Схема зарядного на тиристоре: Как сделать зарядное устройство на тиристоре своими руками?

Содержание

ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АВТОМОБИЛЬНОГО АККУМУЛЯТОРА

ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АВТОМОБИЛЬНОГО АККУМУЛЯТОРА

В интернете можно встретить много всяких схем зарядных устройств (по ссылке смотрите полный сборник). Какие-то лучше, какие-то хуже по своим параметрам. Спорить же о недостатках и достоинствах этих схем мы будем только после того, как лично соберём и испытаем. Ещё раз повторимся: голое теоретизирование не приветствуется! Только собрав и проверив в работе какое — либо устройство, мы имеем право осуждать и обсуждать его. Итак, на ваш суд уважаемый посетитель сайта «ТЕХНИК», предъявляем описание и схему очередного, но проверенного и достаточно эффективного, зарядно — восстановительного устройства для автомобильных аккумуляторов.

Схема его заимствована в гораздо упрощённом варианте от промышленного зарядного устройства для автомобильных аккумуляторов на основе тиристора. Принцип действия его похож на зарядно — восстановительное устройство из этой статьи.

Как видите всё довольно стандартно: трансформатор, выпрямитель, генератор импульсов с регулируемой скважностью и ключ на мощном тиристоре. Несколько упростив эту конструкцию, получаем более простую схему зарядного устройства для автомобильных аккумуляторов.

 

 

Здесь мы видим то-же самое: трансформатор, выпрямитель, генератор импульсов и ключ на тиристоре. Отличие лишь в том, что отсутствует узел контроля заряда. Да это и не обязательно. Опыт показывает, что для заряда автомобильных аккумуляторов достаточно выдержать определённое время заряда и прикинуть в конце напряжение на аккумуляторе вольтметром. Всё, и не надо ничего усложнять. Тиристор КУ202, установленный в схему, несколько слабоват, и есть вероятность его выхода из строя — пробой импульсами большого тока. Но проработав больше года схема по прежнему остаётся исправной. Вольтметр и амперметр обязательно нужны для лучшей информативности процесса заряда аккумулятора. Тиристор КУ202 и выпрямительные диоды обязательно крепим на алюминиевый радиатор. Площадь подобрать такую, чтоб ничего не грелось. Трансформатор Т1 — габаритной мощностью 100 — 150 Вт. Можно взять ТС180 от ламповых телевизоров и домотать вторичку до нужного напряжения. Провод для шнуров и обмоток берём в зависимости от тока по таблице:

Готовое зарядно — восстановительного устройства для автомобильных аккумуляторов помещаем в подходящий или самодельный, из пластика, изоляционный корпус.

Схему ещё одного достойного автомобильного зарядного устройства смотрите здесь , а вопросы по зарядному задаём на ФОРУМЕ

     Материал предоставил ZU77

Тиристорное зарядное устройство для автомобильного аккумулятора: характеристика и схема

Необходимость заряда машинного аккумулятора появляется у наших соотечественников регулярно. Кто-то делает это по причине разряда батареи, кто-то — в рамках технического обслуживания. В любом случае, наличие зарядного устройства (ЗУ) во многом облегчает эту задачу. Подробнее о том, что представляет собой тиристорное зарядное устройство для автомобильного аккумулятора и как изготовить такой девайс по схеме — читайте ниже.

Содержание

[ Раскрыть]

[ Скрыть]

Описание тиристорного ЗУ

Тиристорное зарядное устройство являет собой девайс с электронным управлением зарядным током. Такие девайсы производятся на основе тиристорного регулятора мощности, который является фазоимпульсным. В устройстве ЗУ такого типа нет дефицитных компонентов, а если все его детали будут целыми, то его даже не придется настраивать после изготовления.

С помощью такого ЗУ можно заряжать аккумулятор транспортного средства током от нуля до десяти ампер. Помимо этого, оно может применяться в качестве регулируемого источника питания для тех или иных приборов, к примеру, паяльника, переносной лампы и т.д. По своей форме зарядный ток очень похож на импульсный, а последний, в свою очередь, позволяет продлить ресурс эксплуатации аккумулятора. Использование тиристорного ЗУ допускается в температурном диапазоне от -35 до +35 градусов.

Схема

Если вы решите соорудить тиристорное ЗУ своими руками, то можно применять множество различных схем. Рассмотрим описание на примере схемы 1. Тиристорное ЗУ в данном случае питается от обмотки 2 трансформаторного узла через диодный мост VDI+VD4. Элемент управления выполнен в виде аналога однопереходного транзистора. В данном случае, при помощи переменного резисторного элемента можно регулировать время, на протяжении которого будет осуществляться заряд конденсаторного компонента С2. Если положение этой детали будет крайним правым, то показатель зарядного тока будет наибольшим, и наоборот. Благодаря диоду VD5 осуществляется защита управляющей цепи тиристора VS1.

Плюсы и минусы

Основное преимущество такого прибора — это качественная зарядка током, которая позволит не разрушить, а увеличить ресурс эксплуатации аккумулятора в целом.

Если нужно, ЗУ может быть дополнено всевозможными автоматическими компонентами, предназначенными для таких опций:

  • прибор сможет отключиться в автоматическом режиме, когда зарядка будет завершена;
  • поддержание оптимального напряжения аккумулятора в случае его длительного хранения без эксплуатации;
  • еще одна функция, которую можно расценивать как преимущество — тиристорное ЗУ может сообщать автовладельцу о том, правильно ли он подключил полярность АКБ, а это очень важно при зарядке;
  • также в случае добавления дополнительных компонентов может быть реализовано еще одно преимущество — защита узла от замыканий выхода (автор видео — канал Blaze Electronics).

Что касается непосредственно недостатков, то к ним можно отнести колебания зарядного тока, если напряжение в бытовой сети будет нестабильно. Кроме того, как и другие тиристорные регуляторы, такое ЗУ может создавать определенные помехи для передачи сигнала. Чтобы не допустить этого, при изготовлении ЗУ необходимо дополнительно установить LC-фильтр. Такие фильтрующие элементы, например, используются в сетевых блоках питания.

Как сделать ЗУ самостоятельно?

Если говорить о производстве ЗУ своими руками, то этот процесс рассмотрим на примере схемы 2. В данном случае тиристорное управления осуществляется посредством сдвига фаз. Весь процесс мы описывать не будем, поскольку он индивидуален в каждом случае, в зависимости от добавления дополнительных компонентов в конструкцию. Ниже рассмотрим основные нюансы, которые следует учесть.

В нашем случае устройство собирается на обычном оргалите, в том числе и конденсатор:

  1. Диодные элементы, отмеченные на схеме как VD1 и VD 2, а также тиристоры VS1 и VS2, следует установить на теплоотводе, монтаж последних допускается на общем теплоотводе.
  2. Элементы сопротивления R2, а также R5, следует использовать не менее, чем по 2 ватта.
  3. Что касается трансформатора, то его можно приобрести в магазине либо взять из паяльной станции (качественные трансформаторы можно найти в старых советских паяльниках). Можно перемотать вторичный провод на новый сечением около 1.8 мм на 14 вольт. В принципе, можно использовать и более тонкие провода, поскольку этой мощности будет достаточно.
  4. Когда все элементы будут у вас на руках, всю конструкцию можно установить в один корпус. Например, для этого можно взять старый осциллограф. В этом случае мы не будем давать какие-либо рекомендации, поскольку корпус — это личное дело каждого.
  5. После того, как зарядный прибор будет готов, необходимо проверить его работоспособность. Если у вас есть сомнения касательно качества сборки, то мы бы порекомендовали произвести диагностику прибора на более старой АКБ, которую в случае чего не жалко будет выбросить. Но если вы все сделали правильно, в соответствии со схемой, то проблем в плане эксплуатации возникнуть не должно. Учтите и то, что изготовленное ЗУ не нуждается в настройке, оно изначально должно работать правильно.
Простое тиристорное ЗУ в корпусе осциллографа

Видео «Простое тиристорное ЗУ своими руками»

Как сделать простое тиристорное ЗУ своими руками — смотрите на видео ниже (автор ролика — канал Blaze Electronics).

 Загрузка …

Зарядные устройства для автомобильных аккумуляторов. Электронные схемы Кравцова Виталия. Авторская страница изобретателя

 

ЗАРЯДНОЕ  УСТРОЙСТВО  НА ТИРИСТОРАХ  С  ПЛАВНОЙ  РЕГУЛИРОВКОЙ  ВЫХОДНОГО  ТОКА

 И  ОГРАНИЧЕНИЕМ  НАПРЯЖЕНИЯ  ЗАРЯДКИ

 

        Еще  одна конструкция зарядного устройства с использованием микросхемы TL494 представлена ниже.  От предыдущей схемы устройство отличается  отсутствием силового диодного моста и транзисторного оптрона, а также силовым трансформатором  с двумя вторичными обмотками.  Технические характеристики обеих схем  идентичны  и выбор варианта определяется только доступностью элементной базы и личным вкусом. 

        Предлагаемое устройство  также имеет стабильную плавную регулировку  действующего значения  выходного тока в пределах 0,1 … 6А, что позволяет  заряжать любые аккумуляторы, а не только автомобильные. Из-за импульсного  характера тока зарядки  желательно использовать силовой трансформатор с мягкой  нагрузочной характеристикой,  без значительного запаса по мощности.  При зарядке  маломощных аккумуляторов  также желательно последовательно в цепь  включить  балластный резистор сопротивлением несколько Ом   или дроссель, т.к. пиковое   значение зарядного тока может быть достаточно большим из-за особенностей работы тиристорных   регуляторов.   Тиристоры  VS1 , VS2   через изолирующие прокладки устанавливаются на радиатор площадью не менее 100 см2   или  металлическое основание корпуса зарядного устройства .  Настройка прибора, как и в предыдущей схеме ,  сводится к  подбору резистора R19  под конкретный шунт R18, а затем  подбираются  резисторы  R20 и R22 для  установки правильных показаний  измерительного прибора.  В схеме  можно использовать любые доступные тиристоры  с  рабочим током не менее 5А.  Транзистор VT1  должен выдерживать рабочее напряжение не менее 50В   и  пропускать ток  не менее 1А,  например типа  КТ814В,Г ; КТ816В,Г и другие.  Транзисторы VT2, VT3  — любые  маломощные n-p-n транзисторы, например КТ315Г, КТ3102Б и т.д.  Стабилитроны VD1, VD9 —  любые доступные на напряжение стабилизации  10 … 15В.  Диоды VD2 … VD6, VD9 — любые импульсные маломощные, например КД521, КД522, КД509 и т.д.

Остальные схемы смотри далее:

1.  Зарядные устройства для автомобильных аккумуляторов ( главная страница раздела зарядных устройств для автомобилей)

2.  Зарядное устройство с автоматическим отключением от сети

3. Зарядное устройство с ключевым стабилизатором тока

4.  Зарядное устройство с микросхемой TLTL494

5.  Зарядное устройство с микросхемой TL494 и нормализатором напряжения шунта

6. Зарядное устройство с цифровой индикацией тока и напряжения.

7.  Зарядное устройство с цифровой индикацией и повышенным выходным током до 20А

8.  Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494

9.  Зарядное устройство на двух тиристорах и с использованием микросхемы TL494

10.  Зарядное устройство для кислотно-свинцовых необслуживаемых аккумуляторов ёмкостью 4 … 17А/час

11.  Лабораторный блок питания 1,5 -30В, 0-5А + зарядное устройство на MOSFET транзисторе

12.  Лабораторный блок питания + зарядное устройство с усилителем напряжения шунта

13.  Лабораторный блок питания + зарядное устройство с узлом аварийной защиты

14.&.  Зарядное устройство с периодическим контролем ЭДС аккумулятора ( главная страница раздела зарядных устройств)

Схемы зарядных устройств для автомобильных аккумуляторов на тиристорах. Простое зарядное устройство. Тиристорный регулятор в зарядном устройстве

Более современная конструкция несколько проще в изготовлении и настройке и содержит доступный силовой трансформатор с одной вторичной обмоткой, а регулировочные характеристики выше, чем у предыдущей схемы.

Предлагаемое устройство имеет стабильную плавную регулировку действующего значения выходного тока в пределах 0,1 … 6А, что позволяет заряжать любые аккумуляторы, а не только автомобильные. При зарядке маломощных аккумуляторов желательно последовательно в цепь включить балластный резистор сопротивлением несколько Ом или дроссель, т.к. пиковое значение зарядного тока может быть достаточно большим из-за особенностей работы тиристорных регуляторов. С целью уменьшения пикового значения тока зарядки в таких схемах обычно применяют силовые трансформаторы с ограниченной мощностью, не превышающей 80 — 100 Вт и мягкой нагрузочной характеристикой, что позволяет обойтись без дополнительного балластного сопротивления или дросселя. Особенностью предлагаемой схемы является необычное использование широко распространённой микросхемы TL494 (KIA494, К1114УЕ4). Задающий генератор микросхемы работает на низкой частоте и синхронизирован с полуволнами сетевого напряжения с помощью узла на оптроне U1 и транзисторе VT1, что позволило использовать микросхему TL494 для фазового регулирования выходного тока. Микросхема содержит два компаратора, один из которых используется для регулирования выходного тока, а второй используется для ограничения выходного напряжения, что позволяет отключить зарядный ток по достижению на аккумуляторе напряжения полной зарядки (для автомобильных аккумуляторов Uмах = 14,8 В) . На ОУ DA2 собран узел усилителя напряжения шунта для возможности регулирования тока зарядки. При использовании шунта R14 с другим сопротивлением потребуется подбор резистора R15. Сопротивление должно быть таким, чтобы при максимальном выходном токе не наблюдалось насыщение выходного каскада ОУ. Чем больше сопротивление R15, тем меньше минимальный выходной ток, но уменьшается и максимальный ток за счёт насыщения ОУ. Резистором R10 ограничивают верхнюю границу выходного тока. Основная часть схемы собрана на печатной плате размером 85 х 30 мм (см. рисунок).

Как только зарядка завершена, схема автоматически отключается. Это выпрямленное напряжение используется для зарядки аккумулятора. . Здесь компаратор сравнивает напряжение на батарее с опорным напряжением. Проектирование всей схемы зависит от типа батареи, которую необходимо перезарядить.

Как работать с зарядным устройством?

Первоначально, когда цепь питается и уровень заряда батареи ниже порогового напряжения, схема выполняет зарядку аккумулятора. Теперь, когда батарея начинает заряжаться и в определенный момент, когда он полностью заряжен, напряжение на делитель напряжения достигает значения выше опорного напряжения. Это означает, что напряжение на инвертирующей клемме меньше напряжения на неинвертирующей клемме, а выход компаратора больше, чем пороговое базовое излучательное напряжение для транзистора.


Конденсатор С7 напаян прямо на печатные проводники. Чертёж печатной платы в натуральную величину .

В качестве измерительного прибора использован микроамперметр с самодельной шкалой, калибровка показаний которого производится резисторами R16 и R19. Можно использовать цифровой измеритель тока и напряжения, как показано в схеме зарядного с цифровой индикацией. Следует иметь ввиду, что измерение выходного тока таким прибором производится с большой погрешностью из-за его импульсного характера, но в большинстве случаев это несущественно. В схеме можно применять любые доступные транзисторные оптроны, например АОТ127, АОТ128. Операционный усилитель DA2 можно заменить практически любым доступным ОУ, а конденсатор С6 может быть исключён, если ОУ имеет внутреннюю частотную коррекцию. Транзистор VT1 можно заменить на КТ315 или любой маломощный. В качестве VT2 можно использовать транзисторы КТ814 В, Г; КТ817В, Г и другие. В качестве тиристора VS1 может использоваться любой доступный с подходящими техническими характеристиками, например отечественный КУ202, импортные 2N6504 … 09, C122(A1) и другие. Диодный мост VD7 можно собрать из любых доступных силовых диодов с подходящими характеристиками.

Ограничения цепи зарядного устройства

Это заставляет транзистор проводить и включается. Опять же, когда заряд батареи падает ниже порогового уровня, операция зарядки возобновляется описанным выше способом. Его можно использовать как автоматическое зарядное устройство, которое используется специально во время вождения.

  • Его можно использовать для зарядки батарей, используемых для игрушек.
  • Это переносная схема и может переноситься в любом месте.
Цепь была разработана для производства зарядного устройства для автомобилей, в котором используются только 12-вольтовые батареи.

На втором рисунке показана схема внешних подключений печатной платы. Наладка устройства сводится к подбору сопротивления R15 под конкретный шунт, в качестве которого можно применить любые проволочные резисторы сопротивлением 0,02 … 0,2 Ом, мощность которых достаточна для длительного протекания тока до 6 А. После настройки схемы подбирают R16, R19 под конкретный измерительный прибор и шкалу.

Типичные зарядные устройства для автомобильных аккумуляторов имеют простую конструкцию, обеспечивающую несколько ампер во время работы при непрерывной зарядке аккумулятора. При проектировании этой схемы этого типа проблемы можно избежать, контролируя состояние зарядки аккумулятора через обратную схему управления. Это делается путем введения большого тока заряда до завершения зарядки. При создании этой конструкции кабели, которые соединяют трансформатор с контуром, должны обладать достаточной площадью поперечного сечения, чтобы предотвратить падение напряжения при нагревании по мере протекания тока.

Тиристорный регулятор в зарядном устройстве.
Для более полного ознакомления с последуущим материалом, просмотрите предыдущие статьи:
и .

♣ В этих статьях говориться о том, что существуют 2–х полупериодные схемы выпрямления с двумя вторичными обмотками, каждая из которых рассчитана на полное выходное напряжение. Обмотки работают поочередно: одна на положительной полуволне, другая на отрицательной.
Используются два полупроводниковых выпрямительных диода.

Это делается с использованием техники ареометра. Если подключена незаряженная батарея, получается низкое напряжение на клеммах. Эти батареи в основном используются в различных транспортных средствах, используемых в суше, воздухе и воде, таких как личные водные суда, такие как лодка, яхта, реактивные лыжи и другие морские применения.

Это также может быть полезно для инвалидов, предоставляя помощь инвалидным креслам и мобильным скутерам. Цепь наиболее популярна, хотя она будет очень большого размера, чем у других типов батарей. Но у них есть преимущество: дешево, легко купить и долгую жизнь, если правильно использует.

Предпочтительность такой схемы:

  • — токовая нагрузка на каждую обмотку и каждый диод в два раза меньше, чем на схему с одной обмоткой;
  • — сечение провода двух вторичных обмоток может быть в два раза меньше;
  • — выпрямительные диоды могут быть выбраны на меньший максимально допустимый ток;
  • — провода обмоток наиболее охватывают магнитопровод, магнитное поле рассеяния минимально;
  • — полная симметричность — идентичность вторичных обмоток;



♣ Используем такую схему выпрямления на П – образном сердечнике для изготовления регулируемого зарядного устройства на тиристорах.
Двух — каркасная конструкция трансформатора позволяет это сделать наилучшим образом.
К тому же две полу-обмотки получаются совершенно одинаковыми.

Наибольшее значение имеет зарядка. Когда мне было 10 лет назад. Мой отец купил его мне в первый раз в моей жизни. В 6-вольтовом размере для этой эпохи мотоцикл. Когда в магазине рядом с домом будет взиматься отток электроэнергии. Это быстрое зарядное устройство с высоким током. Во время зарядки пузырьки воздуха внутри батареи и высокая температура. Какой техник сказал мне, что это не проблема. Но может быть применение 2-3 раза, только это провалилось.

Как обычно этот тип батареи, если правильно зарядить, можно использовать в течение 4-5 лет. Во все времена не используйте и не храните их в слишком высокой области. Важность во время зарядки не требует быстрой зарядки при высоком токе и высоком напряжении.

♣ И так, наше задание : построить устройство для зарядки аккумулятора с напряжением 6 – 12 вольт и плавным регулированием зарядного тока от 0 до 5 ампер .
Мною уже предлагался для изготовления , но регулировка зарядного тока в нем проводится ступенчато.
Посмотрите в этой статье, как выполнялся расчет трансформатора на Ш – образном сердечнике. Эти расчетные данные подходят и под П –образный трансформатор той же мощности.

Простая автоматическая схема зарядного устройства

Это автоматическая схема зарядного устройства, которая, как правило, производитель будет указывать на батарею следующим образом. И аккуратный уровень напряжения не должен превышать 15 вольт или 5 раз от напряжения батареи. На моем сайте мы предлагаем много схем зарядного устройства. Вы полюбите его, потому что используйте простую схему, дешевую, так легко построить.

И когда останавливаешься? Обычно мы должны заряжать батарею, когда напряжение ниже 4 вольт, а максимальное напряжение большинства аккумуляторов — 4 вольта, но кто-то гуру говорит мне, что напряжение на 8 или 13 вольт приблизительно. И это наша работа просто старая. Когда мы начинаем, мы изучаем основной принцип электронных деталей, мне нравится использовать диод, стабилитрон, который они оба являются клапанами для электрических токов. Ток будет протекать в одну сторону. Но стабилитрон подключен назад.

Расчетные данные из статьи таковы:

  • — мощность трансформатора – 100 ватт ;
  • — сечение сердечника – 12 см.кв. ;
  • — выпрямленное напряжение — 18 вольт ;
  • — ток — до 5 ампер ;
  • — количество витков на 1 вольт – 4,2 .

Первичная обмотка:

  • — количество витков – 924 ;
  • — ток – 0,45 ампера;
  • — диаметр провода – 0,54 мм.

Вторичная обмотка:

Затем он блокирует ток до тех пор, пока напряжение не превысит определенный уровень. Потому что дешево и легко использовать. Как показано на рисунке 1, это идеальная схема. Который никакой ток к батарее и напряжению вниз вниз. Хотя эти проекты будут легкими технологиями, но очень полезными для всех.

Если вы хотите прочитать больше: как это работает, список деталей и посмотреть изображение полного размера. Этот стоп-ток дает батарею, когда напряжение аккумулятора достигает уровня, который нагрузка с полной скоростью уже впереди, чтобы защитить что-то зарядное устройство слишком плохой дистиллированной сухой водой. Эта схема может использоваться очень широко, она может использоваться с батареей многих моделей. Фурнинг украшает в то время как первоначальная свинцовая батарея на зарядном устройстве до тех пор, пока не будет достигнута полная скорость вперед, чтобы построить досягаемость на полюсе для зарядного устройства.

  • — количество витков – 72 ;
  • — ток – 5 ампер;
  • — диаметр провода – 1,8 мм.

♣ Эти расчетные данные примем за основу построения трансформатора на П – образном сердечнике.
С учетом рекомендаций выше указанных статей по изготовлению трансформатора на П — образном сердечнике, построим выпрямитель для зарядки аккумулятора с плавной регулировкой зарядного тока .

Примечание: выше схема — просто базовый идеал, который мы только видим, чтобы увидеть действительно используемые ниже. В зависимости от изменений, некоторые устройства. Особенностью тока будет непрерывная положительная половина синусоидальной волны. Который будет отличаться напряжением от конденсаторного фильтра, который является гладким, как прямая линия. Так как волновая форма напряжения Негладкая по прямой. Который в этой цепи не имеет положительной стороны диапазона электропитания.

Например, устройство имеет положительное отрицательное значение. Для обеспечения безопасности, первый шаг настройки, чтобы найти полное напряжение аккумулятора, подключите его к цепи, чтобы исправить полярность. Таким образом, батарея будет адаптирована для первой схемы, которая должна быть действительно полным напряжением.

Схема выпрямителя изображена на рисунке. Она состоит из трансформатора ТР , тиристоров Т1 и Т2 , схемы управления зарядным током, амперметра на 5 — 8 ампер, диодного моста Д4 — Д7 .
Тиристоры Т1 и Т2 одновременно выполняют роль выпрямительных диодов и роль регуляторов величины зарядного тока.


Пожалуйста, смотрите видео ниже, чтобы лучше понять эти проекты. Мы можем изменить каждую часть стоимости как аккуратную заряженную батарею. В приведенной ниже таблице показано изменение каждого устройства. Эти типы энергетических систем широко используются в суровых условиях эксплуатации, возникающих при производстве и распределении электроэнергии, нефти и газа, промышленных приборах и береговых или морских нефтехимических применениях. Ассортимент тиристорных систем представляет собой высокопрочные промышленные системы, подходящие для самых требовательных к окружающей среде и условиям эксплуатации. Индивидуально разработанные системы могут быть настроены из множества доступных опций. Он обеспечивает привод к тиристорам, мониторам, компонентам выпрямительного блока. Проприетарное программное обеспечение доступно для удаленного мониторинга зарядного устройства. Тиристорные регулируемые выпрямительные модули предназначены для трехфазного ввода и выполнены с полностью управляемой трехфазной мостовой схемой. Устройство с мягким пуском предотвращает переход высоковольтных переходных процессов к нагрузкам во время включения. Нагрузки электрически отделены от входа с помощью функций. Методы зарядки. Для повышения производительности в контроллере зарядного устройства предварительно запрограммированы разные способы зарядки. Все соответствующие параметры, в соответствии с требованиями к батарее, настраиваются пользователем с помощью клавиатуры на передней панели. Это сложное комбинированное решение для измерения, оповещения и дистанционного мониторинга различных параметров зарядного устройства и аккумулятора. Конфигурации зарядного устройства. Выпрямитель должен быть сконструирован таким образом, чтобы он мог обеспечивать нагрузку, и в то же время аккумулятор должен быть способен повысить заряд, даже если он находится в полностью разряженном состоянии. Различные схемы, которые обычно используются, зависят от критичности нагрузок и требований к сайту. Приведена отдельная таблица операций, описывающая функционирование каждой схемы в разных условиях эксплуатации. Рейтинги зарядного устройства с однофазным входом с 6-ти импульсным дизайном с 12-ти импульсным дизайном с 24-импульсным дизайном. Примечание: более высокие оценки по спецификациям заказчика. Другие рейтинги также доступны по требованию клиента. . Обратите внимание на зарядные устройства, для которых они одобрены.

♣ Трансформатор Тр состоит из магнитопровода и двух каркасов с обмотками.
Магнитопровод может быть набран как из стальных П – образных пластин, так и из разрезанного О – образного сердечника из навитой стальной ленты.
Первичная обмотка (сетевая на 220 вольт — 924 витка) делится пополам – 462 витка (а – а1) на одном каркасе, 462 витка (б – б1) на другом каркасе.
Вторичная обмотка (на 17 вольт) состоит из двух полуобмоток (по 72 витка) мотается на первом (А — Б) и на втором (А1 – Б1) каркасе по 72 витка . Всего 144 витка.

Зарядные устройства также указывают уровень заряда

Как правило, устройства зарядки аккумулятора могут использоваться как для батарей, так и для них. Существуют, однако, модели, которые вы можете подключить только к свинцовым кислотным батареям, а не к гелевым батареям или батареям из кальция. Если уровень заряда падает ниже 12, 4 В, индикатор Комфорта становится красным. Это указание на то, что зарядка необходима для предотвращения сульфатирования батареи. Следуйте каждому описанию продукта, чтобы выбрать зарядное устройство, которое вам подходит.


Третья обмотка (с — с1 = 36 витков) +(d — d1 = 36 витков) в сумме 8,5 В +8,5 В = 17 вольт служит для питания схемы управления и состоит из 72 витков провода. На одном каркасе (с – с1) 36 витков и на другом каркасе (d — d1) 36 витков.
Первичная обмотка мотается проводом диаметром – 0,54 мм .
Каждая вторичная полуобмотка мотается проводом диаметром 1,3 мм. , рассчитанным на ток 2,5 ампера.
Третья обмотка мотается проводом диаметром 0,1 — 0,3 мм , какой попадется, ток потребления здесь маленький.

Зарядные устройства теперь онлайн

Например, предлагает зарядные устройства, которые подходят только для свинцово-кислотных аккумуляторов. Кроме того, вам необходимо контролировать различные зарядные устройства, чтобы батарея не была повреждена перезарядкой. Обычно это относится к не требующим обслуживания батареям на 12 В, которые работают с кислотой свинца. Вы также можете забрать свой заказ в одном из наших 600 магазинов. Воспользуйтесь огромным выбором по низким ценам.

Тиристорный регулятор в зарядном устройстве

Она свободна и уверяет вас в каждой покупке ценных бонусных очков, с которыми вам не обойтись. Когда его емкость составляет менее 80% от первоначальной мощности, она становится опасным отходом и должна быть переработана. Основными требованиями, в которых должна быть установлена ​​батарея, будет. Пол в хорошем состоянии, что предотвращает утечку кислоты или свинца и вступает в контакт с землей. Верхняя крыша в хорошем состоянии, так что дождь не падает. Избегайте источников тепла, чтобы не вызвать какой-либо пожар и хорошо кондиционированный воздух.

♣ Плавная регулировка зарядного тока выпрямителя основана на свойстве тиристора переходить в открытое состояние по импульсу, поступающему на управляющий электрод. Регулируя время прихода управляющего импульса, можно управлять средней мощностью проходящей через тиристор за каждый период переменного электрического тока.

♣ Приведенная схема управления тиристорами работает по принципу фазо-импульсного метода .
Схема управления состоит из аналога тиристора, собранного на транзисторах Тр1 и Тр2 , временной цепочки, состоящей из конденсатора С и резисторов R2 и Ry , стабилитрона Д7 и разделительных диодов Д1 и Д2 . Регулировка зарядного тока производится переменным резистором Ry .

Переменное напряжение 17 вольт снимается с третьей обмотки, выпрямляется диодным мостом Д3 – Д6 и имеет форму (точка №1) (в кружке №1). Это, пульсирующее напряжение положительной полярности с частотой 100 герц , меняющее свою величину от 0 до 17 вольт . Через резистор R5 напряжение поступает на стабилитрон Д7 (Д814А, Д814Б или любой другой на 8 – 12 вольт ). На стабилитроне напряжение ограничивается до 10 вольт и имеет форму (точка №2 ). Далее следует зарядно – разрядная цепочка (Ry, R2, C) . При возрастании напряжения от 0 начинает заряжаться конденсатор С, через резисторы Ry, и R2 .
♣ Сопротивление резисторов и емкость конденсатора (Ry, R2, C) подобраны таким образом, чтобы конденсатор зарядился за время действия одного полупериода пульсирующего напряжения. Когда напряжение на конденсаторе достигнет максимальной величины (точка №3) , с резисторов R3 и R4 на управляющий электрод аналога тиристора (транзисторы Тр1 и Тр2 ) поступит напряжение для открытия. Аналог тиристора откроется и заряд электричества, накопленный в конденсаторе, выделится на резисторе R1 . Форма импульса на резисторе R1 показана в кружке №4 .
Через разделительные диоды Д1 и Д2 импульс запуска подается одновременно на оба управляющих электрода тиристоров Т1 и Т2 . Открывается тот тиристор, на который в данный момент поступила положительная полуволна переменного напряжения с вторичных обмоток выпрямителя (точка №5) .
Изменяя сопротивление резистора Ry , изменяем время за которое полностью зарядится конденсатор С , то есть изменяем время включения тиристоров во время действия полуволны напряжения. В точке №6 показана форма напряжения на выходе выпрямителя.
Изменяется сопротивление Ry, изменяется время начала открывания тиристоров, изменяется форма заполнения полупериода действующим током (фигура №6). Заполнение полупериода может регулироваться от 0 до максимума. Весь процесс регулирования напряжения во времени показан на рисунке.
♣ Все показанные замеры формы напряжения в точках №1 — №6 проведены относительно плюсового вывода выпрямителя.

Детали выпрямителя:
— тиристоры Т1 и Т2 – КУ 202И-Н на 10 ампер . Каждый тиристор устанавливать на радиатор площадью 35 – 40 см.кв. ;
— диоды Д1 – Д6 Д226 или любые на ток 0,3 ампера и напряжение выше 50 вольт ;
— стабилитрон Д7 — Д814А — Д814Г или любой другой на 8 – 12 вольт ;
— транзисторы Тр1 и Тр2 любые маломощные на напряжение свыше 50 вольт .
Подбирать пару транзисторов необходимо с одинаковой мощностью, разными проводимостями и с равными коэффициентами усиления (не менее 35 — 50 ).
Мною опробованы разные пары транзисторов: КТ814 – КТ815, КТ816 – КТ817; МП26 – КТ308, МП113 – МП114 .
Все варианты работали хорошо.
— Сонденсатор емкостью 0,15 микрофарады ;
— Резистор R5 ставить мощностью в 1 ватт . Остальные резисторы мощностью 0,5 ватта .
— Амперметр рассчитан на ток 5 – 8 ампер

♣ Необходимо с вниманием отнестись к монтажу трансформатора. Советую перечитать статью . Особенно то место, где приводятся рекомендации по фазировке включения первичной и вторичной обмоток.

Можно использовать схему фазировки первичной обмотки приведенную ниже, как на рисунке.



♣ В цепь первичной обмотки последовательно включается электрическая лампочка на напряжение 220 вольт и мощность 60 ватт . эта лампочка будет служить вместо предохранителя.
Если обмотки будут сфазированы неправильно , лампочка загорится .
Если соединения проведены правильно , при включении трансформатора в сеть 220 вольт лампочка должна вспыхнуть и потухнуть.
На клеммах вторичных обмоток должно быть два напряжения по 17 вольт , вместе (между А и Б) 34 вольта .
Все монтажные работы необходимо проводить с соблюдением ПРАВИЛ ТЕХНИКИ ЭЛЕКТРОБЕЗОПАСНОСТИ!

Зарядное Устройство для АКБ Авто на Двух Тиристорах | PRACTICAL ELECTRONICS

Зарядное Устройство для АКБ Авто на Двух Тиристорах

Самостоятельное изготовление зарядного устройства для свинцово-кислотных автомобильных аккумуляторов с точки зрения схемотехники не составляет особого труда. Даже при наличии различных регулировок, таких как установка зарядного тока, например, и автоматики отключения, сложность схемы не будет превышать средний уровень.

Вопрос здесь в другом — комплектующие для зарядного устройства. Если говорить о схемах, где в качестве преобразования сетевого напряжения выступает трансформатор, то именно его наличие и определяет целесообразность построения схемы. Потому как прежде чем специально покупать трансформатор, много раз подумаешь, глядя на нынешние «конские» ценники.

В этой статье я хочу предложить Вашему вниманию простейшую зарядку на двух тиристорах. Через один из них непосредственно осуществляется зарядка аккумулятора, а другой служит для отключения АКБ по её завершению. Ну и сразу о самой дорогой «запчасти» — о трансформаторе. Именно он в схеме определяет зарядный ток. Здесь использован силовой понижающий трансформатор с двумя вторичными обмотками по 15 В (отвод от середины). При наличии такого трансформатора, или хотя-бы железа для его изготовления можно изготовить простое и надёжное зарядное устройство, схема которого показана ниже.

Схема электрическая принципиальная зарядного устройства

Трансформатор, как я уже написал выше, содержит две вторичных обмотки по 15 В (или одну на 30 В с отводом от середины). Его мощность в данной схеме и будет определять зарядный ток аккумулятора. Выпрямляется напряжение со вторичных обмоток двумя диодами — VD1 и VD2. Глядя на этот выпрямитель сразу бросается в глаза отсутствие сглаживающего конденсатора. Но на самом деле здесь нет никакой ошибки, потому как на этом основан весь принцип работы этого зарядного устройства. Давайте разберёмся почему.

Сначала рассмотрим цепь на тиристоре VS1, через который и происходит непосредственно заряд аккумуляторной батареи. На аноде тиристора VS1 действует пульсирующее напряжение частотой 100 Гц по амплитуде напряжение это изменяется от нуля до 20 В. Короче говоря, это положительные полуволны со вторичной обмотки трансформатора Т1. Для перехода тиристора в открытое состояние включена цепочка R1VD4 между его анодом и управляющим электродом. Ток в этой цепи имеет достаточное значение (около 15 мА) для его открытия. При этом, когда тиристор находится в активном режиме работы, то горит светодиод VD4. Между катодом тиристора и общим проводом, который соединён со средней точкой вторичной обмотки трансформатора Т1, подключается заряжаемая аккумуляторная батарея. Так происходит заряд аккумулятора.

А теперь давайте рассмотрим какое условие нужно создать для закрытия тиристора и прекращения зарядки. Вариантов два: разорвать саму цепь заряда аккумулятора или снять управляющий ток. Так вот при снятии управляющего тока, тиристор всё равно останется в открытом состоянии (свойство тиристора), пока протекает достаточный ток (ток удержания) в цепи между его анодом и катодом. Но в этой схеме в цепи действует пульсирующее напряжение, и именно когда напряжение равно нулю происходит закрытие тиристора, потому как прекращается прохождение тока и тиристор больше не чего не удерживает. Этого бы не произошло при наличии сглаживающей ёмкости в выпрямителе т.к. напряжение всегда было бы отлично от нуля.

Теперь к цепи на VS2, которая служит для отключения АКБ (закрытию тиристора VS1) по завершению заряда. Принцип основан на разнице напряжений АКБ в разряженном и заряженном состоянии. Напряжение работы стабилитрона VD3 (12 В) выставляется с помощью потенциометра R2. Значение напряжения полного заряда АКБ должно соответствовать началу перехода VD3 в активное состояние, т.е. в состояние, когда через него будет протекать ток. При этом создастся условие для открытия тиристора VS2. Об открытии тиристора VS2 будет сигнализировать светодиод VD5 зелёного цвета «завершение заряда». При этом ток в цепи управляющего электрода VS1 станет уже недостаточным для его открытия, и он закроется в момент нулевого напряжения.

Печатная плата для зарядного устройства

Печатная плата показана на рисунке выше. Вся настройка устройства сводится к установке порога срабатывания цепи тиристора VS2 подстроечным резистором R2. Делают это на полностью заряженном АКБ. Порог открытия определяется свечением светодиода VD5, в то время, когда VD4 наоборот тухнет.

Тиристор VS1 должен быть закреплён на теплоотводе. Светодиоды VD4 и VD5 любые на номинальный ток 10 мА красного и зеленого цвета соответственно.

Для удобства навигации по разделу «Зарядные Устройства» подготовлена статья со ссылками на все опубликованные конструкции и кратким описанием. Ссылки будут добавляется по мере написания нового материала.

Зарядное Устройство для АКБ Авто на Двух Тиристорах

Каталог радиолюбительских схем. Зарядное устройство с эффективной защитой

Каталог радиолюбительских схем. Зарядное устройство с эффективной защитой

Зарядное устройство с эффективной защитой

В.Л.Соколовский, г.Бердянск

Предлагаемое устройство предназначено для зарядки 12-вольтовых аккумуляторных ботарей с защитой от случайного короткого замыкания но выходных зажимах, от неправильного подключения и от перезарядки оккумуляторных батарей. В зарядных устройствах на тиристорах работа устройств защиты от короткого замыкания на выходных зажимах или неправильного подключения аккумуляторной батареи не всегда эффективна. Это связано с тем, что генератор управляющих импульсов в этих устройствах генерирует импульсы независимо от того, подключен аккумулятор к зарядному устройству или нет. Если момент случайного короткого замыкания на выходных зажимах зарядного устройства или момент неправильного подключения аккумуляторной батареи к зарядному устройству совпадоют с приходом управляющего импульса на тиристор, то защита не успевает сработать. Это обстоятельство привело меня к мысли перестроить работу устройства защиты (рис.1).


Рис.1

Особенностью электрической схемы является то, что генератор управляющих импульсов, собранный на транзисторе VT1, начиноет робототь только при правильном подключении разряженной аккумуляторной батареи к зажимам АБ зарядного устройства. При этом ток через стабилитрон VD4 не течет, транзистор VT4 закрывается, VT3 открывается (начинает светиться светодиод VD3), закрывается VT2 и генератор начинает генерировать управляющие импульсы. Под влиянием этих импульсов тиристор VS1 открывается, и импульсный ток заряда протекает по цепи: минус выпрямителя VD5…VD8, тиристор VS1, амперметр Р1, клемма Б, аккумуляторная батарея, клемма А, плюс выпрямителя.

По мере заряда аккумуляторной батареи напряжение на ее зажимах увеличивается. Это приводит к срабатыванию стабилитрона VD4, вследствие чего открывается транзистор VT4, зак . рывается транзистор VT3 (светодиод VD3 гаснет), открывается VT2, шунтируя зарядный конденсатор С1, и генератор прекращает работу, в результате чего тиристор переходит в непроводящее состояние, т.е. прекращается зарядка аккумуляторной батареи. Аналогично устройство работает при отключении аккумуляторной батареи, при этом случайное замыкание выходных зажимов АБ зарядного устройства не приводит к неприятным последствиям. Ток заряда аккумуляторной батареи можно регулировать резистором R2, а порог срабатывания защиты от перезарядки — резистором R11.

При неправильном подключении аккумуляторной батареи к зажимом АБ устройства транзистор VT3 закрывается, транзистор VT2 шунтирует зарядный конденсатор С1 и управляющие импульсы на тиристоре отсутствуют, т.е. он находится в непроводящем состоянии. Таким образом, неправильное подключение аккумуляторной батареи токже не приводит к последствиям.

В устройстве использованы следующие детали: транзисторы VT1 типа КТ117Б, VT2—VT4 типа КТ361Е, тиристор КУ202 с любым буквенным индексом, диоды выпрямительного моста типа Д247, светодиод VD3 типа АЛ102БМ, стабилитроны VD2 типа Д814Д, VD4 типа Д813, резисторы типа МЛТ-0,5 (исключение составляет R5 типа МЛТ-1,0), конденсатор С1 типа КМ-6 или КЛС-1. Трансформатор Т унифицированный типа ТС-200. В нем следует убрать все обмотки, кроме сетевой, и намотать обмотку 2 х 25 витков проводом ПЭВ-2 диометром 1,8 мм. Сетевые обмотки включены на 254 В при напряжении сети 220 В. Монтажная схема платы зарядного устройства показана на рис.2.


Рис.2

РадиоАматор 5/97, с.17

Источник материала





Зарядное устройство на симисторе — Морской флот

Зарядные устройства повышенной мощности

Простейшее зарядное устройство для автомобильных, тракторных и мотоциклетных аккумуляторных батарей обычно состоит из понижающего трансформатора и подключенного к его вторичной обмотке выпрямителя. Последовательно с батареей включают регулятор тока — мощный проволочный реостат, транзисторный или тиристорный стабилизатор тока. На всех этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность возникновения пожара.
В основу работы устройства [16.1], предназначенного для восстановления 100% работоспособности засульфатированных аккумуляторных батарей, положена идея, защищенная а. с. 372599 СССР, см. также [16.2]. Для восстановления батарей предложено заряжать их асимметричным током при соотношении величин прямого и обратного тока 10:1 и времени протекания тока в прямом и обратном направлении 1:2 в течение 1.. .2 суток.
Входное напряжение должно вдвое превышать напряжение заряжаемого аккумулятора.
В схеме (рис. 16.1) использован однополупериодный выпрямитель, который работает на встречную ЭДС и обеспечивает в зарядной цепи пульсирующий ток с соотношением ток/пауза примерно 1:2, постоянная составляющая которого по амперметру РА1 устанавливается равной рекомендуемому для аккумулятора зарядному току. Наличие разрядного резистора (лампа накаливания) обеспечивает обратный ток, в 10 раз меньший зарядного.
Об эффективности заряда можно судить по напряжению на аккумуляторе: у засульфатированного аккумулятора из 6-ти банок конечное напряжение при заряде составит менее 15 В (при температуре электролита около 15°С), а у исправного — 15,8. 16,2 Б.
Стоит отметить, что автор устройства [16.1] для его питания использовал ток не совсем синусоидальной формы, поскольку понижающий трансформатор работал с вынужденным подмагничиванием.


Рис. 16.1. Схема выпрямителя для восстановления работоспособности аккумуляторных батарей


Рис. 16.2. Схема зарядного устройства для стартерных аккумуляторных батарей

Зарядное устройство Н. Таланова и В. Фомина (рис. 16.2) имеет широкие пределы регулирования зарядного тока — практически от нуля до 10 А — и может быть использовано для заряда аккумуляторов, рассчитанных на напряжение 12 В [16.3].
В устройстве использован симисторный регулятор В. Фомина с дополнительно введенными маломощным диодным мостом VD1 — VD4 и резисторами R3 и R4. После подключения устройства к сети при плюсовом ее полупериоде (плюс на верхнем по схеме проводе) начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединенные резисторы R1 и R2. При минусовом полупериоде сети этот конденсатор заряжается через те же резисторы R2 и R1, диод VD2 и резистор R4. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется только его полярность.
Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается, и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1. При этом симистор открывается. В конце полупериода симистор закрывается. Описанный процесс повторяется в каждом полупериоде напряжения сети.
Общеизвестно, например из [16.1], что управление тиристором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса. Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора.
В описываемом зарядном устройстве после включения симистора VS1 его основной ток протекает не только через первичную обмотку трансформатора Т1, но и через один из резисторов — R3 или R4, которые в зависимости от полярности сетевого напряжения поочередно подключаются параллельно первичной обмотке трансформатора диодами VD4 и VD3 соответственно.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5 и VD6. Резистор R6, кроме того, формирует импульсы разрядного тока, которые, как утверждается в [16.4], продлевают срок службы батареи.
Трансформатор Т1 можно изготовить на базе лабораторного трансформатора ЛАТР-2М, изолировав его обмотку (она будет первичной) тремя слоями лакоткани и намотав вторичную обмотку, состоящую из 80 витков провода сечением не менее 3 мм2, с отводом от середины.
Конденсаторы С1 и С2 — МБМ или другие на напряжение не менее 400 и 160 б соответственно. Неоновая лампа HL1 — ИН-3, ИН-ЗА с одинаковыми по конструкции и размерам электродами для обеспечения симметричности импульсов тока через первичную обмотку трансформатора.
Диоды КД202А заменимы на Д242, Д242А или другие со средним прямым током не менее 5 А. Диод размещают на дюралюминиевой теплоотводящей пластине с площадью поверхности не менее 120 см2. Симистор — на теплоотводящей пластине примерно вдвое меньшей площади. Резистор R6 типа ПЭВ-10; его можно заменить пятью параллельно соединенными резисторами МЛТ-2 сопротивлением 110 Ом. Вместо резистора R6 можно установить лампу накаливания на напряжение 12 В мощностью 10 Вт. Она индицировала бы подключение зарядного устройства к аккумуляторной батарее и, одновременно, освещала бы рабочее место.
Цепи зарядного тока необходимо выполнять проводом марки МГШВ сечением 2.5. 3 мм2.
При налаживании устройства сначала устанавливают требуемый предел зарядного тока (но не более 10 А) резистором R2. Для этого к выходу устройства через амперметр на 10 А подключают батарею аккумуляторов, строго соблюдая полярность. Движок резистора R1 переводят в крайнее верхнее по схеме положение, а резистора R2 — в крайнее нижнее, и включают устройство в сеть. Необходимое значение максимального зарядного тока устанавливают перемещением движка резистора R2.
В процессе заряда ток через батарею изменяется, уменьшаясь примерно на 20%. Поэтому перед процессом заряда устанавливают начальный ток батареи несколько большим номинального значения (примерно на 10%). Окончание заряда определяют по плотности электролита или вольтметром — напряжение отключенной батареи должно быть в пределах 13,8. 14,2 В.
Для заряда свинцово-кислотных аккумуляторных батарей емкостью 9. 14 А-ч, а также для проведения циклов «заряд-разряд», необходимых для восстановления умеренно засульфатированных аккумуляторов и профилактики исправных, разработано специальное устройство [16.5].
Основой устройства является стабилизатор тока на составном транзисторе (VT1, VT2) с резистором R1 в эмиттерной цепи (рис. 16.3). В базовой цепи включен полевой транзистор VT3, который задает ВАХ стабилизатора тока. Потенциометром R5 устанавливают зарядный ток. Германиевые диоды VD2, VD3 служат для его термостабилизации. Подробно стабилизатор тока описан в статье [16.6].


Рис. 16.3. Схема устройства для заряда свинцово-кислотных аккумуляторных батарей емкостью 9. 14 А-ч

Для восстановления батареи необходимо заряжать ее импульсами тока; в промежутках между импульсами она разряжается через специальный резистор, подключаемый параллельно батарее GB1. Разрядный ток при этом меньше зарядного в 10 раз, а по длительности в 2 раза больше [16.7]. Импульсы зарядного тока формируются схемой сравнения напряжения VT4, VD5 и тиристором VS1. Стабилитрон VD4 ограничивает напряжение до 18 6 (т.е. до половины амплитудного) после выпрямительного диода VD1. При достижении на аккумуляторной батарее ЭДС около 14 В стабилитрон VD5 закрывается, вызывая запирание транзистора VT4 и тиристора VS1. Так осуществляется автоматическое прекращение процесса заряда, но при условии, что к аккумуляторной батарее не был подключен разрядный резистор. Измерительный прибор РА1 регистрирует средний зарядный ток, который в 3 раза меньше истинного зарядного. При подключении разрядного резистора ток следует увеличить на 10%.
Питание устройства осуществляется от трансформатора мощностью 50 Вт. Резистор R1 изготовлен из отрезка манганинового провода диаметром 0,51 мм или из другого материала с высоким удельным сопротивлением. Переменный резистор R5 — проволочный. Измерительный прибор РА1 со шкалой на 1 А.
Транзисторы VT1, VT2 и тиристор VS1 установлены на алюминиевой пластине толщиной 3 мм и размерами 80×100 мм, выполняющей роль теплоотвода. Диоды VD2, VD3 должны иметь тепловой контакт с корпусами транзисторов VT1, VT2.
Импульс зарядного тока, его длительность и паузу контролируют осциллографом на резисторе R1.
Принципиальная схема бестрансформаторного двухполупериодного выпрямителя по мостовой схеме для заряда аккумуляторных батарей показана на рис. 16.4 [16.8].


Рис. 16.4. Схема выпрямителя для заряда аккумуляторных батарей
Емкость С гасящих конденсаторов может быть определена как: 3250XI3/UC (мкФ), где I3 — зарядный ток, A, Uc — напряжение сети, В.
Так, для получения зарядного тока 2 А при напряжении сети 220 6 емкость батареи конденсаторов составит 3250*2/220=32 мкФ. Поскольку сейчас повсеместно используется сеть с напряжением 220 б, расчетное выражение упрощается: С (мкФ)=14,8Х13 (А).
Стоит напомнить, что для бестрансформаторных выпрямителей использовать электролитические конденсаторы нельзя, так как при прохождении переменного тока через полярные конденсаторы происходит разложение электролита, сопровождаемое обильным газовыделением, что вызывает взрыв конденсатора.
В таких выпрямителях обычно используют бумажные конденсаторы типа КБГ, МБГП, МБГЧ, МБГО и т.д.
Выпрямитель по схеме на рис. 16.5 [16.8] имеет емкостный делитель, образованный конденсаторами С1 — С5, включение и
выключение которых производится соответствующими тумблерами. Этим изменяется величина выпрямленного тока. Для предохранения диодов выпрямителя от пробоя при включении и выключении прибора и улучшения его выходной характеристики в схеме имеется дроссель L1. Неоновая лампа и резистивные цепи на входе выпрямителя служит для индикации включения, а также для разряда конденсаторов после выключения выпрямителя. Выходная мощность устройства может достигать 500 Вт. Диоды выпрямителя выбирают в зависимости от тока нагрузки.


Рис. 16.5. Схема выпрямителя для заряда аккумуляторов

В случае, когда аккумулятор длительное время хранится без дела, он в результате естественного саморазряда и сульфатации пластин приходит в негодность.
Для того чтобы длительное хранение не приводило к порче аккумуляторной батареи, ее нужно постоянно поддерживать в заряженном состоянии [16.9]. Заводы изготовители рекомендуют заряжать аккумуляторы током, равным 0,1 от номинальной емкости (т.е. для 6СТ-55 ток заряда будет 5,5 А), но это годится только для быстрого заряда «посаженной» батареи. Как показывает практика, для подзарядки аккумулятора в процессе длительного хранения требуется небольшой ток, около 0,1 . 0,3 А (для 6СТ-55). Если хранящийся аккумулятор периодически, примерно раз в месяц, ставить на такую подзарядку на 2. 3 дня, то можно быть уверенным в том, что он в любой момент будет готов к эксплуатации даже через несколько лет такого хранения.
На рис. 16.6 показана схема «подзаряжающего» устройства — бестрансформаторного источника питания, выдающего постоянное напряжение 14,4 В при токе до 0,3 А [16.9]. Источник построен по схеме параметрического стабилизатора с емкостным балластным сопротивлением. Напряжение от сети поступает на мостовой выпрямитель VD1 — VD4 через конденсатор С1. На выходе выпрямителя включен стабилитрон VD5 на 14,4 В. Конденсатор С1 ограничивает ток до величины не более 0,3 А. Конденсатор С2 сглаживает пульсации выпрямленного напряжения. Аккумуляторная батарея подключается параллельно стабилитрону VD5.

Рис. 16.6. Схема устройства для подзарядки аккумуляторных батарей

При саморазряде батареи до напряжения ниже 14,4 В начинается ее «мягкий» заряд малым током. Величина этого тока находится в обратной зависимости от напряжения на аккумуляторе, но в любом случае даже при коротком замыкании не превышает 0,3 А. При заряде батареи до напряжения 14,4 В процесс прекращается.
При эксплуатации устройства нужно соблюдать правила безопасности при работе с электроустановками.
Простое зарядное устройство для заряда автомобильных или тракторных аккумуляторов (рис. 16.7) [16.10] выгодно отличается повышенной безопасностью в эксплуатации по сравнению с бестрансформаторными аналогами. Однако его трансформатор
довольно сложен: для регулировки зарядного тока он имеет множество отводов.
Регулировка тока заряда производится галетным переключателем S1 за счет изменения числа витков первичной обмотки. Выпрямитель обеспечивает ток заряда 10. 15 А.

Рис. 16.7. Схема устройства для заряда автомобильных или тракторных аккумуляторов током 10. 15 А

Трансформатор Т1 — любой с габаритной мощностью не менее 400 Вт.
Первичная обмотка содержит 369+50+50+50+50 витков провода диаметром 0,7 мм. Вторичная обмотка содержит 38 витков провода диаметром 3 мм. Диоды выпрямительного моста VD1 — VD4 — любые с допустимым прямым током не менее 10 А, они установлены на радиатор площадью примерно 100 см2. В цепь нагрузки включен амперметр РА1 с пределом измерения 20 А.
Соблюдение режима эксплуатации и, в частности, режима заряда аккумуляторов гарантирует их безотказную работу. Заряд аккумуляторов необходимо производить током, который определяется по формулам [16.11]:
I=Q/10 — для кислотных аккумуляторов, l=Q/4 — для щелочных аккумуляторов,
где: Q — паспортная емкость аккумулятора, А-ч, — средний зарядный ток, А.
Кислотные аккумуляторы особенно чувствительны к отклонению параметров заряда от номинальных. Установлено, что заряд чрезмерно большим током приводит к деформации пластин и даже к их разрушению. Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает
оптимальное протекание электрохимических процессов в аккумуляторе и нормальную его работу в течение длительного времени.
Степень заряженности аккумулятора можно контролировать по плотности электролита и напряжению (для кислотных аккумуляторов) или только по напряжению (для щелочных аккумуляторов). Окончание процесса заряда кислотного аккумулятора характеризуется установлением напряжения на одном элементе батареи, равного 2,5. 2,6 В.
Кислотные аккумуляторы чувствительны к недозарядам и перезарядам, поэтому следует своевременно заканчивать заряд.
Щелочные аккумуляторы менее критичны к режиму эксплуатации. Для них окончание заряда характеризуется установлением на одном элементе батареи аккумуляторов постоянного напряжения 1,4. 1,5 В.
Для регулировки зарядного тока можно использовать магазин конденсаторов, включенный последовательно с первичной обмоткой трансформатора и выполняющий функцию гасящего сопротивления [16.11]. Подобное устройство описано в статье [16.12]. Здесь тепловая (активная) мощность выделяется лишь на диодах выпрямительного моста и в трансформаторе. В этом устройстве ток заряда аккумулятора поддерживается на определенном уровне: в процессе заряда напряжение на аккумуляторе увеличивается, а ток через него стремится уменьшиться. Но при этом возрастает приведенное сопротивление первичной обмотки трансформатора Т1, падение напряжения на ней увеличивается, и ток через аккумулятор меняется мало.
Наибольшее значение тока через аккумулятор при заданной емкости конденсатора С будет при равенстве падений напряжения на конденсаторе и первичной обмотке трансформатора. Ее следует рассчитывать на полное напряжение сети — для большей надежности устройства и возможности применения готовых иловых трансформаторов. Вторичную обмотку следует рассчитывать на напряжение в 1,5 раза большее номинального напряжения нагрузки.
При изготовлении устройства желательно предусмотреть возможность его автоматического отключения от сети при обрыве цепи нагрузки, так как ненагруженный трансформатор вместе с конденсатором составят колебательный контур, в котором
возникнет резонанс, при этом конденсатор и трансформатор могут выйти из строя.
Зарядное устройство (рис. 16.8) обеспечивает заряд 12-вольтовых аккумуляторных батарей током до 15 А [16.11]. Ток заряда можно менять ступенями через 1 А. Предусмотрена возможность автоматического выключения устройства когда аккумулятор полностью зарядится. Устройство не боится кратковременных замыканий в цепи нагрузки и обрывов в ней. Магазин конденсаторов состоит из конденсаторов С1 — С4, суммарная емкость которых 37,5 мкФ. Переключателями SA2 — SA5 можно подключать различные комбинации конденсаторов и менять величину зарядного тока. Так, например, для получения тока 11/4 необходимо замкнуть переключатели SA2, SA3 и SA5.
Приборы РА1 и PU1 — типа М5-2, рассчитанные соответственно на 30 А и 30 В. Реле К1 типа РС-13, паспорт РС4.523.029. Контакты К1.1 образованы тремя группами параллельно соединенных контактов. Возможно применение реле типа МКУ-48 на переменное напряжение 220 В. Тогда надобность в выпрямителе VD1, С5 отпадает. Реле К2 типа РЭС-15, паспорт РС4.591.003. Диоды Д305 установлены через слюдяные прокладки на общем радиаторе с поверхностью охлаждения 300 см2. Трансформатор Т1 выполнен на магнитопроводе 11132×100. Обмотка I содержит 320 витков провода ПЭВ-2 диаметром 1,16 мм, обмотка II — 34 витка ПЭВ-2 диаметром 2,46 мм. Намотку можно вести также несколькими проводами меньшего диаметра.
Для заряда аккумуляторов большим током в последнее время используют и современную элементную базу с применением специализированных микросхем, а также полевых МОП-транзисторов с минимальным сопротивлением открытого канала (десятые-сотые доли Ом). Примеры таких устройств приведены ниже.
Портативное устройство, предназначенное для зарядки литиевых (ионно-литиевых) батарей пульсирующим током, показано на рис. 16.9 [16.13]. Автоматизированное зарядное устройство выполнено на основе специализированной микросхемы фирмы MAXIM — MAX1679. Питание зарядное устройство получает от сетевого адаптера, способного выдавать напряжение 6 В при токе до 800 мА. Для защиты схемы от неправильного подключения предназначен диод VD1 — диод Шоттки, — рассчитанный на прямой ток 1 А при максимальном обратном напряжении 30 В. Светодиод HL1 предназначен для индикации работы зарядного устройства.


Рис. 16.8. Схема устройства для заряда 12-вольтовых аккумуляторных батарей током от 1 до 15 А

Рис. 16.9. Схема зарядного устройства для ионно-литиевых батарей на основе микросхемы МАХ1679

Рис. 16.10. Схема повышающего преобразователя для заряда 13,8 В аккумуляторной батареи УКВ-радиостанции от бортовой сети автомобиля

Для повышения стабильности работы устройства при изменении температуры окружающей среды в пределах от 0 до 50°С использован термистор R2 типа NTC FENWAL 140-103LAG-RBI, имеющий сопротивление 10 кОм при температуре 25°С.
Напряжение ионно-литиевого элемента составляет 2,5 В на элемент.
Простое зарядное устройство [16.14], предназначенное для подзарядки аккумулятора напряжением 13,8 Б от бортовой сети автомобиля (около 12 В), выполнено на основе повышающего преобразователя напряжения на основе микросхемы LT1170CT )ис. 16.10). Микросхема вырабатывает импульсы частотой 00 кГц. Эти импульсы поступают на внутренний ключевой каскад микросхемы (его выход — вывод 4). Цепочка из резистивного деятеля R2, R3 предназначена для отслеживания колебаний выходного напряжения и организации следящей обратной связи по зпряжению (вывод 2 микросхемы). Выходное напряжение регулируют подбором именно этих резисторов. Выпрямитель преобразователя выполнен на диоде VD2 — диоде Шоттки типа MBR760 прямой ток до 5/4).
Зарядный ток аккумулятора — до 2 А. КПД преобразователь достигает 90%.

Разделы сайта

DirectAdvert NEWS

Друзья сайта

ActionTeaser NEWS

Статистика

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

– простая схема, без лишних наворотов;
– доступность радиодеталей;
– плавная регулировка зарядного тока от 1 до 10 ампер;
– желательно чтобы это была схема зарядно-тренировочного устройства;
– не сложная наладка;
– стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:

На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор – ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:

Схема не плохая, но в ней есть некоторые недостатки:
– колебания напряжения питания приводят к колебанию зарядного тока;
– нет защиты от короткого замыкания кроме предохранителя;
– устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 – 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.

В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог – таймер 1006ВИ1. Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом. Транзистор VT1 – на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242. Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их «ассимметричным» током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000. 18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 — ППБЕ-15, R3 — С5-16MB, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе – прочтите эту статью:

Давно уже известно, что заряд кислотных аккумуляторов автомобилей асимметричным током, при котором отношение Ток(заряд) / Ток(разряд) = 0,1 обеспечивает очищение пластин батареи от дендритов сульфата тем самым продлевая срок службы не новых автомобильных аккумуляторов.

До этого уже была рассмотрена схема самодельного автомобильного зарядника с регулируемым током заряда. В данной статье опишем зарядное устройство для автомобильного аккумулятора, которое способно не только зарядить кислотный аккумулятор, но и очистить его пластины от сульфатов, тем самым восстановить его утраченную емкость.

Еще следует заметить, что положительно на срок службы аккумулятора автомобиля не последнюю роль играет напряжение бортовой сети в автомобиле. Чрезмерно высокое напряжение приводит к перезаряду аккумулятора, а слишком малое к его быстрому разряду.

Принцип работы автомобильного зарядного устройства

В зарядном устройстве предусмотрено автоматическое выключение аппарата от сети переменного тока при достижении на клеммах батареи 14,4 вольт. А также автоматическое включение при понижении напряжения ниже 12,5 вольт, которое может происходить в результате саморазряда. Включение и отключение происходит бесконтактным способом, при помощи симистора. Тумблер SA1 предназначен для принудительного включения зарядного устройства в том случае, когда аккумулятор слишком сильно разряжен и его напряжение ниже 12,5В.

Зарядное устройство для автомобильного аккумулятора обладает преимуществом, а это то, что оно не включится, пока к нему не подключена аккумуляторная батарея, что в свою очередь исключает всевозможные замыкания. Так же к преимуществу данного прибора можно отнести то, что во время его работы отсутствует интенсивное «кипение» электролита.

На первичную обмотку трансформатора переменное напряжение сети подается через предохранитель FR1 и симистор VD1. Далее пониженное напряжение, равное 21 вольту, с вторичной обмотки через силовой диод VD3 и резистор R8 идет на плюсовой вывод аккумулятора. Для контроля параллельно подключен вольтметр с максимальной шкалой 15 вольт. Для автоматического включения и выключения прибора собран узел контроля.

Он представляет собой триггер Шмитта состоящего из диодов VD5, VD6 на которых происходит падение потенциала в 1,8В (величина гистерезиса) и переходе база – эмиттер транзистора VT2. Резистор R7 предназначен для выставления необходимого напряжения (14,4В) при котором зарядное устройство должно быть отключено.

При подключении автомобильного аккумулятора к клеммам зарядного устройства, транзистор открывается, что в свою очередь включает симистор VD1 через оптрон VD4. В результате чего на трансформатор подается напряжение питания и начинается зарядка. Для стабильной работы, управление симистором происходит через диодный мост VD2.

Режим десульфатация в зарядном устройстве автомобиля

При включении тумблера SA2 происходит подключение резистора R5. В результате этого на положительной полуволне вторичного напряжения происходит заряд аккумулятора, а на отрицательной полуволне совершается небольшой разряд батареи в результате протекания тока через балластный резистор R5. Светодиод VD8 указывает на включение режима десульфатации.

Детали зарядного устройства для автомобильного аккумулятора

Мощность силового трансформатора необходимо взять не менее 160 Вт и напряжением вторичной обмотки около 21 В. Нагрузочный резистор R8 — проволочный изготовленный из нихромовой проволоки диаметром 0,6 мм. Балластный резистор R5 марки ПЭВР мощностью от 10 до 15 Ватт. Выпрямительный диод VD3 может быть любой из Д242 -Д248 с любой буквой. Его необходимо разместить на радиаторе площадью примерно 200 см2. Оставшиеся резисторы типа – МЛТ. Симистор можно взять КУ208Н.

Как сделать схему зарядного устройства батареи с помощью кремниевого выпрямителя (SCR)

Батарея заряжается небольшим количеством переменного или постоянного напряжения. Поэтому, если вы хотите зарядить аккумулятор от источника переменного тока, выполните следующие действия: сначала нам нужно ограничить большое напряжение переменного тока, необходимо отфильтровать напряжение переменного тока, чтобы удалить шум, отрегулировать и получить постоянное напряжение, а затем подать полученное напряжение на аккумулятор для зарядки. После завершения зарядки цепь должна автоматически выключиться.

Блок-схема зарядного устройства с использованием SCR:

Источник переменного тока подается на понижающий трансформатор, который преобразует большой источник переменного тока в ограниченный источник переменного тока, фильтрует напряжение переменного тока и удаляет шум, а затем подает это напряжение на SCR, где он выпрямит переменный ток и подаст полученное напряжение на аккумулятор для зарядки.

Принципиальная схема зарядного устройства с тиристором

Принципиальная схема контура зарядного устройства с тиристором приведена ниже.

Пояснение к электрической схеме быть до 20 В прибл.понижающее напряжение подается на SCR для выпрямления, а SCR выпрямляет основное напряжение переменного тока. Это выпрямленное напряжение используется для зарядки аккумулятора.

  • Когда аккумулятор подключается к цепи зарядки, аккумулятор не разряжается полностью, и он разряжается, это дает прямое напряжение смещения транзистору через диод D2 и резистор R7, которые включаются. Когда транзистор включен, тиристор отключится.
  • Когда напряжение батареи падает, прямое смещение уменьшается, и транзистор выключается.Когда транзистор выключается автоматически, диод D1 и резистор R3 получают ток на затвор SCR, это запускает SCR и проводит ток. SCR будет выпрямлять входное переменное напряжение и подавать его на батарею через резистор R6.
  • Это будет заряжать батарею, когда падение напряжения в батарее уменьшается, ток прямого смещения также увеличивается на транзисторе, когда батарея полностью заряжена, транзистор Q1 снова включается и выключает SCR.
  • Также прочтите сообщение: Цепь зарядного устройства свинцово-кислотной батареи

    Схема зарядного устройства батареи с использованием SCR и LM 311

    Вот еще одно зарядное устройство, управляемое схемой, с использованием SCR и LM311. Сигнал переменного тока выпрямляется с помощью тиристора, а компаратор используется для определения напряжения заряда батареи по отношению к опорному напряжению, чтобы управлять переключением тиристора.

    Принцип, лежащий в основе этой схемы

    Принцип, лежащий в основе схемы, заключается в управлении переключением SCR на основе зарядки и разрядки батареи.Здесь SCR действует как выпрямитель, а также как переключатель, позволяющий подавать выпрямленное напряжение постоянного тока для зарядки аккумулятора. В случае, если аккумулятор полностью заряжен, эта ситуация обнаруживается с помощью схемы компаратора, и тиристор отключается.

    Когда заряд аккумулятора падает ниже порогового уровня, на выходе компаратора включается SCR, и аккумулятор снова заряжается. Здесь компаратор сравнивает напряжение на батарее с опорным напряжением.

    Принципиальная схема цепи зарядного устройства батареи с использованием SCR и LM311

    Принципиальная схема зарядного устройства напряжения батареи с использованием LM311 и SCR — ElectronicsHub.Org
    Схема схемы зарядного устройства с использованием SCR и LM311:

    Схема всей схемы зависит от типа аккумулятора, который используется для подзарядки. Предположим, мы используем 6-элементную никель-кадмиевую батарею на 9 В с номиналом 20 А · ч в ампер-часах и напряжением одной ячейки 1,5 В. Это установит необходимое оптимальное напряжение батареи около 9 В.

    При напряжении 9 В на делителе потенциала напряжение на потенциометре и резисторе должно быть выше 5,2 В (уровень опорного напряжения).Для этой цели мы выбираем схему делителя потенциала, состоящую из резистора 22 кОм, резистора 40 кОм и потенциометра 20 кОм.

    Выходной ток от LM311 составляет около 50 мА, и поскольку здесь мы используем транзистор BC547 с низким базовым током, нам требуется резистор около 150 Ом. Используемый трансформатор — трансформатор 230 / 12В. Первичная обмотка трансформатора подключена к источнику переменного тока 230 В, а вторичная обмотка подключена к выпрямителю.

    Также прочтите сообщение — Цепь автоматического зарядного устройства батареи

    Как работать со схемой зарядного устройства батареи?

    Первоначально, когда на схему подается питание и уровень заряда батареи ниже порогового напряжения, схема выполняет задачу зарядки батареи.SCR запускается напряжением на выводе затвора через резистор R1 и диод D1. Затем он начинает выпрямлять напряжение переменного тока, но только на половину цикла. Когда постоянный ток начинает течь к батарее через резистор R2, батарея заряжается. Напряжение на делителе потенциала, состоящем из потенциометра RV1 и резистора R4, зависит от напряжения на батарее. Это напряжение подается на инвертирующий терминал OPAMP LM311.

    Неинвертирующий терминал получает опорное напряжение 5.2В с использованием стабилитрона. Для нормального режима зарядки это опорное напряжение больше, чем напряжение на делителе потенциала, а выходной сигнал компаратора меньше порогового напряжения, необходимого для запуска NPN-транзистора в режим проводимости. Таким образом, транзистор и диод D3 остаются выключенными, а затвор SCR получает напряжение срабатывания через R1 и D1.

    Теперь, когда аккумулятор начинает заряжаться и в определенный момент, когда он полностью заряжен, напряжение на делителе потенциала достигает значения выше опорного напряжения.Это означает, что напряжение на инвертирующем выводе меньше, чем напряжение на неинвертирующем выводе, а выходной сигнал компаратора больше, чем пороговое напряжение эмиттера базы для транзистора.

    Это заставляет транзистор проводить, и он включается. В то же время, когда диод D3 смещен в прямом направлении, он начинает проводить, и это блокирует запуск напряжения затвора SCR, поскольку теперь он подключен к низкому потенциалу или земле. Таким образом, SCR отключается, и операция зарядки останавливается или приостанавливается.Опять же, когда заряд аккумулятора падает ниже порогового уровня, операция зарядки возобновляется, как описано выше. Резистор R7 и диод D4 должны обеспечивать небольшую непрерывную зарядку в случае, если тиристор находится в выключенном состоянии.

    Примечание. Также прочтите сообщение — Схема зарядного устройства для мобильных телефонов

    Применение схемы зарядного устройства с использованием SCR и LM311:
    1. Его можно использовать для зарядки аккумуляторов, используемых в игрушках.
    2. Это переносная схема, которую можно носить с собой куда угодно.
    3. Может использоваться как автоматическое зарядное устройство, особенно во время вождения.
    Ограничения цепи зарядного устройства батареи:
    1. Преобразование переменного тока в постоянное здесь использует только выпрямитель и может содержать пульсации переменного тока, поскольку нет фильтра.
    2. Однополупериодный выпрямитель делает зарядку и разрядку довольно медленными.
    3. Эту схему нельзя использовать для батарей с более высоким номиналом в ампер-часах.
    4. Зарядка аккумулятора может длиться дольше.

    Schematics.com | Зарядное устройство с использованием SCR

    Аккумулятор можно заряжать небольшим количеством переменного или постоянного напряжения. Это простая схема, которая может заряжать аккумулятор с помощью SCR и LM311. Здесь SCR действует как выпрямитель, а также как переключатель, позволяющий подавать выпрямленное напряжение постоянного тока на батарею, в то время как компаратор используется для определения напряжения заряда батареи по отношению к опорному напряжению, чтобы управлять переключением SCR. .

    Когда схема питается от источника переменного тока 230 В и уровень заряда батареи ниже порогового напряжения, схема выполняет задачу по зарядке батареи. Принцип, лежащий в основе схемы, заключается в управлении SCR на основе заряда и разряда батареи. Первоначально SCR запускается напряжением на выводе затвора через резистор R1 и диод D1. Затем он выпрямляет переменное напряжение с трансформатора (трансформатор 230/12 В).Когда постоянный ток начинает течь к батарее через резистор R2, батарея заряжается. Напряжение на делителе потенциала (состоящем из потенциалов 22 кОм, 47 кОм и 20 кОм) зависит от напряжения на батарее. Это напряжение подается на неинвертирующий терминал OPAMP LM311, в то время как инвертирующий терминал получает опорное напряжение с помощью стабилитрона. Теперь, когда аккумулятор полностью заряжен, напряжение на делителе потенциала достигает значения выше опорного напряжения. Это означает, что выходное напряжение компаратора больше порогового напряжения эмиттера базы транзистора.Это заставляет транзистор проводить, и в то же время диод D3 смещен в прямом направлении, он начинает проводить, и это блокирует запуск напряжения затвора SCR, поскольку теперь он подключен к низкому потенциалу или земле. Таким образом, SCR отключается. Опять же, когда заряд аккумулятора падает ниже порогового уровня, операция зарядки возобновляется, как описано выше.

    Схема может использоваться для зарядки аккумуляторов игрушек. Его также можно использовать в качестве автоматического зарядного устройства, особенно во время вождения, поскольку это портативная схема, которую можно носить с собой куда угодно.Недостатком схемы является то, что в ней используется только полуволновой выпрямитель, что делает зарядку и разрядку довольно медленными.

    Зарядное устройство с SCR — проект IEEE Maker

    Это ваша возможность показать миру работу, которая не дает вам спать по ночам. Итак, если вы неустанно работаете над техническим проектом, который решает сложные проблемы и имеет приложения, приносящие пользу обществу, и хотите выиграть отличные призы, мы хотим услышать ваше мнение.

    УСЛОВИЯ

    ДЛЯ УЧАСТИЯ ИЛИ ВЫИГРЫША НЕ ТРЕБУЕТСЯ ПОКУПКА.ПОКУПКА НЕ УВЕЛИЧИВАЕТ ВАШИ ШАНСЫ НА ВЫИГРЫШ.

    Contest: 2017 IEEE Maker Project («Конкурс»)

    Спонсор : Спонсор конкурса — IEEE, 445 Hoes Lane, Piscataway, NJ 08854-4141 USA («Спонсор»).

    Право на участие : В конкурсе могут участвовать жители Соединенных Штатов Америки и других стран, если это разрешено местным законодательством, в возрасте от восемнадцати (18) лет и старше. Сотрудники Спонсора, его агентов, аффилированных лиц и их ближайшие родственники не имеют права участвовать в Конкурсе.Конкурс регулируется всеми применимыми государственными, местными, федеральными и национальными законами и постановлениями. Не действует в странах и регионах, где это запрещено законом.

    В случае, если Спонсор придет к выводу, что потенциальный победитель не соответствует требованиям, потенциальный победитель будет дисквалифицирован, не получит приза и будет выбран альтернативный победитель с использованием методов, описанных в настоящих Официальных правилах.

    Соглашение с Официальными правилами : Участвуя в этом Конкурсе, Участники соглашаются соблюдать настоящие Официальные правила, установленные Спонсором и / или которые могут быть исправлены или изменены Спонсором после начала Конкурса по собственному усмотрению Спонсора. и без предварительного уведомления.Спонсор оставляет за собой право просмотреть и квалифицировать все Заявки и отклонить любые Заявки, которые не соответствуют требованиям для участия, установленным Спонсором, или отменить Конкурс полностью по собственному усмотрению Спонсора. Решения Спонсора являются окончательными и обязательными во всех отношениях.

    Период подачи заявок : Этот конкурс открывается 16 мая 2017 года в 10:00 по восточному времени, и все заявки должны быть отправлены до 23:59 по восточному времени 17 октября 2017 года («Период проведения акций»).

    Как принять участие : Заявки должны быть инженерными проектами, которые были построены или созданы с использованием аппаратных или программных технологий с целью улучшения общества.Заявка должна включать изображение или видео того, что было построено, а также описание построенной технологии. Следующие пункты лишают проект возможности считаться действительным представлением:

    1. Разработка проекта была оплачена организацией или работодателем или должна быть построена для использования в организации.
    2. Вы не являетесь физическим лицом или членом команды, создавшей проект.
    3. Вы еще не начали работу над проектом ( Примечание: проекты не должны быть завершены при отправке, но они должны быть запущены ).
    4. Проект представлен без изображения или видео, его изображающего.
    5. Проект представлен без названия или описания, содержит менее 50 или более 300 слов.

    У участников будет два способа принять участие в этом конкурсе. Участники могут принять участие в конкурсе в период проведения акции по следующим каналам:

    • Микросайт проекта IEEE Maker : Участники могут участвовать, отправив проекты через микросайт (передатчик.ieee.org / makerproject /). Чтобы быть засчитанным как действительная заявка, участник должен предоставить свой адрес электронной почты до подачи заявки. Все записи также должны соответствовать правилам Facebook.
    • Facebook: участники, которым «нравится» страница IEEE Facebook или любая из участвующих страниц Facebook, управляемых персоналом IEEE, могут подавать голоса через приложение IEEE Maker Project. Чтобы быть засчитанным как действительная заявка, участник должен предоставить свой адрес электронной почты до подачи своих голосов. Как только участник предоставит свою информацию, он сможет взаимодействовать со всеми разделами сайта.Все записи также должны соответствовать правилам Facebook.

    Нет ограничений на количество раз, когда человек может входить в систему. Работы должны быть оригинальными. Заявки, которые копируют другие записи или интеллектуальную собственность кого-либо, кроме Участника, могут быть удалены Спонсором, а Участник может быть дисквалифицирован. Спонсор оставляет за собой право удалить любую заявку и дисквалифицировать любого Участника, если заявка будет сочтена, по собственному усмотрению Спонсора, неуместной. Facebook в дальнейшем именуется «Конкурсная организация.«Facebook, Google Plus, Instagram, LinkedIn, Random.org и Twitter далее именуются« Объекты конкурса ».

    Гарантия участника

    и разрешение спонсору: Принимая участие в конкурсе, участники гарантируют и подтверждают, что заявка на участие в конкурсе была создана и отправлена ​​участником. Участники также заявляют и гарантируют, если они проживают за пределами Соединенных Штатов Америки, что их участие в этом конкурсе и принятие приза не будут нарушать их местные законы.Принимая участие в Конкурсе, Участники также предоставляют Спонсору право повторно использовать и / или размещать свои работы в социальных сетях Спонсора. Записи также могут использоваться в рекламных, рекламных и других целях в любых средствах массовой информации, известных сейчас и в будущем. Имена, изображения и адрес электронной почты участников не будут использоваться в рекламных материалах.

    Приз: Количество доступных призов, призов, приблизительная розничная стоимость и шансы на получение призов: Все проекты победителей в категориях будут представлены на IEEE Transmitter, The Institute, Potentials Magazine и получат цифровой сертификат.Каждый из шести (6) победителей (доступность, образование, развлечения, здоровье и безопасность, устойчивость, транспорт и прочее) получит приз в виде одной (1) подарочной карты Amazon на 50 долларов США (или эквивалентной суммы в местной валюте). Будет вручен один (1) второй приз — подарочная карта Amazon на сумму 250 долларов США (или эквивалентную сумму в местной валюте). Также будет вручен один (1) главный приз в виде подарочной карты Amazon на сумму 500 долларов США (или эквивалентную сумму в местной валюте). Призы будут вручены победителю после завершения периода проведения акции.Шансы на выигрыш приза зависят от количества подходящих работ, полученных в период проведения акции. Спонсор оставляет за собой право не присуждать призы во всех категориях, если заявки не соответствуют требованиям.

    Выбор победителей : Победители всех уровней будут выбраны на основе процесса проверки содержания. Судейская коллегия, выбранная Спонсором («Судьи»), рассмотрит все заявки. Работы будут оцениваться по трем (3) критериям:

      1. Оригинальность
      2. Инновации
      3. На пользу человечеству

    Уведомление о потенциальных победителях призов : После объявления победителя Спонсор уведомит их по электронной почте.Все потенциальные победители будут уведомлены спонсору по электронной почте. У потенциальных победителей будет пять (5) рабочих дней для ответа после получения первоначального уведомления о призах, в противном случае приз может быть конфискован и передан другому победителю. От потенциальных победителей может потребоваться подписание аффидевита о праве на участие (в котором подтверждается, что они выполнили эти правила), а также освобождение от ответственности и освобождение от ответственности (если это разрешено законом), которые, если они выдаются, должны быть заполнены, подписаны и возвращен в течение 10 (десяти) рабочих дней с даты выдачи, в противном случае приз будет аннулирован и может быть передан другому победителю.Если уведомление о призах или призах возвращается как недоставленное или в случае несоблюдения настоящих Официальных правил, приз будет аннулирован и может быть передан другому победителю.

    Разглашение, гласность и конфиденциальность : Получив приз и / или, по запросу, подписав письменное заявление о праве на участие и обязательства / освобождение от гласности, Победитель приза дает согласие на использование своего имени, изображения и бизнеса. имя и адрес Спонсора в рекламных и рекламных целях, в том числе, помимо прочего, на страницах Спонсора в социальных сетях, без какой-либо дополнительной компенсации, за исключением случаев, когда это запрещено.Никакие записи не возвращаются. Все работы становятся собственностью Спонсора. Обладатель приза соглашается освободить и оградить Спонсора и его должностных лиц, директоров, сотрудников, аффилированные компании, агентов, правопреемников и правопреемников от любых претензий или оснований для иска, возникающих в результате участия в конкурсе. Победившая заявка будет объявлена ​​27 ноября 2017 года и опубликована на IEEE Transmitter.

    Спонсор

    не несет ответственности за сбои в работе компьютерной системы, оборудования, программного обеспечения или программ или другие ошибки, сбои, задержки компьютерных транзакций или сетевых подключений, которые являются человеческими или техническими по своей природе, а также за поврежденные, утерянные, запоздалые, неразборчивые или неверно направленные записи; технические, аппаратные, программные, электронные или телефонные сбои любого рода; потеряны или недоступны сетевые соединения; мошеннические, неполные, искаженные или задержанные компьютерные передачи, вызванные Спонсором, пользователями или каким-либо оборудованием или программами, связанными с этим Конкурсом или использованными в нем; или из-за какой-либо технической или человеческой ошибки, которая может произойти при обработке представленных материалов или загрузке, которая может ограничить, задержать или помешать участнику участвовать в Конкурсе.
    Спонсор
    оставляет за собой право по собственному усмотрению отменить или приостановить этот конкурс и присудить приз из заявок, полученных до момента прекращения или приостановки, если вирус, ошибки или другие причины, не зависящие от Спонсора, несанкционированное вмешательство человека, неисправность, проблемы с компьютером, телефонной линией или сетевым оборудованием или неисправностью программного обеспечения, которые, по единоличному мнению Спонсора, коррумпируют, ставят под угрозу или существенно влияют на администрирование, справедливость, безопасность или надлежащее проведение конкурса или надлежащую подачу заявок.Спонсор не несет ответственности за любые убытки, травмы или ущерб, причиненные, прямо или косвенно, полностью или частично, в результате загрузки данных или иного участия в этом Конкурсе.

    Право на использование Заявок : Принимая участие в Конкурсе, участники предоставляют Спонсору неисключительное, безотзывное, бесплатное, бессрочное, всемирное право и лицензию на воспроизведение, публикацию, отображение, редактирование и иное использование представленных Заявок и заявлений участника. полное имя и город и штат / провинция / страна проживания, фотография, изображение, голос и принадлежность к учреждению, в печати или любых офлайн, онлайн и других средствах массовой информации для целей редакционных статей, выставки, рекламы, рекламы и продвижения без дополнительной компенсации или разрешения, если это не запрещено законом.

    Общие ограничения призов : Замена призов или передача призов не разрешены, кроме как Спонсором в связи с недоступностью приза. Налоги на импорт / экспорт, НДС и национальные налоги на призы являются исключительной ответственностью победителей. Принятие приза означает разрешение Спонсору и его назначенным лицам использовать имя и изображение победителя в рекламных, рекламных и других целях в любых средствах массовой информации, известных сейчас и в дальнейшем, без дополнительной компенсации, если это не запрещено законом.Победитель признает, что ни Спонсор, ни организации конкурса, ни их директора, сотрудники или агенты не давали и не несут никакой ответственности за какие-либо гарантии, заявления или гарантии, явные или подразумеваемые, фактически или по закону, в отношении любого приза. , включая, помимо прочего, его качество, механическое состояние или пригодность для определенной цели. Любые и / или все гарантии на приз (если таковые имеются) регулируются условиями соответствующих производителей, поэтому победители соглашаются обращаться исключительно к таким производителям за любой такой гарантией и / или гарантией.

    Заявления и гарантии в отношении заявок: Отправляя Заявку, вы заявляете и гарантируете, что ваша Заявка не будет и не будет содержать, содержать или описывать, как определено по собственному усмотрению Спонсора: (A) ложные утверждения или любые искажения ваших принадлежность к физическому или юридическому лицу; (B) личная информация о вас или любом другом человеке; (C) заявления или другой контент, который является ложным, вводящим в заблуждение, вводящим в заблуждение, скандальным, непристойным, непристойным, незаконным, дискредитирующим, клеветническим, мошенническим, вредоносным, угрожающим, оскорбляющим, ненавистным, унижающим достоинство, запугивающим или оскорбительным по расовому или этническому признаку; (D) поведение, которое может рассматриваться как уголовное преступление, может повлечь за собой уголовную или гражданскую ответственность или может нарушить какой-либо закон; (E) любую рекламу, продвижение или другое навязывание, или любое торговое наименование или товарный знак третьей стороны; или (F) любой вирус, червь, троянский конь или другой вредоносный код или компонент.Отправляя Заявку, вы заявляете и гарантируете, что владеете полными правами на Заявку и получили все необходимые согласия, разрешения, утверждения и лицензии для подачи Заявки и соблюдения всех настоящих Официальных правил, а также что поданная Заявка является вашей единственной оригинальной работой, ранее не публиковалась, не выпускалась или не распространялась и не нарушает никаких прав третьих лиц и не нарушает какие-либо законы или постановления.

    Ограничение ответственности : Спонсор, организации, участвующие в конкурсе, и их соответствующие родители, аффилированные лица, подразделения, лицензиаты, дочерние компании, рекламные и промо-агентства, а также соответствующие сотрудники, должностные лица, директора каждой из вышеуказанных организаций, акционеры и агенты («Освободившиеся стороны») не несут ответственности за неправильную или неточную передачу введенной информации, человеческий фактор, техническую неисправность, потерю / задержку передачи данных, пропуск, прерывание, удаление, дефект, сбои линии любой телефонной сети, компьютера. оборудование, программное обеспечение или любое их сочетание, невозможность доступа к веб-сайтам, повреждение компьютерной системы пользователя (оборудование и / или программное обеспечение) из-за участия в этом конкурсе или любая другая проблема или ошибка, которые могут возникнуть.Принимая участие, участники соглашаются освободить и обезопасить Освободившиеся стороны от любых претензий, исков и / или ответственности за травмы, убытки или ущерб любого рода, возникающие в результате или в связи с участием в и / или ответственности за травмы, убытки или ущерб любого рода, причиненные человеку или имуществу, возникшие в результате или в связи с участием и / или участием в этом конкурсе, участие — это любая деятельность, связанная с конкурсом, или использование любого выигранного приза. Материалы входа, которые были подделаны или изменены, являются недействительными.Если по какой-либо причине этот конкурс не может быть проведен в соответствии с планом, или если этот конкурс или любой связанный с ним веб-сайт (или любая его часть) поврежден или не позволяет надлежащее проведение этого конкурса и обработку заявок в соответствии с этими правилами, или если заражение компьютерным вирусом, ошибки, подделка, несанкционированное вмешательство влияют на администрирование, безопасность, справедливость, целостность или надлежащее проведение этого конкурса, Спонсор оставляет за собой право по своему усмотрению дисквалифицировать любое лицо, причастное к такому действию, и / или отменить, прекратить, изменить или приостановить этот конкурс или любую его часть, или изменить эти правила без предварительного уведомления.В случае разногласий относительно того, кто подал онлайн-заявку, заявка будет считаться отправленной авторизованным владельцем учетной записи по адресу электронной почты, указанному во время подачи заявки. «Уполномоченный владелец счета» определяется как лицо, назначенное на адрес электронной почты поставщиком услуг доступа в Интернет, поставщиком онлайн-услуг или другой организацией, ответственной за назначение адресов электронной почты для домена, связанного с данным адресом электронной почты. Любая попытка участника или любого другого лица умышленно повредить какой-либо веб-сайт или подорвать законную работу конкурса является нарушением уголовного и гражданского законодательства, и в случае такой попытки Спонсор оставляет за собой право требовать возмещения убытков и других средств правовой защиты от любое такое лицо в максимальной степени, разрешенной законом.Этот конкурс регулируется законами штата Нью-Джерси, и все участники настоящим подчиняются исключительной юрисдикции федеральных судов или судов штата, расположенных в штате Нью-Джерси, для разрешения всех претензий и споров. Facebook, Google Plus, Instagram, LinkedIn, Random.org и Twitter не являются спонсорами и не участвуют в этом конкурсе.

    Споры : КАЖДЫЙ УЧАСТНИК СОГЛАШАЕТСЯ, ЧТО: (1) ЛЮБЫЕ И ВСЕ СПОРЫ, ПРЕТЕНЗИИ И ПРИЧИНЫ ДЕЙСТВИЙ, ВОЗНИКАЮЩИЕ ИЛИ В СВЯЗИ С ДАННЫМ КОНКУРСОМ ИЛИ ЛЮБЫМИ ПРИЗЫВАМИ, БУДУТ РАЗРЕШЕНЫ ИНДИВИДУАЛЬНО, БЕЗ ПЕРЕРАБОТКИ АССОЦИАЦИЯ АМЕРИКАНСКОГО АРБИТРАЖА, ПОСЛЕДУЮЩАЯ АССОЦИАЦИИ АМЕРИКАНСКОГО АРБИТРАЖА, ДЕЙСТВИТЕЛЬНО, (2) ЛЮБЫЕ И ВСЕ ПРЕТЕНЗИИ, РЕШЕНИЯ И ПРИГЛАШЕНИЯ, ВКЛЮЧАЮЩИЕ ФАКТИЧЕСКИЕ ЗАКРЫТЫЕ ЗАЯВЛЕНИЯ, ОГРАНИЧИВАЮТСЯ БЕЗ ПРЕДВАРИТЕЛЬНЫХ ЗАЯВОК ЭТОТ КОНКУРС, НО НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ гонорары адвокатам; И (3) НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ ЛЮБОЙ УЧАСТНИК НЕ БУДЕТ РАЗРЕШЕН НА ПОЛУЧЕНИЕ НАГРАД ЗА, И НАСТОЯЩИЙ ОТКАЗЫВАЕТСЯ ОТ ВСЕХ ПРАВ НА ПРЕТЕНЗИЮ, КАРАТЕЛЬНЫЕ, СЛУЧАЙНЫЕ И КОСВЕННЫЕ УБЫТКИ И ЛЮБЫЕ ДРУГИЕ УБЫТКИ, ЗА ИСКЛЮЧЕНИЕМ И ЛЮБЫЕ И ВСЕ ПРАВА НА УБЫТКУ МНОЖЕСТВЕННЫМ ИЛИ Иным образом УВЕЛИЧИВАЮТСЯ.ВСЕ ВОПРОСЫ И ВОПРОСЫ, КАСАЮЩИЕСЯ СТРОИТЕЛЬСТВА, ДЕЙСТВИЯ, ТОЛКОВАНИЯ И ДЕЙСТВИЯ НАСТОЯЩИХ ОФИЦИАЛЬНЫХ ПРАВИЛ ИЛИ ПРАВ И ОБЯЗАННОСТЕЙ УЧАСТНИКА И СПОНСОРА В СВЯЗИ С КОНКУРСОМ, РЕГУЛИРУЮТСЯ, И СОЗДАВАЕМЫЕ ЗАКОНОМ. НЬЮ-ДЖЕРСИ, БЕЗ ПРИМЕНЕНИЯ ЛЮБОГО ВЫБОРА ЗАКОНА ИЛИ КОНФЛИКТА ЗАКОНОДАТЕЛЬСТВА, ПРАВИЛ ИЛИ ПОЛОЖЕНИЙ (ШТАТА НЬЮ-ДЖЕРСИ ИЛИ ЛЮБОЙ ДРУГОЙ ЮРИСДИКЦИИ), КОТОРЫЕ ВЫЗЫВАЛИ ПРИМЕНЕНИЕ ЗАКОНОВ ЛЮБОЙ ЮРИСДИКЦИИ, ДРУГОЙ ЮРИСДИКЦИИ .СПОНСОР НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБЫЕ ТИПОГРАФИЧЕСКИЕ ИЛИ ДРУГИЕ ОШИБКИ ПРИ ПЕЧАТИ ПРЕДЛОЖЕНИЯ ИЛИ АДМИНИСТРАЦИИ КОНКУРСА ИЛИ В ОБЪЯВЛЕНИИ ПРИЗОВ.

    Результаты конкурса и официальные правила : Чтобы узнать личность победителя и / или копию настоящих Официальных правил, отправьте конверт с маркой и обратным адресом по адресу Fran Tardo, IEEE, 445 Hoes Lane, Piscataway, NJ 08854-4141 США.

    Цепь зарядного устройства симистора

    | Проекты самодельных схем

    Зарядное устройство на основе симистора заменяет обычное реле для очень эффективного автоматического отключения питания от аккумулятора.

    В сообщении объясняется простая схема зарядного устройства с использованием функции автоматического отключения симистора. Схема может использоваться для зарядки любых сильноточных аккумуляторов с высоким AH-типом с функцией автоматического отключения при полной зарядке.

    Идея была предложена г-ном Ракешем Пармаром.

    Использование симистора вместо реле

    В одном из предыдущих постов мы изучили схему зарядного устройства сильноточной батареи, основанную на концепции полного отключения реле, в которой использовалось реле для инициирования процесса зарядки путем включения питания трансформатора и затем отключение сети, как только будет достигнут полный уровень заряда аккумулятора
    .

    В предлагаемой схеме зарядного устройства на основе симистора принцип работы точно такой же, за исключением включения симистора вместо реле.

    Схема соединений

    При подаче питания от сети схема не включается сама по себе, а остается в состоянии ожидания.

    Указанная кнопка предназначена для запуска процесса зарядки, поэтому, как только этот переключатель нажимается, симистор на мгновение замыкается, позволяя трансформатору на этот момент получить доступ к электросети
    .

    Вышеупомянутое действие также мгновенно позволяет схеме получать питание в течение определенного периода времени.

    Как это работает

    Предполагая, что батарея находится в разряженном состоянии, вышеупомянутая инициализация вызывает появление напряжения на контакте №2 операционного усилителя на уровне ниже, чем указанный контакт №3 ИС.

    Это, в свою очередь, приводит к тому, что контакт № 6 операционного усилителя становится высоким, активируя симистор, а также блокируя трансформатор во включенном положении.

    Вся цепь теперь фиксируется и запитывается даже после того, как переключатель отпущен, обеспечивая необходимые параметры зарядки для аккумулятора.Красный светодиод загорается, подтверждая инициализацию зарядки аккумулятора.

    По мере того, как батарея заряжается, потенциал контакта №2 постепенно начинает расти, пока, наконец, он не превысит опорный уровень контакта №3, что сразу же заставит выход IC упасть на низкий уровень. В тот момент, когда это происходит, триггер затвора симистора срабатывает, прерывая действие фиксации, и вся цепь выключается.

    Схема возвращается в свое предыдущее положение ожидания до следующего нажатия переключателя
    для нового цикла блокировки.

    Если вам понравилась схема зарядного устройства с симистором, поделитесь ею с другими.

    О компании Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
    Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

    Схема зарядного устройства аккумуляторной батареи | Самодельные проекты схем

    В сообщении рассказывается об автоматической схеме зарядного устройства для аккумуляторных батарей с функцией автоматического отключения при перезарядке для работы с электромобилем.Идея была предложена мистером Джорджем.

    Цели и требования схемы

    1. Я Джордж из Австралии, пытаюсь переделать малолитражку в электромобиль.
    2. В прикрепленном PDF-файле показана конфигурация модулей литиевых батарей, составляющих полную упаковку.
    3. Возможно, вы подскажете, какое зарядное устройство или конфигурацию я могу использовать для зарядки аккумулятора.
    4. У меня есть в наличии 240 или 415 вольт переменного тока.

    Детали разводки батареи

    Конструкция

    На приведенном выше рисунке показана конфигурация литий-ионной батареи, расположенной последовательно, в параллельном режиме, чтобы генерировать огромные 210 В при приблизительно 80 Ампер.

    Чтобы зарядить эту относительно большую батарею, нам нужен контроллер, который может управлять током, а также подавать на батарею необходимое количество вольт для их эффективной зарядки.

    Источник 240 В переменного тока выглядит более подходящим, поэтому этот источник можно использовать в качестве входа для указанной цели.

    На следующей схеме показана предлагаемая схема зарядного устройства модуля литий-ионной аккумуляторной батареи 220 В, давайте подробно разберемся с ее работой со следующим пояснением:

    Принципиальная схема

    ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ 1 мкФ / 25 В ЧЕРЕЗ КОНТАКТ 3 И КОНТАКТ 4 ИС, чтобы SCR ВСЕГДА НАЧИНАЕТСЯ С МГНОВЕННОГО ВКЛЮЧЕНИЯ ПРИ ВКЛЮЧЕНИИ ЦЕПИ, НЕЗАВИСИМО ОТ ПОДКЛЮЧЕНИЯ БАТАРЕИ.

    Принцип работы цепи

    Конструкция очень похожа на одну из предыдущих концепций, касающихся схемы зарядного устройства высоковольтной батареи, за исключением секции реле, которая здесь заменена тиристором, и включения конденсатора падения высокого напряжения для дополнительной безопасности.

    Сильный ток сети соответственно снижается реактивным сопротивлением неполярного конденсатора 100 мкФ / 400 В до примерно 5 А, которое подается на батарею через указанный тиристор. Этот ток можно увеличить до более высокого уровня, просто увеличив значения емкости показанного конденсатора 100 мкФ / 400 В.

    Тиристор или тиристор, который используется в качестве переключателя в этой конструкции, удерживается во включенном положении, пока соответствующий BC547 на его затворе удерживается выключенным.

    Базу BC547 можно увидеть подключенной к выходу операционного усилителя, который настроен как компаратор.

    Пока выходной сигнал операционного усилителя остается низким, BC547 остается выключенным, сохраняя включенным тиристор.

    Вышеупомянутая ситуация продолжает находиться в активированном состоянии до тех пор, пока предварительно установленный уровень напряжения сенсорного входного контакта № 3 ИС остается ниже опорного уровня контакта № 2 ИС.

    Поскольку контакт №3 подключен к плюсу батареи (через резистивную сеть), это означает, что предустановка 10K на контакте №3 должна быть отрегулирована таким образом, чтобы при полном уровне заряда батареи потенциал на контакте № 3 просто превосходит фиксированный опорный потенциал на выводе №2.

    Как только это произойдет, выходной контакт № 6 операционного усилителя мгновенно переключает свой выходной сигнал с начального логического низкого уровня на высокий, что, следовательно, включает BC547 и выключает симистор.

    Зарядка аккумулятора немедленно прекращается.

    Функция резистора гистерезиса

    Резистор гистерезиса Rx, подключенный к контактам №6 и №3 ИС, обеспечивает фиксацию операционного усилителя в этом положении, по крайней мере, на некоторое время, пока напряжение аккумулятора не разрядится до некоторого заранее определенного нижнего порогового уровня .

    На этом небезопасном нижнем уровне операционный усилитель снова проходит переключение и инициирует процесс зарядки, вызывая низкий логический уровень на своем выходном контакте №6.

    Разница между напряжением отключения полного заряда и напряжением восстановления низкого заряда пропорциональна значению Rx, которое можно найти с помощью некоторых проб и ошибок.Более высокие значения приведут к меньшим разницам и наоборот.

    Схема делителя потенциала, образованная указанными резисторами 220 кОм и 15 кОм, обеспечивает необходимое более низкое пропорционально падение напряжения для вывода № 3 операционного усилителя, которое не должно быть выше рабочего напряжения операционного усилителя. .

    Рабочее напряжение питания для операционного усилителя на его выводе №7 получается через конфигурацию эмиттерного повторителя BJT, подключенного через одну из крайних батарей, связанных с отрицательной линией аккумуляторного блока.

    Для дальнейших запросов относительно схемы зарядного устройства для блока литий-ионных аккумуляторов 220 В, пожалуйста, заполните поле для комментариев ниже.

    ОПАСНОСТЬ : ОПИСАННАЯ ВЫШЕ КОНСТРУКЦИЯ НЕ ИЗОЛИРОВАНА ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНО ПРИКАСАТЬСЯ В ВКЛЮЧЕННОМ ПОЛОЖЕНИИ. ПРОДОЛЖИТЬ С ОСТОРОЖНОСТЬЮ.

    О компании Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем сайта: https: // www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
    Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

    Схема зарядного устройства аккумулятора с использованием SCR — работа и недостатки

    Для зарядки аккумулятора требуется небольшое количество постоянного или переменного напряжения. Таким образом, чтобы зарядить любую батарею, предположим, что требуется вход переменного тока, тогда сначала входной сигнал переменного тока должен быть ограничен, затем отфильтрован для удаления шума и отрегулирован так, чтобы напряжение, полученное после этого, можно было использовать для зарядки батареи.

    Однако не только это: после того, как батарея полностью зарядится, цепь должна быть отключена, чтобы не происходила дальнейшая нежелательная зарядка.

    Зарядное устройство , действует как источник для управления и защиты цепей подстанции в нормальных рабочих условиях. Создание зарядного устройства с использованием SCR оказалось большим преимуществом по сравнению с сегодняшним днем.

    Требуется зарядное устройство по сравнению с силовой электроникой?

    Потребность в системах зарядных устройств малой мощности со временем значительно увеличилась из-за того, что использование портативных приборов и оборудования связи быстро увеличивается со временем.Таким образом, зарядка мобильных устройств стала проблемой, и для ее решения используются зарядные устройства.

    Теперь вы, должно быть, думаете о , как зарядное устройство может подавать питание на батарею.

    Как правило, зарядное устройство для батареи подает электрический ток в батарею, так что элементы внутри батареи могут накапливать энергию, которая проходит через нее. Для аккумулятора в основном существует два режима зарядки .

    Первый — это с быстрой зарядкой , который применяется для новых или неиспользуемых аккумуляторов.В то время как другой — это с плавающей зарядкой, , который применяется к находящимся в эксплуатации батареям, где питание нагрузки необходимо для компенсации небольшого заряда, который батарея теряет в течение срока службы.

    Зарядное устройство на базе SCR

    Зарядное устройство на базе тиристора использует принцип переключения тиристора для получения определенной выходной мощности. Схема включает в себя трансформатор, выпрямитель и схему управления в качестве основных элементов.

    Как мы уже обсуждали в начале, для зарядки аккумулятора требуется небольшое количество входного напряжения переменного или постоянного тока.Итак, элементы схемы помогают обеспечить необходимое напряжение для зарядки аккумулятора.

    Работа цепи зарядного устройства с использованием SCR

    На рисунке ниже представлена ​​схема зарядного устройства с тиристором:

    Здесь в качестве входа подается сигнал переменного напряжения со значением 230 В, 50 Гц, а нагрузка представляет собой аккумулятор на 12 В, который необходимо заряжать.

    Следующие элементы схемы:

    • Электропитание переменного тока
    • Понижающий трансформатор
    • Выпрямительная схема
    • SCR
    • Стабилитрон как регулятор напряжения
    • Заряжаемый аккумулятор

    Давайте теперь разберемся, как работает данная схема.

    Итак, первоначально Источник питания 230 В переменного тока подается на понижающий трансформатор, который преобразует высокое напряжение, подаваемое на входе первичной обмотки, в низкое напряжение, которое получается на выходе вторичной обмотки. Итак, здесь напряжение, полученное на другой стороне трансформатора, составляет 15 В относительно нейтрали.

    Из схемы ясно видно, что трансформатор соединяется со схемой выпрямителя, следовательно, выходной сигнал трансформатора поступает на схему выпрямителя.Поскольку у нас есть входной сигнал переменного тока, давайте разберемся, как работает схема выпрямителя, когда применяются две половины сигнала переменного тока.

    Первоначально, когда подается положительная половина входного сигнала переменного тока, тогда диод D 1 в приведенной выше конфигурации будет смещен в прямом направлении и будет проводить, однако, D 2 будет в состоянии обратного смещения, поэтому не будет проводить . И наоборот, когда применяется отрицательная половина входного переменного тока, тогда D 1 не будет проводить, но D 2 будет в проводящем состоянии, это ясно показано в представлении формы сигнала, приведенном ниже:

    Итак, выпрямительная схема будет обеспечивать выпрямленный выход i.е., постоянное напряжение на выводе P.

    Здесь мы использовали стабилитрон с пробивным напряжением 10 В в качестве регулятора напряжения для регулирования уровня напряжения цепи. Следовательно, на клемме Q будет 10 В из-за наличия стабилитрона.

    Поскольку напряжение на клеммах P, которое представляет собой не что иное, как выпрямленное напряжение, сравнительно больше, чем на клемме Q, это приводит к прямому смещению SCR, позволяя ему проводить, и благодаря этому ток начинает течь через нагрузку i.е., аккумулятор 12 В . И мы уже обсуждали в начале, что когда ток течет через батарею, клетки, находящиеся внутри нее, накапливают энергию. Таким образом заряжается аккумулятор.

    Однако, если выпрямленное напряжение меньше, чем напряжение на клеммах на Q, тогда автоматически SCR перейдет в состояние обратного смещения, при его отключении ток через батарею больше не будет протекать.

    Таким образом, можно сказать, что здесь SCR действует как переключатель, который регулирует напряжение, подаваемое на батарею.Теперь возникает вопрос: , когда батарея полностью заряжена, как схема будет работать .

    Итак, в основном то, что происходит в цепи, это то, что выпрямленное напряжение здесь составляет 15 В, поэтому, как только батарея полностью заряжается (предположим, что она достигает 14,5 В), оставшегося значения напряжения на клемме P будет недостаточно, чтобы вызвать дальнейшую проводимость. через тиристор, потому что теперь выпрямленное напряжение будет меньше, чем напряжение на клемме Q. Это не позволит току достигать батареи дальше, и в результате цепь зарядки будет деактивирована.

    В основном это сравнение выпрямленного напряжения и зарядного потенциала производится с помощью схемы компаратора. Как только зарядный потенциал упадет ниже определенного значения, цепь зарядки автоматически активируется, и снова начнется зарядка аккумулятора.

    Здесь следует отметить, что значение напряжения пробоя стабилитрона и трансформатора в цепи зависит от зарядного потенциала аккумулятора. Таким образом, потенциал, при котором будет заряжаться аккумулятор, будет определять значение этих двух параметров схемы.

    Недостатки схемы зарядного устройства с использованием SCR

    1. Зарядка — довольно длительный процесс.
    2. Схема выпрямителя для преобразования переменного тока в постоянный, не устраняет пульсации переменного тока, поскольку здесь отсутствует схема фильтра.
    3. Процесс зарядки и разрядки идет медленно из-за наличия однополупериодного выпрямителя.
    4. Подходит только для зарядки аккумуляторов с малой и средней емкостью в ампер-часах.

    Речь идет о схеме зарядки аккумулятора с использованием SCR.

    Зарядное устройство для тиристорных аккумуляторов

    — HBL Power Systems Limited

    Зарядное устройство для тиристорных аккумуляторов

    Зарядное устройство на основе тиристоров использует принцип переключения тиристоров для достижения желаемой выходной мощности постоянного тока. В основном он состоит из трансформатора, полупроводникового мостового выпрямителя, схемы фильтра и схемы управления.

    Напряжение сети переменного тока преобразуется до подходящего уровня и подается на выпрямительный мост. После сглаживания схемой фильтра он выпрямляет входной переменный ток и подает управляемый выход постоянного тока на батарею и нагрузку.Требуемая выходная мощность регулируется с помощью метода управления фазой, который обеспечивается схемой управления. Сигналы обратной связи от выхода к схеме управления используются для поддержания регулирования напряжения и ограничения тока.

    В новой инновационной модели используется 16-битный контроллер DSP (опционально) для переключения и управления тиристором для достижения желаемого выхода постоянного тока. Выходное напряжение зарядного устройства, выходной ток, ток аккумулятора и температурная компенсация аккумулятора контролируются цифровым сигнальным процессором.Параметры выхода зарядного устройства могут быть установлены или отрегулированы с помощью клавиатуры-дисплея на передней панели с защитой паролем. Он имеет порты связи для локального / удаленного мониторинга измерений и событий.

    Улучшенные характеристики:

    • Аналоговые конструкции, проверенные временем более трех десятилетий.
    • DSP управляемая модель, отвечающая требованиям для систем нового поколения.
    • Расширяемый диапазон выходного напряжения и выходного тока.
    • Индивидуальные панели из классов CRCA, SS304 и SS316.
    • Пылевлагозащита до стандарта IP-65, Nema — 4x.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *