Схематическое изображение радиодеталей. Обозначения радиодеталей на электрических схемах: полное руководство

Как читать электрические схемы. Какие условные графические обозначения используются для радиодеталей. Какие буквенно-цифровые коды применяются для маркировки компонентов на схемах.

Содержание

Основные виды радиодеталей и их обозначения

При работе с электрическими схемами очень важно уметь правильно «читать» условные графические обозначения радиодеталей. Это позволяет понять принцип работы устройства и правильно собрать его. Рассмотрим основные виды радиокомпонентов и их обозначения на схемах:

Резисторы

Резисторы на схемах обозначаются латинской буквой R и имеют следующие основные графические символы:

  • Постоянный резистор — прямоугольник
  • Переменный резистор — прямоугольник со стрелкой
  • Подстроечный резистор — прямоугольник с диагональной линией

Номинал резистора указывается рядом с обозначением в омах (Ом). Например, R1 10k означает резистор сопротивлением 10 килоом.

Конденсаторы

Конденсаторы обозначаются буквой C и изображаются в виде двух параллельных линий:


  • Постоянный конденсатор — две параллельные линии
  • Электролитический конденсатор — две параллельные линии, одна из которых изогнута
  • Переменный конденсатор — две параллельные линии со стрелкой

Емкость конденсатора указывается в фарадах (Ф). Например, C1 100n — конденсатор емкостью 100 нанофарад.

Катушки индуктивности

Катушки индуктивности обозначаются буквой L и изображаются в виде нескольких полуокружностей:

  • Катушка без сердечника — несколько полуокружностей
  • Катушка с сердечником — несколько полуокружностей с вертикальной линией

Индуктивность указывается в генри (Гн). Например, L1 10mH — катушка индуктивностью 10 миллигенри.

Полупроводниковые приборы и их обозначения

Полупроводниковые компоненты являются основой современной электроники. Рассмотрим обозначения наиболее распространенных полупроводниковых приборов:

Диоды

Диоды обозначаются буквой D (или VD) и изображаются в виде треугольника с чертой:

  • Выпрямительный диод — треугольник с чертой
  • Стабилитрон — треугольник с чертой и дополнительной линией
  • Светодиод — треугольник с чертой и стрелками

Транзисторы

Транзисторы обозначаются буквой T (или VT) и имеют следующие основные обозначения:


  • Биполярный транзистор n-p-n — круг с тремя выводами, стрелка к базе
  • Биполярный транзистор p-n-p — круг с тремя выводами, стрелка от базы
  • Полевой транзистор — круг с тремя выводами, косая линия

Цоколевка транзистора (эмиттер, база, коллектор) обычно указывается рядом с обозначением.

Интегральные микросхемы и их маркировка

Интегральные микросхемы (ИМС) обозначаются буквами DA (или U) и изображаются в виде прямоугольника с выводами. Внутри прямоугольника указывается тип микросхемы.

Например, DA1 K155ЛА3 — логическая микросхема серии К155.

Для сложных микросхем часто используется функциональное обозначение в виде условного графического изображения выполняемой функции.

Как правильно читать электрические схемы?

При чтении электрических схем важно придерживаться следующих рекомендаций:

  1. Внимательно изучите условные графические обозначения компонентов
  2. Обратите внимание на позиционные обозначения (R1, C2, VT3 и т.д.)
  3. Проанализируйте связи между компонентами
  4. Выделите функциональные узлы схемы
  5. Определите назначение каждого элемента

С опытом вы научитесь быстро «читать» даже сложные схемы и понимать принцип работы устройств.


Часто задаваемые вопросы об обозначениях радиодеталей

Вопрос: Как обозначаются полярные конденсаторы на схемах?

Полярные (электролитические) конденсаторы обозначаются двумя параллельными линиями, одна из которых изогнута. Рядом с обозначением ставится знак «+» со стороны положительного вывода.

Вопрос: Чем отличается обозначение биполярного транзистора n-p-n от p-n-p?

У транзистора n-p-n стрелка на эмиттере направлена к базе, а у p-n-p — от базы. Это отражает направление протекания тока в транзисторе.

Вопрос: Как определить номинал резистора по цветовой маркировке?

Цветовая маркировка резисторов использует систему цветных полос. Первые две или три полосы обозначают значащие цифры, следующая — множитель, последняя — допуск. Каждому цвету соответствует определенная цифра.

Заключение

Умение правильно читать условные обозначения радиодеталей на электрических схемах — важный навык для радиолюбителей и профессионалов. Это позволяет быстро разобраться в работе устройства и правильно собрать его. Регулярная практика в чтении и анализе схем поможет развить этот навык.



Как читать схемы радиоэлектронных устройств, обозначения радиодеталей

Зная общий вид радиодеталей, можно конечно в некоторой мере разобраться в устройстве радиоэлектронного устройства, но все равно радиолюбителю придется нарисовать на бумаге контуры деталей и соединение между ними.

Еще в прошлом веке с целью сохранения конструктивных и схемных решений радиоустройств пионеры радиотехники делали их рисунки. Если посмотреть на эти рисунки, то можно увидеть, что они выполнены на очень высоком художественном уровне.

Это делали обычно сами изобретатели, если имели способности или приглашенные художники. Рисунки конструкций и соединение деталей делались с натуры.

Чтобы не затрачивать больших средств на рисование радиотехнических устройств и облегчить труд конструкторов начали делать рисунки с упрощениями. Это позволило значительно быстрее повторить конструкцию в другом городе или стране и сохранить схемные решения для потомков. Первые начерченные схемы появились в начале XIX столетия.

На рисование примерного вида детали могло быть потрачено немало времени, а иногда и средств, в те времена еще не было возможности использовать компьютеры и программы для рисования схем.

Детали рисовали подробно. Так, например, катушку индуктивности в 1905 году изображали в изометрии, то есть в трехмерном пространстве, со всеми подробностями, каркасом, намоткой, количеством витков (рис. 1). В конце концов изображения деталей и их соединений стали делать условно, символично, но сохраняя при этом их особенности.

Эволюция условного графического изображения катушки индуктивности на электрических схемах

Рис. 1. Эволюция условного графического изображения катушки индуктивности на электрических схемах

В 1915 г. рисунок схем упростился, перестали изображать каркас, вместо этого стали применять линии разной толщины для подчеркивания цилиндрической формы катушки.

Через 40 лет катушка уже изображалась линиями одной толщины, но еще с сохранением первоначальных особенностей ее вида. Только в начале 70-х годов нашего столетия катушку начали изображать плоской, то есть двумерной, а радиоэлектронные схемы стали приобретать свой нынешний вид. Вычерчивание сложных радиоэлектронных схем очень трудоемкая работа. Для ее выполнения необходим опытный чертежник-конструктор.

С целью упрощения процесса вычерчивания схем американский изобретатель Сесиль Эффингер в конце 60-х годов XX века сконструировал печатную машинку.

В машинке вместо обычных букв были вставлены обозначения резисторов, конденсаторов, диодов и т. д. Работа по изготовлению радиосхем на такой машинке стала доступной для выполнения даже простой машинистке. С появлением персональных компьютеров процесс изготовления радиосхем значительно упростился.

Теперь, зная графический редактор, можно на экране компьютера нарисовать радиоэлектронную схему, а затем ее распечатать на принтере. В связи с расширением международных контактов условные обозначения радиосхем усовершенствовались и сейчас они не очень отличаются друг от друга в разных странах. Это делает радиосхемы понятными для радиоспециалистов во всем мире.

Условными графическими обозначениями и правилами исполнения электрических схем занимается третий технический комитет Международной электротехнической комиссии (МЭК).

В радиоэлектронике используются три типа схем: блок-схемы, принципиальные и монтажные. Кроме этого, для проверки радиоэлектронной аппаратуры составляют карты напряжений и сопротивлений.

Блок-схемы не раскрывают особенностей ни деталей, ни количестба диапазонов, ни количества транзисторов, ни того, по какой схеме собраны те или другие узлы, она дает только общее представление о составе аппаратуры и взаимосвязи ее отдельных узлов и блоков. На принципиальной схеме изображают условные обозначения элементов прибора или блоков и их электрические соединения.

Принципиальная схема не дает представления ни о внешнем виде, ни о расположении деталей на плате, ни о том, как расположить соединительные провода. Это можно узнать только из монтажной схемы.

Следует отметить, что на монтажной схеме детали изображаются так, чтобы своим видом напоминать реальные свои очертания. Для проверки режимов работы радиоэлектронной аппаратуры используют специальные карты напряжений и сопротивлений. На этих картах величины напряжений и сопротивлений указываются относительно шасси или заземленного провода.

В нашей стране при вычерчивании радиоэлектронных схем руководствуются государственным стандартом, сокращенно ГОСТ, который указывает, как следует условно изображать те или иные радиодетали.

Для более легкого запоминания условных обозначений отдельных элементов радиоэлектронной аппаратуры их изображения содержат характерные особенности деталей. На схемах рядом с условным графическим изображением ставится буквенно-цифровое обозначение.

Обозначение состоит из одной или двух букв латинского алфавита и цифр, указывающих порядковый номер этой детали на схеме. Порядковые номера графических изображений радиодеталей ставятся исходя из последовательности расположения однотипных символов, например, в направлении слева направо или сверху вниз.

Латинские буквы указывают тип детали, С — конденсатор, R — резистор, VD — диод, L — катушка-индуктивности, ѴТ — транзистор и т.д. Возле буквенно-цифрового обозначения детали указывается значение ее основного параметра (емкость конденсатора, сопротивление резистора, индуктивность и т.п.) и некоторые дополнительные сведения. Наиболее употребительные условные графические изображения радиодеталей на принципиальных схемах приведены в табл. 1, а их буквенные обозначения (коды) даны в табл. 2.

В конце позиционного обозначения может быть поставлена буква, указывающая на его функциональное назначение, т

Условные графические обозначения на принципиальных электрических схемах

см. также Буквенные обозначения радиодеталей


Под каждой картинкой есть кнопка для скачивания графических обозначений в векторе.

Обозначения сгруппированы по моему произволу:
0. Распространённые компоненты
1. Резисторы
2. Конденсаторы
3. Катушки индуктивности и трансформаторы
4. Диоды, стабилитроны, светодиоды
5. Транзисторы
6. Переключатели, реле, провода, соединители, антенны
7. Источники питания, лампы, электромоторы
8. Электроакустические устройства: микрофоны, громкоговорители
9. Микросхемы и прочая электроника

С обозначениями электронных ламп я уж не стал заморачиваться.
К некоторым нашим обозначениям полупроводников я добавил буржуйские символы — они представлены во вторую очередь как вариант к ГОСТовскому обозначению.

На странице представлены растровые изображения графических обозначений (все картинки кликабельны). Под каждой картинкой есть ссылка, по которой можно скачать тот или иной упакованный в архив файл в векторном формате svg. Пользуйтесь на здоровье.

При масштабировании элементов не забывайте включать режим «При изменении размеров объекта менять в той же пропорции толщину обводки».

Распространённые компоненты

⇩ УГО в векторе

Резисторы

⇩ Резисторы

Конденсаторы

⇩ Конденсаторы

Катушки индуктивности

⇩ Индуктивности

Диоды

⇩ Диоды

Транзисторы

⇩ Транзисторы

Переключатели, реле, провода, соединители, антенны

⇩ Переключатели

Источники и потребители

⇩ Источники питания, лампы и прочее

Электроакустические устройства

⇩ Микрофоны, динамики и прочее

Микросхемы, логические элементы

⇩ Микросхемы
Поделиться новостью в соцсетях

ОБОЗНАЧЕНИЯ РАДИОДЕТАЛЕЙ

   При изготовлении радиоэлектронных устройств, у начинающих радиолюбителей могут возникнуть трудности с расшифровкой обозначений на схеме различных элементов. Для этого был составлен небольшой сборник самых часто встречающихся условных обозначений радиодеталей. Следует учесть, что здесь приводится исключительно зарубежный вариант обозначения и на отечественных схемах возможны отличия. Но так как большинство схем и деталей импортного происхождения — это вполне оправдано.

обозначение радиодеталей на схемах

обозначение импортных радиодеталей

условное графическое обозначение радиодеталей

таблица обозначения радиоэлементов

   Резистор на схеме обозначается латинской буквой «R», цифра — условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора — мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.

обозначений радиодеталей резисторов по цветам

   Далее приводится структура и цоколёвка с обозначением назначения выводов популярных импортных цифровых микросхем серии CD40xx и операционных усилителей LM.

обозначение радиодеталей микросхем

примеры обозначени импортных микросхем и ОУ

   Наиболее часто встречающаяся система обозначений полупроводниковых радиодеталей — европейская. Основное обозначение по этой системе состоит из пяти знаков. Две буквы и три цифры — для широкого применения. Три буквы и две цифры — для специальной аппаратуры. Следующая за ними буква обозначает разные параметры для приборов одного типа. 

   Первая буква — код материала:

А — германий;
В — кремний;
С — арсенид галлия;
R — сульфид кадмия.

   Вторая буква — назначение:

А — маломощный диод;
В — варикап;
С — маломощный низкочастотный транзистор;
D — мощный низкочастотный транзистор;
Е — туннельный диод;
F — маломощный высокочастотный транзистор;
G — несколько приборов в одном корпусе;
Н — магнитодиод;
L — мощный высокочастотный транзистор;
М — датчик Холла;
Р — фотодиод, фототранзистор;
Q — светодиод;
R — маломощный регулирующий или переключающий прибор;
S — маломощный переключательный транзистор;
Т — мощный регулирующий или переключающий прибор;
U — мощный переключательный транзистор;
Х — умножительный диод;
Y — мощный выпрямительный диод;
Z — стабилитрон.

   Форум по радиодеталям

   Обсудить статью ОБОЗНАЧЕНИЯ РАДИОДЕТАЛЕЙ


Радиодетали и электронные компоненты | Go-radio.ru

Радиодетали и электронные компоненты

С чего начинается практическая электроника? Конечно с радиодеталей! Их разнообразие просто поражает. Здесь вы найдёте статьи о всевозможных радиодеталях, познакомитесь с их назначением, параметрами и свойствами. Узнаете, где и в каких устройствах применяются те или иные электронные компоненты.

Радиодетали и электронные компонентыДля перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Радиодетали и электронные компоненты

Как купить радиодетали через интернет?

Как купить радиодетали через интернет? Этим вопросом задаются многие радиолюбители. В статье рассказывается о том, как можно заказать радиодетали в интернет-магазине радиодеталей с доставкой по почте.

Радиодетали и электронные компоненты

Как покупать радиодетали на AliExpress.com?

В данной статье я расскажу о том, как покупать радиодетали и электронные модули в одном из крупнейших интернет-магазинов AliExpress.com за весьма небольшие деньги:)

Радиодетали и электронные компоненты

Резисторная сборка.

Резисторная сборка (она же Resistor Array или Resistor Networks) активно применяется в цифровой электронике. Здесь вы узнаете, как устроена резисторная сборка, а также познакомитесь с её маркировкой и применением.

Радиодетали и электронные компоненты

SMD резисторы (Surface Mount Chip Resistors).

Так ли много мы знаем об SMD-резисторах? Спешите узнать: устройство, конструкция и технология производства чип-резисторов разных типов.

Радиодетали и электронные компоненты

MELF резисторы.

Кроме широко распространённых плоских SMD-резисторов в электронике применяются MELF-резисторы в корпусе цилиндрической формы. Каковы их достоинства и недостатки? Где они применяются и как определить их мощность?

Радиодетали и электронные компоненты

Размеры SMD-резисторов. Таблица типоразмеров.

Размеры корпусов SMD-резисторов стандартизированы, и многим они, наверняка, известны. Но так ли всё просто? Здесь вы узнаете о двух системах кодирования размеров SMD-компонентов, научитесь определять реальный размер чип-резистора по его типоразмеру и наоборот. Познакомитесь с самыми маленькими представителями SMD-резисторов, которые сейчас существуют. Кроме этого представлена таблица типоразмеров SMD-резисторов и их сборок.

Радиодетали и электронные компоненты

Мощность SMD резистора. Как узнать?

При конструировании и ремонте электроники довольно часто возникает вопрос, а как же узнать мощность SMD-резистора?

Здесь приводится методика определения мощности чип-резистора исходя из его размеров, приводится таблица соответствия типоразмера и мощности чип резистора. Кроме этого, вы научитесь определять мощность резисторов в составе чип-сборок, а также познакомитесь с высокомощными SMD-резисторами.

Приведённая информация является сжатой и компактной «выжимкой», полученной в результате изучения десятков даташитов, рекламных буклетов производителей и технических описаний на современные изделия для поверхностного монтажа.

Радиодетали и электронные компоненты

ТКС резистора (TCR resistor).

Здесь вы узнаете, что такое температурный коэффициент сопротивления резистора (ТКС), а также каким ТКС обладают разные типы постоянных резисторов. Приводится формула расчёта ТКС, а также пояснения насчёт зарубежных обозначений вроде T.C.R и ppm/0С.

Радиодетали и электронные компоненты

Какие бывают переменные резисторы?

Кроме постоянных резисторов в электронике активно применяются переменные и подстроечные резисторы. О том, как устроены переменные и подстроечные резисторы, об их разновидностях и пойдёт речь в предлагаемой статье. Материал подкреплён большим количеством фотографий разнообразных резисторов, что непременно понравится начинающим радиолюбителям, которые смогут легче ориентироваться во всём многообразии этих элементов.

Радиодетали и электронные компоненты

Параметры переменных резисторов.

Как и у любой радиодетали, у переменных и подстроечных резисторов есть основные параметры. Оказывается их не так уж и мало, а начинающим радиолюбителям не помешает ознакомиться с такими интересными параметрами переменных резисторов, как ТКС, функциональная характеристика, износоустойчивость и др.

Радиодетали и электронные компоненты

Терморезисторы.

Здесь вы узнаете о терморезисторах — электронных компонентах для измерения и контроля температуры. NTC-термисторы и позисторы. Применение термисторов в качестве устройств защиты.

Радиодетали и электронные компоненты

Катушка индуктивности.

Что такое катушка индуктивности и зачем она используется в электронике? Здесь вы узнаете не только о том, какими параметрами обладает катушка индуктивности, но и узнаете, как обозначаются разные катушки индуктивности на схеме. Статья содержит множество фотографий и изображений.

Радиодетали и электронные компоненты

Диод Шоттки. Особенности и обозначение на схеме.

В современной импульсной технике активно применяется диод Шоттки. Чем он отличается от обычных выпрямительных диодов? Как он обозначается на схемах? Каковы его положительные и отрицательные свойства? Обо всём этом вы узнаете в статье про диод Шоттки.

Радиодетали и электронные компоненты

Стабилитрон.

Стабилитрон – один из самых важных элементов в современной электронике. Не секрет, что полупроводниковая электроника очень требовательна к качеству электропитания, а если быть точнее, к стабильности питающего напряжения. Тут на помощь приходит полупроводниковый диод – стабилитрон, который активно применяется для стабилизации напряжения в узлах электронной аппаратуры.

Радиодетали и электронные компоненты

Варикап

Что такое варикап и где он применяется? Из этой статьи вы узнаете об удивительном диоде, который используется в качестве переменного конденсатора.

Радиодетали и электронные компоненты

Устройство динамика.

Как устроен динамик? Здесь вы узнаете об устройстве динамической головки прямого излучения, а также о том, как обозначается динамик на принципиальных схемах, а также познакомитесь с основными параметрами динамиков.

Радиодетали и электронные компоненты

Как соединять динамики?

Если вы занимаетесь электроникой, то наверняка сталкивались с задачей соединения нескольких динамиков или акустических колонок. Это может потребоваться, например, при самостоятельной сборке акустической колонки, подключении нескольких колонок к одноканальному усилителю и так далее. Рассмотрено 5 наглядных примеров. Много фото.

Радиодетали и электронные компоненты

Транзистор.

Транзистор является основой современной электроники. Его изобретение произвело революцию в радиотехнике и послужило основой для миниатюризации электроники – создания микросхем. Как обозначается транзистор на принципиальной схеме? Как необходимо впаивать транзистор в печатную плату? Ответы на эти вопросы вы найдёте в этой статье.

Радиодетали и электронные компоненты

Составной транзистор.

Составной транзистор или по-другому транзистор Дарлингтона является одной из модификаций биполярного транзистора. О том, где применяются составные транзисторы, об их особенностях и отличительных свойствах вы узнаете из этой статьи.

Радиодетали и электронные компоненты

Параметры MOSFET транзисторов.

При подборе аналогов полевых МДП-транзисторов приходиться обращаться к технической документации с параметрами и характеристиками конкретного транзистора. Из данной статьи вы узнаете об основных параметрах мощных MOSFET транзисторов.

Радиодетали и электронные компоненты

Обозначение полевого транзистора.

В настоящее время в электронике всё активнее применяются полевые транзисторы. На принципиальных схемах полевой транзистор обозначается по-разному. В статье рассказывается об условном графическом обозначении полевых транзисторов на принципиальных схемах.

Радиодетали и электронные компоненты

IGBT транзистор.

Что такое IGBT-транзистор? Где применяется и как он устроен? Из данной статьи вы узнаете о преимуществах биполярных транзисторов с изолированным затвором, а также о том, как обозначается данный тип транзисторов на принципиальных схемах.

Радиодетали и электронные компоненты

Динистор. Принцип работы и свойства.

Среди огромного количества полупроводниковых приборов существует динистор. Узнать о том, чем динистор отличается от полупроводникового диода, вы сможете, прочитав эту статью.

Радиодетали и электронные компоненты

Варистор.

Что такое варистор и каковы его основные параметры? Здесь вы узнаете, как варистор обозначается на схеме, а также о том, где применяется варистор.

Радиодетали и электронные компоненты

Супрессор.

Что такое супрессор? Защитные диоды или супрессоры всё активней применяются в радиоэлектронной аппаратуре для её защиты от высоковольтных импульсных помех. О назначении, параметрах и способах применения защитных диодов вы узнаете из этой статьи.

Радиодетали и электронные компоненты

Самовосстанавливающийся предохранитель.

Самовосстанавливающиеся предохранители всё чаще применяются в электронной аппаратуре. Их можно обнаружить в приборах охранной автоматики, компьютерах, портативных устройствах… На зарубежный манер самовосстанавливающиеся предохранители называются PTC Resettable Fuses. Каковы свойства и параметры «бессмертного» предохранителя? Об этом вы узнаете из предложенной статьи.

Радиодетали и электронные компоненты

Электромагнитное реле.

Электромагнитное реле. Устройство, принцип работы и основные параметры электромагнитного реле.

Радиодетали и электронные компоненты

Твёрдотельное реле.

В настоящее время в электронике всё активней стали применяться твёрдотельные реле. В чём преимущество твёрдотельных реле перед электромагнитными и герконовыми реле? Устройство, особенности и типы твёрдотельных реле.

Радиодетали и электронные компоненты

Кварцевый резонатор.

В литературе посвящённой электронике кварцевый резонатор незаслуженно лишён внимания, хотя данный электромеханический компонент чрезвычайно сильно повлиял на активное развитие техники радиосвязи, навигации и вычислительных систем.

Радиодетали и электронные компоненты

Разновидности конденсаторов по типу диэлектрика. Электролитические конденсаторы.

Кроме всем известных алюминиевых электролитических конденсаторов в электронике используется большое количество всевозможных электролитических конденсаторов с разным типом диэлектрика. Среди них например танталовые smd конденсаторы, неполярные электролитические и танталовые выводные. Данная статья поможет начинающим радиолюбителям распознать различные электролитические конденсаторы среди всевозможных радиоэлементов.

Радиодетали и электронные компоненты

Устройство танталового конденсатора.

Кроме алюминиевых электролитических конденсаторов в электронике активно используются конденсаторы с танталовым диэлектриком. Здесь вы познакомитесь с устройством танталового конденсатора, его отличительными особенностями и свойствами.

Радиодетали и электронные компоненты

Свойства электролитических конденсаторов.

Наряду с другими конденсаторами, электролитические конденсаторы обладают некоторыми специфическими свойствами, которые необходимо учитывать при их применении в самодельных электронных устройствах, а также при проведении ремонта электроники.

Радиодетали и электронные компоненты

Конденсаторы Low ESR и Low Impedance. В чём разница?

В настоящее время в продаже имеется огромный ассортимент электролитических конденсаторов, в том числе и низкоимпедансных или же с низким ЭПС. В чём отличие обычных конденсаторов от конденсаторов Low ESR и Low Impedance?

Радиодетали и электронные компоненты

Химические источники тока.

Химические источники тока активно используются в электронике. По-другому химический источник тока называют батарейкой или аккумулятором. В чём разница между батарейкой и аккумулятором? Как обозначаются химические источники тока на принципиальной схеме? На эти и другие вопросы вы получите ответы, прочтя статью про химические источники тока.

Радиодетали и электронные компоненты

Литиевые аккумуляторы.

Здесь вы узнаете о том, какие типы литиевых аккумуляторов нашли широкое применение. Рассказано об устройстве и особенностях аккумуляторов на основе лития, которые должен знать каждый пользователь данного класса вторичных источников тока.

Радиодетали и электронные компоненты

Ионистор.

В последнее время в продаже появились ионисторы. Как устроен ионистор? Каковы его свойства и электрические характеристики? Подробнее об этом читайте здесь.

Радиодетали и электронные компоненты

Электронный трансформатор.

Электромагнитные трансформаторы стали всё чаще заменяться электронными трансформаторами. В данной статье рассматривается устройство рядового электронного трансформатора для галогенных ламп. Представлена схема реального устройства.

Радиодетали и электронные компоненты

Температурные датчики и реле KSD.

Термоуправляемые выключатели получили широкое применение в бытовой электронике. Их можно встретить практически в любом бытовом приборе, служащим для нагрева чего-либо. Также они встречаются и в довольно сложных приборах вроде СВЧ-печей. Знание о температурных датчиках и реле (в данном случае серии KSD) помогут в ремонте бытовых электронагревательных приборов и при конструировании самодельных электронных устройств.

Радиодетали и электронные компоненты

ИК-приёмник.

Устройство и особенности приёмников инфракрасного излучения (ИК-модулей) для систем с дистанционным управлением.

 

 

 

Начинающим о радиодеталях | Мастер Винтик. Всё своими руками!

Для того, чтобы собрать схему какие только радиодетали и не понадобятся: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т.п. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на её корпусе, определить цоколёвку. Обо всём об этом и пойдёт речь ниже. 

Конденсатор.

Эта деталь практически встречается в каждой схеме радиолюбительских конструкций. Как правило, самый простой конденсатор — это две металлические пластинки (обкладки) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Через конденсатор постоянный ток не проходит, а вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.

У конденсатора основной параметр — это ёмкость.

Единица ёмкости — микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица — пикофарада (пФ), миллионная доля микрофарады (1 мкф = 1 000 нф = 1 000 000 пф). На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах или нанофарадах (9н1) , а свыше — в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510, 6800 пФ или n510 (0,51 нф = 510 пф или 6н8 = 6,8 нф = 6800пф). А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад (0,015 мкф = 15 нф  = 15 000 пф).

Типы конденсаторов.

Конденсаторы бывают постоянной и переменной емкости.

У переменных конденсаторов ёмкость изменяется при вращении выступающей наружу оси. При этом одна накладка (подвижная) находит на не подвижную не соприкасаясь с ней, в результате увеличивается ёмкость. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов — подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный — он более дешевле и доступнее.

Конденсаторы отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Эта разновидность постоянных конденсаторов — не полярные. Другая разновидность конденсаторов — электролитические (полярные). Такие конденсаторы выпускают большой ёмкости — от десятой доли мкф до несколько десятков мкФ. На схемах для них указывают не только ёмкость, но и максимальное напряжение, на которое их можно использовать. Например, надпись 10,0 x 25 В означает, что конденсатор емкостью 10 мкФ нужно взять на напряжение 25 В.

Для переменных или подстроечных конденсаторов на схеме указывают крайние значения ёмкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 10 — 240 свидетель­ствует о том, что в одном крайнем положении оси емкость конденсатора составляет 10 пФ, а в другом — 240 пФ. При плавном повороте из одного положения в другое ёмкость конденсатора будет также плавно изменяться от 10 до 240 пФ или обратно — от 240 до 10 пФ.

Резистор.

Надо сказать, что эту деталь, как и конденсатор, можно увидеть во многих самоделках. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). На малоомных резисторах большой мощности сверху наматывается нихромовая нить. Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы).  Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току.

Резисторы бывают постоянные и переменные.

Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных — СП (сопротивление переменное) и СПО (сопротивление переменное объемное). Внешний вид постоянных резисторов показан на рис. ниже.

Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете, измеряют в омах (Ом), килоомах (кОм) и мегаомах (МОм). Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.

Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более — до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм соответственно. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм и 4,7 МОм.

В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, телевизорах и т.п.

Полупроводниковые приборы.

Их составляет целая группа деталей: диоды, стабилитроны, транзисторы. В каждой детали использован полупроводниковый материал, или проще полупроводник. Что это такое? Все существующие вещества можно условно разделить на три большие группы. Одни из них — медь, железо, алюминий и другие металлы — хорошо проводят электрический ток — это проводники. Древесина, фарфор, пластмасса совсем не проводят ток. Они непроводники, изоляторы (диэлектрики). Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.

Диоды.

У диода (см. рис. ниже) два вывода: анод и катод. Если подключить к ним батарею полюсами: плюс — к аноду, минус — к катоду, в направлении от анода к катоду потечет ток. Сопротивление диода в этом направлении небольшое. Если же попытаться переменить полюсы батарей, то есть включить диод «наоборот», то ток через диод не пойдет. В этом направлении диод обладает большим сопротивлением. Если пропустить через диод переменный ток, то на выходе мы получим только одну полуволну — это будет хоть и пульсирующий, но постоянный ток. Если переменный ток подать на четыре диода, включенные мостом, то мы получим уже две положительные полуволны.

Стабилитроны.

Эти полупроводниковые приборы также имеют два вывода: анод и катод. В прямом направлении (от анода к катоду) стабилитрон работает как диод, беспрепятственно пропуская ток. А вот в обратном направлении он вначале не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения вдруг «пробивается» и начинает пропускать ток. Напряжение «пробоя» называют напряжением стабилизации. Оно будет оставаться неизменным даже при значительном увеличении входного напряжения. Благодаря этому свойству стабилитрон находит применение во всех случаях, когда нужно получить стабильное напряжение питания какого-то устройства при колебаниях, например сетевого напряжения.

Транзисторы.

Из полупроводниковых приборов транзистор (см. рис. ниже) наиболее часто применяется в радиоэлектронике. У него три вывода: база (б), эмиттер (э) и коллектор (к). Транзистор — усилительный прибор. Его условно можно сравнить с таким известным вам устройством, как рупор. Достаточно произнести что-нибудь перед узким отверстием рупора, направив широкое в сторону друга, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Если принять узкое отверстие за вход рупора-усилителя, а широкое — за выход, то можно сказать, что выходной сигнал в несколько раз больше входного. Это и есть показатель усилительных способностей рупора, его коэффициент усиления.

Сейчас разнообразие выпускаемых радиодеталей очень богатое, поэтому на рисунках показаны не все их типы.

Но вернемся к транзистору. Если пропустить через участок база — эмиттер слабый ток, он будет усилен транзистором в десятки и даже сотни раз. Усиленный ток потечет через участок коллектор — эмиттер. Если транзистор прозвонить мультиметром база-эмиттер и база-коллектор, то он похож на измерение двух диодов. В зависимости от наибольшего тока, который можно пропускать через коллектор, транзис­торы делятся на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-р-п. Так различаются транзисторы с разным чередованием слоев полупроводниковых материалов (если в диоде два слоя материала, здесь их три). Усиление транзистор не зависит от его   структуры.

А.Зотов

Литература: Б. С. Иванов, «ЭЛЕКТРОННЫЕ САМОДЕЛКИ»



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Ремонт iphone своими руками
  • Iphone, на сегодня считается самым востребованным и популярным мобильным гаджетом от американского торгового бренда «Apple», обладающий также безупречным качеством.

    Производственные дефекты и брак в таких телефонах практически отсутствуют и все поломки образуются только по вине пользователей.

    Подробнее…

  • Ремонт мышки своими руками
  • Компьютерная мышь — наверное, все знают что это такое. Это — манипулятор или координатное устройство ввода для управления курсором и отдачи различных команд компьютеру. Со временем у этого устройства появляются различные неисправности: повреждение многожильного провода, часто барахлит сенсор, бывает прокручивается колёсико (скролл) мышки, не работают кнопки мыши и т.д.

    Давайте рассмотрим ремонт своими руками наиболее популярного компьютерного манипулятора — мышки!

    Подробнее…

  • Как быстро и просто сделать хороший слайм?
  • Есть много разных способов сделать слайм, но все они сложные или слайм не получается мягким, эластичным и тянущимся.

    Сегодня в статье, ниже я расскажу как можно своими руками быстро и недорого сделать хороший слайм.

    Подробнее…


Популярность: 41 087 просм.

Обозначение радиодеталей на схеме

Обозначение радиодеталей на схеме

В данной статье приведен внешний вид и схематическое обозначение радиодеталей

 

Каждый наверно начинающие радиолюбитель видел и внешне радиодетали и возможно схемы,но что чем является на схеме приходится долго думать или искать,и только где то он может прочитает и увидит новые для себя слова такие как резистор, транзистор, диод и прочее.А как же они обозначаются.Разберем в данной статье.И так поехали.

1.Резистор

Чаще всего на платах и схемах можно увидеть резистор,так как их по количеству на платах больше всего.

Резисторы бывают как постоянные,так и переменные(можно регулировать сопротивление с помощью ручки)

Одна из картинок постоянного резистора ниже и обозначение постоянного и переменного на схеме.

А где переменный резистор как выглядет. Это еще картиночка ниже.Извиняюсь за такое написание статьи.

 

2.Транзистор и его обозначение

Много информации написано, о функциях ихних, но так как тема о обозначениях.Поговорим об обозначениях.

Транзисторы бывают биполярными,и полярными, пнп и нпн переходов.Все это учитывается при пайке на плату, и в схемах.Увидите рисунок,поймете

Обозначение транзистора нпн перехода npn

Э это эммитер, К это коллектор, а Б это база.Транзисторы pnp переходов будет отличатся тем что стрелочка будет не от базы а к базе.Для более подробного еще одна картинка

Есть так же кроме биполярных и полевые транзисторы, обозначение на схеме полевых транзисторов похожи, но отличаются.Так как нет базы эмиттера и коллектора, а есть С — сток, И — исток, З — затвор

И напоследок о транзисторах как же они выглядат на самом деле

Общем если у детали три ножки, то 80 процентов того что это транзистор.

Если у вас есть транзистор и незнаете какого он перехода и где коллектор, база, и вся прочая информация,то посмотрите в сравочнике транзисторов.

 

Конденсатор, внешний вид и обозначение

Конденсаторы бывают полярные и неполярные, в полярных на схеме приресовывают плюс, так как он для постоянного тока, а неполярные соответствено для переменного.

Они имеют определенную емкость в мКф (микрофарадах) и расчитаны на определенное напряжение в вольтах.Все это можно прочитать на корпусе конденсатора


 

Микросхемы, внешний вид обозначение на схеме

Уфф уважаемые читатели, этих существует просто огромное количество в мире, начинаю от усилителей и заканчивая телевизорами

Ну пару слов скажу.Смотреть их так же как и транзисторы в справочниках.У них от 8 и выше выводов ножек.С какой ножки отсчитывать смотрится тоже в справочнике.А на схеме самой указывают первую и последнюю ножку в обозначении.

Диод, обозначение на схеме

Сказав в кратце о этой радиодетали, скажу что она пропускает ток в одну сторону и непропускает в другую.Применяются самое распространеное для выпрямление тока, делают из переменного — постоянный

Насчет обозначений остальных деталей которых нет в этой статье я буду еще возращатся.

автор Шепелев Алексей

Обозначения На Принципиальных Схемах — tokzamer.ru

Допускается в отдельных случаях, установленных стандартами, все сведения об элементах помещать около УГО. Вся информация представлена блоками с подписями — наименованиями устройств.


I — Ответвления.

Все это также можно отобразить схематически. УГО в однолинейных и полных электросхемах Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них.
Читаем принципиальные электрические схемы

Буквенные обозначения Наряду с УГО для более точного определения названия и назначения элементов, на схемы наносят буквенное обозначение. Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Указано расположение таких элементов, как выключатели и розетки, светильники, автоматы защиты.

H — Соединение в месте пересечения. Графическое изображение соединений.

Обозначение линий связи на принципиальных схемах ГОСТ 2.

Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании: Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Если на схеме в позиционное обозначение элемента включено позиционное обозначение устройства или обозначение функциональной группы, то в перечне элементов в графе «Поз.

Как читать электрические схемы

Графические обозначения в электрических схемах

Можно сказать, в этом месте проводки спаиваются: Если пристально вглядеться в схему, то можно заметить пересечение двух проводников Такое пересечение будет часто мелькать в схемах. Размеры в ЕСКД Размеры графических и буквенных изображений на чертеже, толщина линий не должны отличаться, но допустимо их пропорционально изменять в чертеже. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта.


Это касается и каждого отдельного элемента Ток питания в принципиальных схемах должен течь сверху — вниз!

Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании: Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Пример однолинейной схемы Монтажные электрические схемы.

Некоторые графические символы похожи между собой, поэтому при составлении схемы требуется особое внимание. Если в состав изделия входит несколько одинаковых устройств, то позиционные обозначения элементам следует присваивать в пределах этих устройств.

Если бы между ними было соединение, то мы бы увидели вот такую картину: Буквенное обозначение радиоэлементов в схеме Давайте еще раз рассмотрим нашу схему.

Рисунок 9 Каждой таблице присваивают позиционное обозначение элемента, взамен УГО которого она помещена.

Нормально отключенному положению выключателя соответствует заштрихованный прямоугольник, а не заштрихованный прямоугольник — выключатель включенный.
Обозначение радиодеталей на схеме

1 Область применения

Для изображения коммутационных устройств, входящих в электросистему, используют 4 основных обозначения.


Пример однолинейной схемы Монтажные электрические схемы. Е — ИМ, на который дополнительно установлен ручной привод. Как соединяются радиоэлементы в схеме Итак, вроде бы определились с задачей этой схемы.

Внутри групп устройства делятся по количеству полюсов, наличию защиты.

Иногда номинальные данные не указывают, в этом случае параметры элемента не имеют значения, можно выбрать и установить звено с минимальным значением. Самый простой пример — обыкновенный выключатель. Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Пусть это будет значок R2.

Звонок на электрической схеме по стандартам УГО с обозначенным размером Размеры УГО в электрических схемах На схемах наносят параметры элементов, включенных в чертеж. Рисунок 6 Допускается при изображении на схеме элемента или устройства разнесенным способом позиционное обозначение каждой составной части элемента или устройства проставлять, как при совмещенном способе, но с указанием для каждой части обозначений выводов контактов. В принципиальных схемах разных отраслей имеются отличия в изображении отдельных элементов.

ОБОЗНАЧЕНИЯ БУКВЕННО-ЦИФРОВЫЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ


Включают в разработанные чертежи электрификации домов, квартир, производств. Если невозможно указать характеристики или параметры входных и выходных цепей изделия, то рекомендуется указывать наименование цепей или контролируемых величин. Поэтому, эта статья в основном именно для них.

Прописывается полная информация об элементе, емкость, если это конденсатор, номинальное напряжение, сопротивление для резистора. Второй вид более современный и активно применим, особенно в импортном оборудовании. Однобуквенная символика элементов Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом

Основные базовые изображения Электрические цепи ведут к устройствам и установкам, которые оборудованы контактами, способными разорвать или соединить эти цепи. Вся информация представлена блоками с подписями — наименованиями устройств.
Условные графические обозначения радиоэлементов

Виды и типы электрических схем

В — Коллекторные электродвигатели постоянного тока: 1 — с возбуждением обмотки от постоянного магнита 2 — Электрическая машина с катушкой возбуждения В связке с электромоторами, на схемах показаны магнитные пускатели, устройства мягкого пуска, частотный преобразователь.

Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная. Главное найти большую плоскость, на которую её можно будет разложить. При внесении изменений в схему последовательность присвоения порядковых номеров может быть изменена.

Дефакто-виды промышленных принципиальных схем. Совмещенный способ изображения устройства Разнесенный способ изображения устройства Рисунок 5 Если поле схемы разбито на зоны или схема выполнена строчным способом, то справа от позиционного обозначения или под позиционным обозначением каждой составной части элемента или устройства допускается указывать в скобках обозначения зон или номера строк, в которых изображены все остальные составные части этого элемента или устройства см. Для изображения защитного проводника также имеется отдельный значок Провода бывают разные по виду, назначению, нагрузке, способу прокладки.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Приведем в качестве примера основные графические обозначения для разных видов электрических схем. Большинство схем, которые созданы по ЕСКД, конструкторами и инженерами предприятий просто уродливы.

Каждый провод шины должен быть иметь собственное наименование. Неудобство этих схем в том, что замучаешься листать такую схему.

Таблица обозначений всевозможных токонесущих линий. Это дубликат более раннего документа — ГОСТ 2. Поэтому я называю составление принципиальной схемы искусством.

Виды и типы электрических схем

Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы. Основные правила составления принципиальных схем: Разбейте устройство на функциональные части: питание конечные входные устройства и прохождение сигнала до решающего устройства конечные выходные устройства и сигналы к ним от решающего устройства решающее устройство обмен данными с другим оборудованием Хорошо если удастся изобразить эти части на отдельных листах Движение сигналов схемы всегда! Существует множество вариантов обозначения, здесь я приведу наиболее распространённый, который соответствует ГОСТ 2. Большая часть обозначений — графические.

Рисунок 7 5. Внутри групп устройства делятся по количеству полюсов, наличию защиты. При выполнении схемы на неполных листах должны выполняться следующие требования: — нумерация позиционных обозначений элементов должна быть сквозной в пределах установка; — перечень элементов должен быть общим; — при повторном изображении отдельных элементов на других листах схемы следует охранять позиционные обозначения, присвоенные им на одном из первых листов схемы. С — символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
Как читать электрические схемы. Урок №6

Условные обозначения компонентов »Электроника Примечания

Электронные схемы — это ключ к разработке и определению электронных схем: каждый компонент различного типа имеет свой собственный символ схемы, позволяющий рисовать и читать схемы кратко.


Ciircuits, Diagrams & Symbols Включает в себя:
Обзор символов цепей Резисторы Конденсаторы Индукторы, катушки, дроссели и трансформаторы Диоды Биполярные транзисторы Полевые транзисторы Провода, выключатели и разъемы Аналоговые и функциональные схемы блоков логика


Отдельные символы использовались для обозначения различных типов электронных компонентов в цепях с самого начала электрической и электронной науки.

Сегодня символы схем и их использование в значительной степени стандартизированы. Это позволяет любому читать принципиальную схему и знать, что она делает относительно быстро. Схематические символы используются для представления различных электронных компонентов и устройств на принципиальных схемах от проводов к батареям и пассивных компонентов к полупроводникам, логическим схемам и сложным интегральным схемам.

Используя общий набор схемных символов в схемах, инженеры-электронщики по всему миру могут передавать информацию о схемах кратко и без двусмысленности.

Selection of common circuit symbols

Это не займет много времени, чтобы узнать, что означают различные символы схемы. Часто это происходит при изучении общей электроники. Символы для более сложных интегральных схем и тому подобного, как правило, представляют собой блоки с включенным в них номером типа, и это означает, что не существует бесконечного разнообразия различных символов, которые нужно изучать и понимать.

Несмотря на то, что для различных схемных символов по всему земному шару используется ряд различных стандартов, различия, как правило, невелики, и, поскольку большинство систем хорошо известны, обычно нет места для двусмысленности.

Системы обозначений цепей

Существуют различные системы, используемые для схематических символов по всему миру. Хотя между ними есть некоторые различия, различные органы стандартизации осознают необходимость использования общих символов, и большинство из них одинаковы. Основными схемами условных обозначений систем и органов стандартизации являются:

  • IEC 60617: Этот стандарт выпущен Международной электротехнической комиссией, и этот стандарт для обозначений электронных компонентов основан на более старом британском стандарте BS 3939, который, в свою очередь, был разработан на основе более старого британского стандарта 530.Часто делается ссылка на стандарт электрических компонентов БС, и теперь используется стандарт МЭК. База данных включает в себя около 1750 символов схемы в целом.
  • Стандарт ANSI Y32: Этот стандарт для символов электронных компонентов является американским и также известен как IEEE Std 315. Этот стандарт IEEE для схемных символов имеет различные даты выпуска.
  • Австралийский стандарт AS 1102: Это австралийский стандарт для символов электронных компонентов.

Из них стандарты IEC и ANSI / IEEE для электронных символов, то есть схематические символы, являются наиболее широко используемыми. Оба довольно похожи друг на друга, хотя есть ряд отличий. Однако, поскольку многие принципиальные схемы используются во всем мире, обе системы будут хорошо известны большинству инженеров-электронщиков.

Условные обозначения и условные обозначения

При разработке принципиальной схемы или схемы необходимо определить отдельные компоненты.Это особенно важно при использовании списка деталей, поскольку компоненты на принципиальной схеме могут быть перекрестно связаны со списком деталей или спецификацией. Также важно идентифицировать компоненты, так как они часто отмечены на печатной плате, и таким образом цепь и физический компонент могут быть идентифицированы для таких действий, как ремонт и т. Д.

Для идентификации компонентов используется то, что называется условным обозначением цепи. Это условное обозначение цепи обычно состоит из одной или двух букв, за которыми следует число.Буквы указывают тип компонента, а число определяет, какой именно компонент этого типа это. Примером может быть R13 или C45 и т. Д.

Чтобы стандартизировать способ, которым компоненты идентифицируются в схемах, IEEE ввел стандарт IEEE 200-1975 как «Стандартные ссылочные обозначения для электрических и электронных компонентов и оборудования». Позднее это было отозвано, а позже ASME (Американское общество инженеров-механиков) инициировало новый стандарт ASME Y14.44-2008.

Ниже приведены некоторые из наиболее часто используемых условных обозначений цепей:

Транзистор Стабилитрон Стабилитрон
Более часто используемые условные обозначения схемы цепи
Ссылочный обозначение Тип компонента
ATT Аттенюатор
BR Мостовой выпрямитель
BT аккумулятор
C Конденсатор
D Диод
F Предохранитель
IC Интегральная схема — альтернатива широко используемому нестандартному сокращению
J Разъем (обычно, но не всегда относится к гнездовому контакту)
л Индуктор
LS Громкоговоритель
P Штекер
PS Блок питания
Q Транзистор
R Резистор
S Switch
SW Switch — альтернативное широко используемое нестандартное сокращение
Т Трансформатор
ТП Контрольная точка
TR — альтернативная широко используемая нестандартная аббревиатура
U Интегральная схема
VR Переменный резистор
X преобразователь
XTAL Crystal — альтернативная широко используемая нестандартная аббревиатура
Z
ZD — альтернативное широко используемое нестандартное сокращение

символы принципиальной схемы

Поскольку существует очень много различных условных обозначений, охватывающих широкий спектр различных компонентов всех типов, они были разбиты и представлены на разных страницах в соответствии с их категориями.

Используя различные стандартные условные обозначения схем на принципиальных схемах, можно создать диаграмму, которая не только проста для чтения, но и открыта для меньшего количества неверного толкования, чем при использовании нестандартных символов.

Больше схем и схемотехники:
Основы операционного усилителя Операционные усилители Цепи питания Транзисторная конструкция Транзистор Дарлингтон Транзисторные схемы Полевые схемы Схема символов
Возврат в меню схемы. , ,

.
пригодных для печати материалов для реализации высокопроизводительных РЧ-компонентов: проблемы и возможности РецензентыДля редакторовСодержаниеСпециальные вопросыПоделитьсяМеждународный журнал по антеннам и распространению / 2018 / СтатьяАртикульные разделы

На этой странице

АннотацияВведениеМетодыЗаключениеКонфликт интересов ,
Схематическое представление реле энергосистемы

Роль схемы

Схема — это схема, которая представляет элементов энергосистемы с использованием абстрактных графических символов, а не реалистичных изображений. Причина, по которой не подчеркивается реальность, заключается в том, чтобы вместо этого передавать функции

Schematic Representation Of Power System Relaying Схематическое изображение реле энергосистемы (на фото: тестирование схемы защиты с использованием программного обеспечения реле; кредит: acrastyle.co.uk)

На схеме обычно пропускаются все детали, которые не относятся к информации, которую схема должна передавать, и могут добавлять нереалистичные элементы, которые способствуют пониманию.Информация, которую схема должна передавать, определяется ее ролью.

Три типа схем:

  1. Однолинейная схема (SLD),
  2. Принципиальная электрическая схема
  3. и
  4. Принципиальная схема
  5. DC.

Любое изображение реальности с помощью однолинейной схемы является крупномасштабным, может показывать, где основные элементы оборудования находятся относительно друг друга .

Example A of a Single Line Diagram Пример A однолинейной схемы

С другой стороны, хотя схемы переменного и постоянного тока все еще не показывают реальность во всех деталях, они будут содержать информацию, которая обеспечит связь между реальным изображением оборудования, показанным на электрических схемах, и показанным почти чисто функциональным изображением в однолинейной схеме.

В частности, схематическое изображение переменного тока показывает с помощью графических символов электрические соединения и функции конкретной схемной компоновки.

Принципиальная схема постоянного тока часто используется для представления логики электрических систем управления (с переключением или ретрансляцией), включая количество переключателей или контактов, реле времени и реле с блокировкой, кнопки, концевые выключатели, индикаторы и управляемые устройства, такие как пускатели двигателей и электромагнитные клапаны.

Следовательно, роль схемы состоит в том, чтобы облегчить отслеживание измерительных и управляющих цепей и понимание функций управления без учета фактического физического размера, формы или местоположения составляющего устройства или частей. На схематической диаграмме символические элементы расположены так, что зритель может легко их интерпретировать.

Ретрансляция энергосистемы

предъявляет уникальные требования к долгосрочной точности для обслуживания и устранения неисправностей. Упомянутое выше облегчение для трассировки цепей и понимания функций особенно важно для требований к обслуживанию и устранению неисправностей.

По этим причинам этим чертежам будет уделено особое внимание.

Название: Схематическое представление ретрансляции энергосистемы — Отчет Подкомиссии I по ретрансляционным практикам; Комитет по энергосистеме; Энергетическое общество IEEE — подготовлено рабочей группой I5
Формат: PDF
Размер: 7.3 МБ
Страницы: 60
Загрузить: Прямо здесь | Получить Скачать Обновления | Получите Премиум Членство
Schematic Representation Of Power System Relaying Схематическое представление ретрансляции энергосистемы — отчет для подкомиссии I практики ретрансляции; Комитет по энергосистеме; Энергетическое общество IEEE — подготовлено рабочей группой I5 ,
МОДЕЛИРОВАНИЕ РАДИОВЕЛЕВОГО РАСПРОСТРАНЕНИЯ С ИСПОЛЬЗОВАНИЕМ МОДЕЛЕЙ РАСПРОСТРАНЕНИЯ

Понимание диапазона для RF устройств

Understanding Range for RF Devices Общие сведения о диапазоне радиочастотных устройств Октябрь 2012 г. Белая книга Понимание того, как факторы окружающей среды могут влиять на диапазон, является одним из ключевых аспектов развертывания решения радиочастот (RF).Эта статья будет

Дополнительная информация

8. Сотовые системы. 1. Технический журнал Bell System, Vol. 58, нет. 1, январь 1979. 2. Р. Стил, Мобильная связь, Pentech House, 1992.

8. Cellular Systems. 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992. 8. Список сотовых систем 1. Технический журнал Bell System, Vol. 58, нет. 1, январь 1979. 2. Р. Стил, Мобильная связь, Pentech House, 1992. 3. Г. Калхун, Цифровое сотовое радио, Artech House,

Дополнительная информация

Системы модуляции (часть 1)

MODULATION Systems (part 1) Технологии и услуги цифрового вещания (8) Системы МОДУЛЯЦИИ (часть) «Технологии и услуги цифрового вещания» (на японском языке, ISBN4-339-62-2) публикуются издательской компанией CORONA.

Дополнительная информация

ENTERPRISE. Функциональная схема

ENTERPRISE. Functionality chart ПРЕДПРИЯТИЕ Функциональная схема Особенности модуля Cellular Expert Enterprise Задачи Управление сетевыми данными Управление сайтом, сектором, строительством, заказчиком, ретранслятором: Добавить Редактировать Переместить Копировать Удалить Повторное использование сайта

Дополнительная информация

I. Моделирование беспроводных каналов

I. Wireless Channel Modeling Я.Моделирование беспроводных каналов 29 апреля 2008 г. Школа телекоммуникаций Цинхай Ян. Проектирование [email protected] Цинхай Ян Серия беспроводных коммуникаций 1 Содержание Распространение сигнала в свободном пространстве Pass-Loss

Дополнительная информация

Антенные системы MIMO в WinProp

MIMO Antenna Systems in WinProp MIMO Антенные системы в WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen [email protected] Изменения в дате выпуска V1.0 ноября 2010 г. Первая версия документа V2.0 февраль 2011 г.

Дополнительная информация

Планирование частоты GSM

GSM frequency planning Планирование частоты GSM Диапазон: 890–915 и 935–960 МГц Разнос каналов: 200 кГц (но ширина полосы сигнала = 400 кГц) Абсолютный номер радиочастотного канала (ARFCN), нижняя полоса: верхняя полоса: F l (n) = 890,2 +

Дополнительная информация

Редакция восемнадцатой лекции

Revision of Lecture Eighteen Редакция восемнадцатой лекции В предыдущей лекции обсуждалось выравнивание с использованием алгоритма Витерби: обратите внимание на сходство с канальным декодированием с использованием принципа оценки последовательности максимального правдоподобия. Также обсуждается

Дополнительная информация

Планирование сотовой связи в GSM Mobile

Cell Planning in GSM Mobile Клеточное планирование в мобильном телефоне JALAL JAMAL HAMAD-AMEEN M.Научный сотрудник, инженерный колледж, кафедра электротехники, Университет Салахаддина, Эрбиль, ИРАК E-mail: [email protected] Аннотация: Планирование ячейки

Дополнительная информация

Блок связи Lezione 6

Lezione 6 Communications Blockset Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 Что такое блок связи? Блок коммуникаций расширяет возможности Simulink

Дополнительная информация

Методы множественного доступа

Multiple Access Techniques Методы множественного доступа Dr.Фрэнсис ЛАУ Д-р Фрэнсис К.М. Лау, доцент, EIE, PolyU Содержание Введение Частотное разделение Множественный доступ с временным разделением Множественный доступ с кодовым разделением Множественный

Дополнительная информация

Модели канала A Tutorial1

Channel Models A Tutorial1 Канальные модели A Tutorial1 V1. 21, 27 февраля. Пожалуйста, присылайте комментарии / исправления / отзывы Раджу Джайну, [email protected]. Пожалуйста, присылайте комментарии на [email protected] 1 Эта работа была частично спонсирована Форумом WiMAX.

Дополнительная информация

АБХЕЛЬСИНСКИЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЙ

ABHELSINKI UNIVERSITY OF TECHNOLOGY Основы теории распространения S-72.333 Методы физического уровня в системах беспроводной связи Фабио Беллони Хельсинкский технологический университет Лаборатория обработки сигналов [email protected] 23 ноября

Дополнительная информация ,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *