Схема звезда и треугольник в чем разница: Подключение звезда и треугольник — в чем разница

Содержание

Подключение звезда и треугольник — в чем разница

Вся нагрузка в трёхфазных цепях соединяется по схеме звезда или треугольник. В зависимости от вида потребителей электроэнергии и напряжения в электросети и выбирают соответствующий вариант.

Если говорить об электродвигателях, то от выбора варианта соединения обмоток зависит возможность его работы в конкретной сети с номинальными характеристиками.

В статье мы рассмотрим, чем отличаются звезда и треугольник в электродвигателе, на что они влияют и какой принцип подключения проводов в клеммнике трёхфазного двигателя.

Теория

  • Как уже было сказано, схемы соединения звезда и треугольник характерны не только для электродвигателя, но и для обмоток трансформатора, нагревательных элементов (например, тэнов электрокотла) и другой нагрузки.
  • Чтобы понять почему эти схемы соединения элементов трёхфазной цепи так называются, нужно их несколько видоизменить.

В «звезде», нагрузка каждой из фаз соединена между собой одним из выводов, это называется нейтральная точка.

В «треугольнике» каждый из выводов нагрузки подключается к разноимённым фазам.

  1. Всё сказанное в статье далее справедливо для трёхфазных асинхронных и синхронных машин.
  2. Рассмотрим этот вопрос на примере соединения обмоток трёхфазного трансформатора или трёхфазного двигателя (в этом контексте это не имеет значения).
  3. На этом рисунке отличия более заметны, в «звезде» начала обмоток подключаются к фазным проводникам, а концы соединяются вместе, в большинстве случаев к этой же точке нагрузки подключается нулевой провод от питающего генератора или трансформатора.
  4. Точкой обозначены начала обмоток.

То есть в «треугольнике» конец предыдущей обмотки и начало следующей соединяются, и к этой точке подключается питающая фаза. Если перепутать конец и начало — подключаемая машина не будет работать.

В чем разница

Если говорить о подключении однофазных потребителей, кратко разберем на примере трёх электротенов, то в «звезде», если сгорит один из них продолжат работать два оставшихся. Если сгорит два из трёх – вообще ни один не будет работать, поскольку они попарно подключаются на линейное напряжение.

В схеме треугольника даже при перегорании 2 тэнов – третий продолжит работать. В ней нет нулевого провода, его просто некуда подключать. А в «звезде» его подключают к нейтральной точке, и нужен он для уравнивания токов фаз и их симметрии в случае разной нагрузки по фазам (например, в одной из веток подключен 1 ТЭН, а в остальных по 2 параллельно).

Но если при таком соединении (с разной нагрузкой по фазам) отгорит ноль, то напряжения будут неодинаковы (там, где больше нагрузка просядет, а где меньше – возрастёт). Подробнее об этом мы писали в статье о перекосе фаз.

При этом нужно учесть, что подключать обычные однофазные приборы (220В) между фазами, на 380В, нельзя. Либо приборы должны быть рассчитаны на такое питание, либо сеть должна быть с Uлинейным 220В (как в электросетях с изолированной нейтралью некоторых специфичных объектов, например, кораблей).

Но, при подключении трёхфазного двигателя, ноль к средней точке звезды часто не подключают, так как это симметричная нагрузка.

Формулы мощности, тока и напряжения

Начнем с того что в схеме звезды есть два разных напряжения – линейное (между линейными или фазными проводами) и фазное (между фазой и нулём). Uлинейное в 1,73 (корень из 3) раз больше Uфазного. При этом линейный и фазный токи равны.

  • Uл=1,73*Uф
  • Iл=Iф
  • То есть линейное и фазное напряжение соотносятся так, что при линейном в 380В, фазное равно 220В.
  • В «треугольнике» Uлинейное и Uфазное равны, а токи отличаются в 1,73 раза.
  • Uл=Uф
  • Iл=1,73*Iф
  • Мощность в обоих случаях считают по одинаковым формулам:
  • полная S = 3*Sф = 3*(Uл/√3)*I = √3*Uл*I;
  • активная P = √3*Uл*I*cos φ;
  • реактивная Q = √3*Uл*I*sin φ.

При подключении одной и той же нагрузки на те же Uфазное и Uлинейное, мощность подключённых приборов будет отличаться в 3 раза.

Допустим, есть двигатель, который работает от трёхфазной сети 380/220В, а его обмотки рассчитаны на подключение по «звезде» к электросети с Uлинейным в 660В. Тогда при подключении в «треугольник» питающее Uлинейное должно быть в 1,73 раза меньше, то есть 380В, что подходит для подключения к нашей сети.

  1. Приведем расчеты, чтобы показать, какие отличия для двигателя будут при переключении обмоток с одной схемы на другую.
  2. Допустим, что ток статора при подключении в треугольник в сеть 380В был 5А, тогда полная его мощность равняется:
  3. S=1,73*380*5=3287 ВА

Переключим электродвигатель на «звезду» и мощность снизится в 3 раза, так как напряжение на каждой обмотке снизилось в 1,73 раза (было 380 на обмотку, а стало 220), и ток тоже в 1,73 раза: 1,73*1,73=3. Значит с учетом пониженных величин проведем расчет полной мощности.

  • S=1,73*380*(5/3)=1,73*380*1,67=1070 ВА
  • Как видите – мощность упала в 3 раза!
  • Но что будет, если есть другой электродвигатель и он работал в «звезде» в сети 380В и током статора в те же 5А, соответственно и обмотки рассчитаны для подключения в «треугольник» на 220В (3 фазы), но по какой-то причине их соединили именно в «треугольник» и подключили к 380В?
  • В этом случае мощность вырастет 3 раза, так как напряжение на обмотку теперь наоборот увеличилось в 1,73 раза и ток во столько же.
  • S=1,73*380*5*(3)=9861 ВА

Мощность двигателя стала больше номинальной в эти самые 3 раза. Значит он просто сгорит!

Поэтому нужно подключать электродвигатель по той схеме соединения обмоток, которая соответствует их номинальному напряжению.

Практика — как выбрать схему для конкретного случая

Чаще всего электрики работают с сетью 380/220В, так рассмотрим же как подключить, звездой или треугольником, электродвигатель к такой трёхфазной электросети.

В большинстве электродвигателей может быть изменена схема соединения обмоток, для этого в брно есть шесть клемм, расположены они таким образом, чтобы с помощью минимального набора перемычек можно было собрать нужную вам схему. Простыми словами: вывод начала первой обмотки расположен над концом третьей, начала второй, над концом первой, начало третьей над концом второй.

Как отличить два варианта подключения электродвигателя вы видите на рисунке ниже.

Поговорим о том, какую схему выбирать. Схема подключения катушек электродвигателя не имеет особого влияния на режим работы двигателя, при условии соответствия номинальным параметрам двигателя питающей сети. Для этого смотрим на шильдик и определяем, на какие напряжения рассчитана конкретно ваша электрическая машина.

  1. Обычно маркировка имеет вид:
  2. Δ/Y 220/380
  3. Это расшифровывается так:
  4. Если межфазное напряжение равно 220 – собирайте обмотки в треугольник, а если 380 – в звезду.
  5. Чтобы просто ответить на вопрос «Как соединить обмотки у двигателя?» мы сделали для вас таблицу выбора схемы соединения:

Переключение со звезды на треугольник для плавного пуска

При запуске электродвигателя наблюдаются высокие пусковые токи. Поэтому для снижения пусковых токов асинхронных двигателей используется схема пуска с переключением обмоток со звезды на треугольник. При этом, как было сказано выше, электродвигатель должен быть рассчитан подключение в «треугольник» и работе под Uлинейным вашей сети.

  • Таким образом в наших трёхфазных электросетях (380/220В) для таких случаев используют двигатели номинальными «380/660» Вольт, для «Δ/Y» соответственно.
  • При пуске обмотки включаются «звездой» на пониженное напряжение 380В (относительно номинальных 660В), двигатель начинает набирать обороты и в определенный момент времени (обычно по таймеру, в усложненных вариантах — по сигналу датчиков тока и оборотов) обмотки переключаются в «треугольник» и работают уже на своих номинальных 380 вольтах.
  • На иллюстрации выше описан такой способ пуска двигателей, но в качестве примера изображен перекидной рубильник, на практике же используют два дополнительных контактора (КМ2 и КМ3), она хоть и сложнее обычной схемы подключения электродвигателя, но это не является её недостатком. Зато у неё целый ряд преимуществ:
  • Меньше нагрузка на электросеть от пусковых токов.
  • Соответственно меньшие просадки напряжения и уменьшается вероятность остановки сопутствующего оборудования.
  • Мягкий пуск двигателя.

Есть два главных недостатка этого решения:

  1. Нужно прокладывать два трёхжильных кабеля от места расположения контакторов непосредственно до клемм двигателя.
  2. Падает пусковой момент.

Заключение

Как таковые различия в рабочих характеристиках при подключении одного и того же электродвигателя по схеме звезда или треугольник нет (он просто сгорит, если вы ошибетесь при выборе). Также, как и нет преимуществ и недостатков какой-либо из схем. Некоторые авторы приводят в качестве аргумента то, что в «звезде» ток меньше.

Но при аналогичной мощности двух разных двигателей, один из которых рассчитан на подключение в «звезде», а второй в «треугольнике» к сети, например, 380В — ток будет одинаковым. А один и тот же двигатель нельзя переключать «как попало» и «непонятно для чего», так как он просто сгорит.

Главное выбирать тот вариант, который соответствует напряжению питающей сети.

Надеемся, теперь вы стало больше понятно про то, что собой представляет схема звезда и треугольник в электродвигателе, какая разница в подключении каждым из способов и как выбрать схему для конкретного случая. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

Источник: https://samelectrik.ru/chto-takoe-zvezda-i-treugolnik-v-elektrodvigatele.html

Схема звезда и треугольник в чем разница

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой.

В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования.

Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

  Доработка китайского токарного станка по металлу

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Для работы электрического прибора, двигателя, трансформатора в трехфазной сети необходимо соединить обмотки по определенной схеме. Наиболее распространенными схемами соединения являются треугольник и звезда, хотя могут применяться и другие способы соединения.

Что представляет собой соединение обмоток звездой?

Трехфазный двигатель или трансформатор имеет 3 рабочих, независимых друг от друга обмоток. Каждая обмотка имеет два вывода — начало и конец. Соединение «звезда» подразумевает собой, что все концы трех обмоток соединяются в один узел, часто называемый нулевой точкой. Отсюда выходит и понятие — нулевая точка.

Начало каждой обмотки соединяются непосредственна с фазами питающей сети. Соответственно начало каждой обмотки соединяется с одной из фаз А, В, С. Между любыми двумя началами обмоток прилаживается фазное напряжение питающей сети, зачастую 380 или 660 В.

Что представляет собой соединение обмоток в треугольник?

Разница между соединением обмотки в треугольник и звезду

Основная разница заключается в том, что, используя одну питающую сеть, можно достигать разных параметров электрического напряжения и тока в приборе или аппарате. Конечно, данные способы соединения отличаются реализацией, но важна именно физическая составляющая отличия.

Применение способа соединения треугольник, зачастую используется в случаях мощных механизмов и больших пусковых нагрузок.

Имея большие показатели тока, протекающего по обмотки, двигатель получает большие показатели ЕДС самоиндукции, что в свою очередь гарантирует больший вращающий момент.

Имея большие пусковые нагрузки и одновременно используя схему соединения звезда, можно нанести урон двигателю. Это связано с тем, что двигатель имеет меньшие значение тока, что приводит к меньшим показателям величины вращающегося момента.

  Вальцы для усиления профильной трубы чертежи

Момент пуска такого двигателя и выход его на номинальные параметры может быть продолжительным, что может привести к тепловому воздействию тока, которые во время коммутации может превышать номиналы тока в 7-10 раз.

Преимущества соединения обмоток в звезду

Основные преимущества соединения обмоток в звезду заключаются в следующем:

  • Понижения мощности оборудования с целью повышения надежности.
  • Устойчивый режим работы.
  • Для электрического привода такое соединение дает возможность плавного пуска.

Преимущества соединения обмоток в треугольник

Основными преимуществами соединения обмоток в треугольник являются:

  1. Повышения мощности оборудования.
  2. Меньшие пусковые токи.
  3. Большой вращающийся момент.
  4. Увеличенные тяговые свойства.

Оборудование с возможностью переключения типа соединения со звезды на треугольник

Зачастую электрическое оборудование имеет возможность работать как на звезде, так и на треугольнике. Каждый пользователь должен самостоятельно определить необходимость соединения обмоток в звезду или треугольник.

В особо мощных и сложных механизмах, может применяться электрическая схема с комбинированием треугольника и звезды. В таком случае, в момент пуска, обмотки электрического двигателя соединяются в треугольник.

После выхода двигателя на номинальные показатели, с помощью релейно-контакторной схемы треугольник переключается на звезду.

Таким способом достигается максимальная надежность и продуктивность электрической машины, без риска нанести ей урон или вывести её из строя.

Посмотрите так-же интересное видео на эту тему:

Асинхронные двигатели обладают многими преимуществами в работе. Это надёжность, большая мощность, хорошая производительность. Подключение электродвигателя звездой и треугольником обеспечивают его стабильную эксплуатацию.

В основе электромотора выделяют две основные части: крутящийся ротор и статичный статор. Оба имеют в структуре набор токопроводящих обмоток. Электрообмотки неподвижного элемента, расположены в пазах магнитного провода на расстоянии 120 градусов. Все окончания обмоток выводятся в электрораспределительный блок, там фиксируются. Контакты пронумерованы.

Подключения двигателей могут быть звездой, треугольником, а также всевозможные их переключения. Каждое соединение обладает своими преимуществами и недостатками. Двигатели, соединённые по схеме звезда, имеют плавную, мягкую работу, действие электродвигателя ограничено мощностью по сравнению с треугольником, так как её значение больше в полтора раза.

  • Объединение в одной общей точке: подключение звезда
  • Смешанный способ
  • Принцип работы

Объединение в одной общей точке: подключение звезда

Обмотки соединяются последовательно замкнутой ячейкой, образуют треугольное соединение. Ряды контактов с клеммами расположены параллельно по отношению друг к другу. Например, начало вывода 1 находится напротив конца 1. Питание сети подаётся на статорные обмотки, создавая вращения магнитного поля, приводящее к движению ротора. Крутящийся момент, возникающий после подключения трехфазного электродвигателя, является недостаточным для пуска. Увеличение вращающего элемента достигается при помощи использования дополнительного элемента. Например, трехфазного частотника, подключенного к асинхронному двигателю на рисунке ниже.

Чертеж подсоединения классического частотного преобразователя звездой

По данной схеме подсоединяются отечественные моторы 380 вольт.

  Стол для ручной циркулярки своими руками чертежи

Смешанный способ

Комбинированный тип подключения применим для электромоторов мощностью от 5 кВт. Схема звезда — треугольник используется при необходимости снизить пусковые токи агрегата. Принцип действия начинается со звезды, а после набора двигателем нужных оборотов, происходит автоматическое переключение на треугольник.

  • Схема пуска трёхфазного электродвигателя с помощью реле
  • Данная схема не подходит устройствам с перегрузками, так как возникает слабый крутящийся момент, что может привести к поломке.

Принцип работы

К началу обмоток проходит ток на три фазы. Он поступает через силовые контакты магнита первого элемента. Контакты третьего пускателя включают его, замыкают концы обмоток, которые соединяются звездой.

Затем включается реле времени первого пускателя, третий выключается, а второй включается. Контакты К2 замыкают, напряжение поступает на концы обмоток. Это и есть включение треугольником.

Различные производители изготавливают реле пуска, необходимое для запуска электродвигателя. Они отличаются внешне, по названию, но выполняют одинаковую функцию.

Обычно подключение к сети 220 происходит фазосдвигающим конденсатором. Питание поступает от любой электросети, вращает ротор с одинаковой частотой. Конечно, мощность от трёхфазной сети будет больше, чем от однофазной. Если трёхфазный двигатель работает от однофазной сети, теряется мощность.

Некоторые виды моторов не предназначены для работы от бытовой сети. Поэтому выбирая прибор для дома, предпочтение следует отдать двигателям с короткозамкнутыми роторами.

По номинальному питанию отечественные электродвигатели делятся на два типа: мощностью 220 — 127 вольт и 380 — 220 вольт. Первый тип электромоторов небольшой мощности применяется нечасто. Вторые устройства имеют широкое распространение.

При монтаже электродвигателя любой мощности действует определенный принцип: устройства с низкой мощностью подключается по схеме треугольник, а с высокой соединяются звездой. Электропитание 220 поступает на сводку треугольником, напряжение 380 идёт на соединение звездой. Это обеспечит долгую и качественную работу механизма.

Рекомендованная схема для подключения двигателя значится в техническом документе. Значок △ означает соединение в этой же форме. Буква Y указывает на рекомендуемую схему подключения звездой.

Характеристики многочисленных элементов обозначены цветами, в связи с их маленькими габаритами. По цвету читается, например, номинал, сопротивление. Если стоят оба знака, то соединение возможно переключением △ и Y.

Когда стоит одна определенная маркировка, например, Y, то доступное подключение будет только по схеме звезда.

Схема △ даёт мощность на выходе до 70 процентов, значение пусковых токов доходит до максимальной величины. А это может испортить двигатель. Данная схема является единственным вариантом для работы от российских электросетей зарубежных асинхронных двигателей с мощностью 400 — 690 вольт.

Поэтому выбирать правильное соединение или переключение, необходимо учитывая особенности электрической сети, силовой мощности электродвигателя. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.

Источник: https://crast. ru/instrumenty/shema-zvezda-i-treugolnik-v-chem-raznica

Соединение звездой и треугольником — схема и разница трехфазного соеднинения

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Реверсивная схема двигателя 380 на 220 Вольт

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой.

В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования.

Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».
Схемы подключения звездой и треугольником

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Блиц-советы

  1. В момент пуска электродвигателя, его ток пуска в 7 раз больше рабочего тока.
  2. Мощность в 1,5 раза больше при соединении обмоток методом «треугольника».
  3. Для создания плавного пуска и защиты от перегрузок двигателя, часто используются частотные провода.
  4. При использовании метода соединения «звездой», особое внимание уделяют отсутствию «перекоса фаза», иначе оборудование может выйти из строя.
  5. Линейные и фазные напряжения при соединении «треугольник» – равны между собой, как и линейные и фазные токи в соединении «звездой».
  6. Для подключения двигателя к бытовой сети зачастую применяют фазосдвигающий конденсатор.

Источник: https://housetronic.ru/electro/soedinenie.html

Подключение звезда и треугольник – в чем разница?

Обмотки генераторов, трансформаторов, электродвигателей и других электрических приемников при их подключении к трехфазной сети соединяются двумя способами: звездой или треугольником.

Эти схемы подключения сильно отличаются друг от друга и несут на себе разные токовые нагрузки.

Поэтому есть необходимость разобраться в вопросе, как производится подключение звезда и треугольник – в чем разница?

Что собой представляют схемы

Подключение обмоток звездой – это их соединение в одной точке, которая носит название нулевая точка или нейтральная. Она обозначается буквой «О».

Схема подключения треугольником – это последовательное соединение концов рабочих обмоток, в которых начало одной обмотки соединяется с концом другой.

Разница очевидна. Но какую цель преследуют эти виды соединения, почему звезда треугольник применяются в разных электрических установках, в чем эффективность той и другой. Вопросов по данной теме возникает немало, с ними и надо разобраться.

Начнем с того, что при запуске того же электродвигателя ток, который называется пусковым, обладает высоким значением, который превышает номинальную его величину раз в шесть или восемь.

Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат. И это вызовет обязательно «проседание» напряжения и выход из строя предохранителей или автоматических выключателей.

Сам же двигатель начнет вращаться с небольшой скоростью, отличающуюся от паспортной. То есть, проблем с пусковым током немало.

Поэтому его надо просто снизить. Есть несколько для этого способов:

  • установить в систему подключения электрического двигателя один из перечисленных приборов: трансформатор, дроссель, реостат;
  • изменяется схема подключения обмоток ротора.

Именно второй вариант используется на производстве, как самый простой и эффективный. Просто производится преобразование схемы звезда в треугольник. То есть, во время пуска двигателя его обмотки соединяются по схеме звезда, затем как только мотор наберет обороты, переключается на треугольник. Процесс переключения звезды на треугольник производится автоматически.

Рекомендуется в электродвигателях, где используются одновременно два варианта соединения – звезда-треугольник, к соединению обмоток по схеме звезда, то есть, к их общей точке подключения, подсоединить нейтраль от сети питания.

Для чего это необходимо делать? Все дело в том, что во время работы по данному варианту подсоединения появляется высокая вероятность асимметрии амплитуд разных фаз.

Именно нейтраль будет компенсировать данную асимметрию, которая обычно появляется за счет того, что обмотки статора могут иметь разное индуктивное сопротивление.

  Трехфазный генератор – принцип работы и его устройство

Преимущества двух схем

У схемы звезда достаточно серьезные достоинства:

  • плавный запуск электрического двигателя;
  • номинальная его мощность будет соответствовать паспортным данным;
  • двигатель будет работать нормально и при кратковременных высоких нагрузках, и при долгосрочных небольших перегрузов;
  • в процессе работы корпус мотора не будет перегреваться.

Что касается схемы треугольник, то основное ее преимущество – это достижение электрическим двигателем в процессе его работы максимальной мощности.

Но при этом рекомендуется строго придерживаться эксплуатационных режимов, которые расписаны в паспорте мотора.

Тестирование электродвигателей, соединенных по схеме треугольник, показало, что его мощность в три раза больше, чем соединенных по схеме звезда.

Если говорить о генераторах, которые выдают ток в питающую сеть, то схемы соединения звезда и треугольник по своим техническим параметрам точно такие же. То есть, выдаваемое напряжение треугольником будет больше, правда, не в три раза, но не менее 1,73 раза.

По сути, получается, что напряжение генератора при звезде, равное 220 вольт, преобразуется в 380 вольт, если провести переключение с одного варианта на другой.

Но необходимо отметить, что мощность самого агрегата при этом остается неизменной, потому что все подчиняется закону Ома, в котором напряжение и сила тока находятся в обратной пропорциональности. То есть, увеличение напряжения в 1,73 раза, снижает ток точно на такую же величину.

Отсюда вывод: если в клеммной коробке генератора располагаются все шесть концов обмоток, то можно будет получить напряжение двух номиналов, отличающихся друг от друга коэффициентом 1,73.

Делаем выводы

Почему соединения треугольником и звездой сегодня присутствуют во всех современных мощных электродвигателях? Из всего вышесказанного становится понятным, что основное требование ситуации – это снизить токовую нагрузку, которая возникает в процессе пуска самого агрегата.

Если расписать формулы такого подключения, то они будут выглядеть вот так:

Uф=Uл/1,73=380/1,73=220, где Uф – напряжение на фазах, Uл – на питающей линии. Это соединение звездой.

После того, как электрический агрегат разгонится, то есть, скорость его вращения станет соответствовать паспортным данным, произойдет переход на треугольник со звезды. Отсюда фазное напряжение станет равным линейному.

Источник: https://onlineelektrik.ru/eoborudovanie/generatori/podklyuchenie-zvezda-i-treugolnik-v-chem-raznica.html

Звезда и треугольник принцип подключения. Особенности и работа

Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей (звезда и треугольник).

Схемы

Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току.  Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — звезда и треугольник.

Схема звезды

Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z.

Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется.

Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.

Схема треугольника

При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.

В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.

Фазные и линейные величины

В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.

При применении схемы звезды фазными напряжениями являются Ua, Ub, Uc, а фазными токами являются I a, I b, I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — Uaв, Ubс, Ucа, фазные токи – I ac, I bс, I cа.

Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.

В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab, Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a, I b, I c.

Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.

Особенности схем

Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.

Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать.

При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов.

Электродвигатель будет работать с малой скоростью, которая меньше номинальной.

Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.

Для этого можно применить некоторые методы:

  • Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.
  • Изменить вид соединения обмоток ротора электродвигателя.

В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.

В электромоторах целесообразно применение сразу двух схем — звезда и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.

Достоинства схем

Соединение по схеме звезды имеются важные преимущества:

  • Плавный пуск электрического мотора.
  • Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
  • Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
  • При эксплуатации корпус электродвигателя не перегреется.

Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.

При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.

Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.

Процессы, происходящие при изменении схемы звезда и треугольник в разных случаях

Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.

Обмотки генератора и трансформатора

При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.

При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.

Лампы освещения

При переходе со звезды в треугольник лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/zvezda-i-treugolnik/

Соединение обмоток трансформатора в треугольник, звезду и зигзаг

Перед рассмотрением вопросов о группах соединений трансформаторов рассмотрим основные виды соединения обмоток силовых трансформаторов.

Соединение обмоток трансформатора в звезду

При соединении в звезду действуют следующие соотношения –

  • линейные токи равны фазным,
  • линейные напряжения больше фазных в √3 раз

Возможно множество вариантов соединения обмоток трансформатора в звезду, некоторые из них приведены на рисунке ниже. И, как говорится, не все из них одинаково полезны, а точнее, для разных случаев необходима разная схема соединений.

Следует отметить, что в звезду можно соединить как один трехфазный трансформатор, так и три однофазных. На рисунке обозначаются:

  • А, В, С – начала обмоток высшего напряжения
  • Х, Y, Z – окончания обмоток высшего напряжения
  • a, b, c – начала обмоток низкого напряжения
  • x, y, z – окончания обмоток низкого напряжения

Соединение обмоток трансформатора в треугольник

Соединение в треугольник так называется из-за внешнего сходства с треугольником (видно на рисунке).

При соединении в треугольник действуют следующие соотношения –

  • линейные токи больше фазных в √3 раз
  • линейные напряжения равны фазным

Три вторичные обмотки, при соединении в треугольник соединены последовательно, образуя тем самым замкнутую цепь. В этой цепи отсутствует ток, так-как ЭДС фаз сдвинуты на 120 градусов и их сумма в каждый момент времени равна нулю. Так же ток равен нулю при соблюдении тотчасно следующих условий – ЭДС имеют синусоидальную форму, обмотки имеют одинаковые числа витков.

Звезда и треугольник в вопросе о третьих гармониках трансформаторов

В трансформаторах схему треугольник используют кроме прочего для получения токов третьих гармоник, которые необходимы для создания синусоидальной ЭДС вторичных обмоток. Другими словами, для исключения третьей гармонической составляющей в магнитном потоке.

Чтобы ввести третьи гармоники при соединении в звезду — соединяют нейтраль звезды с нейтралью генератора, по этому пути и начинают пробегать третьи гармоники.

Соединение обмоток трансформатора в зигзаг

Соединение в зигзаг используется в случае, если на вторичных нагрузках неравномерная нагрузка. После соединения в зигзаг нагрузка распределяется более равномерно по фазам и магнитный поток трансформатора сохраняет равновесие, несмотря на неравномерную нагрузку.

Рассмотрим соединение в зигзаг-звезду трехфазного силового трансформатора. Схематично изображение приведено на рисунке.

Первичные обмотки соединяются в звезду. Далее разделяем каждую вторичную обмотку напополам. И далее соединяем, как показано на рисунке.

При соединении в зигзаг-звезду потребуется большее число витков, чем при простой звезде. Также при таком соединении возможно получение трех классов напряжения, например 380-220-127В.

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Группы соединения обмоток силовых трансформаторов

Мы уже рассмотрели соединение трансформаторов в треугольник, звезду и зигзаг. Теперь остановимся более подробно на группах соединения трансформаторов. Обмотки низкого, среднего и высокого напряжения трансформаторов могут соединяться по-разному – в треугольник, звезду, реже зигзаг, образуя схему соединения обмоток трансформатора.

Схема соединения – это сочетание схем соединения обмоток высшего и низшего напряжения для двухобмоточного трансформатора или обмоток высшего, среднего и низшего для трехобмоточного трансформатора. Однако, несмотря на различное соединение обмоток, схемы могут давать одинаковый сдвиг между одноименными векторами напряжения. Несколько схем, дающих одинаковый по величине угол сдвига фаз, образуют группу соединения.

Основных групп может быть 12. Для удобства представляют циферблат стрелочных часов. Каждой группе соответствует угол кратный 30 градусам от 0 до 360 градусов. Они отмечаются на циферблате часов, через один час, каждому часу соответствует сдвиг в 30 градусов. 360 градусов – 12 часов.

Групп 12 и имеется следующая закономерность – четные группы (2,4,6,8,10,12) образуются, если с высокой и низкой стороны одинаковое соединение (треугольник-треугольник, звезда-звезда). Нечетные группы (1,3,5,7,9,11) образуются, если с высокой и низкой сторон различное соединение (треугольник-звезда).

В ГОСТ 30830-2002 пишется, что вектор фазы А ВН откладывается параллельно и сонаправленно стрелке на 12 часов. Порядок фаз идет А-В-С, движение векторов на циферблате осуществляется против часовой стрелки.

Чтобы построить треугольник, сначала надо построить звезду, а потом вписать ее в треугольник.

Вот, например, двухобмоточный трехфазный трансформатор со схемой Y/Д-11, для примера. Где Y-значит звезда с высокой стороны, Д-треугольник с низкой стороны, между ними угол 360 градусов.

Если трансформатор трехобмоточный, то может быть (возьмем ради примера) Y0/Y/Д-12-5. Все как и в прошлом примере, только добавилась обмотка среднего напряжения. В этом примере обмотка ВН – звезда с нулем, СН – звезда, НН – треугольник. Сдвиг между обмотками ВН и СН – 12 часов, между ВН и НН – 11 часов (или 0 часов). Между СН и НН – 11 часов, про это писалось выше.

Существуют определенные действия с выводами обмоток, выполнив которые, можно добиться определенного результата группами трансформаторов.

  • если по-порядку циклически перемаркировать фазы А-В-С(а-b-c) на В-С-А(b-c-a), то группа изменится на 4 (как в большую, так и в меньшую сторону)
  • двойная перемаркировка двух фаз, на стороне ВН и НН, изменяют нечетную группу на плюс минус 2
  • если поменять местами две фазы на одной из сторон (ВН или НН), то трансформатор потеряет группу и его запрещено будет включать на параллельную работу с другим трансформатором

Схемы групп соединения обмоток 3ф. 2обм. трансформаторов

Существует огромное множество схем соединения обмоток, некоторые из них образуют группы соединения трансформаторов. Рассмотрим некоторые из них, а именно схемы со звездой и треугольником с группами от 1 до 12.

Также схематично представим обозначения вводов на крышке трансформатора и векторные диаграммы.

12 группа (Y/Y-12, Д/Д-12)

Рисунок 1 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 12

11 группа (Y/Д-11, Д/Y-11)

Рисунок 2 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 11

10 группа (Д/Д-10, Y/Y-10)

Рисунок 3 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 10

9 группа (Y/Д-9, Д/Y-9)

Рисунок 4 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 9

8 группа (Y/Y-8, Д/Д-8)

Рисунок 5 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 8

7 группа (Y/Д-7, Д/Y-7)

Рисунок 6 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 7

6 группа (Y/Y-6, Д/Д-6)

Рисунок 7 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 6

5 группа (Y/Д-5, Д/Y-5)

Рисунок 8 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 5

4 группа (Y/Y-4, Д/Д-4)

Рисунок 9 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 4

3 группа (Y/Д-3, Д/Y-3)

Рисунок 10 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 3

2 группа (Y/Y-2, Д/Д-2)

Рисунок 11 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 2

1 группа (Y/Д-1, Д/Y-1)

Рисунок 12 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 1

Укажем некоторые особенности отдельных схем:

Схема Y0/Y-12 получается из схемы Y/Y-12 соединением нулевого ввода трансформатора с нейтралью звезды;

Схема Д/Д-12 – обе обмотки выполнены левыми, если же одну из обмоток выполнить правой, то выйдет схема Д/Д-6.

Схема Д/Д-10 – обе обмотки левые, если одну из обмоток выполнить правой, то получится схема Д/Д-4;

Схему Д/Д-8 можно получить, если в схеме Д/Д-2 одну из обмоток выполнить правой.

Схему Y/Д-5 можно получить, если в схеме Y/Д-11 одну из обмоток выполнить правой, а вторую левой.

Далеко не все из представленных схем широко распространены, однако, их знание не будет лишним.

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Подключение электродвигателя по схеме звезда и треугольник

Схемы подключения электродвигателя. Звезда, треугольник, звезда — треугольник.

Асинхронные двигатели, имея ряд таких неоспоримых достоинств, как надежность в эксплуатации, высокая производительность, способность выдерживать большие механические перегрузки, неприхотливость и невысокая стоимость обслуживания и ремонта, обусловленные простотой конструкции, имеют, конечно и свои определенные недостатки.

На практике применяются основные способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником».

При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).

При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).

Не вдаваясь в технические и теоретические основы электротехники известно, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенными обмотками треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.

 В связи с этим для снижения пусковых токов целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; первоначально запуск осуществляется по схеме «звезда», после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме «треугольник».

 Схема управления :

Еще вариант схемы управления двигателем

 Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

 После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.

 При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

 Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

(Начало обмоток статора: U1; V1; W1. Концы обмоток: U2; V2; W2. На клеммной доске шпильки начала и концов обмоток расположены в строгой последовательности: W2; U2; V2; под ними расположены: U1; V1; W1. При подключении двигателя в «треугольник» шпильки соединяются перемычками: W2-U1; U2-V1; V2-W1.)

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

 Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные «Пусковые реле времени» , реле «старт-дельта» и др., но назначение у них одно и тоже:

РВП-3, ВЛ-32М1, D6DS (Австрия) , ВЛ-163 (Украина), CRM-2T  (Чехия), TRS2D (Чехия),  1SVR630210R3300 (ABB), 80 series (Finder) и другие.

Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя:

Вывод:  Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме «звезда» на пониженных оборотах, далее переключаться на «треугольник».
Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме, когда электродвигатель «набрал обороты», происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.

Объясните различия между DFD и ERD на примерах

Узнайте больше о различиях между DFD и ERD с помощью простых для понимания примеров. Начните свои собственные творения легко прямо сейчас, просмотрев более связанные стильные и персонализированные ресурсы от Edraw.

Модели DFD и ERD показывают представления данных для идентификации потоков данных. Организации используют такие модели для эффективного взаимодействия в различных подразделениях. Эта статья объяснит различия между DFD и ERD на примерах, но сначала давайте проверим основные определения этих двух моделей.

Что такое DFD и ERD?

Основные понятия DFD

DFD представляет собой диаграмму потока данных , которая показывает поток ряда данных на основе определенной модели информационной системы. DFD обычно используется для обрисовки структуры и структуры системы данных без последовательного отображения вариантов времени обработки, например, вариантов «Да» или «Нет» в типичных блок-схемах. На самом деле DFD можно использовать для управления информацией или визуализации данных.Здесь вы можете увидеть пример DFD, который показывает общий поток данных для бронирования в ресторане.

Основные понятия ERD

ERD означает диаграмму сущностей-отношений , которая отражает ключевые отношения между различными сущностями в информационной системе: членами, ролями, элементами, продуктами, местоположениями, концепциями и т. Д. Наиболее распространенные практические применения ERD включают реляционные базы данных в программной инженерии, академических учреждениях и так далее.Ниже приведен хороший пример ERD для управления школьной информацией. В этом случае единым целым может быть учитель или ученик. Кроме того, все личные данные учителей и учеников выделены зеленым цветом.

Ключевые различия между DFD и ERD

Различия в методологии

DFD обычно отражает способ ввода, преобразования и хранения данных. Кроме того, единицы в DFD обычно обрабатываются индивидуально на основе некоторых определенных аспектов, где каждый из них может быть связан интерактивно.Пример DFD здесь показывает типичный процесс, с помощью которого менеджер по логистике проверяет и обновляет запас для каждого продукта через систему приложений.

Напротив, ERD показывает общую структуру системы данных без подробного объяснения реализаций базы данных. Сущности в ERD часто представляют собой группу похожих вещей. В этом случае теоретически модели ERD показывают, как блоки данных логически сгруппированы в сущности. Например, единицей данных может быть отдельная статья в блоге, а отношениями могут быть блог и его автор и т. Д.Кроме того, с физической точки зрения EDR отражает, как элементы данных технически хранятся в базе данных. ERD ниже предлагает вам еще один пример управления информацией академического персонала.

Разница в представлении

Обе эти две модели диаграмм имеют определенные символы различных форм и соединителей. Однако модели DFD показывают многоуровневую структуру с рядом отдельных частей, которые включают подробную информацию, тогда как в моделях ERD вы можете четко видеть, что прямоугольники и ромбы представлены в виде структуры концептуальной карты, чтобы показать отношения между объектами.

Больше примеров диаграмм ER

Вот несколько примеров диаграмм отношений сущностей. Щелкните каждое изображение-эскиз, чтобы просмотреть полную версию на другом изображении. Там вы можете бесплатно скачать шаблон. Дважды щелкните фигуры, чтобы заменить содержимое. Чтобы изменить стиль, попробуйте использовать функцию «Темы» для одновременного изменения шрифта, цвета и контура.

Щелкните миниатюру схемы взаимосвязей сущностей системы занятости, чтобы загрузить исходный файл.

В ER-диаграмме системы хранения используются символы сущностей, отношений и атрибутов для описания того, как сущности связаны друг с другом в системе.

Эта ER-диаграмма графически иллюстрирует сущности системы зоомагазина и отношения между ними.

Последние мысли

Для приложений реального времени обе модели DFD и ERD имеют недостатки. В результате, несмотря на популярность использования этих двух моделей потока данных, ни одна из них не может полностью представить полную картину для одного проекта.Поэтому руководители организаций или менеджеры отделов должны анализировать процесс обработки своих наборов данных с помощью комбинации большего количества типов моделей потоков данных и диаграмм. Кроме того, вы можете попробовать некоторые программы для создания диаграмм DFD и ERD для своих проектов.

Читать больше:

Разница между деревом отказов и анализом дерева событий

Delta Force совершает налет на базу Байдена в Украине | Блог / Гражданская журналистика

В предрассветные часы в день Нового года операторы Delta Force проникли в подконтрольный Байдену опорный пункт на юго-востоке Украины недалеко от портового города Мариуполь, согласно анонимному источнику в Белом доме, который сообщил, что президент Трамп дал зеленый свет на операцию после серии телефонных звонков. Военное командование США и президенту Украины Владимиру Зеленскому.

Отряд «Дельта», известный в сообществе специальных операций как 1-SFOD, вылетел из Окинавы, Япония, в посольство США в Киеве и занимал там позиции, пока Трамп не разрешил вторжение вместе со своими украинскими коллегами.

Надежные источники сообщили, что администрация Трампа получила «достоверные доказательства» того, что семья Байденов по доверенности владела имением площадью 200 акров и офисным зданием в 50 км к северо-западу от Мариуполя. На бумаге собственность принадлежала Paradigm Global Advisors, хедж-фонду, в котором Байдены имеют контрольный пакет акций.В конце лета 2006 года сын Джо Байдена Хантер и младший брат Джо Джеймс купили фирму. В первый же день работы они появились с другим сыном Байдена, Бо, и тремя крупными мужчинами и уволили президента Paradigm и 95% сотрудников, по словам присутствовавшего руководителя Paradigm. После этого многие зарубежные предприятия Paradigm прекратились, но продолжали получать огромную прибыль, несмотря на явное отсутствие инвесторов.

В июне 2009 года писатель Washington Free Beacon Томас Бреслин сделал следующее заявление: «Paradigm — вряд ли компания с хорошей репутацией.Байдены уволили всех и поставили на место своих людей. Компания стала не чем иным, как фондом для выкупа незаконных денег, которые Байдены отмывали через это место ».

По словам нашего информатора Белого дома, администрация Трампа потратила четыре года на выяснение правды, стоящей за Paradigm Global Advisors.

«После долгих лет раскопок Трамп наконец нашел передышку. Нынешний сотрудник Paradigm — кто-то, кого трахнул Байден, — представил достаточно доказательств, чтобы Трамп сделал этот шаг.Я не знаю, какие конкретные доказательства были представлены, но, должно быть, для Трампа было серьезным ударом обратиться к Delta, чтобы та позаботилась об этом ».

В 3 часа ночи в Новый год три вертолета Blackhawk, включая самолет-ловушку, доставили Delta из Киева в зону высадки. Команда обнаружила офисное здание пустым, лишенным жизни. Командир части охарактеризовал здание как «холодное», как будто оно давно пустовало и не отапливалось.

«Окна были покрыты глазурью из инея, и в этом месте царил катакомбный холод», — сказал он.«Каждый офис был раздет — ни стульев, ни столов, ни компьютеров, ничего. Нет электричества.»

Хотя здание долгое время было заброшено, Дельта обнаружила свидетельства недавней активности в гасиенде, прилегающей к комплексу. На кухне были свежемолотые овощи и чайник с теплым кофе. Снаружи свежие следы шин уводили прочь от компаунда. Как будто кто-то предупредил пассажиров.

Но вот в гасиенде Дельта попал пайдирт. Они изъяли несколько ноутбуков и 300 миллионов долларов в золотых слитках.Они также обнаружили ящики со штурмовыми винтовками Type 56 китайского производства и десятки тысяч патронов. Еще более тревожным было то, что под гасиендой они обнаружили лабиринт камер и туннелей, тянувшихся на многие мили во всех направлениях. Кандалы на лодыжках и запястьях, прикрепленные болтами к стенам в разных местах, содержали кусочки некротической плоти, а в прихожей они обнаружили двенадцать спортивных сумок, наполненных черной смолой героина.

По приказу Трампа компания Delta координировала действия с СБУ Украины, службой национальной безопасности, занимающейся контрразведкой и борьбой с терроризмом, по конфискации улик и ожиданию прибытия сотрудников Государственного департамента.

Это развивающаяся история, которая будет обновляться по мере необходимости.

Факты, информация, история и определения

Ключевые факты и резюме

  • Звезды — это огромные небесные тела, состоящие в основном из водорода и гелия, которые выделяют свет и тепло из вспениваемых ядерных кузниц внутри своих ядер.
  • Звезды, за исключением нашего Солнца, выглядят как точки на небе. Каждая из них находится на расстоянии световых лет от нас и намного ярче, чем наша собственная звезда, Солнце.
  • Звезды — это строительные блоки галактик и, в известном смысле, жизни, как мы ее знаем.
  • Только наша галактика Млечный Путь содержит около 300 миллиардов звезд.
  • Наблюдения пришли к выводу, что звезды с большой массой обычно имеют более короткую продолжительность жизни. Тем не менее в целом они длятся миллиарды лет.
  • Звезды обычно рождаются в пылевых облаках на основе водорода, называемых туманностями.
  • Звезды классифицируются по спектру и температуре. Есть семь основных типов звезд.В порядке уменьшения температуры: O, B, A, F, G, K и M. Это известно как система Моргана – Кинана (МК).
  • Большинство всех звезд в нашей галактике и даже во Вселенной являются звездами главной последовательности. Наше Солнце является звездой главной последовательности, как и наши ближайшие соседи, Сириус и Альфа Центавра A.
  • Большинство звезд, по крайней мере до сих пор наблюдаемых, обычно являются звездами красного карлика.
  • Многие звезды попадают в пары. Это двойные звезды, вращающиеся вокруг общего барицентра.
  • Жизненные циклы звезд зависят от их начальной массы.
  • Звезды не мерцают. Обычно это вызвано турбулентной атмосферой Земли.
  • Насколько может судить человеческий глаз, зеленых звезд не бывает. По крайней мере, мы их не воспринимаем.
  • Невооруженным глазом мы можем различить около 2 000–2 500 звезд.

Пока человек мог смотреть в ночное небо, звезды наблюдались, датировались и анализировались. Одна из старейших звездных и удивительно точных карт появилась в древнеегипетской астрономии в 1534 году до нашей эры.Даже сверхновые были зарегистрированы с древних времен, например, в 185 году нашей эры китайские астрономы зарегистрировали сверхновую, которая теперь классифицируется как SN 185.

Звезды использовались для астрономических навигации и религиозных обрядов, и многие древние астрономы полагали, что они неизменны. Они сгруппировали звезды в созвездия и использовали их для отслеживания планет и предполагаемого положения Солнца.

Позже средневековые исламские астрономы дали арабские имена многим звездам, которые используются по сей день.Они первыми построили крупные исследовательские институты обсерваторий. В 1838 году астроном Фридрих Бессель провел первые прямые измерения расстояния до звезды — 61 Лебедя — с помощью метода параллакса.

В 1913 году была разработана диаграмма Герцшпрунга-Рассела, а в 1921 году Альберт Майкельсон провел первые измерения диаметра звезды с помощью интерферометра. В 1925 году Сесилия Пейн впервые предположила, что звезды в основном состоят из водорода и гелия. С тех пор звезды были разделены на множество категорий, и нам открылось множество загадок.Разнообразие звезд просто ошеломляет.

Формация

Звезды образуются в огромных облаках газа и пыли. Гравитация заставляет эти облака сжиматься, притягивая газ ближе. По мере того как эти материалы накапливаются в центре, повышается плотность и давление.

Это заставляет материю нагреваться и светиться при увеличении массы. Температура и давление постоянно растут, пока водород не может быть расплавлен. Тепло, генерируемое этим ядерным синтезом, заставляет газ расширяться, и когда достигается гидростатическое равновесие, рождается звезда.Большинство звезд формируется в группы, называемые звездными скоплениями, многие в конечном итоге выбрасываются из этих скоплений.

Типы звезд — классификация

В настоящее время используется множество систем классификации звезд, однако система Моргана-Кинан является самой простой для понимания. Звезды классифицируются в этой системе с использованием букв O, B, A, F, G, K и M. Они классифицируются в зависимости от их температуры: самый горячий — O, а самый холодный — M. Затем температура каждого спектрального класса подразделяется на добавление числа: 0 означает самое горячее, а 9 — самое холодное.

Звезды главной последовательности

Звезды главной последовательности получают энергию за счет синтеза водорода в гелий в их ядрах. Около 90% звезд во Вселенной — звезды главной последовательности, включая наше Солнце. Обычно они составляют от одной десятой до 200 масс Солнца.

Голубые звезды

Эти типы звезд довольно редки со спектральными классами O или B. Их температура составляет около 30 000 K, а светимость в 100–1 миллион раз больше солнечной.Обычно они имеют массу от 2,5 до 90 раз больше солнечной и живут около 40 миллионов лет.

Обычно они находятся в рукавах спиральных галактик и характеризуются сильными линиями поглощения гелия-II в своих спектрах. У них в спектрах более слабые линии водорода и нейтрального гелия, чем у звезд B-типа.

Из-за своей массы и температуры они имеют короткую продолжительность жизни, которая заканчивается взрывом сверхновой, в результате чего образуются черные дыры или нейтронные звезды. Некоторые примеры голубых звезд: Delta Circini, V560 Carinae, Theta1 Orionis C.

Желтые карлики

Желтые карлики имеют 10% -ное преобладание со спектральным классом G. Они имеют температуру от 5.200 K до 7.500 K, а светимость от 0,6 до 5,0 яркости Солнца. Они имеют массу от 0,8 до 1,4 массы Солнца и живут от 4 до 17 миллиардов лет.

Эти звезды ошибочно называют звездами G-типа. Наше Солнце — звезда G-типа, но на самом деле оно белое. Звезды G-типа превращают водород в гелий и обычно превращаются в красных гигантов, когда их водородное топливо заканчивается.Вот некоторые примеры: Альфа Центавра A, Тау Кита.

Оранжевые карлики

Эти звезды имеют преобладание около 10%, со спектральным классом K. Они имеют температуру от 3,700 K до 5,200 K и светимость от 0,08 до 0,6 яркости Солнца. Они имеют массу от 0,45 до 0,8 массы нашего Солнца и живут от 15 до 30 миллиардов лет.

Они излучают меньше УФ-излучения и остаются стабильными в течение долгих периодов времени, что делает их очень подходящими для экзопланет, которые могут находиться в своей обитаемой зоне.Они примерно в четыре раза чаще звезд G-типа. Некоторые примеры оранжевых карликовых звезд: Alpha Centauri B, Epsilon Indi.

Красные карлики

Эти звезды имеют преобладание около 73%, с любым спектральным типом K и M. Их температура обычно составляет около 4.000 K, а светимости от 0,0001 до 0,8 от солнечной. Они имеют массу от 0,08 до 0,45 массы нашего Солнца и существуют около нескольких триллионов лет.

Они составляют основную часть звездного населения Млечного Пути, хотя и очень тусклые.Если красные карлики массивнее 0,35 массы Солнца, они превращают водород в гелий как в своем ядре, так и во всем. Из-за этого процесс ядерного синтеза замедляется и даже удлиняется. Они живут так долго, что ни один красный карлик не достиг продвинутой стадии эволюции с момента создания Вселенной. Вот несколько примеров: Проксима Центавра, Траппист-1.

Гиганты и сверхгиганты

Когда у звезды заканчивается водород, она начинает сжигать свой гелий, таким образом, она превращается в гигантскую или сверхгигантскую звезду.Его ядро ​​схлопывается, и он становится горячее, в результате чего внешний слой расширяется наружу. Звезды низкой или средней массы превратились в красных гигантов. Звезды с большой массой, примерно в 10+ раз больше Солнца, становятся красными сверхгигантами.

В периоды медленного синтеза звезда может сжиматься и превращаться в голубого сверхгиганта. Этот цвет обычно присутствует, когда температура распространяется на небольшую площадь поверхности, что делает ее более горячей. Также могут возникать колебания между красным и синим.

Голубые гиганты

Эти звезды очень редки, их спектральные классы — O, B и A.Их температура обычно составляет от 10 000 К до 33 000+ К, а светимость — около 10 000 яркости Солнца. Они имеют массу от 2 до 150 масс нашего Солнца и живут от 10 до 100 миллионов лет.

Существует множество звезд, называемых голубыми гигантами. Многие звезды с классификациями светимости III и II называются голубыми гигантами просто из-за предпочтения. Однако настоящие голубые гиганты имеют температуру выше 10.000 К. Вот некоторые примеры: Си Персей, Мейсса, Йота Орионис.

Голубые сверхгиганты

Эти звезды тоже редкие, спектрального класса OB.Их температура составляет от 10 000 до 50 000 К, а светимость от 10 000 до 1 миллиона раз больше, чем у Солнца. Они имеют массу от 20 до 1000 масс нашего Солнца и живут очень недолго, около 10 миллионов лет.

Научно известные как OB-сверхгиганты, эти звезды имеют класс светимости I и спектральную классификацию B9. Они меньше красных сверхгигантов и обычно покидают свою главную последовательность всего за несколько миллионов лет. Из-за своей массы они быстро сжигают запасы водорода.Некоторые звезды эволюционируют прямо в звезды Вольфа-Райе, перепрыгивая через нормальную фазу голубых сверхгигантов. Вот некоторые примеры: UW Canis Majoris, Rigel и Tau Canis Majoris.

Красные гиганты

Эти звезды имеют преобладание около 0,4%, спектральные классы M, K. Они имеют температуру примерно от 3,300 до 5,300 К и светимость примерно в 100-1000 раз больше, чем у Солнца. Они имеют массу от 0,3 до 10 и живут от 0,1 до 2 миллиардов лет.

Они намного меньше красных сверхгигантов и намного менее массивны.RBG-ветвь является наиболее распространенной, когда водород все еще плавится в гелий, но в оболочке вокруг инертного гелиевого ядра. Гиганты с красными сгустками используют гелий и превращают его в углерод, в то время как ветвь AGB сжигает свой гелий в оболочке вокруг вырожденного ядра из углерода и кислорода. Вот несколько примеров: Альдебаран, Арктур.

Красные сверхгиганты

Эти звезды имеют преобладание около 0,0001%, спектральные классы K, M. Они имеют температуру от 3,500 до 4,500 К и светимость около 1.От 000 до 800 000 раз больше Солнца. Они имеют массу от 10 до 40 масс нашего Солнца и живут от 3 до 100 миллионов лет.

Эти звезды исчерпали запасы водорода в своих ядрах. Из-за этого их внешние слои сильно расширяются по мере развития от основной последовательности. Они являются одними из самых больших звезд во Вселенной, хотя и не среди самых массивных или ярких. Некоторые красные сверхгиганты, которые все еще могут создавать тяжелые элементы, в конечном итоге взрываются как сверхновые типа II.Вот некоторые примеры: Антарес, Бетельгейзе, Му Цефеи.

Мертвые звезды

Мертвые звезды больше не имеют процессов слияния, происходящих в их ядрах.

Белые карлики

Эти звезды имеют преобладание около 0,4%, спектральный класс D. Они имеют температуру от 8000 до 40 000 К и светимость от 0,0001 до 100 раз больше, чем у Солнца. Они имеют массу от 0,1 до 1,4 массы нашего Солнца и живут от 100 000 до 10 миллиардов лет.

Эти звезды больше не производят энергию, чтобы противодействовать своей массе.Теоретически они не могут превышать 1,4 массы Солнца. Вот некоторые примеры: Сириус Б, Процион Б, Ван Маанен.

Нейтронные звезды

Эти звезды имеют преобладание около 0,7%, спектральный класс D. Они имеют температуру около 600 000 К и очень низкую светимость. Они имеют массу от 1,4 до 3,2 массы нашего Солнца и живут от 100 000 до 10 миллиардов лет.

Нейтронные звезды — это в основном коллапсирующие ядра массивных звезд, которые были сжаты за пределы стадии белого карлика во время взрыва сверхновой.Они состоят из нейтронных частиц, которые немного массивнее протонов без электрического заряда. Они могут коллапсировать в черные дыры, если их масса больше 3-х солнечных. Противостоять этому процессу могут только нейтронные звезды с высокой скоростью вращения и массой более 3-х солнечных. Вот некоторые примеры: PSR J0108-1431, PSR B1509-58.

Черные карлики

Эти звезды имеют более гипотетический характер. Теоретически они являются белыми карликами, которые излучают все свои остатки тепла и света.Поскольку у белых карликов относительно большая продолжительность жизни, у черных карликов еще не было достаточно времени, чтобы сформироваться. Если такие звезды образуются, это произойдет после того, как наше Солнце умрет.

Черные дыры

Маленькие звезды могут стать белыми карликами или нейтронными звездами, но звезды с большими массами становятся черными дырами после взрыва сверхновой. Поскольку у остатка нет внешнего давления, чтобы противостоять силе гравитации, он продолжит коллапсировать в гравитационную сингулярность и в конечном итоге станет черной дырой.

Такой объект настолько силен, что от него не может пройти даже свет. Примеры таких объектов: Лебедь X-1, Стрелец A.

Неудачные звезды

Неудачные звезды — это небесные объекты, не обладающие достаточной массой для воспламенения и плавления водородного газа. Поэтому они не светятся. Коричневые карлики обычно называют несостоявшимися звездами.

Коричневые карлики

Эти звезды имеют преобладание от 1% до 1,0% и находятся между спектральными классами M, L, T, Y.Они имеют температуру от 300 до 2,800 К и очень низкую светимость. Они имеют массу от 0,01 до 0,08 массы нашего Солнца и живут, возможно, триллионы лет.

Обычно они заполняют промежуток между самыми массивными газовыми планетами и наименее массивными звездами. Они имеют диапазон масс от 13 до 80 масс Юпитера. В основном они не излучают видимый свет. Вот несколько примеров: Gliese 229 B, Luhman 16.

Знаете ли вы?

  1. Самая далекая обнаруженная отдельная звезда — голубой сверхгигант по имени Икар.Он находится примерно в 14 миллиардах световых лет от Земли.
  2. Самая массивная и яркая звезда из когда-либо обнаруженных — это звезда Вольфа-Райе, получившая название R136a1. Он имеет около 315 солнечных масс и 8,7 миллионов солнечной светимости.
  3. Самая крупная звезда из известных в настоящее время — красный сверхгигант VY Canis Majoris. Это примерно в 17 ± 8 раз больше массы Солнца.
  4. HE 1523-0901 — старейшая из известных звезд в нашей галактике Млечный Путь. Предполагаемый возраст звезды — около 13,2 миллиарда лет. Это красная гигантская звезда.
  5. Любая звезда, которую можно увидеть с Земли, видна в прошлом. Сириус, например, выглядит старше на 8 лет.
  6. На ночном небе около 9,096 звезд, видимых невооруженным глазом. Одновременно можно увидеть от 2.000 до 2.500.
  7. Если бы Юпитер был бы примерно в 79 раз массивнее, он бы превратился в звезду.
Источники:
Источник изображения:

Проектирование и разработка баз данных. Технология программирования ORM. Распределенные, параллельные и гетерогенные базы данных.

Проектирование баз данных — процесс создания схемы базы данных и определения необходимых ограничений целостности.

Основные задачи проектирования баз данных:

• Поддержка хранения в БД всей необходимой информации.

• Возможность сбора данных по всем необходимым запросам.

• Сокращение от избыточности и дублирования данных.

• Поддержка целостности базы данных.

Основные этапы проектирования баз данных

Концептуальный дизайн — создание модели семантической области, то есть информационной модели самого высокого уровня абстракции.Такая модель создается без ориентации на какую-либо конкретную СУБД и модель данных. Термины «семантическая модель», «концептуальная модель» являются синонимами.

Конкретный тип и содержание концептуальной модели базы данных определяется формальным устройством, выбранным для этой цели. Обычно используются графические обозначения, похожие на диаграммы ER.

Чаще всего концептуальная модель базы данных включает:

• описание информационных объектов или концепций предметной области и связи между ними.

• описание ограничений целостности, то есть требований к допустимым значениям данных и связям между ними.

Логический дизайн — создание схемы базы данных на основе определенной модели данных, например, реляционной модели данных. Для реляционной модели данных логическая модель данных — набор диаграмм отношений, обычно с указанием первичных ключей, а также «связей» между отношениями, представляющими внешние ключи.

Преобразование концептуальной модели в логическую, как правило, осуществляется по формальным правилам. Этот этап можно существенно автоматизировать.

На этапе логического проектирования учитывается специфика конкретной модели данных, но не может быть учтена специфика конкретной СУБД.

Physical design — создание схемы базы данных для конкретной СУБД. Специфика конкретной СУБД может включать ограничения на именование объектов базы данных, ограничения на поддерживаемые типы данных и т. Д.Кроме того, специфика конкретной СУБД в случае физического проектирования включает выбор решений, связанных с физическим носителем хранения данных (выбор методов управления дисковой памятью, разделение БД по файлам и устройствам, методы доступа к данным) , создание индексов и др.

Что такое ORM?

ORM или объектно-реляционное отображение — это технология программирования, которая позволяет преобразовывать несовместимые типы моделей в ООП, в частности, между хранилищем данных и предметами программирования.ORM используется для упрощения процесса сохранения объектов в реляционной базе данных и их извлечения, при этом ORM сам заботится о преобразовании данных между двумя несовместимыми состояниями. Большинство инструментов ORM в значительной степени полагаются на метаданные базы данных и объектов, поэтому объектам не нужно ничего знать о структуре базы данных, а базе данных — ничего о том, как данные организованы в приложении. ORM обеспечивает полное разделение задач на хорошо запрограммированные приложения, в случае которых и база данных, и приложение могут работать с данными каждая в корневой форме.

Fugure1- Работа ОРМ

Принцип работы ORM- Ключевой особенностью ORM является отображение, которое используется для привязки объекта к его данным в БД. ORM как бы создает «виртуальную» схему базы данных в памяти и позволяет манипулировать данными уже на уровне объекта. Дисплей отображается как объект, а его свойства связаны с одной или несколькими таблицами и их полями в базе данных. ORM использует информацию этого дисплея для управления процессом преобразования данных между базой и формами объектов, а также для создания SQL-запросов для вставки, обновления и удаления данных в ответ на изменения, которые приложение вносит в эти объекты.

Распределенная база данных — набор логически связанных между собой разделенных данных (и их описаний), которые физически распределены в некоторой компьютерной сети. Распределенная СУБД — программный комплекс, предназначенный для управления распределенными базами данных и позволяющий сделать распространение информации прозрачным для конечного пользователя.

Пользователи взаимодействуют с распределенной базой данных через приложения. Приложения можно разделить на те, которым не требуется доступ к данным на других веб-сайтах (локальные приложения), и те, которые требуют аналогичного доступа (глобальные приложения).

Один из подходов к интеграции объектно-ориентированных приложений с реляционными базами данных заключается в разработке разнородных информационных систем . Гетерогенные информационные системы способствуют интеграции разнородных источников информации, структурированных (с наличием регулярной (нормализованной) диаграммы), полуструктурированных, а иногда и неструктурированных. Любая разнородная информационная система строится по схеме глобальной базы данных над базами данных компонентов, поэтому пользователи получают преимущества диаграммы, то есть единые интерфейсы доступа (например, интерфейс в стиле sql) к данным, сохраненным в разных базах данных, и богатые функциональные возможности. .Такая разнородная информационная система называется системой интегрированных мультибаз данных.

Становление систем управления базами данных (СУБД) по времени совпало со значительным прогрессом в развитии технологий распределенных вычислений и параллельной обработки. В результате появились базы данных распределенных систем управления и параллельные системы управления базами данных. Эти системы становятся доминирующими инструментами для создания приложений с интенсивной обработкой данных.

Параллельный компьютер, или мультипроцессор сам по себе — это распределенная система, составленная из узлов (процессоров, компонентов памяти), соединенных быстрой сетью в общем корпусе.Технология распределенных баз данных может быть естественно пересмотрена и широко распространена в параллельных системах баз данных, то есть в системах баз данных на параллельных компьютерах

Распределенная и параллельная СУБД предоставляют те же функциональные возможности, что и хост-СУБД, за исключением того факта, что они работают в среде, где данные распределяются по узлам компьютерной сети или многопроцессорной системе.

Вопросы:

1. Почему отношения являются важным аспектом баз данных?

2.В чем разница между плоскими файлами и другими моделями баз данных?

3. Что такое ORM?

4. Принцип работы ORM?

5. ORM или объектно-реляционное отображение?

Список литературы

1. Джун Дж. Парсонс и Дэн Оя, Новые перспективы компьютерных концепций, 16-е издание — всеобъемлющее, Thomson Course Technology, подразделение Thomson Learning, Inc. Кембридж, Массачусетс, АВТОРСКОЕ ПРАВО © 2014.

2. Лоренцо Кантони (Университет Лугано, Швейцария) Джеймс А.Дановски (Университет Иллинойса в Чикаго, Иллинойс, США) Коммуникация и технологии, 576 страниц.

Лекция №11 . Анализ данных.


Цель: дать общие понятия корреляции, регрессии, а также познакомиться с описательной статистикой.


План:
1. Базы анализа данных.

2. Методы сбора, классификации и прогнозирования. Деревья решений.

Базы анализа данных.

Интеллектуальный анализ данных — это процесс автоматического извлечения и генарификации прогнозной информации из больших банков данных. DM включает в себя анализ наборов данных наблюдений для поиска неожиданных, ранее неизвестных взаимосвязей и обобщения данных по-новому, понятным и полезным для владельца данных.

Связи и сводки, полученные в результате интеллектуального анализа данных, часто называют моделями или шаблонами. Примеры включают линейные уравнения, правила, кластеры, графики, древовидные структуры и повторяющиеся шаблоны во временных рядах.Следует отметить, что дискриплайн обычно имеет дело с данными, которые уже были собраны для какой-либо цели, кроме анализа интеллектуального анализа данных (например, они могли быть собраны для поддержания актуальной записи всех транзакций в банке). Это означает, что цели интеллектуального анализа данных обычно не играют никакой роли в стратегии сбора данных. Это один из способов его отличия от многих статистических данных, в которых данные часто собираются с использованием эффективных стратегий для ответа на конкретные вопросы.

DM, широко известный как «Обнаружение знаний в базах данных» (KDD), представляет собой автоматизированное или удобное извлечение шаблонов, представляющих знания, неявно сохраненные или захваченные в больших базах данных, которые могут содержать миллионы строк, связанных с предметом базы данных, хранилищами данных, Интернетом и другой массивной информацией. репозитории или потоки данных.

Итак, читатели (которые, как мы полагаем, знают о структуре системы баз данных) могут распознать основные различия между традиционной системой баз данных и DWH, которые включают интеллектуальный анализ данных, анализ (как части обнаружения знаний в базах данных), механизм OLAP (процессы онлайн-аналитики вместо или дополнительно к процессам онлайн-транзакций) Серверы DW / Marts (набор серверов для разных отделов предприятий), Back Ground process / preprocessing (e.г. Очистка — решение проблемы с недостающими данными, данными шума) и т. Д.

Замечание об истории терминов

[с https: // en. wikipedia.org/wiki/Data_mining]:

Грегори Пятецкий-Шапиро ввел термин «открытие знаний в базах данных» для первого семинара по той же теме (KDD-1989), и этот термин стал более популярным в сообществе AI и машинного обучения. Однако термин Data Mining (1990) стал более популярным в деловых кругах и в прессе. В настоящее время интеллектуальный анализ данных и обнаружение знаний взаимозаменяемы.Термины «Прогнозная аналитика» (с 2007 г.) и «Наука о данных» (с 2011 г.) также используются для описания этой области.

Фактически, мы можем сказать, что DM — это шаг в процессе KDD, связанный с алгоритмами, разнообразием методов для определения поддержки принятия решений, предсказанием, прогнозированием и оценкой с использованием методов распознавания образов, а также статистических и математических методов.

Базовые модели и задачи интеллектуального анализа данных

DM включает в себя множество различных алгоритмов для выполнения различных задач.Все эти алгоритмы пытаются подогнать модель под данные. Создаваемая модель может быть по своей природе либо , либо описательной . На рис. 6.2 представлены основные задачи DM, используемые в этом типе модели.

Модель

Predictive позволяет прогнозировать значения данных, используя известные результаты из различных наборов выборочных данных.

Классификация позволяет классифицировать данные из большого банка данных по заранее определенному набору классов. Классы определяются до изучения или изучения данных в банке данных.Задачи классификации позволяют не только изучать и исследовать существующие выборочные данные, но и предсказывать будущее поведение этих выборочных данных. Например, обнаружение мошенничества при транзакции с кредитной картой для предотвращения материальных потерь; оценка вероятности ухода сотрудника из организации до завершения проекта — вот некоторые из задач, которые вы решаете, применяя методику классификации.

Регрессия — это один из статистических методов, который позволяет прогнозировать будущие значения данных на основе текущих и прошлых значений данных.Задача регрессии проверяет значения данных и вырабатывает математическую формулу. Результат, полученный при использовании этой математической формулы, позволяет прогнозировать будущую ценность существующих или даже пропущенных данных. Основным недостатком регрессии является то, что вы можете реализовать регрессию на количественных данных, таких как скорость и вес, чтобы предсказать их поведение в будущем.

Анализ временных рядов является частью Temporal Mining , позволяющей прогнозировать будущие значения для текущего набора значений, которые зависят от времени.Анализ временных рядов позволяет использовать текущие и прошлые выборочные данные для прогнозирования будущих значений. Значения, которые вы используете для анализа временных рядов, равномерно распределяются по часам, дням, неделям, месяцам, годам и так далее. Вы можете нарисовать график временных рядов, чтобы визуализировать количество изменений в данных для определенных изменений во времени. Вы можете использовать анализ временных рядов для изучения тенденций на фондовом рынке для различных компаний за определенный период и, соответственно, для осуществления инвестиций.

Суть описательной модели — определение закономерностей и взаимосвязей в выборочных данных:

Кластеризация — это обработка данных, в некотором смысле противоположная классификациям, которая позволяет создавать новые группы и классы на основе изучения закономерностей и взаимосвязи между значениями данных в банке данных.Это похоже на классификацию, но не требует предварительного определения групп или классов. Техника кластеризации также известна как сегментация без учителя . Все эти элементы данных, которые более похожи друг на друга, объединены в одну группу, также известную как кластеры. Примеры включают группы компаний, производящих похожие продукты или почвы с одинаковыми свойствами (например, чернозем), группу людей с одинаковыми привычками и т. Д.

Суммирование — это метод, который позволяет суммировать большой фрагмент данных, содержащихся на веб-странице или в документе.Изучение этих обобщенных данных позволяет понять суть всей веб-страницы или документа. Таким образом, обобщение также известно как характеристика или обобщение. Обобщение ищет определенные характеристики и атрибуты данных в большом наборе данных, а затем суммирует их. Примером использования технологии реферирования являются такие поисковые системы, как Google. Другие примеры включают резюмирование документа, резюмирование коллекции изображений и резюмирование видео. Резюме документа пытается автоматически создать репрезентативное резюме или реферат всего документа, находя наиболее информативные предложения.

Правила ассоциации позволяют установить ассоциацию и отношения между большими неклассифицированными элементами данных на основе определенных атрибутов и характеристик. Правила ассоциации определяют определенные правила ассоциативности между элементами данных, а затем используют эти правила для установления отношений. Обнаружение последовательности определяет последовательные шаблоны, которые могут существовать в большом и неорганизованном банке данных. Вы обнаруживаете последовательность в банке данных, используя фактор времени, то есть связываете элементы данных со временем, в которое они были созданы.Изучение последовательности событий при раскрытии и анализе преступлений позволяет службам безопасности и полицейским организациям раскрыть тайну преступления и принять превентивные меры, которые могут быть приняты против таких странных и неизвестных болезней.

Ветрогенератор — контроллер звезда-треугольник