Схема соединения электродвигателя: Схемы подключения трехфазных электродвигателей

Содержание

Схема подключения двигателя треугольником. Схемы соединения асинхронного двигателя в звезду и треугольник

Произошёл тут такой случай. Принёс человек в ремонт новый двигатель, который проработал у него 10 секунд и задымил. Двигатель он подключил треугольником в обычную трехфазную сеть, а на шильдике двигателя есть схема, на которой написано: треугольник — 230 В. звезда — 400 В. В общем, подключил он неправильно, потому двигатель и сгорел.

Для тех, кто не понимает, почему нельзя делать так, как сделал сделал тот товарищ, спаливший двигатель, предназначена эта статья.

Вот всем известные схемы подключения треугольником (D) и звездой (Y):


Всего с двигателя выходит 6 проводов: это начала трёх обмоток и их концы. Места соединений обмоток на схеме выше обозначены точками a, b, c и 0 (последний — только для звезды). В клеммной коробке шесть указанных клемм располагают в два ряда по три клеммы, причём клеммы начала и концов обмоток не находятся параллельно друг другу, а расположены так, чтобы было удобнее подключать треугольником (т.

е. соединять начала одних обмоток с концами других):

Некоторые граждане иногда подключают нейтральный провод к нулевой точке при подключении двигателя звездой. На самом деле ничего хорошего от этого нет, делать так не нужно.


Совершенно неважно как вы подключаете двигатель: звездой или треугольником. Важно только то, какое напряжение вы подаёте на обмотки двигателя . Будет ли это напряжение получаться как межфазное (треугольник) или как фазное (между фазой и нулевой точкой — звезда) — двигателю это совершенно неважно.

Если у вас есть двигатель с номинальным напряжением обмотки 220 В и есть две разные трёхфазные сети, у одной из которых линейное напряжение 380 В (220 В на фазу), а у другой — 220 В (127 В на фазу), то к первой вы можете подключать двигатель звездой, а ко второй — треугольником, разницы для двигателя не будет никакой, отличаться будут лишь токи, протекающие в проводниках на линии, ведущей к двигателю.

Линейное напряжение трёхфазной сети — это межфазное напряжение, именно оно обозначается на шильдиках двигателей. Фазное напряжение (между фазой и нейтралью) на шильдиках не обозначается.

Одновременно с этим, условно говоря, вы можете считать, что на шильдике обозначено фазное напряжение, но только в том случае, если собираетесь подключать двигатель только к одной фазе через конденсатор.

Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз (т.е. примерно в 1.73 раза, т.е. 220 х 1.73 = 380).

Выглядит всё это так, например, для двигателя мощностью 1.1 кВт с номинальным напряжением обмотки 220 В. Д ля тех, кто в танке: РИСУНОК СЛЕВА — это для РОССИИ, где 380 В 50 Гц, т.е. 220В на фазу, а справа — это для стран, где трёхфазное напряжение 220 В, 50 Гц (или 127 В на фазу) :

Для такого двигателя на шильдике будет написано: D/Y 220V / 380V,

4.9А / 2.8А. Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю (именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху). Следовательно, для России (линейное напряжение 400 В) для такого двигателя надо использовать схему подключения звезда.

Номинальное напряжение обмотки большинства двигателей при частоте тока 50 Гц обычно составляет либо 127 В, либо 230 В, либо 400 В, либо 690 В. Ну, или как было раньше: 220, 380, 660 В соответственно.

Теперь логичный вопрос:

если двигателю нет разницы по какой схеме он будет подключен, а важно лишь напряжение на обмотках, то зачем вообще делать двигатели с разным номинальным напряжением на этих самых обмотках?

Ответ такой:

1. Исходя из естественного желания сэкономить, при подключении в трёхфазную сеть выгоднее использовать двигатели с бóльшим номинальным напряжением обмотки, поскольку это значительно удешевляет прокладку кабельных трасс, т.к. ведёт к снижению силы тока на силовых линиях, ведущих к двигателю (что видно на рисунке сверху: 2.8А против 4.85А — ну, и сечение проводов должно быть соответствующее)

2. Для двигателей со свободной нагрузкой на валу наиболее дешевым способом плавного пуска при подключении в трёхфазную сеть является пуск «звездой» с последующим переключением на «треугольник».

3. Для правильного подключения двигателя в однофазную сеть (через конденсатор) требуется, чтобы номинальное напряжение обмотки двигателя было не больше фазного напряжения электрической сети.

Третье условие явным образом вступает в противоречие с первым и вторым, поскольку для подключения к однофазной сети 230 В номинальное напряжение обмотки двигателя должно составлять те же самые 230 В.
В итоге получается следующая ситуация:

При наличии в распоряжении трёхфазной сети 400 В нет никакого смысла использовать двигатели с номинальным напряжением обмотки 230 В, потому что придется прокладывать кабели большего сечения. Тем более, если нужен дешёвый плавный пуск, т.е. стартовать звездой, а затем переключаться на треугольник.

Если провода уже проложены, и они толстые, и куплены двигатели 230/400 — то тут нет проблемы, подключил звездой — и ничего страшного.
— при отсутствии трёхфазной сети надо выбирать такой двигатель, который имеет номинальное напряжение обмотки 230 В, чтобы при подключении треугольником в однофазную сеть через конденсатор он выдавал нужную мощность.

По этой причине, производители условно делят все двигатели на две категории:

1. Маломощные (менее 5 кВт), преимущественного бытового назначения, для которых может возникнуть потребность подключения к однофазной сети (не у каждого дома есть трёхфазная розетка). В России это двигатели D230V / Y400V.

2. Двигатели мощностью более 5 кВт, которые не имеют бытового назначения, а потому для них нет потребности подключения в однофазную сеть. Одновременно с этим, для них есть потребность использования более высокого напряжения для экономии на прокладке кабеля и может возникнуть потребность переключения со звезды на треугольник при пуске. В России такими двигателями являются D400V / Y690V.

А теперь всю эту историю надо помножить на то, что есть разные страны в мире с разным стандартным линейным напряжением сети и разной частотой переменного тока. А ещё есть предприятия, где используется более высокое напряжение, чем стандартное, вплоть до нескольких киловольт (т.к. это ведёт к дальнейшему снижению затрат на организацию электрической сети).

Двигатели малой мощности
D 230V / Y 400V

Если двигатель имеет небольшую мощность (до 4 — 5 кВт), то его обычно делают с расчётом на возможность подключения к однофазной сети. Т.е. в трёхфазную сеть его подключают звездой, а в однофазную — треугольником через фазосдвигающий конденсатор. Для последнего случая также может использоваться пусковой конденсатор (отключается сразу после запуска). Выглядит это так:

Для того, чтобы двигатель можно было так подключить в однофазную сеть, его номинальное напряжение каждой обмотки должно быть равно фазному напряжению сети. Это значит, что если двигатель планируется использовать в России или Европе, то номинальное напряжение обмотки должно быть равно 230 В. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением 400 В (подключение звезда), так и в однофазной сети 230 В (подключение треугольником через конденсатор). Это те самые двигатели, где на шильдике написано напряжение D 220V / Y 380V.

Соответственно, если нужно такой двигатель использовать в стране с более низким линейным напряжением, например, в США (где линейной напряжение 240 В, а фазное — 120 В при частоте тока 60 Гц), то по-нормальному подключить такой двигатель в их однофазную сеть через конденсатор не получится. Однако, по крайней мере, можно использовать 3-фазное подключение треугольником. Для такого подключения потребуется немного более высокое напряжение, чем 230 В (из-за частоты тока 60 Гц), но у них там как раз 240 В, что как раз подходит.

D 115V / Y 230V Одновременно с этим, маломощные двигатели, предназначенные для стран, где стандартное напряжение ниже, чем у нас, будут подключаться как D 127V / Y 220V . Однако, двигатели с такой надписью на шильдике вы вряд ли найдёте, потому что 127 В, 50 Гц — это очень малораспространённое напряжение в мире (см. ). Поэтому, скорее всего, вам встретится двигатель с шильдиком, где будет указано напряжение D 115V / Y 208-230V.
Насчет заморочки с 208 вольтами смотри сюда:


Подключить такой двигатель к стандартной российской трёхфазной сети (все три фазы) можно только через преобразователь частоты переменного тока, поскольку на них есть возможность переключения линейного напряжения на выходе: 230 / 400 В.
В однофазную сеть можно подключить звездой через конденсатор. Тогда напряжение, подаваемое на каждое обмотку, будет составлять половину фазного напряжения сети (230 В / 2 = 115 В). Выглядит это вот так:

Двигатели мощности более 5 кВт
D 400V / Y 690V Для двигателей мощнее 5 кВт обычно не предусматривают возможность подключения в однофазную сеть, т.е. номинальное напряжение обмоток делают такое, которое соответствует линейному напряжению. Т.е. штатной схемой подключения таких двигателей в трёхфазную сеть является треугольник. В России и Европе это двигатели с номинальным напряжением обмоток 400В, т.е. где на шильдике написано D 400V / Y 690V .

Для определённых задач, где на валу двигателя находится свободная нагрузка (системы вентиляции, осевые насосы), ну, и вообще те задачи, где возможно регулирование скорости вращения вала только лишь напряжением (трансформатором), часто используют схему подключения «звезда» при старте с последующим переключением на «треугольник». Т.е. при старте на обмотку подаётся заниженное напряжение 230В вместо номинальных 400В, а затем происходит переключение на штатный режим (т.е. на треугольник). Из-за свободной нагрузки на валу момент вращения при старте на низком напряжении также будет ниже, т.е. пусковой ток будет не столь высок, как при старте на номинальном напряжении. Поэтому такой пуск двигателя называют «щадящим».

Следует помнить, что для нагрузок, требующих большого момента при запуске, подобный режим приведет напротив, к возрастанию тока в обмотках и последующим неприятным событиям.

Кроме того, надо иметь ввиду, что подключение двигателей даже со свободной нагрузкой на валу звездой для «щадящего старта» вовсе не означает, что если по такой схеме постоянно эксплуатировать двигатель (не переходя на треугольник), то такой режим станет «щадящим» для него. Низкий момент при старте ещё не означает, что заниженное напряжение годится для его нормальной работы, поскольку сам двигатель (со своими номинальными характеристиками) обычно как раз и подбирается под конкретную нагрузку. Поэтому постоянная эксплуатация двигателей на напряжении ниже номинального иногда приводит к их выходу из строя. Чтобы не было неприятностей

двигатель всегда надо эксплуатировать на номинальном напряжении , а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом. К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом.

D 220V / Y 440V Двигатели мощностью выше 5 кВт, изготовленные в США, будут иметь номинальное напряжение обмотки 220 В, т.е. на шильдике будет написано D 220V / Y 440V (для 60 Гц). Подключать такие двигатели к российской трёхфазной сети 400 В следует звездой, а к российской однофазной сети через конденсатор — треугольником. Касательно величин напряжения, есть двигатели, где более подробно расписано подключение для сетей 50 Гц и 60 Гц, например вот так:


Одним из весомых недостатков мощных асинхронных электродвигателей является их «тяжелый» пуск, который сопровождается огромными начальными токами в этот момент. В результате чего в сети появляется большой скачек напряжения. Такие «провалы» могут негативно сказаться на работу электроники или других электроагрегатов работающих на этой же линии.
Для плавного пуска используют схему включения «звезда-треугольник». При которой в начале запуска двигатель включается звездой, а когда вал мотора раскрутиться до рабочих оборотов электроника переключит его в схему треугольником.
Я покажу как собрать пусковой и управляющий блок, который будет не только управлять запуском и остановкой двигателя, но и при пуске будет менять схемы его включения.

Понадобится

Для подключения нам понадобятся:
  • 3 пускателя, для управления силовой частью;
  • приставка с выдержкой времени — реле времени регулируемое;
  • 2 приставки с нормально открытыми и замкнутыми контактами;
  • кнопки «Пуск» и «Стоп»;
  • 3 лампочки, для наглядного вида работы пускателя;
  • автоматический выключатель однополюсной.

Схема

Подключение проводится по заранее нарисованной схеме.


На схеме представлена силовая часть и цепи управления. В силовую часть входят:
  • вводной автоматический выключатель;
  • 3 мощных пускателя, управляющие силовой цепью включения «звезда-треугольник»;
  • электродвигатель.


При включении по схеме «звезда» работают первый и третий пускатели, при включении по схеме «треугольник» работают первый и второй пускатели. В силу отсутствия возможности подключения к сети 380 В ограничимся визуальным рассмотрением работы системы без двигателей. К цепям управления относятся:
  • автоматический выключатель однополюсный;
  • кнопки «Пуск» и «Стоп»;
  • три катушки пускателя;
  • нормально замкнутый контакт;
  • нормально открытый контакт;
  • контакты реле времени.


Собираем схему для демонстрации работы автоматической системы.


Параллельно катушкам пускателя подключены сигнальные лампы, чтобы вы наглядно увидели работу.

Проверка системы

Включаем автоматический выключатель, тем самым подаем питание на всю схему. Нажимаем кнопку «Пуск» для запуска электродвигателя. И у нас притянулись первый и третий пускатели, загорелись лампочки 1 и 3 – означающие, что двигатель включен по схеме «звезда».


Через некоторое время срабатывает таймер, притягиваются первый и второй пускатели, загорелись лампочки 1 и 2 – что значит двигатель подключен по схеме «треугольник».

Время на приставке можно регулировать от 100 миллисекунд до 40 секунд. в зависимости от того, как быстро двигатель набирает обороты.


Нажимаем кнопку «Стоп» и все останавливается.
При подключении двигателя надо учитывать подключение фаз мотора. В данном случае на начало обмотки приходит фаза А, на конец обмотки фаза B. На начало второй обмотки должна приходить фаза В, на конец – фаза С. На начало третьей обмотки должна приходить фаза С, на конец – фаза А. Обязательно посмотрите видео, где более подробно и наглядно изложен процесс работы и подключения всей схемы.

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя
Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:
  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:
  • Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
  • Нельзя дистанционно выключить и включить электродвигатель.

В промышленности и быту широко распространены асинхронные двигатели, которые питаются напрямую от с переменным напряжением. В статоре подобного мотора расположены три обмотки, смещенные друг относительно друга на 120 градусов – это сделано для того, чтобы создавать одинаковое в любой точке окружности вокруг статора. Для подключения таких электродвигателей применяется две основные схемы: подключение звездой и треугольником. Давайте подробнее рассмотрим каждый из этих видов подключения. Для наглядности, обозначим начало каждой из трех обмоток U1 , V1 , W1, а их концы – U2 , V2 , W2 соответственно.

Чтобы реализовать подключение мотора по схеме «звезда», необходимо соединить все концы обмоток U2 , V2 , W2 в одной точке, а на входы каждой из обмоток подавать по одной фазе из трехфазной сети.

Для того чтобы подключить двигатель по схеме «треугольник», необходимо к началу первой обмотки U1 присоединить конец второй V2, к началу второй обмотки V1 – конец третьей обмотки W2, а начало третьей обмотки W1 к концу первой U2. К местам, где соединяются обмотки, подключаются фазы питающей сети.


Посмотрите видео о способах подключения электродвигателей:

Важно правильно выбрать схему подключения для конкретного двигателя, иначе можно не получить от него необходимой мощности, а в отдельных случаях — даже вывести мотор из строя.

Каждая из этих схем подключения к сети имеет как свои плюсы, так и недостатки. К примеру, мотор, подключенный звездой, запускается очень плавно, и может работать с небольшой перегрузкой без вреда для самого двигателя.

Однако максимальная паспортная мощность электропривода в таком случае недостижима – двигатель будет выдавать до 70% от своей номинальной мощности.

Подключение треугольником позволяет достигать паспортной мощности, однако при такой схеме подключения пусковые токи достигают значительных величин. К тому же замечено, что при подключении треугольником электродвигатель греется при работе, что уменьшает срок его службы.

Чтобы минимизировать минусы и полностью реализовать плюсы каждой из схем, была придумана система автоматической смены схемы подключения. То есть, асинхронный электродвигатель запускается по схеме «звезда», а при выходе на свою номинальную частоту вращения, переключается на схему «треугольник», и выходит на свою паспортную мощность. Реализуется такая смена схем подключения при помощи или пусковых реле времени. Также это можно сделать при помощи пакетного переключателя, но в этом случае нужно внимательно следить за работой мотора, чтобы переключить его в нужный момент.

Ещё одно интересное видео, о способе подключения электродвигателя:

Типичные случаи соединений в звезду и треугольник генераторов, трансформаторов и электроприемников рассмотрены в статьях «Схема соединения «Звезда » и «Схема соединения «Треугольник «. Остановимся теперь на важнейшем вопросе о мощности при соединениях в звезду и треугольник, так как для работы каждого механизма, приводимого в действие электродвигателем или получающего питание от генератора или трансформатора, в конечном итоге важна именно мощность .

5. Как объяснено выше, при переключении электродвигателя с треугольника в звезду мощность его снижается примерно втрое. И наоборот, если электродвигатель переключить со звезды в треугольник , мощность резко возрастает, но при этом электродвигатель, если он не предназначен для работы при данном напряжении и соединении в треугольник, сгорит .

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник

применяют для снижения пускового тока, который в 5 – 7 раз превышает рабочий ток двигателя. У двигателей сравнительно большой мощности пусковой ток настолько велик, что может вызвать перегорание , отключение автомата и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей 2 , может вызвать отключение контакторов и магнитных пускателей. Поэтому стремятся уменьшить пусковой ток, что достигается несколькими способами. Все они в итоге сводятся к понижению напряжения в цепи статора на пуска. Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор либо переключают обмотку со звезды в треугольник. Действительно, перед пуском и в первый период пуска обмотки соединены в звезду. Поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает вращения и ток снижается. Тогда обмотки переключают в треугольник.

Предупреждения:
1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят .
2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos φ . Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos φ переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока; в противном случае электродвигатель перегреется.

1 Активная мощность измеряется в ваттах (Вт), реактивная – в вольт-амперах реактивных (вар), полная – в вольт-амперах (В×А). Величины в 1000 раз большие соответственно называют киловатт (кВт), киловар (квар), киловольт-ампер (кВ×А).
2 Вращающий момент электродвигателя пропорционален квадрату напряжения. Следовательно, при снижении напряжения на 20% вращающий момент снижается не на 20, а на 36% (1² — 0,82² = 0,36).

Схемы подключения электродвигателей трехфазных асинхронных 220/380 В

Существует несколько схем подключения электродвигателей 220/380/660 Вольт – Звезда, Треугольник, Звезда-треугольник. Разные схемы соединения обмоток источников питания используются что б увеличить мощности передачи без потерь напряжения сети, снизить в блоках питания пульсации напряжения, уменьшить при подключении нагрузки к питанию число проводов. Данные схемы имеют между собой отличия и разницу в нагрузке по току. Однофазные двигатели подключаются по схеме с пусковой обмоткой и с конденсатором в цепи питания пусковой обмотки. Перед приводом двигателей в работу, необходимо выяснить нужный вариант подключения.

Схема подключения электродвигателя 380/660 Вольт

Основные способы подключения асинхронных двигатели 380/660 — «подключение звезда» и «подключение треугольник». При правильном подключении и приводе в действие – не перегреваются, работают долго и надежно. Рассмотрим возможные схемы подключения:

Схема подключения «Звезда»

При соединении трёхфазного электродвигателя по схеме подключения — звезда, на начала обмоток подаётся трехфазное напряжение, а концы статорных обмоток соединяются в одной точке, которая называется нейтральной (нулевой).

За счет более высокого напряжения питания — 660В для двигателей 380/660 и 380В для двигателей 220/380, рабочие и пусковые токи будут ниже.

Схема подключения «Треугольник»

Схема «треугольник» в клеммной коробке значит, что концы одной обмотки последовательно соединены с началом следующей обмотки и так один за одним. Токи данного подключения выше. Для электромоторов 220/380 треугольник предполагает подключение к однофазной сети 220 Вольт с использованием фазосдвигающего конденсатора.

Комбинированный тип

Комбинированный тип подключения — это когда на электродвигатель 380/660В подключенный по схеме Звезда подают напряжение от треугольника — 380В. Данный режим не способен выдать паспортную мощность привода, но имеет эффект маломощного плавного пуска за счет низкого напряжения и тока в обмотках. Далее следует переключение выводов в схему треугольник 380В для работы в номинальном эффективном режиме. – Звезда-треугольник, используется для снижения пусковых токов. УЧТИТЕ! Данный режим актуален для техпроцессов с пропорциональным возрастанием нагрузки на вал — насосы, вентиляторы, пилы. Ослабленный вращающий момент при комбинированном подключении может «не потянуть» и привести к выходу из строя мотора.

Подключение трехфазного двигателя в однофазную сеть 220 Вольт

На сегодняшний день, выпускаются двигатели как для трехфазной сети, так и для однофазной сети 220 Вольт.

Однако, что делать если у вас есть двигатель 380 вольт, и вам нужно подключить его в розетку?

Использования таких приборов в домашних условиях, требуют изменения в схеме сборки и в подключении конденсаторов. Рассмотрим принцип действия электродвигателя:

При подаче трёхфазного напряжения на обмотки в статоре, появляется вращающееся магнитное поле, которое приводит в движение ротор двигателя. Подключая такой механизм к однофазной сети 220 вольт вращающееся поля преобразуется в пульсирующее.

Справка. В оборудовании, изготовленного для работы от 220 В, для этого предназначены пусковые обмотки либо особенности конструкции статора.

Схема подключения трехфазного электродвигателя в однофазную сеть (220 В) включает фазосдвигающий конденсатор. Его значение в микрофарадах (мкФ) для электродвигателей с мощностью до 2,5 кВт, определяется умножением мощности на 100.

Ниже представлены 2-е основные схемы подключения:

Подключение трехфазного двигателя к однофазной сети через конденсатор

Схема подключения трехфазного двигателя к 220В через конденсатор представлена на Рис 1.

Направление вращения электродвигателя меняется в зависимости от положения SB1 – переключателя. Подключение к сети выполняется автоматическим либо механическим выключателем F.

После включения, необходимо сразу подключить дополнительный конденсатор Сдоп, емкость которого в 2-3 раза большей Сраб. Для этого после нажатия кнопки SB2, ее нужно сразу же после набора оборотов отпустить.

Резистор R предназначен для разряда Сдоп — конденсатора, после его отключения. Значение резистора должно быть порядка 100 — 500 кОм.

Данная схема предназначена для подключения двигателя треугольником и звездой.

Подключение трехфазного двигателя к однофазной сети через пускатель

С помощью схемы подключения электродвигателя через пускатель Рис 2, включение мотора можно производить в одно нажатие.

Нажав кнопку «пуск» срабатывает КМ1 – пускатель. Одними контактами подключается  Сдоп — конденсатор , иными — включает КМ2 — пускатель, который подает на двигатель напряжение (КМ2.1 — контактная группа) и одновременно блокируются КМ1.1 — контакты первого пускателя.

Кнопку — пуск отпускаем после набора оборотов, КМ1 — пускатель отключается вместе с Cдоп. На КМ2 – пускатель, подается им самим же напряжение, и до нажатия на кнопку «стоп», которая размыкает цепь питания, он находится в замкнутом состоянии.

Катушки пускателей рассчитаны на напряжение 220В.

Как подключить двигатель звездой. Выбор схемы соединения фаз электродвигателя. Что собой представляет трёхфазная система электроснабжения

В трехфазных цепях обычно применяется два типа соединения обмоток трансформаторов, электрических приёмников и генераторов. Одно из этих соединений носит название звезда, другое — треугольник. Рассмотрим подробнее, что это за соединения и чем они отличаются друг от друга.

Определение

Соединение в звезду подразумевает под собой такое соединение, в котором все рабочие концы фазных обмоток объединяются в один узел, называемый нулевой или нейтральной точкой и обозначается буквой O.

Соединение в треугольник представляет собой схему, при которой фазные обмотки генератора соединяются таким образом, что начало одной из них соединяется с концом другой.

Сравнение

Различие в указанных схемах состоит в соединении концов обмоток генератора электродвигателя. В схеме «звезда» , все концы обмоток соединяются вместе, тогда как в схеме «треугольник» конец одной фазной обмотки монтируется с началом следующей.

Кроме принципиальной схемы сборки, электродвигатели с фазными обмотками, соединенными звездой, функционируют значительно мягче, чем двигатели, имеющие соединение фазных обмоток в треугольник. Но при соединении звездой электродвигатель не имеет возможности развивать свою полную паспортную мощность. Тогда как, при соединении фазных обмоток в треугольник двигатель всегда работает на полную заявленную мощность, которая почти в полтора раза выше, чем при соединении в звезду. Большим недостатком соединения треугольником являются очень большие величины пусковых токов.

Выводы сайт

  1. В схеме соединения звезда концы обмоток монтируются в один узел.
  2. В схеме соединения треугольник конец одной обмотки монтируется с началом следующей обмотки.
  3. Электродвигатель с обмотками, соединенными звездой работает более плавно, чем двигатель с соединением в треугольник.
  4. При соединении звездой мощность двигателя всегда ниже паспортной.
  5. При соединении в треугольник мощность двигателя почти в полтора раза выше, чем при соединении в звезду.
Содержание:

Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнит ных потоков. За счет этих потоков, ротор двигателя начинает вращаться.

В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

Соединение обмоток звездой и треугольником

У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

Запуск трехфазного электродвигателя с переключением со звезды на треугольник

Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при .

Когда нужно переключаться с треугольника в звезду

Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

Кроме реостатного и прямого способов пуска асинхронных двигателей существует другой распространенный способ – переключением со звезды на треугольник .

Способ переключения со звезды на треугольник используется в двигателях, которые рассчитаны на работу при соединении обмоток треугольником. Этот способ осуществляется в три этапа. В начале, двигатель запускают при соединении обмоток звездой, на этом этапе двигатель разгоняется. Затем переключают на рабочую схему соединения треугольник, причем при при переключении нужно учитывать пару нюансов. Во-первых, нужно правильно рассчитать время переключения, потому что если слишком рано замкнуть контакты, то не успеет погаснуть электрическая дуга, а также может возникнуть короткое замыкание. Если переключение будет слишком долгим, то это может привести к потери скорости двигателя, а в следствии к увеличению броска тока. В общем, нужно четко скорректировать время переключения. На третьем этапе, когда обмотка статора уже соединена треугольником, двигатель переходит в установившийся режим работы.

Смысл этого способа в том что, при соединении обмоток статора звездой, фазное напряжение в них понижается в 1,73 раз. В такое же количество раз уменьшается и фазный ток, который протекает в обмотках статора. При соединении обмоток статора треугольником фазное напряжение равно линейному, а фазный ток в 1,73 раза меньше линейного. Получается, что соединяя обмотки звездой, мы уменьшаем линейный ток в 3 раза.

Чтобы не запутаться в цифрах, давайте рассмотрим пример.

Допустим, рабочей схемой обмотки асинхронного двигателя является треугольник, а линейное напряжение питающей сети 380 В. Сопротивление обмотки статора Z=20 Ом. Подключив обмотки в момент пуска звездой, уменьшим напряжение и ток в фазах.

Ток в фазах равен линейному току и равен

После разгона двигателя, переключаем со звезды на треугольник и получаем уже другие значения напряжений и токов.

Как видите линейный ток при соединении треугольником больше в 3 раза линейного тока при соединении звездой.

Данный способ запуска асинхронного двигателя применяется в тех случаях, когда присутствует небольшая нагрузка, либо когда двигатель работает на холостом ходу. Это связано с тем, что при уменьшении фазного напряжения в 1,73 раза, согласно формуле для пускового момента которая предоставлена ниже, момент уменьшается в три раза, а этого недостаточно, чтобы совершить пуск с нагрузкой на валу.

Где m – количество фаз, U – фазное напряжение обмотки статора,f – частота тока питающей сети, r1,r2,x1,x2-параметры схемы замещения асинхронного двигателя,p – число пар полюсов.

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме «звезда». При подключении 220В по схеме «треугольник», двигатель сгорит.

Начала и концы обмоток (различные варианты)

Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток . Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A ) подключается батарейка, к концам другой (например, B ) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В . Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B .

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов . Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Подключение по схеме «треугольник» . В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме «треугольник». При этом их мощность может достигать 70% от номинальной. Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий — через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.

Обеспечение пуска . Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.


Подключение трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».

Реверс . Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме «звезда» . Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Для соединения «треугольником»:

Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

I = P/(1.73 U n cosф)

Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70 Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: C общ = C 1 + C 1 + … + С n .

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Для включения асинхронного электродвигателя в сеть его статорная обмотка должна быть соединена звездой или треугольником.

Чтобы электродвигатель включить в сеть по схеме «звезда», нужно все концы фаз (С4, С5, С6) соединить электрически в одну точку, а все начала фаз (C1, С2, С3) присоединить к фазам сети. Правильное соединение концов фаз электродвигателя по схеме «звезда» показано на рис. 1, а.

Для включения электродвигателя по схеме «треугольник» начало первой фазы соединяют с конном второй и начало второй — с концом третьей, а начало третьей — с концом первой. Места соединений обмоток подключают к трем фазам сети. Правильное соединение концов фаз электродвигателя по схеме «треугольник» показано рис. 1, б.


Рис. 1. Схемы включения трехфазного асинхронного электродвигателя в сеть: а — фазы соединены звездой, б — фазы соединены треугольником

Соединение фаз двигателя по схеме «звезда»

Соединение фаз двигателя по схеме «треугольник»

Дли выбора схемы соединения фаз трехфазного асинхронного электродвигателя можно использовать данные таблицы 1.

Таблица 1. Выбор схемы соединения обмоток

Из таблицы видно, что при подключении асинхронного двигателя с рабочим напряжением 380/220 В к сети с линейным напряжением 380 В соединять его обмотки можно только звездой! Соединять концы фаз такого электродвигателя по схеме «треугольник» нельзя. Неправильный выбор схемы соединения обмоток электродвигателя может привести к выходу его из строя во время работы.

Вариант соединения обмоток треугольником предусмотрен для подключения двигателей 660/380 В к сети . В этом случае обмотки двигателя могут соединяться по схеме, как «звезда», так и «треугольник».

Такие двигатели могут включаться в сеть при помощи переключателя схем со звезды на треугольник (рис. 2). Это техническое решение позволяет уменьшить пусковой ток трехфазного асинхронного короткозамкнутого электродвигателя большой мощности. При этом сначала обмотки электродвигателя соединяют по схеме «звезда» (при нижнем положении ножей переключателя), потом, когда ротор двигателя наберет номинальную частоту вращения, его обмотки переключают в схему «треугольник» (верхнее положение ножей переключателя).

Рис. 2. Схема включения трехфазного электродвигателя в есть при помощи переключателя фаз со звезды на треугольник

Снижение пускового тока при переключении его обмоток со звезды на треугольник происходит потому, что вместо предназначенной для данного напряжения сети схемы «треугольник» (660В) каждая обмотка двигателя включается на напряжение в √3 раза меньше (380В). При этом потребляемый ток снижается в 3 раза. Снижается также в 3 раза и мощность, развиваемая электродвигателем при пуске.

Но, в связи со всем вышесказанным, такие схемные решения можно использовать только для двигателей с номинальным напряжением 660/380 В и включении их в сеть с таким же напряжением. При попытке включения электродвигателя с номинальным напряжением 380/220 В по такой схеме он выйдет из строя, т.к. его фазы нельзя включать в сеть «треугольником».

Номинальное напряжение электрического двигателя можно посмотреть на его корпусе, где в в виде металлической пластинки размещается его технический паспорт.

Для изменения направления вращения электродвигателя достаточно поменять местами две любые фазы сети независимо от схемы его включения. Для изменения направления вращения асинхронного электродвигателя применяют электрические аппараты ручного управления (реверсивные рубильники, пакетные переключатели) или аппараты дистанционного управления (реверсивные электромагнитные пускатели). Схема включения трехфазного асинхронного электродвигателя в сеть реверсивным рубильником показана на рис. 3.

Рис. 3. Схема включения трехфазного электродвигателя в сеть реверсивным рубильником

Неполная звезда схема подключения двигателя

В промышленности и быту широко распространены асинхронные двигатели, которые питаются напрямую от трехфазной сети с переменным напряжением. В статоре подобного мотора расположены три обмотки, смещенные друг относительно друга на 120 градусов – это сделано для того, чтобы создавать одинаковое магнитное поле в любой точке окружности вокруг статора. Для подключения таких электродвигателей применяется две основные схемы: подключение звездой и треугольником. Давайте подробнее рассмотрим каждый из этих видов подключения. Для наглядности, обозначим начало каждой из трех обмоток U1 , V1 , W1, а их концы – U2 , V2 , W2 соответственно.

Чтобы реализовать подключение мотора по схеме «звезда», необходимо соединить все концы обмоток U2 , V2 , W2 в одной точке, а на входы каждой из обмоток подавать по одной фазе из трехфазной сети.

Для того чтобы подключить двигатель по схеме «треугольник», необходимо к началу первой обмотки U1 присоединить конец второй V2, к началу второй обмотки V1 – конец третьей обмотки W2, а начало третьей обмотки W1 к концу первой U2. К местам, где соединяются обмотки, подключаются фазы питающей сети.

Посмотрите видео о способах подключения электродвигателей:

Важно правильно выбрать схему подключения для конкретного двигателя, иначе можно не получить от него необходимой мощности, а в отдельных случаях — даже вывести мотор из строя.

Каждая из этих схем подключения асинхронного электродвигателя к сети имеет как свои плюсы, так и недостатки. К примеру, мотор, подключенный звездой, запускается очень плавно, и может работать с небольшой перегрузкой без вреда для самого двигателя.

Однако максимальная паспортная мощность электропривода в таком случае недостижима – двигатель будет выдавать до 70% от своей номинальной мощности.

Подключение треугольником позволяет достигать паспортной мощности, однако при такой схеме подключения пусковые токи достигают значительных величин. К тому же замечено, что при подключении треугольником электродвигатель греется при работе, что уменьшает срок его службы.

Чтобы минимизировать минусы и полностью реализовать плюсы каждой из схем, была придумана система автоматической смены схемы подключения. То есть, асинхронный электродвигатель запускается по схеме «звезда», а при выходе на свою номинальную частоту вращения, переключается на схему «треугольник», и выходит на свою паспортную мощность. Реализуется такая смена схем подключения при помощи магнитных пускателей или пусковых реле времени. Также это можно сделать при помощи пакетного переключателя, но в этом случае нужно внимательно следить за работой мотора, чтобы переключить его в нужный момент.

Ещё одно интересное видео, о способе подключения электродвигателя:

Схема соединения трансформаторов тока и обмоток реле в неполную звезду

ТТ устанавливаются в двух фазах (обычно А и С), вторичные обмотки и обмотки реле соединяются аналогично схемы полной звезды.

Рисунок 2.9 – Схема соединения транс­форматоров тока и обмоток реле в неполную звезду.

В нормальном режиме и при трёхфазном к.з. в реле I и III проходят токи соответствующих фаз:

; ,

В нулевом проводе ток равен их геометрической сумме: Фактически ток в нулевом проводе соответствует току фазы В, отсутствующей во вторичной цепи.

В случае двухфазного к.з. токи появляются в одном или двух реле (I или III) в зависимости от того, какие фазы по­вреждены.

Ток в обратном проводе при двухфазных к.з. между фазами А и С, в которых установлены трансформаторы тока, равен нулю, т.к. IA = – IC, а при замыка­ниях между фазами AB и ВC он соответственно равен IН.П = – Iа и IН.П = – IС.

В случае однофазного к.з. фаз (А или С), в кото­рых установлены трансформаторы тока, во вторичной обмотке трансформатора тока и обратном проводе проходит ток к.з. При замыкании на землю фазы В, в которой трансформатор тока не установлен, токи в схеме защиты не появляются; следовательно, схема неполной звезды реагирует не на все случаи однофазного к.з. и поэтому применяется только для защит, действующих при между фазных повреждениях. Рассмотрев поведение защиты при различных видах замыканий, нетрудно заметить, что при трехфазном замыкании работают три реле, при двухфазном – два; при замыкании фазы В на землю защита не работает.

1. Схема неполной звезды реагирует на все виды междуфазных замыканий.

2. Схема достаточно надежна, т.к. при любом междуфазном замыкании срабатывают, по крайней мере, два реле.

3. Для ликвидации однофазных замыканий требуется дополнительная защита.

4. используется для подключения защиты от междуфазных к.з.

Коэффициент схемы КСХ = 1.

18. Анализ схемы соединения тт «треугольник». Область применения.

Схема соединения ТТ в треугольник, а обмоток реле в звезду

Вторичные обмотки трансформаторов тока, соединенные после­довательно разноименными выводами, образуют тре­угольник. Реле, соединенные в звезду, подключаются к вершинам этого треугольника. Из токораспределения на рисунке 2.10, а) видно, что в каждом реле проходит ток, равный геометрической разности токов двух фаз:

; ;.

Рисунок 2.10 – Схема соединения ТТ в треугольник, а обмоток реле в звезду – а), векторная диаграмма токов – б).

При симметричной нагрузке и трехфаз­ном к.з. в каждом реле проходит линейный ток, в раз больший фазных токов и сдвинутый относи­тельно последних по фазе на 30°

В таблице 2.2 приведены значения токов при других видах к.з. в предположении, что коэффициент трансформации трансформа­торов тока равен единице (КТ = 1).

Таблица 2.2 – Значения токов при различных видах к.з.

Если Вы нашли ошибку на нашем сайте, выделите текст и нажмите Ctrl+Enter

Запуск асинхронного электродвигателя по схеме «Звезда-треугольник» номиналом 30 кВт с использованием реле времени Finder 80.82

Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.

Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени.

Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.

Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.


Рисунок 1 — Схема подключения «звезда»

При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:


где Uл — напряжение между двумя фазами, Uф — напряжение между фазой и нейтральным проводом

Значения линейного и фазного токов совпадают, т. е. Iл = Iф.

При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.
Рисунок 2 — Схема подключения «треугольник»

Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:


где Iл — линейный ток, Iф — фазный ток

Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:


где U — фазное напряжение обмотки статора, r1 — активное сопротивление фазы обмотки статора, r2 — приведенное значение активного сопротивления фазы обмотки ротора,
x1 — индуктивное сопротивление фазы обмотки статора, x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора,
m — количество фаз, p — число пар полюсов

Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:

Фазный ток равен линейному току и равен:

После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:

Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.

С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.


Рисунок 3 — Временная диаграмма реле времени 80.82

Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.


Рисунок 4 — Силовая часть схемы «звезда-треугольник»

Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.


Рисунок 5 — Управление схемой «звезда-треугольник»

Разберем алгоритм работы данной схемы:

После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.

Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.

    Список используемой литературы:
  1. ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
  2. Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
  3. Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907

как правильно выполнить, наглядная схема • Мир электрики

Подключение электродвигателя — важная задача, с которой, к сожалению, справиться может далеко не каждый. В современном мире электродвигатели имеют поистине огромную популярность. Без их использования не обходится ни одно коммерческое предприятие, на них работают разнообразные машины, а с их остановкой может застопориться все производство.

В этой статье будет рассказано о том, как осуществить подключение двигателя быстро и просто. Кратко и по-сути разъяснены самые популярные способы подключения, а также озвучены ошибки, которые часто допускают люди по неопытности.

Как подключить электродвигатель

Некоторые модели электродвигателей можно подключить своими руками. Всего можно выделить три типа самых популярных электродвигателей, с подключением которых справятся квалифицированные люди:

  • Асинхронный трехфазный двигатель с обмоткой и треугольником
  • Коллекторный электромотор с щеткой
  • Асинхронный однофазный двигатель

Подключение остальных видов двигателей может требовать наличие специализированных инструментов и навыков у подключающего. Будьте осторожны и не пытайтесь подобные двигатели самостоятельно!

Подключение электродвигателя чаще всего осуществляется при помощи электросети мощностью 220В. Меньшую мощность тяжело, но все-таки реально найти в российских домах. В случае, если подключить двигатель к сети меньше указанной, то работа может происходить со сбоями. В таком случае рекомендуется дополнительно купить и присоединить специализированный переходник.

В случае же, если электродвигателю необходим более 220 вольт, чаще всего это трехфазные типы, то можно без проблем подключать к обычной сети без использования переходников. Аппарат будет работать стабильно и без сбоев.

Многим принцип работы электродвигательных систем знаком еще со школьного курса физики. Однако далеко не каждый знает по какому именно принципу работает этот аппарат и как его подключать. Для полноценного подключения стоит знать следующее:

  • Общая конструкция электродвигателей
  • Предназначение разнообразных обмоток
  • Общая схема подключения

Как работают и из чего состоят вспомогательные устройства

Сейчас очень тяжело определить точную модель электродвигателя, а также из чего он состоит. Очень редко на подобных устройствах можно найти какие-либо опознавательные заводские знаки, а сами устройства, по крайней мере для глаза обывателя, ничем между собой н отличаются.

Однако необходимо повторить, что крайне необходимо знать именно точную модель двигателя, а также его составляющих. Если, для одного типа модели, использовать подключения другого, то может произойти множества неприятных ситуаций — от банального короткого замыкания и ушибленных пробок до полной потери работоспособности устройства.

Чтобы избежать таких казусов необходимо использовать все доступные способы получения информации о типе электродвигателя. Для этого как нельзя лучше подойдет инструкция, которая, вполне вероятно шла в комплекте с двигателем. Если же она давно утеряна или модель поставлялась без приложенного пособия, что тоже, кстати, не редкость, необходимо воспользоваться интернетом и определить тип при помощи каких-либо отличительных особенностей.

Наглядная схема подключения электродвигателя

Принято считать, что проще всего подключить электродвигатель коллекторный со щеткой. Чаще всего этот тип устанавливается в бытовые приборы и инструменты. Например, коллекторным двигателем с роторной щеткой пользуются:

  • Стиральные машины
  • Блендеры/мясорубки/миксеры
  • Разнообразные дрели/швабры/триммеры

По сути, этот двигатель выдает максимально возможную мощность и упакован при этом относительно компактно. Из недостатков такого типа стоит отметить небольшой срок автономной работы. Необходимо либо постоянно питания от электросети, либо подзарядка раз в пару часов активной рабочей деятельности.

Подключение осуществляется очень просто. По однофазной сетке напряжение передается посредством замыкаемой кнопки с надписью «Пуск». Электродвигатель будет работать до тех пор, пока кнопка не будет нажата повторно.

Такие двигатели очень чувствительны к воздействию угольных щеток, которые передаются через ротор. Одна из ошибок — допускать воздействие этих самых щеток на двигатель.

Подключение асинхронного однофазного двигателя несколько сложнее, но с ним также может справиться простой обыватель. Внутри этот двигатель представляет собой множество скрепленных между собой обводок. Люди часто считают, что этот двигатель имеет очень сложную структуру, что, конечно же, не так.

Для подключения такого двигателя необходимо воспользоваться комбинированной схеме с одним конденсатором. Благодаря такой системе скорость запуска двигателя после нажатия замыкающей кнопки увеличивается в разы.

Подключать трехфазные двигатели уже не так просто, как прошлые два варианта, однако простой обыватель может справиться даже с этим типом. Для подключение необходимо подсоединить контакты по методу трехфазной электронной сети. Наиболее распространенным в таком случае является подключение в виду треугольника.

Контактные провода соединяются в форме треугольника. К зажимам подключают один из шести контактов доступных обмоток. Второй провод обычно подсоединяются к лампе в 220В. Затем всю аппаратуру подключают к электрической сети. Если лампа горит ровным ярким светом, значит все соединение произведено правильно. Если же нет, необходимо дополнительно перепроверить всю методику соединения и воспользоваться материалами из интернета.

Также можно использовать соединение контактных проводов в форме звезды. В таком случае первый щуп подсоединяют к одной обмотке. Второй же щуп подсоединяется к разветвителю с другими проводами. Необходимо провести маркировку всех проводов и убедиться, что они не пересекаются друг с другом. Контакты также проверяются при помощи лампы. Она должна испускать яркий ровный свет и не мигать. В противном случае необходимо повторно произвести переподключение и свериться со всеми доступными данными, пошагово рассказывают им о типах подключения электродвигателя.

Вывод

Как видите, подключить электродвигатели к сети тяжело, если н обладать специальными инструментами или навыками. Однако есть три типа, с которыми справится даже новичок. К сожалению, даже в таких простых ситуациях люди порой иногда допускают ошибки. Чаще всего они связаны с неверным определением модели типа электродвигателя.

Сами двигатели очень просты как в освоении, так и по своему составу. Многие ошибочно считают простейшие типы весьма сложными и хрупкими, а потому лишний раз боятся проводить с ними какие-либо манипуляции и сваливают всю работу на руки специалистов. Однако это не так. Можно и нужно учиться самостоятельно подключать разнообразные типы электродвигателей.

Расчет мощности двигателя при схеме соединения звезда-треугольник

В этой статье я хотел бы рассказать как изменяется мощность двигателя при схеме соединения обмоток звезда – треугольник и наоборот.

В связи со спецификой своей работы я сталкиваюсь с ремонтов различных асинхронных двигателей и в большинстве случаев выход из строя двигателя происходит при неправильном переключении обмоток двигателя, так как люди не понимают, как изменяется мощность двигателя при переключении с треугольника на звезду и обратно, и как это может отразится на работоспособности самого двигателя.

Определение мощности при схеме соединения звезда

Известно [Л1. с. 34], что при соединении в звезду линейные токи Iл и фазные токи Iф равны между собой, при этом между фазным Uф и линейным напряжением Uл существует соотношение, где Uл = √3*Uф , в результате Uф = Uл/√3.

Исходя из этого, полная мощность определяется через линейные величины:

Определение мощности при схеме соединения треугольник

При схеме соединения в треугольник, фазные и линейные напряжения равны между собой Uл = Uф, при этом между токами существует соотношение: Iл = √3*Iф, в результате Iф = Iл/√3.

Исходя из этого, полная мощность определяется, как:

Для определения активной и реактивной мощности используются формулы:

Из-за того что формулы для схемы соединения звезды и треугольника имеют одинаковый вид, у мало опытных инженеров происходят недоразумения, будто вид соединения безразличен и ни на что не влияет.

Рассмотрим на примере, на сколько ошибочные данные утверждения. В данном примере будем рассматривать электродвигатель типа АИР90L2, который имеет две схемы подключения ∆/Y, технические характеристики двигателя:

  • коэффициент мощности cosφ = 0,84;
  • коэффициент полезного действия, η = 78,5%;

Определяем ток двигателя при напряжении 380 В и схеме соединения треугольник, мощность при таком соединении составляет 3 кВт:

Теперь соединим обмотки двигателя в звезду. В результате на фазную обмотку пришлось на 1,73 раза более низкое напряжение Uф = Uл/√3, соответственно и ток уменьшился в 1,73 раза, но так как при соединении в треугольник Uл = Uф, а линейный ток был в 1,73 раза больше фазного Iл = √3*Iф, то получается, что при соединении в звезду, мощность уменьшится в √3*√3 = 3 раза, соответственно и ток уменьшиться в 3 раза.

Из всего выше изложенного можно сделать, следующие выводы:

1. При переключении двигателя со звезды на треугольник, мощность двигателя увеличивается в 3 раза и наоборот. Использовать данные переключения, можно если схемы подключения двигателя позволяет выполнять переключения ∆/Y, в противном случае, двигатель может сгореть, когда Вы будете выполнять переключение со звезды на треугольник.

2. Как Вы уже поняли, используя схему переключения обмоток двигателя со звезды на треугольник, мы уменьшаем пусковые токи при пуске двигателя на пониженном напряжении, а затем его повышаем до номинального. Когда обмотки двигателя соединены в звезду, к каждой из них подводиться напряжение меньше номинального в 1,73 раза. В процессе пуска, двигатель увеличивает скорость вращения и ток снижается. В это время происходит переключение на треугольник.

Обращаю Ваше внимание, что двигатели, которые недогружены, работают с очень низким cosφ. Поэтому рекомендуется заменить недогруженный двигатель, на двигатель меньшей мощности. Если же у недогруженного двигателя, запас мощности велик, то cosφ можно поднять путем переключения обмоток с треугольника на звезду без риска перегреть двигатель.

Как мы видим ничего сложного нету в определении мощности при схеме звезда и треугольник.

Литература:

1. Звезда и треугольник. Е.А. Каминский, 1961 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Все о подключении электродвигателей

Схемы электрических цепей двигателей

Схемы указывают на обесточенное или обесточенное состояние электроустановки. Различают:

Все о подключении электродвигателей (фото предоставлено: electronics.stackexchange.com)

Блок-схема — Упрощенное представление схемы с ее основными частями. Он показывает, как работает электроустановка и как она подразделяется.

Принципиальная схема – Подробное изображение электрической цепи с ее отдельными компонентами, показывающее, как работает электрическая установка.

Схема эквивалентная – Специальная версия пояснительной схемы для анализа и расчета характеристик цепи.

Рисунок 1. Принципиальная схема двигателя: 1-полюсное и 3-полюсное представление

Схемы подключения двигателя

На схемах подключения показаны токопроводящие соединения между электрическими устройствами. Они показывают внутренние и/или внешние соединения, но в целом не дают никакой информации о режиме работы. Вместо схем подключения также можно использовать таблицы подключения.

Схема подключения устройства — Представление всех соединений внутри устройства или комбинации устройств.

Схема соединений — Представление соединений между устройством или комбинацией устройств внутри установки.

Схема клемм – Представление точек подключения электроустановки и подключенных к ним внутренних и внешних токопроводящих соединений.

Схема расположения (схема расположения) — Представление физического положения электрического аппарата, которое не обязательно должно быть в масштабе.Вы найдете примечания по маркировке электрических устройств на схеме, а также дополнительные сведения о схеме в главе «Технические характеристики, формулы, таблицы».

Все о проводке электродвигателей – EATON

Связанные материалы EEP со спонсорскими ссылками

%PDF-1.6 % 7957 0 объект > эндообъект внешняя ссылка 7957 76 0000000016 00000 н 0000002506 00000 н 0000002643 00000 н 0000002808 00000 н 0000002931 00000 н 0000003874 00000 н 0000004595 00000 н 0000005040 00000 н 0000005120 00000 н 0000010379 00000 н 0000010512 00000 н 0000011154 00000 н 0000014714 00000 н 0000018238 00000 н 0000021512 00000 н 0000025141 00000 н 0000028795 00000 н 0000029065 00000 н 0000032152 00000 н 0000035855 00000 н 0000039623 00000 н 0000043690 00000 н 0000046689 00000 н 0000049701 00000 н 0000050690 00000 н 0000054139 00000 н 0000055128 00000 н 0000061983 00000 н 0000062972 00000 н 0000069747 00000 н 0000071113 00000 н 0000074788 00000 н 0000075043 00000 н 0000075126 00000 н 0000075182 00000 н 0000075278 00000 н 0000075373 00000 н 0000075492 00000 н 0000075640 00000 н 0000075735 00000 н 0000075831 00000 н 0000075950 00000 н 0000076098 00000 н 0000076620 00000 н 0000076869 00000 н 0000076939 00000 н 0000077081 00000 н 0000077109 00000 н 0000077410 00000 н 0000083119 00000 н 0000083392 00000 н 0000084069 00000 н 0000084163 00000 н 0000087019 00000 н 0000087292 00000 н 0000087775 00000 н 0000092776 00000 н 0000093052 00000 н 0000093708 00000 н 0000093795 00000 н 0000094769 00000 н 0000095044 00000 н 0000095375 00000 н 0000105175 00000 н 0000114975 00000 н 0000128536 00000 н 0000139331 00000 н 0000152892 00000 н 0000163687 00000 н 0000165427 00000 н 0000167167 00000 н 0000168907 00000 н 0000171333 00000 н 0000171447 00000 н 0000002209 00000 н 0000001872 00000 н трейлер ]>> startxref 0 %%EOF 8032 0 объект > поток Ĭ24i]Rn{4iU7Ͱqۚ видим 0 B 8T ur(>[email protected]^}r GRA5ؗP)^~E%|Zj6O~ VB~$5l%]̬PAp(,f’)΀&jm2UfSw кожиO-O[]7sj5q%qiX* конечный поток эндообъект 8031 0 obj>/Размер 7957/Тип/XRef>>поток x1

Схема подключения электродвигателя AEI

зеленые пески
Часть электронной мебели

Сборка Don Young 5″ Black Five

Сообщений: 408


Сообщение greensands на

14 декабря 2013 г. 14:18:54 GMT Привет. Может ли кто-нибудь помочь мне с пусковыми устройствами для однофазного электродвигателя переменного тока AEI, показанного на фотографии.Подробности на заводской табличке: Тип BS1507-B; Один этап; Диапазон скоростей: 1425/1725:BS170.
Электропроводка двигателя нуждается в переподключении, так как существующая проводка оголена, но об этом можно позаботиться. Двигатель был снабжен небольшим реле, показанным на фотографии, сделанной Magnetic Devices, но на нем не было никаких признаков пускового конденсатора.
Будем рады любым полезным предложениям. С уважением Рег
нонорт
Часть электронной мебели

Если все миры Сцена кто-то украл Лошадей
Сообщений: 264

Сообщение от nonort на

14 декабря 2013 г. 18:09:20 GMT

Я только что погуглил первую часть описания BS1507-B.Это выдало ссылку, которая потеряла меня в считанные секунды, говоря о сопротивлениях обмотки, но вы можете понять электрическую струну из этого.

Сообщение Роджера на

14 декабря 2013 г. 19:33:38 GMT

У вас четыре провода, значит у вас там оба конца обеих обмоток. Они должны быть изолированы друг от друга, и пусковая обмотка будет иметь большее сопротивление, чем основная рабочая.
Рабочая обмотка будет под напряжением и нейтралью все время, пока она работает. Это дает основной драйв. Как одноцилиндровый паровой двигатель может застрять в мертвой точке, так и с однофазным двигателем. Если вы приложите мощность, как я указал, к вашему двигателю после того, как вы дали ему вращение, он продолжит работать в этом направлении. Он так же счастливо побежал бы в другом направлении, если бы вы вращали его в другую сторону.
Пусковая обмотка обеспечивает запуск в правильном направлении и механически расположена под углом 90 градусов к другой обмотке.Это позволяет двигателю вести себя подобно паровому двигателю с двумя цилиндрами, расположенными под углом 90 градусов друг к другу. Проблема в том, что у вас есть только однофазное питание, которое находится в правильной фазе для рабочей обмотки. Чтобы решить эту проблему, последовательно с пусковой обмоткой добавляется конденсатор. Емкость конденсатора выбирается таким образом, чтобы напряжение на пусковой катушке было примерно под углом 90 градусов к рабочей обмотке при частоте 50 Гц, т. е. при рабочей скорости. Обычно внутри двигателя есть центробежный переключатель, который отключает пусковую обмотку, когда он набирает скорость.Пока вы не попробуете это, вы можете не знать. Вы услышите щелчок, когда двигатель запустится и остановится.
Я не могу найти спецификацию, в которой указано, какое значение должен иметь конденсатор, но вряд ли у вас возникнут проблемы, если вы попробуете один двигатель с другим. Это не должно быть точным. Используйте только конденсаторы, предназначенные для этой цели!!!
Некоторые двигатели работают с постоянно включенным конденсатором, но я сомневаюсь, что у вас так.
Можно установить реверсивный переключатель для изменения полярности пусковой обмотки.Это нормально, если двигатель имеет центробежный переключатель, но не подходит для другого типа.
Надеюсь, это поможет.
Роджер

зеленые пески
Часть электронной мебели

Сборка Don Young 5″ Black Five

Сообщений: 408


Сообщение greensands на

14 декабря 2013 г. 21:16:33 GMT

Привет, Роджер. Большое спасибо за очень полезный и информативный отчет, который вы предоставили.Я разобрал двигатель как часть упражнения по повторной проводке, и нет никаких признаков центробежного переключателя, который я видел на более крупных электродвигателях AEI, скажем, мощностью 1/2 л.с. или выше, которые можно было бы использовать для вождения. токарный станок Майфорд. Рассматриваемый двигатель AEI имеет меньшую конструкцию с упругими опорами, что предполагает применение с ременным приводом, что я и имел в виду для своего сверла с верхним суппортом токарного станка. Предположительно, без какой-либо формы переключения мы говорим о схеме запуска и работы конденсатора, и в этом случае конденсатор какого типа и размера мне следует искать?
С уважением Рег

Сообщение Роджера на

15 декабря 2013 г. 9:36:08 GMT Привет, Рег,
Это немного загадка, потому что похоже, что вам нужна довольно большая емкость в пусковой обмотке, чтобы получить хороший пусковой крутящий момент.Если это не важно, то вам нужно использовать рабочий конденсатор двигателя, а НЕ пусковой конденсатор. Посмотрите эту страницу и видео, и вы поймете, почему.
www.temcocontent.com/capacitorfaq.html#start_vs_run
Для безопасности вам понадобится конденсатор на 400 В или выше, не используйте ничего около 240 В, оно недостаточно высокое, чтобы выдержать пиковое напряжение.
Я пытаюсь найти рекомендуемое значение емкости, но безуспешно. Возможно, вам придется сделать шаг в темноте и просто попробовать что-то вроде этого…
www.ebay.co.uk/itm/30-UF-450V-ELECTRIC-MOTOR-RUN-CAPACITOR-WITH-LEAD-BOLT-/200623242640?pt=UK_BOI_Electrical_Components_Supplies_ET&hash=item2eb613bd90
Если двигатель работает неровно или нагревается то значение не близко к требуемому значению. Извините, я не могу быть более уверенным, нет никакой формулы, которую вы можете применить к этим вещам, значения выбираются производителем.
Роджер
Удалено

Сообщений: 0


Сообщение удалено

15 декабря 2013 г. 16:37:13 GMT Посмотрите это на форуме ME}——— www.model-engineer.co.uk/forums/postings.asp?th=83783 ———- Кроме того, вы пытались связаться с нынешними наследниками имени AEI за помощью??—— ——- Я подозреваю, что упругое крепление больше связано с возможностью отсутствия запуска конденсатора и, следовательно, с большим физическим «толчком», который нужно поглотить при запуске ??

Сообщение Ferstergp6nhp на

15 декабря 2013 г. 20:24:40 GMT

Нынешним владельцем AEI является компания Alstom, и этот двигатель имеет экранированные полюса.Упругое крепление как раз такое и к пусковым толчкам отношения не имеет. Человек, которого я знал, который мог бы ответить на все вопросы, связанные с соединениями и емкостью, давно умер, так как именно мой дед разработал этот тип двигателя в BTH Rugby, который стал предшественником AEI.

Джекрей
Старейшина Государственный деятель

Сообщений: 1 293


Сообщение jackrae на

15 декабря 2013 г. 20:32:01 GMT Я не могу прочитать рейтинг HP, но он выглядит примерно как 1/x0, где чем больше значение x, тем меньше номинальная мощность.Если он меньше 1/10 HP, его диапазон использования будет крайне ограничен. Даже на 1/10 не будет много приложений, если вы планируете использовать его для управления какой-либо машиной с инструментами.

Из-за его открытой конструкции я подозреваю, что изначально это был двигатель вентилятора вентиляции, который полагался на внешний вентилятор для обеспечения охлаждения. Если это так, я бы посоветовал вам разделить корпус, чтобы убедиться, что внутренняя проводка в порядке.

стим4иан
Elder Statesman

Один хороший ход заслуживает другого

Сообщений: 2 069


Сообщение от steam4ian на

15 декабря 2013 г. 22:15:57 GMT Зеленые пески.
Двигатель может запускаться не от конденсатора, а просто от двух обмоток. При организации одной обмотки с высоким отношением сопротивления к индуктивности по сравнению с другой обмоткой будет происходить фазовый сдвиг тока, описанный Роджером, что создает псевдовращающееся магнитное поле в воздушном зазоре.Реле представляет собой некоторое тепловое или другое устройство задержки времени для отключения пусковой обмотки.

Продолжайте играть с ним, если хотите, но я бы посоветовал другой способ действий.

Если вам нужна дрель для крепления инструмента, возьмите вышедшую из употребления аккумуляторную дрель, идеально подходят старые 12-вольтовые устройства, и предусмотрите для нее крепление. В большинстве случаев они становятся доступными в автомобильных багажниках или гаражах, потому что батареи вышли из строя. Аккумулятор можно заменить на блок питания постоянного тока от сети, если дрель на 12/14В, то подойдет дешевое зарядное устройство.Работал на меня.

зеленые пески
Часть электронной мебели

Сборка Don Young 5″ Black Five

Сообщений: 408


Сообщение greensands от

16 декабря 2013 г. 18:14:22 GMT

Привет, Ян. Если этот двигатель имеет двухобмоточный пуск, это означает, что две обмотки должны быть подключены параллельно к сети или последовательно?

зеленые пески
Часть электронной мебели

Сборка Don Young 5″ Black Five

Сообщений: 408


Сообщение greensands от

17 декабря 2013 г. 10:05:34 GMT

Привет. Хотя я не эксперт, я не думаю, что мой двигатель может быть с заштрихованными полюсами, поскольку он не похож ни на одну из фотографий, которые я видел, но имеет все признаки стандартной конструкции с короткозамкнутым ротором.Сказав это, и в отсутствие каких-либо конденсаторов, которые поставлялись с двигателем, я считаю, что это может быть конструкция с расщепленной фазой. Он поставляется с тем, что я принял за стандартное реле, но при ближайшем рассмотрении это может быть тепловое реле со встроенным резистором и биметаллическим переключающим контактом. Предположительно, он должен был быть соединен последовательно с пусковой обмоткой и предназначен для отключения, когда ток через обмотку вызывает размыкание контактов биметалла.
Возможно ли это?

стим4иан
Elder Statesman

Один хороший ход заслуживает другого

Сообщений: 2 069


Сообщение от steam4ian на

17 декабря 2013 12:09:15 GMT Greensands, я был бы совершенно уверен, что двигатель такого расположения не имеет заштрихованного полюса.Роджер, кажется, зациклился на включении конденсатора в цепь, но не посоветовал, какого номинала конденсатор должен быть. При дробном размере л.с. это скорее двигатель с расщепленной обмоткой.

Реле также может быть перегружено. чтобы разомкнуть цепь питания. Реле теплового типа может обеспечить временную задержку запуска; этот тип реле используется в однофазных скважинных насосах

Вам действительно нужно разобрать двигатель и предоставить больше фотографий его и реле, прежде чем кто-либо здесь сможет дать совет, на который вы можете поставить свою жизнь или свой дом, вот что вы рискуете.

Ян

Сообщение houstonceng на

17 декабря 2013 г. 15:39:35 GMT Схемы подключения и запуска однофазных двигателей многочисленны и разнообразны. При отсутствии реальной информации было бы неразумно без надлежащих экспериментов предполагать, что двигатель запускает конденсатор или нет. Например, во многих бытовых холодильниках, осушителях и подобных устройствах используются однофазные двигатели малой мощности (SPFHpM), а их компрессоры с расщепленной фазой запускаются с помощью небольшого электромагнитного реле.

Катушка реле — несколько витков толстого провода — соединена последовательно с рабочей обмоткой. Контакты соединены последовательно с пусковой обмоткой. При первоначальной подаче питания большой пусковой ток в рабочей обмотке приводит в действие реле и замыкает пусковую обмотку на достаточное время, чтобы установить вращение. После запуска двигателя ток в рабочей обмотке снижается до уровня, который не может удерживать реле, и пусковая обмотка отключается. Реле НЕ является устройством с тепловой задержкой.

Реле, которое у вас есть, может быть предназначено для вышеуказанного использования, или это может быть просто самодельный беспотенциальный расцепитель (NVR).

Попросите компетентного эксперта по двигателям взглянуть на него или купите что-нибудь с дополнительной информацией.

Сообщение houstonceng на

17 декабря 2013 г. 15:46:31 GMT

Глядя на изображение вашего реле, оно имеет три клеммы, как и те «компрессоры холодильника», поэтому может использоваться для той же цели.

зеленые пески
Часть электронной мебели

Сборка Don Young 5″ Black Five

Сообщений: 408


Сообщение greensands от

17 декабря 2013 г. 16:01:32 GMT Я принимаю к сведению предостережения, высказанные в этой ветке, и я, скорее всего, воспользуюсь общим советом и поищу альтернативные средства управления моей буровой насадкой с верхним суппортом.Тем не менее, это стало чем-то вроде академического упражнения, чтобы установить, как этот двигатель был разработан для использования, и для всех тех, кто может быть просто заинтересован, я приложил несколько дополнительных фотографий, показывающих демонтированный двигатель и реле. Как видно, исходная проводка была заменена, сохранив ту же цветовую схему, за исключением использования оранжевого вместо желтого.
Значения сопротивления следующие: 12,8 Ом Красный/Черный и 23 Ом Оранжевый/Синий Реле изготовлено компанией Magnetic Devices Ltd., Ньюмаркет.На задней панели есть три клеммы, пронумерованные от 2 до 4 (№ 1 оставлена ​​пустой). Клемма 2 обозначена буквой «P», клемма 3 «M» и клемма 4 «L».

Схемы электродвигателя вентилятора — бесплатные советы Ricks по ремонту автомобилей Бесплатные советы Ricks по ремонту автомобилей

Схемы электродвигателя вентилятора — две наиболее распространенные схемы

Неполадку двигателя вентилятора легко решить, если вы понимаете, как подключена ваша конкретная система. Вот шаги по ремонту двигателя вентилятора:

Чтобы определить схему подключения двигателя вентилятора, сначала определите, есть ли у вас ручная или автоматическая система обогрева в вашем автомобиле

Вы устанавливаете температуру, и система поддерживает эту температуру, или вам нужно регулировать температуру вручную, а потом уменьшать, как только салон прогреется? Если вы устанавливаете температуру, а система позаботится обо всем остальном, у вас есть автоматический климат-контроль.В этом случае у вас обычно есть вентилятор с переменной скоростью.

Если у вас ручная система, в которой вы меняете температуру, вероятно, у вас есть 3-х или 4-х скоростной вентилятор. Зачем тебе это знать? Поскольку в большинстве автоматических систем используется электронный контроллер двигателя, в то время как в ручных системах обычно используются резисторы двигателя вентилятора для получения 3 или 4 различных скоростей.

Что такое резистор двигателя вентилятора?

Системы отопления только с 3 или 4 скоростями используют резистор двигателя вентилятора вместе с переключателем скорости для регулирования скорости двигателя.Резисторы расположены последовательно для ступенчатого снижения напряжения в зависимости от того, в какой части цепи вы подаете питание.

Резисторы вентилятора могут перегореть. Когда это происходит, вы теряете эту скорость. Таким образом, у вас может быть высокая скорость, но не более низкие скорости.

Что такое контроллер двигателя вентилятора?

Двигатель с регулируемой скоростью управляется цифровым регулятором скорости. В большинстве случаев контроллер получает цифровой вход от переключателя скорости или блока управления HVAC. Затем управляющая головка отправляет команду контроллеру двигателя на изменение скорости в соответствии с предпочтениями водителя.Чтобы получить требуемую скорость, контроллер двигателя быстро включает и выключает цепь заземления. Таким образом, запрос драйвера половинной скорости приведет к тому, что контроллер двигателя вентилятора отключит заземление в два раза чаще, чем когда вентилятор работает на полной скорости.

Схемы подключения двигателя вентилятора для трех- или четырехскоростных систем

Автопроизводители используют эти три распространенных метода подключения для подачи питания и заземления на двигатель вентилятора в ручной системе с использованием резистора двигателя вентилятора. В одной конструкции производитель автомобилей подает питание от батареи на переключатель скорости, который переключает питание на соответствующее соединение на резисторе двигателя вентилятора.В этих приложениях резистор двигателя снижает мощность для более низких скоростей, а двигатель вентилятора имеет постоянное заземление для замыкания цепи. См. схему подключения для этой установки ниже.

Кроме того, автопроизводители могут подавать питание на двигатель и регулировать скорость вентилятора на наземной стороне цепи. См. схему подключения для этой установки ниже.

 

 

Кроме того, автопроизводители могут выбрать моторный резистор И быстродействующее реле.См. схему подключения ниже для этой установки.

Схема подключения двигателя вентилятора для систем с регулируемой скоростью

В двигателях вентилятора с регулируемой скоростью не используется резистор двигателя вентилятора. Вместо этого они используют регулятор скорости вращения вентилятора или силовой транзистор. Двигатели с регулируемой скоростью чаще всего используются в автомобилях с автоматическим климат-контролем. В этих приложениях головка управления HVAC представляет собой блок с цифровым управлением и использует различные входные данные датчиков, чтобы определить, когда подавать тепло. Основываясь на входе водителя в переключатель скорости вентилятора, панель управления HVAC отправляет цифровой сигнал на модуль управления скоростью двигателя вентилятора.Модуль использует эту информацию для подачи импульса питания или заземления на двигатель. См. схему подключения ниже для типичной установки двигателя с регулируемой скоростью.

Если двигатель не работает ни на какой скорости

В ситуации, когда двигатель не работает ни на какой скорости, наиболее вероятными причинами являются: перегоревший предохранитель источника питания, плохое заземление двигателя, неисправность двигателя. модуль управления скоростью или неисправный двигатель. Во всех системах отказ двигателя вентилятора наименее вероятен. Вентиляторы обычно не выходят из строя на ровном месте.В большинстве случаев они начинают выходить из строя, издавая пронзительный визг или визг, который указывает на то, что подшипник выходит из строя. Свистящий шум чаще всего возникает зимой при холодном пуске и может исчезнуть по мере прогрева двигателя. Если вы проигнорируете шум, подшипник будет продолжать изнашиваться до такой степени, что двигатель вообще не запустится.

Причина, по которой я не рассматриваю резистор двигателя в качестве подозреваемого, заключается в том, что он обычно управляет только более низкими скоростями. Самая высокая скорость вентилятора обычно полностью обходит сопротивление двигателя, поэтому не стоит подозревать, что двигатель не работает на любой скорости.

Начните с проверки предохранителя вентилятора и предохранителя контроллера HVAC. Если все в порядке, обратитесь к электрической схеме вашего автомобиля и проведите следующие проверки:

Если у вас есть система двигателя вентилятора с регулируемой скоростью:

Отсоедините электрический разъем на двигателе вентилятора и подключите питание и массу к двигателю, минуя все регуляторы скорости. Установите перемычку с предохранителем от аккумулятора на сторону питания двигателя и подключите перемычку временного заземления к другой клемме двигателя.Если двигатель работает на полной скорости, вы подтверждаете, что проблема не в двигателе. В этот момент подозреваемыми являются модуль управления скоростью двигателя вентилятора (скорее всего) или головка управления HVAC (менее вероятно, но не исключено). К сожалению, вам понадобится цифровой осциллограф или сканер для проверки этих компонентов, поэтому единственным вариантом может быть замена деталей по одной.

Если питание на двигатель вентилятора подается через переключатель скорости и резистор двигателя вентилятора:

Отсоедините электрический разъем на двигателе вентилятора.С помощью мультиметра проверьте наличие напряжения в разъеме, когда ключ находится в положении RUN, а скорость вентилятора установлена ​​на HIGH. Вы должны увидеть напряжение батареи (12+). Если вы видите напряжение батареи в разъеме, подключите 1-метровый провод к клемме питания в разъеме, а другой провод к разъему заземления. Если вы получаете хорошие показания заземления, проблема, скорее всего, в плохом двигателе. Если вы не видите хорошего заземления, найдите заземление и очистите его. Подключите разъем обратно к двигателю и проверьте работу.Если он работает, вы решили проблему. Если по-прежнему не работает, замените двигатель.

Если питание подается непосредственно на двигатель вентилятора и заземлено через переключатель скорости

Отсоедините электрический разъем на двигателе вентилятора. С помощью мультиметра проверьте наличие напряжения аккумулятора в разъеме, когда ключ находится в положении RUN, а скорость вентилятора установлена ​​на HIGH. Если вы не видите напряжение батареи, у вас проблема с проводкой или реле на стороне источника питания цепи.

Если вы видите напряжение батареи, проблема либо в неисправном двигателе, либо в цепи заземления. Установите перемычку с предохранителем от аккумулятора на сторону питания двигателя и подключите перемычку временного заземления к другой клемме двигателя. Двигатель должен работать на высокой скорости. Если нет, то мотор плохой. Если двигатель работает, найдите заземление и очистите его. Если он по-прежнему не работает, проверьте резистор и переключатель скорости на наличие проблем с непрерывностью.

Вентилятор работает только на высокой скорости

Это явный признак неисправного резистора двигателя вентилятора, а не неисправного переключателя скорости.Замените резистор.

Вентилятор работает на малых скоростях, но не на высоких.

Проверьте, не перегорел ли предохранитель или реле высокой скорости. Замените высокоскоростное реле другим реле с таким же номером детали. Также проверьте предохранитель на стороне управления высокоскоростного реле. Убедитесь, что заземление высокоскоростного реле работает.

Вентилятор работает на некоторых скоростях, но не работает на других

Это может быть связано с неисправным резистором двигателя вентилятора или неисправным переключателем скорости. Обратитесь к электрической схеме вашего автомобиля и проверьте целостность всех трех резисторов и настройки переключателя скорости.

Резистор электровентилятора имеет повторяющиеся отказы

Проверьте полный поток воздуха через вентиляционные отверстия. Если поток воздуха кажется ограниченным или ниже нормы, проверьте воздушный фильтр салона. Если все в порядке, проверьте наличие мусора на испарителе или нагревателе. Уменьшение потока воздуха приводит к перегреву и выходу из строя резистора электродвигателя вентилятора. Уменьшенный поток воздуха также заставляет двигатель вентилятора работать с большей нагрузкой, потребляя больше тока, что может привести к повторным отказам резистора двигателя вентилятора.

Многократно перегорает предохранитель двигателя вентилятора

Двигатель вентилятора потребляет слишком много энергии.Проверьте воздушный фильтр салона на предмет засорения. Проверьте, нет ли препятствий для воздушного потока в воздуховоде, обращая внимание на мусор на испарителе или сердцевине нагревателя.

Расплавленный разъем на двигателе вентилятора

См. Многократное перегорание предохранителя двигателя вентилятора.

Визг или визг двигателя вентилятора при запуске

Это признак отказа подшипника двигателя вентилятора. Подшипник не подлежит замене. Замените двигатель вентилятора.

Двигатель вентилятора не работает в холодную погоду

Неисправен подшипник двигателя вентилятора.Замените двигатель вентилятора.

Двигатель вентилятора не отключается

Если у вас двигатель вентилятора с регулируемой скоростью, замените модуль управления скоростью двигателя вентилятора. Если у вас трех- или четырехскоростной двигатель вентилятора, снимите реле двигателя вентилятора. Если двигатель останавливается, замените реле.

©, 2017 Rick Muscoplat

Опубликовано Автор Rick Muscoplat

Стартер DOL (Direct Online Starter): схема подключения и принцип работы

Что такое DOL Starter?

Пускатель DOL DOL (также известный как пускатель прямого пуска или пускатель от сети ) представляет собой метод запуска трехфазного асинхронного двигателя.В пускателе DOL асинхронный двигатель подключается непосредственно к 3-фазному источнику питания, а пускатель DOL подает полное линейное напряжение на клеммы двигателя.

Несмотря на это прямое соединение, двигатель не повреждается. Пускатель двигателя DOL содержит защитные устройства и, в некоторых случаях, контроль состояния. Схема подключения пускателя DOL показана ниже:

Поскольку пускатель DOL подключает двигатель непосредственно к главной линии питания, двигатель потребляет очень большой пусковой ток по сравнению с током полной нагрузки двигателя (до 5 -8 раз выше).Значение этого большого тока уменьшается по мере того, как двигатель достигает своей номинальной скорости.

Пускатель прямого пуска можно использовать только в тех случаях, когда высокий пусковой ток двигателя не вызывает чрезмерного падения напряжения в цепи питания. Если необходимо избежать высокого падения напряжения, вместо этого следует использовать пускатель звезда-треугольник. Пускатели прямого пуска обычно используются для запуска небольших двигателей, особенно трехфазных асинхронных двигателей с короткозамкнутым ротором.

Как известно, уравнение для тока якоря в двигателе.Значение противо-ЭДС (E) зависит от скорости (N), т.е. E прямо пропорционально N.

При пуске значение E равно нулю. Поэтому пусковой ток очень большой. В двигателе малого номинала ротор имеет более значительную осевую длину и малый диаметр. Поэтому быстро разгоняется.

Следовательно, скорость увеличивается, и поэтому значение тока якоря быстро уменьшается. Поэтому двигатели с малым номиналом плавно работают при прямом подключении к 3-фазной сети.

Если мы подключим большой двигатель напрямую к трехфазной линии, он не будет работать плавно и будет поврежден, потому что он не разгоняется так быстро, как меньший двигатель, поскольку у него короткая осевая длина и больший диаметр, более массивный ротор.Однако для двигателей с большим номиналом мы можем использовать стартер прямого пуска в масляной ванне.

Схема подключения стартера DOL

Схема подключения статера DOL показана ниже. Прямой онлайн-пускатель состоит из двух кнопок: ЗЕЛЕНОЙ кнопки для запуска и КРАСНОЙ кнопки для остановки двигателя. Пускатель DOL DOL включает в себя автоматический выключатель или автоматический выключатель, контактор и реле перегрузки для защиты. Эти две кнопки, то есть зеленая и красная, или кнопки запуска и остановки управляют контактами.

Для запуска двигателя замыкаем контакт нажатием Зеленой кнопки, и на двигатель подается полное линейное напряжение. Контактор может быть 3-полюсным или 4-полюсным. Ниже приведен контактор 4-х полюсного типа.

Он содержит три НО (нормально разомкнутых) контакта, которые подключают двигатель к линиям питания, а четвертый контакт — «удерживающий контакт» (вспомогательный контакт), который включает катушку контактора после отпускания кнопки пуска.

При возникновении какой-либо неисправности вспомогательная катушка обесточивается, и, следовательно, пускатель отключает двигатель от сети питания.

3-фазный пускатель двигателя с защитой от перегрузки

Когда двигатель потребляет слишком большой ток для удовлетворения требований нагрузки, так что это требование нагрузки превышает номинальный предел, это называется перегрузкой.

Защита от тепловой перегрузки — это тип защиты, когда двигатель потребляет слишком большой или слишком большой ток и вызывает перегрев оборудования. Перегрузка также является типом перегрузки по току. Поэтому реле перегрузки используются для ограничения величины потребляемого тока.

Но это не значит, что защищает от короткого замыкания.Предохранитель или MCB, используемый в системе, защищает от перегрузки по току. Защита от перегрузки размыкает цепь при относительно малых токах, немного превышающих номинал двигателя.

Токи перегрузки могут привести к повреждению, если они сохраняются в течение длительного времени, т. е. устройство не сработает, если в течение короткого периода времени, например, при запуске двигателя, протекает высокое значение тока.

Мы часто обеспечиваем защиту от перегрузки с помощью реле перегрузки. Реле перегрузки могут быть полупроводниковыми устройствами с регулируемой настройкой срабатывания, также называемыми электронными реле, или взаимодействующими с соответствующими датчиками температуры, называемыми тепловыми реле, или, если они работают только при избыточном токе, называемыми магнитными реле.

Для большинства двигателей максимальный номинал устройства защиты от перегрузки составляет 125 % от номинального тока при полной нагрузке.

Принцип работы пускателя DOL

Принцип работы пускателя DOL начинается с подключения двигателя к трехфазной сети. Цепь управления подключается к любым двум фазам и питается только от них.

Когда мы нажимаем кнопку пуска, ток протекает через катушку контактора (катушку намагничивания) и цепь управления.

Ток возбуждает катушку контактора и приводит к замыканию контактов, и, следовательно, для двигателя становится доступным трехфазное питание. Схема управления для DOL Starter показана ниже.

Если мы нажмем кнопку стоп, ток через контакт прекратится, следовательно, питание двигателя будет недоступно, и то же самое произойдет при срабатывании реле перегрузки. Так как подача мотора прерывается, машина остановится.

Катушка контактора (намагничивающая катушка) получает питание, даже если мы отпускаем кнопку пуска, потому что, когда мы отпускаем кнопку пуска, на нее подается питание от первичных контактов, как показано на схеме устройства Direct Online Starter .

Преимущества пускателя DOL

К преимуществам пускателя DOL относятся:

  1. Простой и экономичный пускатель.
  2. Более удобный дизайн, эксплуатация и управление.
  3. Обеспечивает почти полный пусковой момент при пуске.
  4. Легко понять и устранить неполадки.
  5. Пускатель DOL подключает питание к обмотке двигателя, соединенной треугольником.

Недостатки пускателя DOL

К недостаткам пускателя DOL относятся:

  1. Высокий пусковой ток (в 5-8 раз больше тока полной нагрузки).
  2. Пускатель DOL вызывает значительное падение напряжения, поэтому подходит только для небольших двигателей.
  3. DOL Starter сокращает срок службы машины.
  4. Механически прочный.
  5. Ненужный высокий пусковой момент

Применение пускателей прямого пуска

Пускатели прямого пуска применяются главным образом для двигателей, в которых высокий пусковой ток не вызывает чрезмерного падения напряжения в цепи питания (или где такое высокое падение напряжения допустимо).

Добавить комментарий

Ваш адрес email не будет опубликован.