, отводят их через РЕ проводник и главную защитную шину с контуром заземления на потенциал земли.

   При возникновении высоковольтных импульсных разрядов больших мощностей в питающей линии и прохождении их через последовательную цепочку из автоматического выключателя и УЗИП вполне возможен выход из строя силовых контактов автомата из-за подгорания и даже приваривания их.

   Поэтому защита этой цепочки мощными предохранителями, выполняемая простым перегоранием плавкой вставки, остается актуальной, широко применяется на практике.

   Трехфазный электрический счетчик учитывает расходуемую мощность. После него подключаемые нагрузки распределяются по группам потребления через правильно подобранные автоматические выключатели и устройства защитного отключения. Также на вводе может стоять дополнительное УЗО, выполняющее противопожарные функции у всей электрической проводки здания.

   После каждой группы УЗО может производиться дополнительное деление потребителей по степеням защиты индивидуальными автоматами или обходиться без них, как показано разными участками на схеме.

   На выходные клеммы щита и защит подключаются кабели, идущие к группам конечных потребителей.

Особенности конструкции ответвления

   Чаще всего трехфазное подключение дома на питающей ЛЭП выполняется воздушной линией, на которой может возникнуть короткое замыкание или обрыв. Чтобы их предотвратить следует обратить внимание на:

  • общую механическую прочность создаваемой конструкции
  • качество изоляции внешнего слоя
  • материал токоведущих жил

   Современные самонесущие алюминиевые кабели обладают небольшим весом, хорошими токопроводящими свойствами. Они хорошо подходят для монтажа воздушного ответвления. При трехфазном питании потребителей сечения жилы СИП 16 мм2 будет достаточно для длительного получения 42 кВт, а 25 мм кв — 53 кВт.

   Когда ответвление выполняется подземным кабелем, то обращают внимание на:

  • конфигурацию прокладываемого маршрута, его недоступность для повреждения посторонними людьми и механизмами при работах в грунте
  • защиту выходящих из земли концов металлическими трубами на высоту не меньше среднего человеческого роста

   Лучшим вариантом считается полное размещение кабеля в трубе вплоть до ввода в ВУ и распределительный шкаф.

   Для подземной прокладки используют только цельный кусок кабеля с прочной броневой лентой или выполняют его защиту трубами или металлическими коробами. При этом медные жилы предпочтительнее, чем алюминиевые.

   Технические аспекты трехфазного подключения частного дома в большинстве случаев требуют бо́льших затрат и усилий чем при однофазной схеме.

Видео по сборке трёхфазного щита учёта на дом

 

 

Будем рады, если подпишетесь на наш Блог!

powercoup.by

ремонт квартир в Мурманске — Схемы подключения к трехфазной, однофазной цепи.

04. Схемы подключения к трехфазной, однофазной сети.

     Обычно квартиры запитываются от одно- или трехфазных внешних сетей. Тут, как говорится, кому как повезло. Разумеется, трехфазные сети, как правило, обеспечивают возможность получения большей нагрузки.

     Самый тонкий вопрос — организация заземления и зануления. Мы все привыкли, что в розетках и вилках (однофазных сетей) у нас присутствуют 3 контакта: фаза, ноль и земля. Очень хорошо, если к Вашему дому приходят все эти три провода (при однофазном подключении), либо 5 проводов при трехфазном (3 провода 3 фаз, ноль и земля).

     Сложнее, когда Вы имеете 2 провода при однофазном или 4 провода при трехфазном подключении. В этом случае, если к Вам приходит один провод зануления/заземления (т.н. называемый PEN, Вы можете выделить из него PE (т.е. заземление) и N (т.е. нейтраль или нулевой провод).

     Конечно это будет несколько условно, но достаточно безопасно. А если Вы оборудуете Ваш щиток специальными приборами УЗО (устройство защитного отключения), то Вы можете считать себя в безопасности.Устройства защитного отключения (УЗО) реагируют на ненормативные токи утечки, являющиеся следствием прямого или косвенного касания человеком токоведущих частей, нарушения целостности или возгорания проводки. УЗО в первую очередь спасает человеку жизнь и защищает оборудование от возгорания.

подробнее об УЗО

     Общая рекомендация следующая. На входе коттеджа или квартиры должно стоять так называемое «пожарное УЗО» с током срабатывания 100 или 300 мА. Оно предназначено для отключения сети при возникновении пожара, что очень важно для деревянных домов. Ставить на входе УЗО с токами 30мА не рекомендуется — будут постоянные отключения.

     Итак, через УЗО в 300 мА мы завязываем всю электрическую сеть в доме. А вот, через УЗО 30 мА или 10 мА мы подключаем тех потребителей, где возможны утечки. Прежде всего это помещения, связанные с водою (ванная, туалет, кухня, бойлерная, насосная станция и т.д.). Не помешает вывести на УЗО все розетки — хуже не будет. А вот освещение выводить на УЗО смысла нет, вероятность поражения током мала, наоборот, может получиться только хуже. Представьте, темным вечером у Вас срабатывает УЗО на кухне. Если при этом еще и погаснет свет, то это только усугубит ситуацию.      Обратите внимание на тот факт, что, в отличие от автоматов, на УЗО замыкаются и нулевые провода. Но самое главное — нулевые провода вышедшие из разных УЗО нельзя соединять вместе — сработают эти УЗО, сигнализируя об утечке.

     Так как же работает наше УЗО. Очень просто. Оно представляет собою трансформатор тока: две обмотки, через одну протекает входящий в УЗО ток, а через вторую — ток, прошедший через нагрузку, т.е. выходящий.

     Если все нормально и утечки тока «на сторону» на нагрузке не было, то входящий и выходящий токи равны и УЗО работает в штатном режиме. Если же произошла утечка (например, нулевой кабель замкнут на корпус стиральной машины, а Вы к ней прикоснулись), то часть тока уйдет через Ваше тело и УЗО моментально сработает.

      Схемы подключения к трехфазной, однофазной сети.     

     В интернете можно найти несколько десятков схем подключения домов.

     Приводим три наиболее удачных варианта подключения к трехфазной сети: два варианта для режима раздельного подвода PE и N, и один вариант объединенного подвода PEN (самый дешевый и поэтому самый распространенный вариант). Порядок подключения к однофазной сети аналогичен.

Схемы распределительных щитов 3ф сети.

Вариант 1. Схема группового распределительного щита коттеджа (PE и N раздельны)

В приведенной ниже схеме все группы защищены УЗО с чувствительностью не менее 30 мА. Электрооборудование санузлов, влажных помещений, где ток утечки наиболее опасен, защищается УЗО с отключающим дифференциальным током 10 мА для обеспечения полной безопасности. 1 — Пластиковый или металлический корпус щита. 2 — Соединительные элементы нулевых рабочих проводников. 3 — Соединительный элемент зажимов РЕ проводника, а также проводника уравнивания потенциалов. 4 — Соединительный элемент фазных проводников групповых цепей. 5 — Выключатель дифференциального тока. 6 — Автоматические выключатели. 7 — Линии групповых цепей. 8 – Счетчик.

Вариант 2. Схема группового распределительного щита индивидуального здания (дома или дачи) — (PE и N раздельны)

В приведенной схеме все основные устройства выделены в отдельные группы. Предназначенные для защиты людей устройства дифференциальной защиты с чувствительностью 30 мА установлены на все основные группы потребителей, кроме освещения комнат, где маловероятен контакт человека с токоведущими частями, и климатизатора, который должен быть дополнительно заземлен. 1 — Пластиковый или металлический корпус щита. 2 — Соединительные элементы нулевых рабочих проводников. 3 — Соединительный элемент РЕ проводника, а также проводника уравнивания потенциалов. 4 — Соединительный элемент фазных проводников групповх сетей. 5 — Выключатель дифференциального тока. 6 — Автоматические выключатели. 7 — Линии групповых цепей. 8 — Дифференциальный автоматический выключатель. 9 – Счетчик.

Вариант 3. Схема группового распределительного щита для индивидуального жилого дома (PEN: т.е. PE и N объединены)

На вводе в коттедж устанавливается УЗО с дифференциальным током 300 мА (при установке УЗО с меньшим током утечки возможны ложные срабатывания вследствие большой протяженности электропроводки и высокого естественного фона утечки электрооборудования). Первые три автоматических выключателя предназначены для защиты осветительных цепей от перегрузки,короткого замыкания и токов утечки. Группа из УЗО и трех автоматических выключателей предназначена для защиты розеток. Трехфазный автоматический выключатель и УЗО защищают мощные потребители (например, электроплита). Последняя лини, состоящая из одного УЗО и двух автоматических выключателей предназначена для защиты цепей отдельно стоящего здания (например, подсобного помещения). 1 — Пластиковый корпус щита. 2 — Соединительный элемент нулевых рабочих проводников . 3 — Соединительный элемент зажимов нулевых рабочих проводников, а так же проводника уравнивания потенциалов . 4 — Соединительный элемент входных выводов защитных аппаратов групповых цепей. 5 — Автоматический выключатель дифференциального тока. 6 — Выключатель дифференциального тока. 7 — Автоматические выключатели. 8 — Линии групповых цепей. 9 – Счетчик.

Схемы распределительных щитов 1ф сети.

Вариант 1. Схема группового распределительного щита (PE и N раздельны)

Московские городские строительные нормы МГСН 3.01-01 «Жилые здания»

Схема электроснабжения квартир II категории комфорта:

Схема электроснабжения квартир I категории комфорта:

vg-repair.ru

Ограничитель перенапряжения: разновидности и характеристики

Любое жилое или административное здание оборудовано большим количеством техники, питаемой от электросети. Значительное увеличение значений рабочего напряжения и тока в этой сети может привести к выходу из строя всего этого электрического оборудования. Если защитой от таких явлений в многоквартирных домах, промышленных и административных зданиях занимаются обслуживающие организации, то владельцы частных домов должны сами заботиться о ней. И в этом поможет ограничитель перенапряжения.

Применение

Как следует из названия, ограничитель чрезмерно высокого напряжения (ОПН) служит для защиты электрической техники от напряжения, значительно превышающего номинальные значения. Это высокое напряжение или, другими словами, перенапряжение обычно носит импульсный характер. Поэтому еще одно название для таких устройств — ограничитель импульсных напряжений (ОИН).

Чтобы лучше разобраться с областями применения ОПН, рассмотрим вкратце причины, вызывающие такие скачки напряжения. Импульсы перенапряжения могут быть коммутационными. В этом случае они возникают в результате:

  • переключений (коммутаций) в мощных силовых электроустановках и системах энергообеспечения;
  • при резком изменении нагрузки в распределительных системах;
  • при возникновении повреждений в энергоустановках, вызывающих короткое замыкание.

Эти случаи носят производственный характер и устранением их последствий занимаются профессионалы. В таких цепях устанавливаются промышленные устройства, например, ОПН-110, где число 110 указывает на напряжение сети в кВ. Для нас интереснее будет защита от импульсных перенапряжений частного жилого дома. Обычно эти перенапряжения возникают во время грозы при разряде молнии. При этом импульсы перенапряжения возникают когда:

  • молния ударяет непосредственно в линию электропередач (ЛЭП) за пределами дома;
  • разряд молнии происходит между облаками или в находящийся рядом с домом объект. Возникшее электромагнитное поле индуцирует в электрических цепях мощный импульс;
  • удар молнии происходит в грунт недалеко от дома. Ток разряда, протекающий в земле, может вызвать значительную разность потенциалов.

В этих случаях во внешних воздушных линиях до 380В могут возникать импульсы величиной до 10 кВ, а во внутренней проводке домов — до 6 кВ. Чтобы избежать пагубного влияния таких высоких напряжений на домовую электрическую сеть и бытовые электроприборы существуют простые меры. По Правилам устройства электроустановок (ПУЭ) на входе силового электрического кабеля в дом должны устанавливаться ограничители импульсных напряжений (ОИН). Схема подключения ОИН простая. Устройство включается в цепь между силовым кабелем и заземляющим контуром. На рынке существует достаточно предложений различных производителей, одним из которых является концерн «Энергомера».

Как работают

В основе работы ОПН лежит нелинейная вольтамперная характеристика устройства. Благодаря ей при поступлении на ОПН больших токов высокого напряжения электрическое сопротивление устройства резко падает практически до нуля. В результате импульс напряжения в несколько кВ уходит через заземляющую цепь.

Время срабатывания на уменьшение сопротивления, как и время восстановления в исходное положение, у ОПН очень мало. Поэтому устройство при необходимости готово реагировать на целую серию импульсов.

Видео «Ограничитель высокого напряжения»

Виды и классы

С середины прошлого века до недавнего времени основными ОПН были вентильные разрядники. Но они имели целый ряд недостатков и были вытеснены нелинейными варисторами, созданными на основе металлооксидных материалов. Конструктивно они представляют собой варисторные таблеки, заключенные в укрепленный полимерный корпус. Такое решение позволяет избежать взрыва и разлета осколков устройства в случае поступления на него таких высоких напряжений, на которые оно не рассчитано.

По способам монтажа и крепления ОИН можно обозначить такие виды. Обычный вид, когда в устройство традиционным способом заводятся силовые провода. Специальный вид для крепления на дин-рейку. Этот способ, с креплением на дин-рейку, находит все большее применение благодаря удобству и простоте. По месту установки ОИН и схеме подключения можно выделить такие классы устройств. Условно их можно обозначить буквами латинского алфавита, хотя возможен и другой способ обозначения.

Устройства класса А предназначены для защиты от импульсного перенапряжения при попадании молнии в ЛЭП или разряде возле нее. Устанавливаются в месте соединения ЛЭП с кабелем, идущим в жилое строение. Выдерживают импульсы напряжения до 6 кВ. ОИН класса B монтируется в месте ввода силового кабеля в дом и должен выдерживать напряжение до 4 кВ. Подразумевается, что устройство класса А уже установлено.

Устройства класса C устанавливаются в электрощитах внутри дома и рассчитаны на напряжение 2,5 кВ. Одними из таких устройств являются ОИН-1 и ОИН-2 производства концерна «Энергомера». Первое устройство не содержит индикатор работоспособности, второе имеет такой индикатор.

Ограничители перенапряжения класса D рассчитаны на скачки напряжения до 1,5 кВ. Они предназначены для защиты чувствительной электронной аппаратуры и устанавливаются неподалеку от нее, например, в монтажных коробках. Несмотря на кажущуюся простоту, монтаж таких устройств желательно поручить квалифицированному специалисту.

Видео «Нелинейные ограничители перенапряжения»

Из видео вы узнаете, в чем особенности эксплуатации данных комплектующих и для чего они используются.

otoke.ru

Опс1 с 3р схема подключения

Опс1 с 3р схема подключения — eepeedeev.crux.ms

Опс1 с 3р схема подключения

Схема подключения ограничителя импульсных перенапряжений с нижних клемм вводного автомата с помощью наконечников НШВИ-2. Схема подключения ограничителей перенапряжения УЗИП,ОПС-1, ОИН и прочих идентична и для других производителей. Отличие возможно лишь в том, что если берете трехполюсный ограничитель то у него выводной проводник уже собран из трех в один. Схема подключения. Ограничители класса В — предназначены для защи-ты объектов от Ограничители импульсных перенапряжений серии ОПС1 УЗИП. На лицевой панели ограничителя ОПС1 реализован визуальный указатель «износа» сменного защитного модуля. Принцип действия ОПС1. Внутри корпуса модуля расположен дисковый варистор и механизм указателя степени износа варистора. При отсутствии импульсных напряжений ток через варистор пренебрежимо мал, и поэтому варистор в этих условиях представляет собой изолятор. Ограничители импульсных перенапряжений ОПС1-С (класс C) предназначены для защиты электрооборудования объектов от остаточных атмосферных и коммутационных перенапряжений, прошедших через ограничители Схема размещения ОПС1. Схемы подключения ОПС1. Схемы электрические принципиальные и схема подключения автомати- ческого выключателя или предохранителя представлены на рисунках 1 и 2 соответственно в Приложении А., Таблица 1. нование параметра. Типоисполнения ОПС; Число полюсов. Класс защиты. Друзья всех с наступающим новым 2018 годом! Зима — самое время изучить и понять, что должно быть в нашем щите учета! Одними из устройств из серии «быть или. Схема подключения опс1. 1.7. Разрядники грозовые ОПС1. НАЗНАЧЕНИЕ ИЗДЕЛИЯ. Россия располагает низковольтными воздушными распределительными сетями большой протяженности, подверженных воздействию грозовых разрядов. В летний период грозовой. 3 схемы подключения. 3 класса устройств. Бесполезна ли установка УЗИП 2, если нет УЗИП 1. Установка УЗИП от Schneider Electric и ABB OVR. Что ставить перед УЗИП автомат или предохранители. Когда защита от импульсных перенапряжений не спасет. 8. Как работает ОПС1? Основной элемент ОПС1 — это варистор, обладающий свойством нелинейного сопротивления. При появлении на выводах варистора грозового или коммутационного перенапряжения он практически мгновенно снижает свое сопротивление. Ограничитель импульсных перенапряжений серии ОПC является устройством защиты от импульсных перенапряжений (УЗИП), ограничения переходных перенапряжений и отвода импульсов схемах; — повреждений в системах, например при КЗ на землю, дуговых разрядах. Модульное оборудование. Ограничители импульсных перенапряжений серии ОПС1 (УЗИП). аппаратами модульной серии. Подробная инструкция по мон-тажу и эксплуатации позволяет легко монтировать ограничитель ОПС1 в щитке. Пошаговая инструкция по подключению УЗИП в щитке. Схема и видео пример монтажа. Обратите внимание! При подключении ОПС1 важно соблюдать полярность. Для этого все клеммные зажимы на корпусе прибора имеют маркировку, какой Теперь давайте рассмотрим, что представляет собой схема подключения УЗИП в энергосеть на примере частного дома. На лицевой панели ограничителя ОПС1 реализован визуальный указатель «износа» сменного защитного модуля. В каждом из полюсов предусмотрен встроенный предохранитель для защиты от сверхтоков. Схема подключения. +7 (495) 727-32-14 +7 (495) 640-32-14. Схема подключения реле напряжения. Как выбрать стабилизатор напряжения для дома. Ограничители перенапряжения в домашней электропроводке — виды и схемы подключения. Любое электротехническое оборудование создается для работы с определённой электрической. Схемы подключения УЗИП, принцип построения защиты здания от перенапряжений. УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы. Здесь вы найдете несколько наглядных схем подключения УЗИП для однофазной и трехфазной сетей и разных систем заземления. Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях. Электричество и схемы — правила построения и черчения электрических схем, условные обозначения электрических элементов. для защиты на ответвлении от групповой линии (третья ступень защиты). 0ПС1-С/2 ОПС1 -С/4. Ограничители импульсных перенапряжений ОПС1. Класс I (B) Защита от прямых ударов молнии в систему молниезащиты здания или ЛЭП. ОПС1 устанавливаются на вводе в здание во вводно распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Ограничители импульсных перенапряжений ОПС1 применяются для защиты воздушных линий электропередач, а также систем электроснабжения от грозовых и коммутационных импульсных перенапряжений. Ограничители импульсных перенапряжений ОПС1 являются варисторными. Особенности конструкции ограничителей ОПС-1: Изготовлены в виде стандартных модулей шириной 18мм, с креплением на ДИН-рейку. Насечки на контактных зажимах предотвращают перегрев и оплавление проводов за счет более плотного и большего по площади контакта. ОПC КС. Схема подключения. ОПC КС. Ограничитель перенапряжений опс 1 в — это эффективное и надежное устройство, защищающее сети от импульсных перенапряжений в процессе грозы и коммутации. Ограничитель импульсных перенапряжений ОПС1-C 3Р. Описание продукции. Ограничитель импульсных перенапряжений ОПС1 (УЗИП) предназначен для защиты внутренних распределительных цепей жилых и общественных зданий от грозовых и коммутационных. Класс II (C): Защита токораспределительной сети объекта от коммутационных помех или как вторая ступень защиты при ударе молнии. ОПС1-С устанавливаются в распределительные щиты. Преимущества. • Модульное исполнение со стандартными размерами и установкой. В схеме нарисованы вводный на 25А 3Р, после сбоку ОПС1-В-1Р, далее счётчик Меркурий 230, далее УЗО 25А 300мА 4Р и два автомата на16А 2Р на две разетки. Вопрос такой могулия вместо узо поставить автомат на 25А 3р и почему ОПС однополюсное. Какое заземления надо делать. Ограничитель перенапряжений ОПС устройство предназначенное для защиты электрооборудования от импульсных перенапряжений вследствии ударов молнии и работы устройств с большими индуктивными нагрузками. Описание ограничителей ОПС, характеристики. Схема подключения опс1 в 3р. Схемы подключения → Электросхемы. Ограничитель импульсных перенапряжений ОПС1 (УЗИП) предназначен для защиты внутренних распределительных цепей жилых и общественных зданий от грозовых и коммутационных. Описание и элементы конструкции трехполюсного ограничителя импульсного перенапряжения ОПС1-С 3Р в модульном исполнении производства ИЭК. Краткое руководство по эксплуатации Схема Подключения. ОПС1-C 3. Артикул: MOP20-3-C. Тип полей : 3. Импульсный ток молнии — 10 или 350 кА: 40. Номин сброс импульсного тока — 8 или 20 кА:. Схема подключения ограничителя импульсных перенапряжений с нижних клемм вводного.

Links to Important Stuff

Links

  • УЗИП, ОИН, ОПС-1, в щите учета подключение (схема).

© Untitled. All rights reserved.

Ограничитель перенапряжения: разновидности и характеристики

Любое жилое или административное здание оборудовано большим количеством техники, питаемой от электросети. Значительное увеличение значений рабочего напряжения и тока в этой сети может привести к выходу из строя всего этого электрического оборудования. Если защитой от таких явлений в многоквартирных домах, промышленных и административных зданиях занимаются обслуживающие организации, то владельцы частных домов должны сами заботиться о ней. И в этом поможет ограничитель перенапряжения.

Применение

Как следует из названия, ограничитель чрезмерно высокого напряжения (ОПН) служит для защиты электрической техники от напряжения, значительно превышающего номинальные значения. Это высокое напряжение или, другими словами, перенапряжение обычно носит импульсный характер. Поэтому еще одно название для таких устройств — ограничитель импульсных напряжений (ОИН).

Чтобы лучше разобраться с областями применения ОПН, рассмотрим вкратце причины, вызывающие такие скачки напряжения. Импульсы перенапряжения могут быть коммутационными. В этом случае они возникают в результате:

  • переключений (коммутаций) в мощных силовых электроустановках и системах энергообеспечения;
  • при резком изменении нагрузки в распределительных системах;
  • при возникновении повреждений в энергоустановках, вызывающих короткое замыкание.

Эти случаи носят производственный характер и устранением их последствий занимаются профессионалы. В таких цепях устанавливаются промышленные устройства, например, ОПН-110, где число 110 указывает на напряжение сети в кВ. Для нас интереснее будет защита от импульсных перенапряжений частного жилого дома. Обычно эти перенапряжения возникают во время грозы при разряде молнии. При этом импульсы перенапряжения возникают когда:

  • молния ударяет непосредственно в линию электропередач (ЛЭП) за пределами дома;
  • разряд молнии происходит между облаками или в находящийся рядом с домом объект. Возникшее электромагнитное поле индуцирует в электрических цепях мощный импульс;
  • удар молнии происходит в грунт недалеко от дома. Ток разряда, протекающий в земле, может вызвать значительную разность потенциалов.

В этих случаях во внешних воздушных линиях до 380В могут возникать импульсы величиной до 10 кВ, а во внутренней проводке домов — до 6 кВ. Чтобы избежать пагубного влияния таких высоких напряжений на домовую электрическую сеть и бытовые электроприборы существуют простые меры. По Правилам устройства электроустановок (ПУЭ) на входе силового электрического кабеля в дом должны устанавливаться ограничители импульсных напряжений (ОИН). Схема подключения ОИН простая. Устройство включается в цепь между силовым кабелем и заземляющим контуром. На рынке существует достаточно предложений различных производителей, одним из которых является концерн «Энергомера».

Как работают

В основе работы ОПН лежит нелинейная вольтамперная характеристика устройства. Благодаря ей при поступлении на ОПН больших токов высокого напряжения электрическое сопротивление устройства резко падает практически до нуля. В результате импульс напряжения в несколько кВ уходит через заземляющую цепь.

Время срабатывания на уменьшение сопротивления, как и время восстановления в исходное положение, у ОПН очень мало. Поэтому устройство при необходимости готово реагировать на целую серию импульсов.

Видео “Ограничитель высокого напряжения”

Виды и классы

С середины прошлого века до недавнего времени основными ОПН были вентильные разрядники. Но они имели целый ряд недостатков и были вытеснены нелинейными варисторами, созданными на основе металлооксидных материалов. Конструктивно они представляют собой варисторные таблеки, заключенные в укрепленный полимерный корпус. Такое решение позволяет избежать взрыва и разлета осколков устройства в случае поступления на него таких высоких напряжений, на которые оно не рассчитано.

По способам монтажа и крепления ОИН можно обозначить такие виды. Обычный вид, когда в устройство традиционным способом заводятся силовые провода. Специальный вид для крепления на дин-рейку. Этот способ, с креплением на дин-рейку, находит все большее применение благодаря удобству и простоте. По месту установки ОИН и схеме подключения можно выделить такие классы устройств. Условно их можно обозначить буквами латинского алфавита, хотя возможен и другой способ обозначения.

Устройства класса А предназначены для защиты от импульсного перенапряжения при попадании молнии в ЛЭП или разряде возле нее. Устанавливаются в месте соединения ЛЭП с кабелем, идущим в жилое строение. Выдерживают импульсы напряжения до 6 кВ. ОИН класса B монтируется в месте ввода силового кабеля в дом и должен выдерживать напряжение до 4 кВ. Подразумевается, что устройство класса А уже установлено.

Устройства класса C устанавливаются в электрощитах внутри дома и рассчитаны на напряжение 2,5 кВ. Одними из таких устройств являются ОИН-1 и ОИН-2 производства концерна «Энергомера». Первое устройство не содержит индикатор работоспособности, второе имеет такой индикатор.

Ограничители перенапряжения класса D рассчитаны на скачки напряжения до 1,5 кВ. Они предназначены для защиты чувствительной электронной аппаратуры и устанавливаются неподалеку от нее, например, в монтажных коробках. Несмотря на кажущуюся простоту, монтаж таких устройств желательно поручить квалифицированному специалисту.

Видео “Нелинейные ограничители перенапряжения”

Из видео вы узнаете, в чем особенности эксплуатации данных комплектующих и для чего они используются.

Защита от молний. Ограничитель импульсных перенапряжений

Любое жилое или административное здание оборудовано большим количеством техники, питаемой от электросети. Значительное увеличение значений рабочего напряжения и тока в этой сети может привести к выходу из строя всего этого электрического оборудования. Если защитой от таких явлений в многоквартирных домах, промышленных и административных зданиях занимаются обслуживающие организации, то владельцы частных домов должны сами заботиться о ней. И в этом поможет ограничитель перенапряжения.

Как следует из названия, ограничитель чрезмерно высокого напряжения (ОПН) служит для защиты электрической техники от напряжения, значительно превышающего номинальные значения. Это высокое напряжение или, другими словами, перенапряжение обычно носит импульсный характер. Поэтому еще одно название для таких устройств — ограничитель импульсных напряжений (ОИН).

Чтобы лучше разобраться с областями применения ОПН, рассмотрим вкратце причины, вызывающие такие скачки напряжения. Импульсы перенапряжения могут быть коммутационными. В этом случае они возникают в результате:

  • переключений (коммутаций) в мощных силовых электроустановках и системах энергообеспечения;
  • при резком изменении нагрузки в распределительных системах;
  • при возникновении повреждений в энергоустановках, вызывающих короткое замыкание.

Эти случаи носят производственный характер и устранением их последствий занимаются профессионалы. В таких цепях устанавливаются промышленные устройства, например, ОПН-110, где число 110 указывает на напряжение сети в кВ. Для нас интереснее будет защита от импульсных перенапряжений частного жилого дома. Обычно эти перенапряжения возникают во время грозы при разряде молнии. При этом импульсы перенапряжения возникают когда:

  • молния ударяет непосредственно в линию электропередач (ЛЭП) за пределами дома;
  • разряд молнии происходит между облаками или в находящийся рядом с домом объект. Возникшее электромагнитное поле индуцирует в электрических цепях мощный импульс;
  • удар молнии происходит в грунт недалеко от дома. Ток разряда, протекающий в земле, может вызвать значительную разность потенциалов.


В этих случаях во внешних воздушных линиях до 380В могут возникать импульсы величиной до 10 кВ, а во внутренней проводке домов — до 6 кВ. Чтобы избежать пагубного влияния таких высоких напряжений на домовую электрическую сеть и бытовые электроприборы существуют простые меры. По Правилам устройства электроустановок (ПУЭ) на входе силового электрического кабеля в дом должны устанавливаться ограничители импульсных напряжений (ОИН). Схема подключения ОИН простая. Устройство включается в цепь между силовым кабелем и заземляющим контуром. На рынке существует достаточно предложений различных производителей, одним из которых является концерн «Энергомера».

Как работают

В основе работы ОПН лежит нелинейная вольтамперная характеристика устройства. Благодаря ей при поступлении на ОПН больших токов высокого напряжения электрическое сопротивление устройства резко падает практически до нуля. В результате импульс напряжения в несколько кВ уходит через заземляющую цепь.

Время срабатывания на уменьшение сопротивления, как и время восстановления в исходное положение, у ОПН очень мало. Поэтому устройство при необходимости готово реагировать на целую серию импульсов.

Видео «Ограничитель высокого напряжения»

Виды и классы

С середины прошлого века до недавнего времени основными ОПН были вентильные разрядники. Но они имели целый ряд недостатков и были вытеснены нелинейными варисторами, созданными на основе металлооксидных материалов. Конструктивно они представляют собой варисторные таблеки, заключенные в укрепленный полимерный корпус. Такое решение позволяет избежать взрыва и разлета осколков устройства в случае поступления на него таких высоких напряжений, на которые оно не рассчитано.

По способам монтажа и крепления ОИН можно обозначить такие виды. Обычный вид, когда в устройство традиционным способом заводятся силовые провода. Специальный вид для крепления на дин-рейку. Этот способ, с креплением на дин-рейку, находит все большее применение благодаря удобству и простоте. По месту установки ОИН и схеме подключения можно выделить такие классы устройств. Условно их можно обозначить буквами латинского алфавита, хотя возможен и другой способ обозначения.


Устройства класса А предназначены для защиты от импульсного перенапряжения при попадании молнии в ЛЭП или разряде возле нее. Устанавливаются в месте соединения ЛЭП с кабелем, идущим в жилое строение. Выдерживают импульсы напряжения до 6 кВ. ОИН класса B монтируется в месте ввода силового кабеля в дом и должен выдерживать напряжение до 4 кВ. Подразумевается, что устройство класса А уже установлено.

Устройства класса C устанавливаются в электрощитах внутри дома и рассчитаны на напряжение 2,5 кВ. Одними из таких устройств являются ОИН-1 и ОИН-2 производства концерна «Энергомера». Первое устройство не содержит индикатор работоспособности, второе имеет такой индикатор.

Ограничители перенапряжения класса D рассчитаны на скачки напряжения до 1,5 кВ. Они предназначены для защиты чувствительной электронной аппаратуры и устанавливаются неподалеку от нее, например, в монтажных коробках. Несмотря на кажущуюся простоту, монтаж таких устройств желательно поручить квалифицированному специалисту.

Сетевой фильтр или ограничитель перенапряжения представляет собой устройство, подключенное к сети питания, для того чтобы предотвратить повреждение электронного оборудования от скачков напряжения. В нашей статье мы рассмотрим их виды, основные правила установки и советы по эксплуатации.

Данные защитные устройства, предназначены в первую очередь для связи между проводником электрической системы и заземлением, чтобы ограничить величину переходных перенапряжений на оборудование.

Ограничитель перенапряжения ОПН состоит из дисков, изготовленных из оксида цинка материала, который обладает низким сопротивлением при высоком напряжении и высокой стойкостью при низком напряжении. Диски помещены в фарфоровые корпуса для обеспечения физической поддержки, отвода тепла, и изоляции от загрязнений внутренних деталей. В случае удара молнии или коммутационных перенапряжений, импульсный ток ограничивается специальной встроенной схемой.

Устройство защиты от перенапряжений направляет избыточный заряд в провод заземления розетки, защищая от него через электронные устройства и в то же время позволяя нормальному напряжению поступать к аппаратуре. Перепады в электрической сети могут повредить компьютерное оборудование, сжечь провода, и даже уничтожить любые сохраненные данные. Сетевые фильтры также могут защитить телефонных и кабельных линий.

Видео: принципы работы ограничителя перенапряжения

Перед тем, как купить ограничитель перенапряжения ОПН, нужно определить цель, для которой он необходим, и решить некоторые монтажные вопросы:

1. Сколько точек вам нужно?

Определить, сколько элементов будет подключено к одной розетке, и приобрести один ограничитель напряжения, который будет отвечать количество устройств. Помните, что трансформаторные пробки шире стандартного разъема ограничителя. Многие сетевые фильтры предназначены для размещения в трансформаторе УЗО, чтобы не блокировать соседние розетки. Данные показатели не важны для устройств типа ОПН-10, ОПН 6 и ОПНП, которые подключаются непосредственно сеть.

2. Замерить напряжение

Отраслевым стандартом для оценки электрической энергии являются джоули. Именно в Джоулях сетевой фильтр сообщает нам, сколько энергии устройство защиты от перенапряжений может поглотить, прежде чем оно выходит из строя. Большее число указывает на большую защиту. Соответственно, для дома с большим количество мощных электрических приборов понадобится хороший импульсный ограничитель.

3. Подключаемое оборудование

Бытовая электроника, компьютеры, оргтехника и инструменты домашнего мастера имеют разные потребности в защите. Желательно выбрать сетевой фильтр для защиты всего оборудования, и, в том числе телефонных линий (RJ-11), компьютерные сети (RJ-45), разъемы и кабельные (коаксиальный). Для этих целей подойдут модели типа abb.

4. Индикаторы работы

Большинство ограничителей оснащены диагностическими светодиодами, которые подтверждают наличие питания и рабочее состояние защиты. После неоднократных скачков напряжения, защитные схемы могут выгореть, поэтому наличие дисплея или хотя бы сигнализирующих ламп очень важно (на моделях ОПНП, ОПН-П и ОПС типа УХЛ отсутствует).

Виды ограничителей

Существует огромное количество разнообразных защитных устройств:

  • ограничитель высоковольтный нелинейный, предназначений дл перенапряжений сети от 800 В – abb, ОПС1 и все серии ОПН;

  • импульсные устройства типа варисторов, представлены моделями ECOTEC;
  • сетевые фильтры для защиты оргтехники – OVR;
  • реле контроля – применяется не только для защиты сети, но и её диагностики.

Устанавливаем ограничитель в щиток

При установке линейных ограничителей ОПН 10 необходимо зажать контакты устройства при помощи специальных клемм. Один контакт обязательно отводится на заземляющее устройство, либо трансформатор, второй – на сеть.


Последовательность работы следующая:

  • снять контр-гайку, болты и ниппели у ограничителя;
  • закрепить гровер между шайбой и контр-гайкой;
  • закрепить следующий электростатический диск;
  • прикрепить секции к ОПН при помощи болтов и гаек.

Схема подключения опн

Схема: как подключить опн

Для установки оборудования в частном доме (имеется в виде, не на производстве), допускается использование до 5 защитных пластин (в прайсе стоимости обязательно указывается цена за одну пластину).

  1. Ограничитель перенапряжения нельзя собирать в горизонтальном положении;
  2. Длина провода, отходящего от ОПН должна быть не более 3 метров, иначе нагрузка на устройство будет слишком большой и фильтр быстрее выйдет из строя;
  3. Все провода, идущие от ОПН должны быть короткими, петли закругленными, а контакты изолированными;
  4. Керамические ограничители допускается использовать как опоры для шин, если общая масса не превышает 30 килограмм.

Стоимость защитных устройств может варьироваться от нескольких десятков до сотен и даже тысяч. Все зависит от максимально допустимого напряжения и способности рассеивать энергию.

Область применения

Ограничители используются в частных домах, квартирах многоэтажек, на производстве, для защиты помещений от замыканий и ударов молний (импульсных скачков напряжения).

.
Эта отметка установлена 14 ноября 2016 года .

Ограничитель перенапряжения нелинейный (ОПН) — электрический аппарат, предназначенный для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. ОПН также можно назвать разрядником без искровых промежутков. ОПН на сегодняшний день являются одним из эффективных средств защиты оборудования электрических сетей.

Применение

В некоторых случаях, оборудование может оказаться под влиянием повышенного, по сравнению с номинальным, напряжения (при грозе или коммутациях электрических цепей). В этом случае, возрастает вероятность пробоя изоляции установки. Нелинейные ограничители перенапряжений предназначены для использования в качестве основных средств защиты электрооборудования станций и сетей среднего и высокого классов напряжения переменного тока промышленной частоты от коммутационных и грозовых перенапряжений. Ограничители применяются вместо вентильных разрядников соответствующих классов напряжения и включаются параллельно защищаемому устройству или установке.

Устройство и принцип действия

Ограничитель перенапряжения является безыскровым разрядником.

Устройство ограничителя перенапряжения

3. ЦЭ-936. Инструкция по техническому обслуживанию и ремонту оборудования тяговых подстанций.

4. Сугробов Н.А. Нелинейные ограничители перенапряжения производства Dervasil, группа SICAME, журнал Электротехнический рынок №5 (11) май 2007 [Электронный ресурс]: URL: http://market.elec.ru/nomer/10/dervasil/

8. Дмитриев М.В. Применение ОПН для защиты изоляции ВЛ 6-750 кВ.2009г.91стр. Издательство Политехнического Университета,Санкт-Петербург. [Электронный ресурс]: URL: http://www.zeu.ru/books/book2.pdf

9. Ограничитель перенапряжений нелинейный типа ОПН-35 УХЛ2. [Электронный ресурс]: URL: http://www.laborant.ru/eltech/02/5/3/02-98.htm

10. Обслуживание разрядников и ограничителей перенапряжений. [Электронный ресурс]: URL: http://ukrelektrik.com/publ/obsluzhivanie_razrjadnikov_i_ogranichitelej_perenaprjazhenij/1-1-0-13

При определении перечня нормируемых параметров ОПН используется утвержденный Международной электротехнической комиссией (МЭК) в 1991 г. Стандарт 99-4, требования которого дополнены и несколько изменены (как правило, ужесточены) в соответствии с отечественными традициями разработки защитных аппаратов. Таким образом, основными параметрами нелинейных ограничителей перенапряжений являются:
номинальное напряжение (класс напряжения) ограничителя (Uном) — номинальное напряжение сети, для работы в которой предназначен ОПН;
номинальная частота ограничителя (nном) — частота рабочего напряжения сети, для работы в которой предназначен ОПН;
наибольшее длительно допустимое рабочее напряжение на ограничителе — наибольшее действующее значение напряжения промышленной (номинальной) частоты, которое длительно (в пределе — в течение всего срока службы аппарата) может быть приложено к выводам ОПН;
вольт-временная характеристика ограничителя — зависимость действующего значения напряжения промышленной частоты от допустимого времени его приложения к ОПН;
номинальный разрядный ток ограничителя (Iном) — наибольшее значение испытательного грозового импульса тока, при котором определяется защитный уровень ОПН при грозовых перенапряжениях и который используется для классификации ОПН. Номинальный ток также называют расчетным током грозовых перенапряжений (Iрг = Iном). Испытательный импульс грозового тока имеет форму апериодической волны 8/20 мкс. Установлен стандартный ряд номинальных разрядных токов: 1500, 2500, 5000, 10000, 20000 А. По этому параметру производится координация других характеристик ограничителя, а также норм и методов его испытаний;
расчетный ток коммутационных перенапряжений (Iр к) — максимальное значение испытательного апериодического импульса тока 30/60 мкс, при котором определяется защитный уровень ОПН при коммутационных перенапряжениях;
остающееся напряжение (UOCT) — максимальное значение падения напряжения на ограничителе при протекании по его нелинейному рабочему резистору импульса тока;
защитный уровень при ограничении грозовых перенапряжений — остающееся напряжение при расчетном токе грозовых перенапряжений (Ur). Этому параметру эквивалентна кратность ограничения грозовых перенапряжений Kr = Ur/UHр.фт;
вольт-амперная характеристика ограничителя при грозовых импульсах тока — зависимость остающегося на ОПН напряжения от максимального значения импульсов тока 8/20 мкс при их варьировании в диапазоне (0,1 2,0) /ном;
защитный уровень при ограничении коммутационных перенапряжений — остающееся напряжение при расчетном токе коммутационных перенапряжений (UK). Этому параметру эквивалентна кратность ограничения коммутационных перенапряжений прямоугольный импульс тока — импульс тока, форма которого близка к прямоугольной. Используется для определения пропускной способности ОПН;
пропускная способность ограничителя при прямоугольных импульсах — максимальное значение прямоугольных импульсов тока (/п) длительностью 2000 мкс, которые ОПН без каких-либо повреждений выдерживает при их двадцатикратном приложении;
пропускная способность ограничителя при грозовых импульсах — максимальное значение импульсов тока 8/20 мкс, которые ОПН без каких-либо повреждений выдерживает при их двадцатикратном приложении;
пропускная способность ограничителя при импульсах большого тока — максимальное значение импульсов тока 4/10 мкс, которые ОПН без каких-либо повреждений выдерживает при их двукратном приложении.
Кроме перечисленных основных характеристик для координации параметров ОПН согласно Стандарту МЭК используются: нормативное напряжение ограничителя — действующее значение напряжения промышленной частоты, допустимое к приложению в течение 10 с;
класс разряда линии — параметр, определяющийся максимально гарантированным значением энергии, которое ОПН способен поглотить из сети при ограничении грозового или коммутационного перенапряжения без выхода из строя, и зависящий от Uнорм и UK. Класс разряда линии нормируется только для ограничителей с номинальными разрядными токами 10 000 и 20 000 А.
Для отечественных ОПН эти параметры, как правило, не задаются, однако в настоящее время все большее распространение находит нормирование способности к поглощению и рассеиванию энергии, определяемой как отношение максимально гарантированного значения поглощаемой ограничителем энергии к его наибольшему длительно допустимому рабочему напряжению, что практически эквивалентно классу разряда линии.
Одно из немногочисленных преимуществ вентильных разрядников по сравнению с нелинейными ограничителями перенапряжений состоит в том, что последние имеют меньшую зону защиты — длину участка линии или распределительного устройства, на котором перенапряжения превышают напряжение в точке установки ОПН не более чем на 1 — 2%. Тем не менее, уровень перенапряжений, воздействующих на изоляцию собственно ограничителя значительно ниже максимальных значений перенапряжений на изоляции электрооборудования, установленного на некотором расстоянии от ОПН. Поэтому нормы испытаний изоляционных конструкций нелинейных ограничителей должны быть ниже требований к электрической прочности изоляции всего остального оборудования подстанций и линий электропередачи, приведенных в ГОСТ 1516.1, ГОСТ 20690 и РД 16.556. Испытательные напряжения изоляции ОПН в соответствии с нормами связаны с их защитными уровнями и приведены в табл. 1.
Испытаниям подвергается только изоляционная покрышка (корпус) ограничителя, из которого предварительно удаляется HP. Методы испытаний дан в ГОСТ 1516.2. Изоляция ОПН наружной установки (категория размещения 1 по ГОСТ 15150) испытывается коммутационными импульсами и напряжением промышленной частоты как в сухом состоянии, так и под искусственным дождем. Испытания корпусов ограничителей внутренней установки проводятся только в сухом состоянии.
Требования к нелинейным ограничителям в части других электрических, а также механических и климатических воздействий нормируются, как и для вентильных разрядников.

Таблица 1
Значения испытательных напряжений изоляции ОПН

Ограничитель перенапряжений присоединен к сети в течении всего срока службы, поэтому через его варисторы, образующие нелинейное сопротивление, непрерывно протекает ток. Допустимая плотность активного тока составляет (1,0 5,0)-10_6 А/см2 при плотности полного тока (10 -г- 30)-10″6 А/см2. Ограничитель сохраняет работоспособность до тех пор, пока в результате воздействия рабочего напряжения и импульсов перенапряжений активная составляющая тока не превысит критического значения, при котором количество теплоты, выделяемой в HP, превысит возможности конструкции ОПН по его рассеянию в окружающую среду, т.е. пока не нарушится тепловое равновесие аппарата. Поглощение ограничителем энергии из сети снижает уровень перенапряжений, что обеспечивает защиту изоляции линий электропередачи. По этой причине при проектировании нелинейного ограничителя необходимо создать условия для удовлетворения двух, в значительной степени противоречивых, требований. С одной стороны, должны быть обеспечены необходимые защитные характеристики аппарата при ограничении как коммутационных, так и грозовых перенапряжений. С другой стороны аппарат должен обладать достаточным ресурсом пропускной способности при импульсных токовых воздействиях и стабильностью параметров как при приложении рабочего напряжения (нормальный эксплуатационный режим), так при воздействии квазистационарных перенапряжений.
Относительная простота ОПН (необходимым элементом аппарата является только нелинейный резистор), компактность, способность ОЦВ работать в различных средах, возможность регулирования характеристик ОЦВ привели к разработке большого количества конструкций и схем ОПН. Например, при создании разъединителей ограничители могут использоваться в качестве опорных изоляционных конструкций. В трансформаторах ограничители могут размещаться внутри бака, что в дополнение к основной функции ограничения перенапряжений позволяет выравнить распределение напряжения по витковой изоляции. Широко распространено размещение ОПН в герметичных РУ с элегазовым заполнением.
Однако наибольшее количество производимых в настоящее время ограничителей представляют собой отдельно стоящие аппараты в фарфоровых корпусах (рис. 1, а), подобных применяемым в вентильных разрядниках. Основным конструктивным элементом ОПН является нелинейный рабочий резистор, образованный одной или несколькими параллельно соединенными колонками 1 поставленных один на другой оксидно-цинковых варисторов. Для удобства размещения внутри изолирующего снаружи оребренного фарфорового корпуса 2 HP разделен на блоки высотой 0,3 — 1,0 м. По концам корпуса закреплены металлические фланцы 3 со смонтированными узлами герметизации и взрывобезопасности 4 и контактными пластинами 5. Фланцы также являются контактными выводами ограничителя, к которым изнутри присоединяется нелинейный рабочий резистор, а снаружи (к контактным пластинам) — фазный провод и проводник системы заземления распредустройства. Аппараты на напряжение 110 кВ и более снабжаются экранной арматурой, обеспечивающей выравнивание распределения напряжения по высоте колонок варисторов, ограничение стримерной короны на элементах ограничителя и необходимую электрическую прочность его внешней изоляции. Экран обычно выполняется в виде одиночного или расщепленного тороида 6 с по крайней мере двумя экранодержателями 7.


Рис. 1. Конструктивные исполнения нелинейных ограничителей перенапряжений в фарфоровом (а) и полимерном (б) корпусах

При использовании фарфоровой покрышки в ОПН предусматривается сквозная демпфирующая полость 8, обеспечивающая передачу избыточного давления при аварийном дуговом перекрытии внутри корпуса на клапаны взрывобезопасности 4 и предохраняющая аппарат от взрывного разрушения. Все свободное пространство внутри покрышки, не занятое колонками ОЦВ, элементами их крепления к корпусу и фланцам и демпфирующей полостью, заполняется веществом 9, обладающим высокой теплопроводностью (например, чистым кварцевым песком) и служащим для отвода теплоты от варисторов на корпус ограничителя. После сборки внутренняя полость аппарата вакуумируется, а затем заполняется осушенным азотом, элегазом или каким-либо инертным газом при атмосферном давлении. Система герметизации предотвращает проникновение вовнутрь покрышки влаги и загрязнений, которые могли бы вызвать перекрытие ОПН по внутренней полости и выход его из строя.
Серийно производимые АО «Корниловский фарфоровый завод» (г. Санкт-Петербург) ограничители перенапряжений в фарфоровых корпусах серии ОПН(И) вплоть до номинального напряжения 500 кВ выпускаются в виде одного модуля (рис. 2, а — в). Аппараты на напряжение 750 и 1150 кВ изготавливаются состоящими из двух идентичных, поставленных один на другой модулей (рис. 2, г). Нелинейный рабочий резистор этих ограничителей набран из варисторов диаметром (28±0,5) мм и высотой (10±0,5) мм. Полный перечень параметров ограничителей 110 — 500 кВ приведен в табл. 2, а компиляция основных параметров ОПН 35 — 1150 кВ, включая массо-габаритные характеристики, — в табл. 2.
Ограничители этой серии на напряжение 35 — 220 кВ имеют нижние чугунные фланцы с тремя или четырьмя приливами с отверстиями для крепления к фундаменту (заземленному подножнику). Фланец изолирован от фундамента посредством фарфоровых дисков и изолирующих (как правило, паронитовых) прокладок. Ограничители на 330 — 1150 кВ устанавливаются непосредственно на подножник без изолирующих прокладок, однако в этих аппаратах нелинейный рабочий резистор не присоединен к нижнему фланцу. Подключение HP к системе заземления подстанции осуществляется через изолирующий вывод в днище ограничителя (рис. 2, в — д). Изоляция HP от «земли» выполняется для подключения к ОПН регистраторов срабатываний и профилактических испытаний аппаратов под напряжением (например, для измерения тока проводимости HP).
В настоящее время для изготовления изоляционных корпусов ограничителей все более широко стали применяться полимерные материалы (рис. 1, б). Основу этих полимерных корпусов составляет стеклопластиковая труба 10, которая обеспечивает необходимую механическую прочность и жесткость конструкции ограничителя. Трекингоэрозионную и дуговую стойкость, а также требуемые влагоразрядные характеристики внешней изоляции обеспечивает специальное ребристое покрытие 11, выполняемое обычно на основе силиконовой или этиленпропиленовой электротехнической резины. Ограничители в полимерных корпусах практически взрывобезопасны, что позволяет исключить из конструкции аппарата устройства, предохраняющие его от взрывного разрушения (предохранительные клапаны, демпфирующие полости и т.д.), и тем самым уменьшить объем ограничителя на 25 — 40%.

Рис. 2. Аппараты серии ОПН (о — г) и ОПНИ ( а — 35 и 110 кВ: б — 150 н 220 кВ; в — 330 » 500 кВ; г — 750 и 1150 кВ, д — 500 кВ

Рис. 2, д
Полимерные корпуса идеально подходят для ограничителей, нелинейные рабочие резисторы которых выполнены в виде одиночной колонки варисторов 1 большого диаметра (рис. 1, б). В этом случае создаются наилучшие условия для охлаждения HP. Тепловую устойчивость аппарата также повышает использование для заполнения пространства между колонкой варисторов и стеклопластиковой трубой специальных полимерных композиций (компаундов) 12, теплопроводность которых искусственно повышается наполнителям.
Таблица 2
Параметры ограничителей перенапряжения 110 — 500 кВ


Параметр

ОПН-110- ПН-УХЛ1

ОПН-220- ПН-УХЛ1

ОПН-330-
ПН-У1

ОПН-500- ПН-УХЛ1

Номинальное напряжение, кВ Наибольшее длительно

допустимое рабочее напряжение, кВ

Напряжение на ограничителе, допустимое в течении времени, кВ (не более):

Номинальный разрядный ток. А

Расчетный ток коммутационных перенапряжений, А

Защитный уровень при ограничении грозовых перенапряжений, кВ

Кратность ограничения грозовых перенапряжений

Защитный уровень при ограничении коммутационных перенапряжений, кВ

Кратность ограничения коммутационных перенапряжений

Остающееся напряжение, кВ (не более), при импульсах тока 8/20 мкс с максимальным значением:

Пропускная способность:

20 импульсов тока 1,2/2,5 мс с максимальным значением, А

20 импульсов тока 8/20 мкс

с максимальным значением, А

2 импульса тока 4/10 мкс с максимальным значением, А

Применяемые компаунды обладает высокой адгезией к оксидно-цинковой керамике. По этой причине пропускная способность HP ограничителя при грозовых импульсах тока в 1,5 — 2,0 раза выше пропускной способности составляющих его варисторов, испытанных индивидуально вне оболочки аппарата.
Таблица 3
Основные параметры ОПН 35 — 1150 кВ


В целом использование полимерных корпусов позволяет существенно (в 3 — 5 раз) снизить массу аппарата и упростить его конструкцию, что открывает возможности для создания ограничителей не только опорного, но и подвесного исполнения. В последнем варианте их можно устанавливать непосредственно на опорах линий электропередачи. При размещении трехфазных комплектов подвесных ОПН вдоль воздушных линий на расстоянии 50 — 100 км уровень коммутационных перенапряжений в любой точке BЛ будет превышать максимальное напряжение на ограничителях не более, чем на 5%.
Задача снижения уровня изоляции ЛЭП решается не только за счет улучшения защитных характеристик нелинейных ограничителей (совершенствования структуры материала и конструкции варисторов, форсировки их охлаждения в аппарате, заливки HP полимерными композициями и т.п.), но и оптимизацией схемы ОПН и формы его присоединения к сети. Описанные выше ограничители включены между фазным проводом и землей (рис. 3, а) и, таким образом, предназначены для ограничения перенапряжений, воздействующих на изоляцию электрооборудования относительно земли. Одной из важнейших задач, решение которой практически невозможно с помощью вентильных разрядников, является глубокое ограничение междуфазных перенапряжений. Применение нелинейных ограничителей в полимерных корпусах подвесного исполнения, рассчитанных на длительное воздействие линейного наибольшего рабочего напряжения линии и присоединенных между фазными проводами (рис. 3, б), естественным образом решает эту проблему. На одной типовой поддерживающей или натяжной опоре ВЛ без сколько-нибудь существенного изменения ее конструкции может быть размещено два трехфазных комплекта подвесных ОПН: ограничители фаза-земля подвешиваются параллельно гирляндам изоляторов или (при соответственном увеличении механической прочности на разрыв) вместо гирлянд и соединяются с фазными проводами и землей; ограничители междуфазных перенапряжений подвешиваются к гирляндам ниже фазных проводов и присоединяются между фазами. Также представляется перспективным установка подвесных ограничителей в РУ электрических станций и подстанций, позволяющая существенно сократить их площадь.
Низкие механические характеристики электротехнического фарфора па разрыв не позволяют изготавливать подвесные ОПН в фарфоровых корпусах. Однако разработана и успешно применяется конструкция ОПН опорного исполнения, позволяющая одновременно ограничивать как перенапряжения относительно земли, так и междуфазные перенапряжения. Схема такого защитного аппарата, получившего наименование ОПНИ, приведена на рис. 3, в, а внешний вид одной фазы ограничителя ОПНИ-500У1 — на рис. 2, д.


Рис 3. Схемы нелинейных ограничителей перенапряжений и их присоединения к электрическим сетям
Нелинейный рабочий резистор каждой фазы ОПНИ разделен на две последовательно соединенные части (НР1 и НР2). Все фазы ограничителей соединены между собой искровыми промежутками, включенными звездой. Средняя точка звезды через емкость С соединена с землей. В нормальном эксплуатационном режиме фазное напряжение приложено к последовательно соединенным резисторам НР1 и НР2. При набегании на аппарат волн коммутационных перенапряжений, которые всегда несимметричны, пробиваются искровые промежутки ИП, резисторы НР2 всех фаз оказываются соединенными параллельно, а резисторы НР1 — попарно последовательно между соответственными фазными проводниками. Таким образом, все нелинейные рабочие резисторы трех фаз ограничителей образуют четырехлучевую звезду (рис. 1, г). Очевидно, что такая схема объединенного защитного аппарата позволяет ограничивать как фазные, так и междуфазные перенапряжения, причем уровни остающихся напряжений могут регулироваться соответствующим подбором значений НР1 и НР2.

При несимметричных КЗ распределения суммарного напряжения поврежденных фаз по искровым промежуткам ОПНИ при отсутствии емкости С может оказаться резко несимметричным. В этом случае оказывается весьма вероятным, что разрядное напряжение какого-либо ИП превысит воздействующее напряжение и его пробоя не произойдет, т.е. ограничитель не включится в режим ограничения междуфазных перенапряжений. Емкость С создает постоянный подпор напряжения на ИП и исключает возможность возникновения подобной ситуации.
Конструктивно аппарат ОПНИ-500 У1 отличается от ограничителя серии ОПН на такое же напряжение наличием отпайки от HP, которая через промежуточный изолированный вывод 1 (рис. 2), рассчитанный на напряжение 60 кВ, соединена с регистратором срабатываний 2 и последовательно с ним соединенной искровой приставкой 3. Искровая приставка содержит набор ИП, подобных используемым в вентильных разрядниках. В приставке имеется изолированный вывод на напряжение 35 кВ для подключения к аппаратам других фаз и емкости.
Ограничители перенапряжений успешно эксплуатируются в сетях 110 кВ и выше уже более 20 лет. Примером эффективности применения защитных аппаратов на основе оксидно-цинковой керамики является их использование на ОРУ 500 кВ Саяно-Шушенской ГЭС. За счет установки ограничителей серий ОПН и ОПНИ здесь были сокращены все воздушные изоляционные промежутки фаза — земля и фаза — фаза, в результате чего шаг ячейки ОРУ уменьшился с 28 — 31 м до 24 м, а длина ОРУ сократилась на 48 м. Уменьшение межконтактного промежутка разъединителей на 1,0 м позволило также уменьшить ширину ОРУ на 20 м. В целом, получившиеся размеры ОРУ 500 кВ совпадают с размерами ОРУ 330 кВ, защищенного вентильными разрядниками.

Ограничитель импульсных перенапряжений ОИН 10-10 (10 kA) / УЗИП силовые / EST / Молниезащита и заземление

ОИН рекомендован для эксплуатации в вводных устройствах, в распределительных щитах, в групповых квартирных и этажных щитках.


По наличию индикаторов:

  • исполнение 10 — без индикаторов;
  • исполнение 11 — со световым индикатором наличия напряжения в питающей сети;
  • исполнение 12 — со световыми индикаторами наличия напряжения в питающей сети и рабочего состояния.

Ограничитель допускает длительное рабочее напряжение 275 В и выдерживает без повреждений временно до 380 В.

Техничиские характеристики
Номинальное напряжение, В230
Степень защиты ограничителяIP20
Диапазон рабочих температур, °Сот -40 до +55
Срок службы не менее, лет10
Масса не более, г150
Средняя наработка не менее, ч80000
СоответствиеГОСТ Р 51992
Варианты конструктивных исполнений

Типоисполнение

Uc

Imax

In

Up

Ut

Индикатор
напряжения
сети

Индикатор
неисправности

 

 

В

кА

кА

кВ

В

ОИН10-10

275

10,0

5,0

1,8

380

 

 

ОИН11-10

275

10,0

5,0

1,8

380

+

 

ОИН12-10

275

10,0

5,0

1,8

380

+

+

ОИН10-15

275

15,0

10,0

1,8

380

 

 

ОИН11-15

275

15,0

10,0

1,8

380

+

 

ОИН12-15

275

15,0

10,0

1,8

380

+

+

ОИН10-40

275

40,0

20,0

2,0

380

 

 

ОИН11-40

275

40,0

20,0

2,0

380

+

 

ОИН12-40

275

40,0

20,0

2,0

380

+

+

Uc — рабочее напряжение
Imax — максимальный разрядный ток
In — номинальный разрядный ток
Up — уровень напряжения защиты
Ut — неповреждающее временное перенапряжение

Структура условного обозначения:

Схема подключения:

Габаритные и установочные размеры

Пример типоисполнения при заказе:

ОИН12-15 ЭЛТА — ограничитель серии ОИН конструктивного исполнения 1 с индикатором напряжения сети и индикатором рабочего состояния с максимальным разрядным током 15кА.

Электролаборатория, как собрать щиток для Оренбургэнерго

Если вы получили технические условия на ул. Карагандинская, 59, значит ваша сетевая компания — это ПАО МРСК «Волги», если договор вы заключили в другом месте, то ищите соответствующую статью на нашем сайте.

В этой статье вы узнаете, как правильно подготовить стройплощадку для подключения к МРСК «Волги». Информация касается только физических лиц, подключающих участки и частные жилые дома, таунхаусы, квартиры. Если вы подключаетесь как юридическое лицо, ваш объект — это производство или минипроизводство, магазин и прочее, условия подключения будут отличаться, уточняйте их по нашему телефону.

По адресу Карагандинская, 59, находится единый центр обслуживания клиентов, который выдаёт ТУ (технические условия на подключение), а непосредственно приёмку и подключение вашей стройплощадки будут производить местные РЭС (районные электросети по прописке, например Дзержинский РЭС, Ленинский РЭС, Зауральный РЭС и т.д.), после выполнения монтажа и лабораторных испытаний.

Общий порядок действий такой: заключается договор с МРСК «Волги», получаются Технические условия, выполняется монтаж, проводятся испытания электролабораторией, открывается лицевой счёт в Энергосбыте, собираются все остальные документы (акты, разрешения), подключается ЩУ под напряжение. не пытайтесь самостоятельно подключать щит учёта под напряжение к опоре, это сделают работники РЭС бесплатно, после сбора всех документов. В технических условиях необходимо найти следующую информацию: напряжение, мощность, тип прибора учёта. Остальные требования ТУ, как правило, неизменны.

Напряжение: тут два варианта, либо 0,23кВ (220В или однофазное подключение), либо 0,4кВ (380В или трёхфазное подключение).

Мощность: измеряется в кВт (киловатты), указывается так: 7кВт. Это значит вам поставили верхний предел потребляемой мощности 7 киловатт. Обычно, в пределах от 5 до 15 кВт

Тип прибора учёта: может быть указан электронный счётчик с классом 2.0, а может быть прописан счётчик РИМ. РИМ-это прибор учёта, который устанавливается на опоре, наверху.

Теперь, когда вы ознакомились с требованиями ТУ, можно комплектовать щит учёта.

Проколы: при подключении вашего вводного кабеля СИП, непосредственно под напряжение к ВЛ (воздушной линии), используют проколы. Когда специалисты РЭС приедут вас подключать, они потребуют проколы. Для 220В потребуется два прокола, для 380В — четыре.

Натяжители: для натяжения вводного кабеля СИП и его крепления к опоре, стойке/стене щита учёта, потребуется два анкерных натяжителя (смотрите фото). Один на опору, один на стойку/стену щита учёта. Некоторые не покупают второй натяжитель, если щиток установлен на временной стойке, но в будущем, при переносе ЩУ на стену дома/гаража, натяжитель всё равно понадобится. Натяжитель для 220/380В один и тот же, в случае 220В используется два входных отверстия из четырёх. Для крепления натяжителя на опору специалисты РЭС привозят с собой ленту. Для крепления к стене дома используется пластиковый дюбель и анкер с кольцом на конце.

Вводной кабель СИП: СИП (самонесущий изолированный провод) поэтому ему не требуются дополнительные несущие металлические тросики. При напряжении 220В приобретайте СИП 2х16, для 380 В покупайте СИП 4х16. Вводной кабель нужно покупать с запасом, так как удлинить его уже не получится. Если, в будущем, вы планируете перенести ЩУ в другое место (например с временной стойки на стену дома), то длину кабеля нужно рассчитывать до дома, запас, временно, будет находится на стойке, смотанный кольцом. Не оставляйте запас кабеля на верхней части опоры, кто потом будет его спускать? И почём? Учтите, также, что к дому кабель крепится в верхней точке (например в месте перехода стены в кровлю), в щит учёта он заходит снизу, поэтому на опуск уходит не менее 2-3 метров. Номер опоры подключения вводного кабеля указан в ТУ, самовольничать нельзя, длину вводного кабеля считайте от указанной опоры.

Корпус щита учёта: В ТУ стандартно прописывают, что щит учёта должен быть антивандальный, иметь смотровое окошко, устанавливаться на наружной стороне дома, гаража, забора. Наружная установка прописана для того, чтобы невозможно было подключится до прибора учёта, чтобы такое подключение было видимо работникам электросетей. В случае применения счётчика РИМ, требование наружной установки не актуально. Итак, требования к корпусу щита учёта: металлический, степень защиты IP54 и выше (обязательно! Это уличное исполнение), с замком, с окошком для счётчика (для РИМ можно без окошка). Обратите внимание: для напряжения 380В щит должен быть просторней, чтобы поместилась вся начинка. Счётчик внутри щитка может крепится на DIN-рейку, может на болты, уточняйте вид крепления ЩУ и счётчика у продавца.

Провод от ЩУ до заземления: используйте ПВ-1 жёлто-зелёной окраски, сечением 10мм2, нужной вам длины. Конец провода, который крепится к полосе заземления, загибается кольцом, и крепится болтовым соединением (полоса заземления поднимается из земли, на небольшую и удобную высоту, наваривается болт, на болт две гайки и две шайбы). Этот контакт должен быть всегда доступен для осмотра и ремонта.

Счётчик: счётчик покупайте однофазный или трёхфазный, как написано в ТУ. Счётчик должен быть электронный класса точности 2.0 и выше, обычно, в наших магазинах, все счётчики класса 1.0. Уточняйте вид креления: болт или DIN-рейка. Если в ТУ прописан счётчик РИМ, то внутрь ЩУ счётчик не ставится. Некоторые абоненты, ставят дублирующий счётчик, для контроля счётчика РИМ. У крышки счётчика, как правило, два винта, один из них с пломбой, его не трогайте при сборке. Не теряйте паспорт от счётчика.

ОИН-1: ограничитель импульсных напряжений должен быть обязательно установлен в щите учёта. Нам часто говорят, что в технических условиях не прописано требование установки ограничителей перенапряжений (не путать с ограничителем мощности). Это не так, в ТУ чёрным по белому написано «установить устройства защиты от замыканий и перенапряжений«. В щит 220в ставится один ОИН, в щит 380В ставится три ОИНа. Какие именно ОИНы покупать: ОИН-1, ОПС, NU-9 решайте сами. Внимание! ОИНы подключаются после вводного автомата (смотрите схему).

Вводной автомат: это обязательное для установки устройство. Он защищает счётчик и внутренние провода от коротких замыканий и перегрузок, позволяет обесточить щит для его обслуживания (замена счётчика, ОИНов, автоматов, УЗО). Кроме того, вводным автоматом в МРСК «Волги», ограничивают потребляемую мощность. Не используйте в качестве вводного автомата УЗО или дифференциальные автоматы! Для 220В покупайте однополюсный автомат, для 380В покупайте трёхполюсный автомат. Номинал вводного автомата выбирайте по следующей формуле:
НОМИНАЛ (220В) = МОЩНОСТЬ / 220.
Например: мощность в ТУ 7кВт, значит НОМИНАЛ=7000/220=31,8А, округляем до 32А. Автомат, в примере, будет однополюсный 32А. Справочно, для напряжения 220В номиналы вводных автоматов: 5кВт — 25А; 7кВт — 32А; 10кВт — 40А; 15кВт — 63А. Для напряжения 380В вводной автомат всегда будет 32А, трёхполюсный. Рекомендуем использовать вводные автоматы со шторками на контактах, такие шторки пломбируются свинцовыми пломбами, а не наклейками, наклейки, имеют нехорошее свойство, отклеиваться.

УЗО: в технических условиях прописана обязательная установка устройств защитного отключения. Для ЩУ 220В ставьте двухполюсное (однофазное) УЗО, для щитков 380В ставьте четырёхполюсное (трёхфазное) УЗО. Вместо устройства защитного отключения можно использовать дифференциальный автомат. УЗО выбирается по номинальному току и току утечки. Номинальный ток должен быть не менее тока вводного автомата (больше можно). Ток утечки должен быть 30мА (тридцать миллиампер). Если вы применяете дифавтомат, то его номинал, теоретически, может быть ниже вводного автомата, и, даже, по условиям селективности, должен быть ниже на одну ступень. Но, мы не рекомендуем понижать номинал дифавтомата, так как вы снижаете максимальную потребляемую мощность. Ставьте дифавтомат, такого же номинала, как и вводной автомат.

Розетка: розетка необязательный элемент, но очень удобный, если планируете подключать переноски и электроинструмент. Розетка для ЩУ должна быть с креплением на DIN-рейку и с заземляющим контактом.

Провод для обвязки: для соединения устройств внутри ЩУ между собой вам понадобится соединительный (обвязочный) провод. Лучше использовать провод марки ПВ-1 (цельножильный), если использовать ПВ-3 (многопроволочный), то неодходимо будет каждый конец опрессовть контактным наконечником. Провода, желательно, применять разных расцветок: синий для обвязки нуля (на схеме синим цветом), жёлто-зелёный для обвязки заземляющих цепей (на схеме зелёный цвет), для фазной обвязки любой другой цвет, кроме синего и жёлто-зелёного (на схеме красный цвет). Хотя, при приёмке, работники электросетей на расцветку проводов внимания не обращают, но не делайте все провода синими или жёлто-зелёными.

Шинки N и PE: N (нулевая шина), PE (шина заземления). В приведённом нами примере, на схеме, используется только шина PE. Шинку удобнее применять с креплением на DIN-рейку, внутренний диаметр винтовых отверстий не менее 10мм2 (для крепления провода от контура заземления), минимальное количество отверстий 6 (в нашем примере на схеме 380В).

Когда все необходимые комплектующие закуплены, можно приступать к монтажным работам. Сборку щита учёта и монтаж заземления можно выполнять самостоятельно, а можно привлечь электриков. Никаких лицензий и допусков СРО для данного вида работ не требуется. Заказать электромонтаж можно в нашей лаборатории. Вам в помощь приведены две схемы сборки ЩУ, однофазного и трёхфазного.

Основные моменты, которые нужно знать при подготовке стройплощадки.

Щит можно временно устанавливать на стойке из дерева или металла. Стойка должна быть надёжно вкопана в землю. Также ЩУ можно прикрепить к опоре ВЛ, с помощью специальных креплений-хомутов (продаются), не нарушая целостность опоры. Некоторые РЭС против размещения щитков на своих опорах, уточняйте этот вопрос у свойх районных электросетей (телефон на оборотной стороне ТУ). Размещать щит учёта на участке нужно так, чтобы он и СИП не мешали вам и транспорту. Учтите, что ЩУ должен быть заземлён от контура заземления, построенный дом также должен быть заземлён от контура. Поэтому, если вы забьёте контур заземления недалеко от дома, разместив рядом ЩУ или вытянув до него полосу заземления, то не придётся забивать контур повторно.

СИП бывает с разноцветными полосками на изоляции, бывает полностью чёрный. Если разноцветный, то в качестве ноля используйте жилу с синей полоской. Обратите внимание, на нашей схеме вводной ноль заходит напрямую в счётчик — это требование некоторых РЭС. Фазные жилы СИП можно заводить снизу автомата, такое допущение прописано в паспортах автоматических выключателей (например фирмы IEK). УЗО и дифференциальные автоматы запитываются только сверху, иначе выходят из строя. Напоминаем, УЗО и ВДТ на вводе не ставятся.

Строго говоря ОИН-1 должен подключаться через отдельный автомат, но если этот отдельный автомат не ставить, то подключение ограничителей производится после вводного автомата (как на наших схемах). Так, в своё время, нам ответил инженер-конструктор фирмы производителя. То есть, если СИП заходит снизу автомата, то ОИНы подключаются сверху, и наоборот.

Щит учёта обязательно должен быть подключен к заземляющему устройству. Без заземления стройплощадку под напряжение не подключат. Как правильно выполнить контур заземления читайте в рубрике «статьи» нашего сайта.

Разработка электрической схемы (Схема № 1)



ЦЕЛИ :

  • Расшифровать электрическую схему.
  • Создайте электрическую схему по принципиальной схеме.
  • Подключите цепь управления, используя электрическую схему.


Илл. 1 Контур №1. Цепь отключения аварийной сигнализации.


Рис. 2 Компоненты цепи.

Электросхемы будут разработаны для трех только что обсужденных схем.Метод, используемый для разработки электрических схем, такой же, как и метод используется для остановки нового оборудования. Чтобы проиллюстрировать этот принцип, компоненты системы будет нарисован на бумаге, и будут выполнены подключения к различные контакты и катушки. Приложив немного воображения, можно будет для визуализации реальных реле и контактов, установленных в панели, и подключения проводов различные компоненты.

На рис. 1 показана схема цепи отключения сигналов тревоги, а на рис.2 показывает компоненты системы. Подключение схемы более легко понять с помощью простой системы нумерации. Правила для этой системы следующие:

A. Каждый раз, когда компонент пересекается, число должно меняться.

B. Пронумеруйте все подключенные компоненты одним номером.

C. Никогда не используйте номер, установленный более одного раза.

Рис. 3 показывает схему цепи отключения сигналов тревоги с номерами. размещены рядом с каждым компонентом.Обратите внимание, что рядом с L1 и одной стороной реле давления находится цифра 1. Реле давления является составной частью. Следовательно, число должно измениться при пересечении реле давления. Другая сторона реле давления пронумерована цифрой 2. A 2 также размещен на одной стороне нормально замкнутого контакта S, на одной стороне красного сигнальная лампа, одна сторона нормально разомкнутой кнопки RESET и одна сторона нормально разомкнутого S-контакта. Все эти компоненты связаны электрически; следовательно, у каждого одинаковый номер.

Когда нормально замкнутый S-контакт пересекается, номер меняется. Другая сторона нормально замкнутого S-контакта теперь равна 3, а одна сторона 3-го рожка. Другая сторона рожка соединена с L2. сторона красной сигнальной лампы и одна сторона катушки реле S также подключены к L2. Все эти точки помечены символом 4. разомкните кнопку RESET, другая сторона нормально разомкнутого контакта S и другая сторона катушки реле S пронумерованы цифрой 5.

Используются те же номера, которые используются для обозначения схемы на Рисунке 3. для обозначения компонентов, показанных на рис. 4. L1 на схеме обозначен с 1; поэтому цифра 1 используется для обозначения L1 на схеме соединений на рис. 4. Одна сторона реле давления на схеме обозначена цифрой 1, а другая сторона — цифрой 2. Реле давления в проводке. Схема показана с тремя выводами. Один терминал помечен буквой C для общего, один помечен как нормально открытый, а другой — нормально открытый. закрыто.

Это обычное контактное устройство, используемое на многих устройствах серии Pi и управлении. реле. На схеме подключено реле давления. как нормально открытое устройство; следовательно, будут использоваться клеммы C и NO. помещается клеммой C, а a2 помещается рядом с клеммой NO. Обратите внимание, что 2 также был размещен сбоку от нормально открытой кнопки RESET, одна сторона нормально замкнутого контакта, расположенного на реле S, одна сторона нормально разомкнутый контакт, расположенный на реле S, и одна сторона красного предупреждения свет.A 3 находится рядом с общей клеммой релейного контакта S, которая используется для создания нормально замкнутого контакта, а рядом с одним из выводов подключения клаксона.

A 4 находится рядом с L2, другой вывод рупора, с другой стороны. красной сигнальной лампы, и одна сторона катушки реле S.A5 находится на другая сторона катушки реле S, другая сторона нормально разомкнутой кнопки RESET, и на общей клемме контакта реле S, которая используется как нормально открытый контакт.


Рис. 3 Цифры помогают при подключении цепи.


Рис. 4 Компоненты схемы пронумерованы в соответствии со схемой.

Обратите внимание, что номера, используемые для обозначения компонентов схемы подключения такие же, как номера, используемые для обозначения компонентов схемы. Например, реле давления на схеме показано как обычно открыт и помечен цифрами 1 и 2.

Реле давления на электрической схеме обозначено цифрой 1 рядом с общая клемма и 2 рядом с клеммой NO.Нормально замкнутый S-контакт на схеме обозначено цифрами 2 и 3. Реле S на схеме подключения имеет нормально замкнутый контакт, помеченный цифрами 2 и 3. Используемые числа Для обозначения компонентов на схеме подключения соответствуют номерам используется для обозначения одних и тех же компонентов на схеме.

После обозначения компонентов на схеме соединений соответствующими номерами, схему подключить несложно (рис. 5). Подключение схемы производится соединением одинаковых номеров.Например, все компоненты помечены 1 — подключены, все помеченные 2 — подключены, все 3 соединены, все 4 соединены, и все 5с подключены.


Рис. 5 Окончательная электромонтаж осуществляется по номерам соединений

.

ВИКТОРИНА :

1. Почему используются числа при разработке схемы подключения по схеме? диаграмма?

2. Поплавковый выключатель на рис. 1:

а.Нормально закрытый

г. Нормально открытый

г. Нормально закрытый удерживаемый открытый

г. Нормально открытый закрытый

3. Схема на рис. 1 предназначена для подачи сигнала тревоги, если уровень жидкости поднимается на достаточно высокий уровень. Какие изменения нужно было бы внести в цепь, чтобы он подавал сигнал тревоги, если уровень жидкости упадет ниже определенный момент?

Электрические схемы переключателя света

— помощь своими руками.com

По коду количество проводов, разрешенных в коробке, ограничено в зависимости от размера коробки и калибра провода. Рассчитайте общее количество проводов, разрешенных в коробке, прежде чем добавлять новую проводку и т. Д. Перед началом электромонтажных работ ознакомьтесь с местными нормативными актами и требованиями разрешений. Пользователь этой информации несет ответственность за соблюдение всех применимых норм и передовых методов при выполнении электромонтажных работ. Если пользователь не может самостоятельно выполнить электромонтажные работы, следует проконсультироваться с квалифицированным электриком.Как читать эти диаграммы

Эта страница содержит схемы подключения бытовых выключателей света и включает в себя: петлю выключателя, однополюсные выключатели, регулятор света и несколько вариантов подключения комбинированного устройства розеточного выключателя. Также включены схемы подключения нескольких осветительных приборов, управляемых одним переключателем, двумя переключателями на одной коробке и раздельной розеткой, управляемой двумя переключателями.

Подключение контура переключателя

Когда источник электрического тока исходит от осветительной арматуры и управляется удаленно, используется петля переключателя.

Эта схема соединена двухжильным кабелем, идущим от источника света до места выключателя. Нейтраль от источника подключается непосредственно к нейтральному выводу на лампе, а горячий источник соединяется с белым контурным проводом. Белый провод имеет черную маркировку на обоих концах, чтобы идентифицировать его как горячий. На SW1 он подключен к одному из выводов. Черный контурный провод подсоединяется к другому выводу, а на индикаторе — к горячему выводу на приспособлении.

Это обновленная версия первой аранжировки.Поскольку электрический код в обновлении NEC 2011 года требует наличия нейтрального провода в большинстве новых распределительных коробок, между светом и переключателем проходит трехжильный кабель. Красный и черный используются для горячего, а белый нейтральный провод на распределительной коробке позволяет запитать таймер, пульт дистанционного управления или другой программируемый переключатель.

Подключение однополюсного переключателя света

Здесь однополюсный переключатель управляет питанием осветительной арматуры. Источник находится на переключателе, и оттуда к свету идет двухжильный кабель.Горячий провод источника подключается к одному выводу переключателя, а другой вывод подключается к черному проводу кабеля, идущему к свету. Нейтральный провод от источника соединяется с белым проводом кабеля и продолжается до света. На светофоре белый провод подключается к нейтральному выводу, а черный провод подключается к горячему выводу.

Электромонтаж двух переключателей для двух ламп

Здесь два переключателя подключены к одному блоку для управления двумя отдельными лампами. Источник находится в распределительной коробке, и к каждому светильнику подведен двухпроводной кабель.Один источник соединен с каждым переключателем с помощью кабеля для питания двух ламп.

Схема подключения нескольких источников света

На этой схеме показано подключение одного переключателя для управления 2 или более лампами. Источник находится на SW1, и оттуда к приборам идет двухжильный кабель. Горячие и нейтральные клеммы на каждом приспособлении соединяются с помощью гибкого кабеля с проводами цепи, которые затем переходят к следующему свету. Это простейшее размещение более одного светильника на одном выключателе.

Схема подключения переключателя диммера

Реостат, или диммер, позволяет изменять ток, протекающий к осветительной арматуре, тем самым изменяя интенсивность света.Переключатель диммера будет иметь многожильные провода, которые необходимо отрезать от сплошной проводки кабеля косичками. Подобное устройство следует использовать только с лампой накаливания, а не с потолочным вентилятором или другим двигателем. Для получения информации о подключении реостата для управления скоростью вентилятора см. Раздел «Подключение регулятора скорости».

Для подключения этой цепи от диммера к свету идет двухжильный кабель. Источник находится в диммере, и горячий провод соединен с одним горячим проводом на устройстве. Другой провод от диммера соединен с черным проводом кабеля, идущим к горячему выводу на светильник.Нейтральный провод источника соединен с белым проводом кабеля, который продолжается до нейтральной клеммы на фонаре.

Подключение переключателя к розетке

Здесь розетка управляется однополюсным выключателем. Обычно это используется для включения и выключения настольной лампы при входе в комнату. На этой схеме 2-проводной кабель проходит между переключателем SW1 и розеткой. Источник находится на SW1, и горячий провод подключен к одной из клемм там. Другая клемма переключателя подключена к черному проводу кабеля, идущему к горячей клемме на розетке.Нейтраль источника соединяется в распределительной коробке с белым проводом кабеля, идущим к нейтрали на розетке.

Схема подключения раздельной розетки

На этой схеме показано подключение разъемной розетки, при которой верхняя половина контролируется переключателем SW1, а нижняя половина всегда горячая. Розетка разделяется путем разрыва перемычки между двумя клеммами цвета латуни. Перемычка между нейтральными, серебряными клеммами должна оставаться нетронутой.

Здесь источник находится на выходе, а оттуда к SW1 идет двухжильный кабель.Нейтральный провод схемы подключается к одной из нейтральных клемм на розетке, к выключателю он не идет. Горячий источник соединен с кабелем, который подключается к нижней, всегда горячей половине розетки, и к белому кабельному проводу, идущему к SW1. Белый провод имеет черную маркировку на обоих концах, чтобы идентифицировать его как горячий. Черный провод кабеля идет к SW1, соединяя его с горячей верхней половиной раздельной розетки.

На этой обновленной схеме 3-проводной кабель проходит между розеткой и коммутатором, а красный провод кабеля используется для передачи горячего источника к коммутатору.Нейтраль от источника соединяется с распределительной коробкой с помощью белого провода, и на этой схеме белый провод закрывается гайкой. Это представляет собой изменение кода NEC, которое требует наличия нейтрального провода в большинстве новых распределительных коробок. Если вы запускаете новую цепь, проверьте электрический код, чтобы понять это и любые другие обновления требуемой процедуры.

Подключение переключаемой розетки с двойным разделением каналов

В этой схеме раздельная розетка управляется двумя отдельными переключателями.При таком расположении две лампы можно подключить к одной розетке, и каждой можно управлять отдельно из двух разных мест.

Здесь снова соединительный язычок между клеммами розетки сломан, а нейтральный язычок остается целым. Источник находится на SW1, и 3-проводный кабель идет оттуда к розетке, 2-проводный кабель идет оттуда к SW2. Горячий провод источника подсоединяется к разъему SW1 и к черному проводу, идущему к коробке розеток. В коробке черный провод соединен с белым проводом, идущим к SW2.Белый провод имеет черные отметки на обоих концах, чтобы идентифицировать его как горячий.

Красный провод кабеля идет от SW1 к клемме под напряжением в верхней половине разъемной розетки. Нейтраль источника соединяется с белым проводом, идущим к нейтрали розетки. Неважно, какой именно, требуется только одно соединение.

От розетки черный провод кабеля, идущий к SW2, подсоединяется к горячей клемме на нижней половине и к переключателю на другом конце.

На этой обновленной схеме 3-проводной кабель проходит между розеткой и переключателем SW2, чтобы обеспечить соединение источника нейтрали со второй распределительной коробкой.

Здесь белый не используется для горячего, вместо этого черный провод служит для второго переключателя. Красный провод к SW2 подключен к горячему выводу в нижней половине розетки и к переключателю на другом конце.

Подключение к трехпозиционной розетке

На этой схеме два трехпозиционных переключателя управляют розеткой настенной розетки, которая может использоваться для управления лампой от двух входов в комнату. Эта схема подключается так же, как и 3-сторонние фонари по этой ссылке.

Между выключателем и розеткой проложен трехжильный кабель.Источник находится в SW1, где горячий соединяется с общей клеммой, а нейтраль соединяется с нейтралью на выходе. Красный и черный провода, идущие от SW1 к розетке, используются в качестве дорожных. На выходе путешественники соединяются, чтобы бежать к SW2, используя красный и белый провода в этом кабеле. Белый провод имеет черную маркировку на обоих концах, чтобы идентифицировать его как горячий. Черный провод к SW2 подключается к горячему разъему розетки и к общему проводу SW2 на другом конце.

Электропроводка для розетки и комбинированного переключателя

Комбинированное устройство с выключателем розетки удобно, когда вам нужны оба, но у вас есть только одна коробка.Подобно ранее упомянутым разъемным розеткам, эти устройства используют съемный соединитель между двумя горячими выводами, чтобы при необходимости разделить его. В неповрежденном состоянии и подключенном к одному проводу горячего источника, комбо можно использовать для выключения и включения света, пока розетка будет постоянно горячей. Если вам нужно подобное устройство с защитой от замыкания на землю на кухне, в ванной или прачечной, посмотрите здесь электрические схемы для комбинированного выключателя розетки gfci.

На этой схеме показан первый вариант подключения для этого устройства.При таком расположении соединительный язычок между горячими выводами остается нетронутым. Источник находится на устройстве, а горячий подключается непосредственно к одному из горячих выводов, неважно, какой из них. Двухжильный кабель проходит от комбо к осветительной арматуре, а выход переключателя подключается к черному проводу, идущему к горячей клемме светильника. Нейтральный провод источника соединен с нейтралью на половине розетки комбинированного устройства и с белым проводом кабеля, идущим к свету. На свету он подключается к нейтральному выводу.

Если у вас есть второе устройство в той же коробке с комбинированным переключателем, вы можете соединить их вместе, как показано на этой схеме. Здесь мы используем розетку, но любое устройство, такое как выключатель, таймер и т. Д., Будет подключено таким же образом. Вкладка на комбо остается нетронутой, и источник горячего подключения соединен с помощью гибкого провода к горячим клеммам на каждом устройстве в коробке. Нейтраль источника соединяется кабелем с двумя устройствами и белым проводом, идущим к клемме нейтрали устройства. Выход комбинированного переключателя подключается к черному проводу, идущему к горячему выводу прибора.

Это еще один вариант подключения комбинированного устройства, в котором используются два электрических источника. В этом случае соединительный язычок между горячими клеммами на устройстве сломан, чтобы разделить их. Переключатель управляет светом, и половина розетки комбинированного устройства всегда горячая.

Источник 1 входит в осветительную арматуру, и оттуда проходит трехжильный кабель к половине переключателя на устройстве. Горячий от источника подключается к черному проводу, идущему к комбо и к входной стороне переключателя.Белая нейтраль от источника подключается непосредственно к светильнику. Красный провод от фонаря подключается к выходу переключателя и к горячему выводу на другом конце.

Источник 2 подключается к комбинированному устройству, где горячий и нейтральный провода подключаются к соответствующим клеммам на розетке половины устройства.

Наконец, комбинированный переключатель может использоваться для управления самой встроенной розеткой, что позволяет ей работать как переключаемая розетка.Это удобно, если вы хотите использовать переключатель для управления осветительной арматурой или другим устройством, подключенным к комбо. Здесь перемычка между двумя половинками удаляется, и горячая цепь подключается к входной стороне переключателя. Релейный выход направляется на горячую сторону розетки с помощью короткой перемычки того же калибра. Нейтраль контура подключена к нейтральной стороне розетки.

Еще подобное на Do-It-Yourself-Help.com
Электрические схемы

ProDemand — Mitchell 1

Mitchell 1 заново изобретает электрическую схему… снова!

Электронные системы в современных легковых и грузовых автомобилях имеют в среднем 30 электронных блоков управления (ЭБУ), а в роскошных автомобилях их даже больше — до 100 ЭБУ.Эти устройства могут обрабатывать до миллиона строк кода, что больше, чем у некоторых реактивных истребителей. Когда что-то пойдет не так, эти автомобили появятся в вашем магазине!

Поскольку в современных передовых транспортных средствах так много всего, что может пойти не так, вам нужна информация о ремонте, которая упростит работу и позволит вам контролировать диагностику. Последние усовершенствования легендарных электрических схем ProDemand переопределяют электрическую диагностику с помощью запатентованных интерактивных функций, которые помогут вам сделать следующий шаг к эффективности диагностики.

Вы устали искать на нескольких страницах единую электрическую схему для выбранного компонента? Никогда больше! Легендарные электрические схемы ProDemand имеют интеллектуальную навигацию, которая приведет вас прямо к конкретной схеме для компонента, который вы искали, с автоматически выделенными трассами. Быстрее и проще, чем когда-либо, найти точную электрическую схему, необходимую для эффективной и точной диагностики.

Специалисты по ремонту автомобилей из поколения в поколение любили электрические схемы Mitchell 1.Теперь любить есть еще больше:

Интерактивность соединяет диаграммы с информацией о компонентах

Исключительно для Mitchell 1, наши интерактивные схемы подключения позволяют перемещаться по диаграмме непосредственно к информации о компонентах без вторичного поиска. При просмотре схемы соединений просто щелкните любой компонент на схеме, чтобы увидеть всплывающее меню с вариантами выбора, чтобы узнать больше о спецификациях, расположении компонентов, видах разъемов, пошаговых тестах компонентов и т. Д. чтобы найти соответствующую информацию, вам необходимо диагностировать проблему.- все, что вам нужно, тут же. Щелкните еще раз, и вы вернетесь на схему подключения. ПОСМОТРЕТЬ ВИДЕО , чтобы увидеть интерактивные электрические схемы в действии.

Перейдите к схемам подключения компонента

При переходе к схемам подключения через 1Search Plus ProDemand открывает схему для конкретного компонента, который вы ввели в качестве поискового запроса. Современные современные автомобили могут содержать до 16 страниц диаграмм характеристик двигателя. Но с ProDemand нет необходимости просматривать все эти страницы.Просто введите компонент, нажмите «Поиск» — и вы на месте.

Компонентные провода выделяются автоматически

ProDemand не только перенесет вас на конкретную диаграмму, но и когда вы откроете эту диаграмму, компонент будет в фокусе со всеми уже выделенными трассами. Одним щелчком мыши вы можете просмотреть другие компоненты и переключить выделение связанных проводов для каждого компонента. Вы мгновенно видите все провода, относящиеся к компоненту — не нужно щелкать каждый провод отдельно.

Упрощенный просмотр сложных диаграмм

Есть диаграмма с несколькими страницами? Нет проблем — выделение распространяется на все страницы, пока цепь не достигнет точки завершения.Больше никаких «глазных диаграмм», которые заставят вас сопоставлять провода от страницы к странице. При переходе к следующей или предыдущей диаграмме ProDemand также поддерживает масштабирование и ориентацию. Забудьте о необходимости сбрасывать вид каждый раз, когда вы открываете новую страницу.

Детали или общая картина — все возможно

Если вы хотите погрузиться глубже и скрыть невыделенные провода, скрытые провода кажутся блеклыми, но не исчезают полностью. Таким образом, вы видите нужные детали, но при этом имеете полное представление об элементах, включенных в полную схему.

Щелкните компонент на схеме и перейдите по ссылке, чтобы получить полную информацию о ремонте компонента!

ПОСМОТРЕТЬ ВИДЕО, чтобы увидеть интерактивные электрические схемы в действии.

ОДНОЛИНЕЙНАЯ СХЕМА КАК ИЗОБРАТЬ ЭЛЕКТРИЧЕСКОЕ УСТАНОВКУ ДОМА

ЧТО ТАКОЕ ОДНОЛИНЕЙНАЯ СХЕМА

Однолинейная схема представляет собой графическое изображение электроустановки .Она отличается от других схем, потому что в случае однолинейной схемы каждая цепь представлена ​​одной линией , в которой представлены все проводники соответствующего участка.

ОСНОВНЫЕ ЭЛЕМЕНТЫ ОДНОЛИНЕЙНОЙ СХЕМЫ

Следуя стандартной электрической символике, основные элементы установки будут представлены на однолинейной схеме. В некоторых из них можно было найти даже более сложные элементы, более характерные для более сложных схем.

РАСПРЕДЕЛИТЕЛЬНАЯ ПАНЕЛЬ

Распределительная панель содержит элементы для защиты и контроля электроснабжения дома . На этой панели организована электрическая система и распределяется мощность установки.

На однолинейной схеме электрическая панель обычно представлена ​​прямоугольником с пунктирной линией.

ЦЕПИ

В обычном доме обычно не менее 5 цепей.На однолинейной схеме мы увидим их в виде линии, в которую включены все проводники.

Верхний конец обычно соответствует началу схемы. Нижний конец обычно подключается к другой цепи или к приемнику.

  • Первая цепь: управляет освещением (интенсивность 10 А)
  • Вторая цепь: показывает большинство вилок (ток 16 А)
  • Третья цепь: представляет розетки для кухни и ванной (интенсивность 16 А)
  • Четвертый контур: для духовки (интенсивность 25А)
  • Пятый контур: объединяет стиральную машину и стиральные машины (интенсивность 20А)
ЭЛЕКТРИЧЕСКИЕ ПРИЕМНИКИ

Электрические приемники представляют все подключенные устройства, являются ли они тепловыми, например, плиты, утюги, духовки и т. д.; или светящиеся, такие как лампы

СИЛОВОЙ ВЫКЛЮЧАТЕЛЬ

Функция силового автоматического выключателя заключается в отключении подачи электричества в установку в случае короткого замыкания или перенапряжения. Этот переключатель следит за тем, чтобы максимально допустимая нагрузка на установку не превышалась

УСТРОЙСТВО ОСТАТОЧНОГО ТОКА

Его функцию можно спутать с функцией IGA, поскольку устройство остаточного тока также отключает установку, но по другой причине . Устройство остаточного тока отвечает за защиту установки от возможных утечек тока.

В случае отключения установки это произойдет из-за утечки на землю или неисправности какого-либо электрического прибора.

МИНИАТЮРНЫЙ ВЫКЛЮЧАТЕЛЬ (MCB)

Автоматические выключатели несут ответственность за защиту электрических цепей от перегрузок и коротких замыканий. . У них есть:

  • Магнитный триггер, который срабатывает, когда ток превышает его номинальное значение
  • Тепловой разъединитель, отключающий электрический поток в случае его перегрева.
РАСПРЕДЕЛИТЕЛЬНАЯ ПЛАТА

Она находится в распределительном щите, где расположены элементы безопасности, управления и защиты. Обычно это близко к входной двери в дом.

Трехпозиционный выключатель. Электропроводка — 101

.

3-

Схема электрических соединений переключателя на осветительную арматуру

Напряжение сети поступает в розетку светильника.

Больше не допускается после NEC 2011 (если в распределительных коробках нет нейтрального провода)


3-

Схема подключения переключателя Светильник между переключателями

Напряжение сети поступает в первую 3-позиционную розетку выключателя , светильник расположен между распределительными коробками. Запрещено после NEC 2011 года (если в распределительных коробках отсутствует нейтральный провод)

Цвета проводов 3-

-позиционного переключателя

Не существует стандарта для цветов проводов для ходовых переключателей 3- .Цвета будут различаться в зависимости от того, использовался ли кабель NM или кабелепровод.

При использовании кабеля NM цвета проводов для путешественников будут черными и красными при использовании кабеля 3-.

При использовании кабелепровода цвета проводов для путешественников могут быть любого цвета. На 2-й схеме ниже синие провода используются для путешественников.

Типовая проводка 3-

-позиционного переключателя, кабель NM

На 1-й схеме ниже 2- -жильный кабель NM подает питание от панели к первой распределительной коробке.Черный (линейный) провод подключается к общей клемме первого трехпозиционного переключателя . Проволока 3- NM соединяет вместе контактные зажимы первого и второго 3- -позиционного переключателя. Дорожные провода взаимозаменяемы на каждом переключателе.

Общая клемма второго переключателя на 3- соединяется с осветительной арматурой.

Белые нейтральные провода соединены вместе в каждой распределительной коробке.

Диаграммы, представленные на этой странице, упрощены для ясности.В электрические розеточные коробки можно вводить и выводить множество кабелей NM. См. Фактическую проводку распределительной коробки. Схема заземления показана отдельно.

При обычном подключении сетевое напряжение поступает в первую 3-позиционную распределительную коробку

3-

Схема электрических соединений переключателя, кабелепровод

Типовая электрическая схема трехпозиционного переключателя

, кабель NM

Черный общий провод обычно наматывается вокруг двух бегущих проводов на трехпозиционном переключателе .

TheSamba.com :: Электросхемы типа 1

TheSamba.com :: Электросхемы типа 1
Тип 1 | Тип 2 | Тип 3 | Тип 4 | Гиа | Вещь | K70

Электрические схемы типа 1
Мы всегда приветствуем вклад в этот раздел


Год Схема Ключ Блок предохранителей Комментарии Высокое разрешение / Примечания
1949-52 Из немецкой инструкции Volkswagen Забронировать
Автор: Ford Clymer
Большие изображения
1950
1951 Октябрь 1951 г.
1952 Апрель 1952 г. Предохранители
3 / 53-12 / 53
3 / 53-12 / 53 Схема
Ключ
Предохранители
1954 Схема
Ключ
Предохранители
1954
1955
1956 Схема
Ключ
Предохранители
1958 За пределами США
1958 США Схема
Ключ
Предохранители
1958 Альтернативная схема
1960 Схема
Ключ
Предохранители
1960 За пределами США Схема
Ключ
Предохранители
1961
1961 США
1961 От Клаймера
1961-65 Из Национальной автомобильной службы
1962
Со вставкой для реле указателей поворота 12В
Спецификация США с герметичными балками, Culito
1962-65 От Клаймера
1963
Со вставкой для реле указателей поворота 12В
1964
Со вставкой для реле указателей поворота 12В
1965
Со вставкой для реле указателей поворота 12В
1966 За пределами США
1966 США
1966 США, VW 1300
1966 Венгерский Большие изображения
1966 От Клаймера
1966 Из Национальной автомобильной службы
1967 За пределами США
1967 США 67 Указатель поворота / подсветка тормоза
1967 США, VW 1500
1967 От проводки двигателя
1967 От Клаймера
1967-68 За пределами США
1967-70 Из Национальной автомобильной службы
1968-9 США
Bentley версия
Начало 1968 года США
Создано посетителями, проще в использовании
Середина 1968-69 гг. США
Создано посетителями, проще в использовании
1968-70 Не для США
(большой!)
1968 От проводки двигателя
1968 От Клаймера
1969-71 1970-1 Приложение
1969-71 От Клаймера
1970 Дополнительный проводка
1970
Изображение в стиле плаката, подходящее для печати
1970-71 США, заводская схема
1970-71 1970-71 Добавки
Из магазина Clymer’s
1971 США
Исправлен блок предохранителей
1971 Супер Жук
Дополнительная проводка
Дополнительная проводка, США
1971 Только Super Beetle
1971 Супер Жук
1970-71 Добавки
Из магазина Clymer’s
1972 Исправлен блок предохранителей
1972 г. Приложение
1972 Стандарт и Супер
Дополнительная проводка
Дополнительная проводка, США
1972 Немецкий Супер Жук
1972 Жук и Супер Жук
Автоматический рычаг переключения передач
Из магазина Clymer’s
1973 Как читать схемы на 73 стр.
1973 г.в. Стандарт
Дополнительная проводка
1973 Только Super Beetle
Дополнительная проводка
Дополнительная проводка, США
Ключ от Клаймера
1973 г.в. Из магазина Clymer’s
1973-75 1200
1974 г.в. Только Super Beetle
1974 1303 — Европейский с генератором (PDF)
1974-75 Супер Жук и ошибка Ла Гранд
Из магазина Clymer’s
1974-5 Как читать схемы из 73 элементов
1975-6 Дополнение к внутреннему регламенту
Генератор и система рециркуляции ОГ
1976-79 Впрыск топлива
1976-79 Только Super Beetle
Впрыск топлива

Авторы этой страницы: Bryan M, Gerk vd Wal, David Del Vecchio, Andy Thompson, Курт, Джон Зонненберг,
Дэррил Мур, Брюс А.Джонс, Боб Кропси, Рэймонд Скотт, Бобл, Стэн Вольфарт, Мистербилл, Том П. и Франческо С.


% PDF-1.4 % 791 0 объект > эндобдж xref 791 86 0000000016 00000 н. 0000002089 00000 н. 0000002286 00000 н. 0000002440 00000 н. 0000002471 00000 н. 0000002532 00000 н. 0000002681 00000 н. 0000003366 00000 н. 0000003723 00000 н. 0000003789 00000 н. 0000003946 00000 н. 0000004054 00000 н. 0000004110 00000 н. 0000004166 00000 н. 0000004291 00000 н. 0000004347 00000 п. 0000004443 00000 н. 0000004499 00000 н. 0000004651 00000 п. 0000004804 00000 н. 0000004956 00000 н. 0000005109 00000 п. 0000005262 00000 н. 0000005415 00000 н. 0000005567 00000 н. 0000005721 00000 н. 0000005876 00000 н. 0000006031 00000 н. 0000006187 00000 п. 0000006342 00000 п. 0000006498 00000 н. 0000006653 00000 п. 0000006808 00000 н. 0000006963 00000 н. 0000007118 00000 н. 0000007214 00000 н. 0000007310 00000 н. 0000007406 00000 н. 0000007502 00000 н. 0000007599 00000 н. 0000007694 00000 н. 0000007787 00000 н. 0000007880 00000 н. 0000007974 00000 н. 0000008068 00000 н. 0000008162 00000 п. 0000008256 00000 н. 0000008350 00000 н. 0000008444 00000 п. 0000008540 00000 н. 0000008634 00000 п. 0000008730 00000 н. 0000008824 00000 н. 0000008920 00000 н. 0000009016 00000 н. 0000009110 00000 п. 0000009206 00000 н. 0000009300 00000 н. 0000009395 00000 п. 0000009490 00000 н. 0000009585 00000 н. 0000009680 00000 н. 0000009774 00000 н. 0000009870 00000 п. 0000009964 00000 н. 0000010059 00000 п. 0000010153 00000 п. 0000010248 00000 п. 0000010342 00000 п. 0000010438 00000 п. 0000010532 00000 п. 0000010626 00000 п. 0000010722 00000 п. 0000010818 00000 п. 0000010914 00000 п. 0000011056 00000 п. 0000012158 00000 п. 0000012378 00000 п. 0000013482 00000 п. 0000013694 00000 п. 0000013806 00000 п. 0000014638 00000 п. 0000014745 00000 п. 0000016817 00000 п.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *