Как отличаются характеристики схем с общим эмиттером, общей базой и общим коллектором. Какие особенности входного и выходного сопротивления у разных схем включения транзистора. Какая схема обеспечивает наибольшее усиление по току и напряжению.
Основные схемы включения биполярных транзисторов
Существует три основных схемы включения биполярных транзисторов:
- С общим эмиттером (ОЭ)
- С общей базой (ОБ)
- С общим коллектором (ОК)
Рассмотрим особенности и характеристики каждой из этих схем.
Схема с общим эмиттером (ОЭ)
В схеме с общим эмиттером входной сигнал подается между базой и эмиттером, а выходной снимается с коллектора и эмиттера. Эмиттер является общим электродом для входной и выходной цепей.
Основные характеристики схемы ОЭ:
- Усиление по току: 20-200
- Усиление по напряжению: 20-200
- Входное сопротивление: средней величины (несколько кОм)
- Выходное сопротивление: среднее (несколько кОм)
Схема ОЭ обеспечивает наибольшее усиление по мощности среди всех схем включения транзистора. Поэтому она наиболее часто используется в усилительных каскадах.
Схема с общей базой (ОБ)
В схеме с общей базой входной сигнал подается между эмиттером и базой, а выходной снимается с коллектора и базы. База является общим электродом.
Основные характеристики схемы ОБ:
- Усиление по току: < 1 (не усиливает ток)
- Усиление по напряжению: 50-1500
- Входное сопротивление: низкое (десятки Ом)
- Выходное сопротивление: высокое (сотни кОм)
Схема ОБ обеспечивает наибольшее усиление по напряжению, но не усиливает ток. Из-за низкого входного сопротивления она редко используется в усилителях низкой частоты, но находит применение в высокочастотных схемах.
Схема с общим коллектором (ОК)
В схеме с общим коллектором входной сигнал подается между базой и коллектором, а выходной снимается с эмиттера и коллектора. Коллектор является общим электродом.
Основные характеристики схемы ОК:
- Усиление по току: 20-200
- Усиление по напряжению: < 1 (не усиливает напряжение)
- Входное сопротивление: высокое (сотни кОм)
- Выходное сопротивление: низкое (десятки Ом)
Схема ОК не усиливает напряжение, но обладает высоким входным и низким выходным сопротивлением. Поэтому она часто используется в качестве эмиттерного повторителя для согласования высокоомного источника сигнала с низкоомной нагрузкой.
Сравнение основных параметров схем включения транзистора
Для наглядного сравнения характеристик различных схем включения транзистора приведем их основные параметры в таблице:
Параметр | ОЭ | ОБ | ОК |
---|---|---|---|
Усиление по току | 20-200 | < 1 | 20-200 |
Усиление по напряжению | 20-200 | 50-1500 | < 1 |
Входное сопротивление | Среднее | Низкое | Высокое |
Выходное сопротивление | Среднее | Высокое | Низкое |
Выбор оптимальной схемы включения транзистора
Какую схему включения транзистора выбрать для конкретного применения. Это зависит от требуемых характеристик усилительного каскада:
- Для максимального усиления по мощности используют схему ОЭ
- Для максимального усиления по напряжению — схему ОБ
- Для согласования высокоомного источника с низкоомной нагрузкой — схему ОК
- Для высокочастотных усилителей часто применяют ОБ
- Для низкочастотных усилителей чаще используют ОЭ
Таким образом, каждая из схем включения транзистора имеет свои достоинства и недостатки. Правильный выбор схемы позволяет оптимизировать характеристики усилительного каскада под конкретную задачу.
Особенности работы транзистора в различных схемах включения
Рассмотрим подробнее, как работает транзистор в каждой из основных схем включения:
Схема ОЭ
В схеме с общим эмиттером входной сигнал управляет током базы транзистора. Изменение тока базы вызывает значительно большее изменение тока коллектора, что обеспечивает усиление по току. При этом изменение тока коллектора на нагрузке создает усиленное выходное напряжение.
Схема ОБ
В схеме с общей базой входной сигнал управляет током эмиттера. Изменение тока эмиттера вызывает почти такое же изменение тока коллектора, поэтому усиление по току близко к единице. Однако высокое сопротивление коллекторной цепи обеспечивает большое усиление по напряжению.
Схема ОК
В схеме с общим коллектором входной сигнал подается на базу, а выходной снимается с эмиттера. Изменение напряжения на базе вызывает почти такое же изменение напряжения на эмиттере, поэтому усиление по напряжению близко к единице. При этом обеспечивается усиление по току.
Применение различных схем включения транзисторов
Каждая из рассмотренных схем находит свое применение в электронике:
- Схема ОЭ — наиболее универсальная, используется в большинстве усилительных каскадов
- Схема ОБ — применяется в высокочастотных усилителях, генераторах
- Схема ОК — используется в качестве эмиттерного повторителя для согласования цепей
Понимание особенностей каждой схемы позволяет разработчику выбрать оптимальный вариант для конкретной задачи.
Заключение
Мы рассмотрели три основные схемы включения биполярных транзисторов — с общим эмиттером, общей базой и общим коллектором. Каждая схема имеет свои уникальные характеристики по усилению, входному и выходному сопротивлению. Выбор конкретной схемы зависит от требований к усилительному каскаду. Правильное использование различных схем включения позволяет создавать эффективные усилители для разных применений.
Схемы включения транзистора и их характеристики: схемы, ВАХ. формулы, подключение
Рассмотрим характерные схемы включения транзистора и соответствующие характеристики.
Приведенная схема включения транзистора в электрическую цепь называется схемой с общей базой, так как база является общим электродом для источников напряжения. Изобразим ее с использованием условного графического обозначения транзистора (рис. 1.56).
Транзисторы традиционно характеризуют их так называемыми входными и выходными характеристиками. Для схемы с общей базой входной характеристикой называют зависимость тока iэ от напряжения и 6э при заданном напряжении uбэ, т. е. зависимость вида iэ= f (uбэ) |uкэ= const, где f — некоторая функция.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
Входной характеристикой называют и график соответствующей зависимости (это справедливо и для других характеристик).
Выходной характеристикой для схемы с общей базой называют зависимость тока iк от напряжения uкб при заданном токе iэ, т. е. зависимость вида iк = f (uкб) |iэ= const, где f — некоторая функция.
Каждая входная характеристика в значительной степени определяется характеристикой эмиттерного перехода и поэтому аналогична характеристике диода. Изобразим входные характеристики кремниевого транзистора КТ603А (максимальный постоянный ток коллектора — 300 мА, максимальное постоянное напряжение коллектор-база — 30
B при t < 70° С) (рис. 1.57) . Сдвиг характеристик влево при увеличении напряжения uкб объясняется проявлением так называемого эффекта Эрли (эффекта модуляции толщины базы).
Указанный эффект состоит в том, что при увеличении напряжения uкб коллекторный переход расширяется (как и всякий обратно смещенный p-n-переход). Если концентрация атомов примеси в базе меньше концентрации атомов примеси в коллекторе, то расширение коллекторного перехода осуществляется в основном за счет базы. В любом случае толщина базы уменьшается. Уменьшение толщины базы и соответствующее уменьшение ее сопротивления приводит к тому, что при неизменном токе iэ напряжение uбэ уменьшается.
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Задать вопрос
Как было отмечено при рассмотрении диода, при малом по модулю обратном напряжении на p-n-переходе это напряжение влияет на ширину перехода больше, чем при большом напряжении. Поэтому различные входные характеристики, соответствующие различным напряжениям uкб, независимо от типа транзистора практически сливаются, если uкб > 5 В (или даже если uкб> 2 В).
Входные характеристики часто характеризуют дифференциальным сопротивлением rдиф, определяемым аналогично дифференциальному сопротивлению диода.
Изобразим выходные характеристики для транзистора КТ603А (рис. 1.58).
Это соотношение сохраняется даже при uкб= 0 (если ток эмиттера достаточно велик), так как и в этом случае большинство электронов, инжектированных в базу, захватывается электрическим полем коллекторного перехода и переносится в коллектор.
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Задать вопрос
Только если коллекторный переход смещают в прямом направлении ( uкб
Режим, соответствующий первому квадранту характеристик (uкб> 0, iк > 0, причем ток эмиттера достаточно велик), называют активным режимом работы транзистора. На координатной плоскости ему соответствует так называемая область активной работы.
Режим, соответствующий второму квадранту (uкб< 0), называют режимом насыщения. Ему соответствует область насыщения.
Обратный ток коллектора iкомал (для КТ603Аiко < 10 мкА при t < 25°С). Поэтому выходная характеристика, соответствующая равенствам iэ= 0ik- αст ·iэ+iко=iко,практически сливается с осью напряжений.
При увеличении температуры ток iко возрастает (для КТ603 i ко ~ 100 мкА при t < 85° С) и все выходные характеристики несколько смещаются вверх.
Режим работы транзистора, соответствующий токам коллектора, сравнимым с током i ко, называют режимом отсечки. Соответствующую область характеристик вблизи оси напряжений называют областью отсечки.
В активном режиме напряжение u кби мощность Pк= iк ·uкб, выделяющаяся в виде тепла в коллекторном переходе, могут быть значительны. Чтобы транзистор не перегрелся, должно выполняться неравенство Рк < Рк макс где Рк макс — максимально допустимая мощность (для КТ603А Рк мак c= 500 мВт при t < 50° С).
График зависимости iк = Рк макс / uкб (гипербола) изображен на выходных характеристиках пунктиром.
Таким образом, в активном режиме эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме насыщения оба перехода смещены в прямом направлении, в режиме отсечки коллекторный переход смещен в обратном направлении, а эмиттерный или смещен в обратном направлении, или находится под очень малым прямым напряжением.
Транзистор часто характеризуют так называемым дифференциальным коэффициентом передачи эмиттерного тока α, который определяется выражением α= dik / di э| ik–заданный, uкб= const.
Для приращения тока коллектора ∆iк и приращения тока эмиттера ∆iэ можно записать: ∆iк ≈ α · ∆iэ
Коэффициент α несколько изменяется при изменении режима работы транзистора. Важно учитывать, что у различных (вполне годных) экземпляров транзистора одного и того же типа коэффициента может заметно отличаться. Для транзистора КТ603А при t = 25° С α = 0,909 … 0,988.
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Задать вопрос
Наличие наклона выходных характеристик, отражающее факт увеличения тока коллектора при заданном токе эмиттера при увеличении напряжения uкб, объясняется проявлением эффекта Эрли: при уменьшении толщины базы все большее количество электронов, инжектированных эмиттером, переходит в коллектор.
Наклон выходных характеристик численно определяют так называемым дифференциальным сопротивлением коллекторного перехода (с учетом эффекта Эрли): rк=duкб/diэ|uкб– аданный, iэ=constiк=αст· iэ+ iко+ 1/rк· uкб
Схема с общим эмиттером
Очень часто транзистор характеризуют характеристиками, соответствующими схеме, представленной на рис. 1.59. Эту схему называют схемой с общий эмиттером, так как эмиттер является общим электродом для источников напряжения.
Для этой схемы входной характеристикой называют зависимость тока iб от напряжения uбэ при заданном напряжении uкэ , т. е. зависимость вида iб= f (uбэ) |u кэ = const , где f — некоторая функция.
Выходной характеристикой называют зависимость тока iк от напряжения uкэ при заданном токе iб, т. е. зависимость вида i к = f (u кэ ) |i б = const,где f — некоторая функция.
Очень важно уяснить следующих два факта.
- Характеристики для схемы с общим эмиттером не отражают никакие новые физические эффекты по сравнению с характеристиками для схемы с общей базой и не несут никакой принципиально новой информации о свойствах транзистора. Для объяснения особенностей характеристик с общим эмиттером не нужна никакая информация кроме той, что необходима для объяснения особенностей характеристик схемы с общей базой. Тем не менее характеристики для схемы с общим эмиттером очень широко используют на практике (и приводят в справочниках), так как ими удобно пользоваться.
- При расчетах на компьютерах моделирующие программы вообще никак не учитывают то, по какой схеме включен транзистор. Программы используют математические модели транзисторов, являющиеся едиными для всевозможных схем включения. Тем не менее, очень полезно уметь определить тип схемы включения транзистора. Это облегчает понимание принципа работы схемы.
Входные характеристики для схемы с общим эмиттером.
Изобразим характеристики уже рассмотренного транзистора КТ603А (рис. 1.60).
Теперь эффект Эрли проявляется в том, что при увеличении напряжения uкэ характеристики сдвигаются вправо. Дифференциальное сопротивление теперь определяется выражением rдиф= (duбэ/diб) |iб– заданный , uкэ= const
Выходные характеристики для схемы с общим эмиттером
Изобразим эти характеристики для транзистора КТ603А (рис. 1.61).
Обратимся к ранее полученному выражению iк=αст·iэ+iко В соответствии с первым законом Кирхгофа iэ=iк+iб и с учетом предыдущего выражения получим iкαст· (iк+iб) +iко откуда iк=αст/ (1 -αст) ·iб+ 1 / (1 -αст) ·iко
Введем обозначение: βст ≡ αст / (1- αст )
Коэффициент αст называют статическим коэффициентом передачи базового тока. Его величина обычно составляет десятки — сотни (это безразмерный коэффициент).
Легко заметить, что 1 / (1 -αст) = βст + 1 Введем обозначение i′ко ≡ (βст + 1) ·iко В итоге получаемiк= βст ·iб+i′ко Это выражение в первом приближении описывает выходные характеристики в области активной работы, не учитывая наклона характеристик.
Для учета наклона выражение записывают в виде iк= βст ·iб+i′ко +uкб· ( 1 /r′к ),гдеr′к =duкэ/diк|uкэ – заданное, iб=const
В первом приближении r′к = ( 1 / 1 + βcт) · rк (сопротивление rк определено выше). Часто пользуются так называемым дифференциальным коэффициентом передачи базового тока β.
Для приращения тока коллектора ∆iк и тока базы ∆iб можно записать:
∆iк ≈ β · ∆ iб
По определению β=diк/diб|iк – заданный, uкэ=const
Для транзистора КТ603А при t = 25°С β = 10…80.
Величина β зависит от режима работы транзистора. Приведем типичный график зависимости β от тока эмиттера (он практически равен току коллектора) для uкб= 2 В (рис. 1.62).
Для нормальной работы транзистора на постоянном токе, кроме рассмотренного выше условия Pк< Рк макс, должны выполняться условия iк<iк максиuкэ≤u кэ макс где iк макси u кэ макс — соответственно максимально допустимый постоянный ток коллектора и максимально допустимое постоянное напряжение между коллектором и эмиттером.
Для рассмотренного выше транзистора КТ603А iк макс= 300 мА,uкэ макс = 30 В (при t < 70° С).
Изобразим схематически на выходных характеристиках для схемы с общим эмиттером так называемую область безопасной работы, в которой указанные условия выполняются (рис. 1.63).
Обычно допустимо предполагать (с той или иной погрешностью), что выходные характеристики для схемы с общим эмиттером расположены на отрезках прямых, расходящихся веерообразно из одной точки на оси напряжений (рис. 1.64).
Напряжение Uэ (это положительная величина) называют напряжением Эрли. Для транзистора КТ603А Uэ ~ 40 В.
Инверсное включение транзистора
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
Иногда транзистор работает в таком режиме, что коллекторный переход смещен в прямом направлении, а эмиттерный — в обратном. При этом коллектор играет роль эмиттера, а эмиттер — роль коллектора. Это так называемый инверсный режим. Ему соответствует так называемый инверсный коэффициент передачи базового тока βi. Из-за отмеченных выше несимметрии структуры транзистора и различия в концентрациях примесей в слоях полупроводника обычно βi >1.
Изобразим выходные характеристики для схемы с общим эмиттером и для прямого, и для инверсного включения (рис. 1.65).
Схемы включения транзистора: общая база, коллектор, эмиттер
Транзисторы часто применяют для усиления переменных сигналов (которые при расчетах обычно считают синусоидальными), при этом в выходной цепи транзистора применяется нагрузка с ненулевым сопротивлением.
Во входной цепи, кроме источника постоянного напряжения, необходимого для обеспечения активного режима работы, также используют источник входного переменного напряжения. Изобразим три характерные схемы включения транзистора.
Схема с общей базой (ОБ)
(рис. 1.78). Если сопротивление нагрузки достаточно велико, то амплитуда переменной составляющей напряжения uвых значительно больше амплитуды напряжения uвх. Учитывая, что iвыx ~ iвx, можно утверждать, что схема не обеспечивает усиления тока, но усиливает напряжение. Входной ток такой схемы достаточно большой, а соответствующее входное сопротивление малое.
Схема с общим эмиттером (ОЭ)
(рис. 1.79).
Так как iвыx >> iвx, а при достаточно большом сопротивлении Rн амплитуда переменной составляющей напряжения u выхзначительно больше амплитуды напряжения uвх , следовательно, схема обеспечивает усиление и тока, и напряжения.
Входной ток схемы достаточно мал, поэтому входное сопротивление больше, чем у схемы с общей базой.
Схема с общим коллектором (ОК)
(рис. 1.80).
При определении переменных составляющих токов и напряжений источники постоянного напряжения u1и u2 заменяют закоротками (закорачивают). После этого к коллектору оказываются подключенными и источник входного напряжения uвх, и сопротивление нагрузки. Отсюда и название — схема с общим коллектором.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
Само напряжение uбэи особенно переменная составляющая этого напряжения достаточно малы, поэтому амплитуда переменной составляющей напряжения uвх примерно равна амплитуде переменной составляющей напряжения uвых. В соответствии с этим усилительные каскады, в которых транзисторы включены по схеме с общим коллектором, называют эмиттерными повторителями.
Учитывая также, что iвх<< iвых, отмечают, что схема усиливает ток, но не усиливает напряжение.
Схема отличается повышенным входным сопротивлением, так как при увеличении входного напряжения увеличению входного тока препятствует увеличение как напряжения uбэ, так и напряжения uвых. На практике наиболее часто используется схема с общим эмиттером.
Основные схемы включения транзисторов
Транзистор, как полупроводниковый прибор, имеющий три электрода (эмиттер, базу, коллектор), можно включить тремя основными способами (рис. 3.1 — 3.6). Как известно, входной сигнал поступает на усилитель по двум проводам; выходной сигнал отводится также по двум проводам. Следовательно, для трех-электродного усилительного прибора при подаче входного и съеме выходного сигнала по двум проводам один из электродов будет непременно общим. Соответственно тому, какой из электродов в схеме включения транзистора будет являться общим, различают три основные схемы включения: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ).
Рис. 3.1. Схема с общим эммитером (ОЭ)
Рис. 3.2. Схема с общим коллектором (ОК)
Практические варианты схем включения транзисторов структуры п-р-п и р-п-р приведены на рис. 3.1 — 3.6. Как следует из сопоставления рисунков, схемы эти идентичны и различаются лишь полярностью подаваемого напряжения.
Для определения входного (RBX.) и выходного (RBbix.) сопротивления каждой из схем включения, а также коэффициентов усиления по току (К,), напряжению (Ки) и мощности (КР=К|ХКи) расчетные и экспериментальные значения и формулы приведены в таблицах 3.1 и 3.2.
Таблица с формулами приведена для приближенных расчетов, а для первоначальной, первичной оценки и сравнения свойств основных схем включения транзисторов предназначена вторая таблица с численными оценками.
Рис. 3.3. Схема с общей базой (ОБ)
Обозначения в таблице следующие: RH — сопротивление нагрузки; R3 — сопротивление эмиттера или отношение изменения напряжения на эмиттерном переходе к изменению тока эмиттера в режиме короткого замыкания в выходной цепи по переменному току; RB — сопротивление базы или отношение изменения напряжения между эмиттером и базой к изменению тока коллектора в режиме холостого хода входной цепи по переменному току; а — коэффициент усиления по току для схемы с общей базой; р — коэффициент усиления по току для схемы с общим эмиттером.
Рис. 3.4. Схема с общим эммитером (ОЭ)
Рис. 3.5. Схема с общим коллектором (ОК)
Рис. 3.6. Схема с общей базой (ОБ)
Наиболее часто в практических схемах используют режим включения транзистора с общим эмиттером (как обладающий наибольшим коэффициентом усиления по мощности).
Эмиттерные повторители (схемы с общим коллектором) применяют для согласования высокого выходного сопротивления источника сигнала с низким входным сопротивлением нагрузки. Для построения высокочастотных усилителей (имеющих низкое входное сопротивление) используют схемы с общей базой.
В зависимости от наличия, полярности и величины потенциалов на электродах транзисторов различают несколько режимов его работы. Насыщение — транзистор открыт, напряжение на переходе К— Э минимально, ток через переходы максимален. Отсечка — транзистор закрыт, напряжение на переходе К — Э максимально, ток через переходы минимален. Активный — промежуточный между режимом насыщения и отсечки. Инверсный — характеризуется подачей на электроды транзистора обратной (инверсной) полярности рабочего напряжения.
В переключательно-коммутирующих схемах, имеющих только два состояния: включено (сопротивление ключевого элемента близко к нулю) и выключено (сопротивление ключевого элемента стремится к бесконечности), используются режимы насыщения и отсечки. Активный режим широко применяют для усиления сигналов. Инверсный режим используют достаточно редко, поскольку улучшить показатели схемы при таком включении транзистора не удается.
Для того чтобы без расчетов первоначально оценить величины RC-элементов, входящих в состав схем (рис. 3.1, 3.2, 3.4, 3.5), можно принять величину сопротивления в коллекторной (эмиттерной) цепи равной нескольким кОм, а величину сопротивления в цепи базы в 30…50 раз большим. При этом напряжение на коллекторе (эмиттере) должно быть равно половине напряжения питания. Для схемы с общей базой (рис. 3.3, 3.6) величина сопротивления R3, обычно не превышает 0,1… 1 кОм, величина сопротивления R2 составляет несколько кОм.
Величины реактивных сопротивлений конденсаторов С1 — C3 для наиболее низких частот, которые требуется усилить, должны быть примерно на порядок ниже соединенных с ними активных сопротивлений R1 — R3 (рис. 3.1 — 3.6). В принципе, величины этих емкостей можно было бы выбрать со значительным запасом, но в этом случае увеличиваются габариты переходных конденсаторов, их стоимость, токи утечки, длительность переходных процессов и т.д.
В качестве примера приведем таблицу 3.3 для быстрого определения величины реактивного сопротивления конденсаторов для нескольких частот.
Напомним, что реактивное сопротивление конденсатора Хс, Ом, можно вычислить по формуле:
Для постоянного тока реактивное сопротивление конденсаторов стремится к бесконечности. Следовательно, для усилителей постоянного тока (нижняя граничная частота усиления равна нулю) переходные конденсаторы не требуются, а для разделения каскадов необходимо предусматривать специальные меры. Конденсаторы в цепях постоянного тока равносильны обрыву цепи. Поэтому при построении схем усилителей постоянного тока используют схемы с непосредственными связями между каскадами. Разумеется, в этом случае необходимо согласование уровней межкаскадных напряжений.
При усилении переменного тока в цепи нагрузки усилительных каскадов зачастую используют индуктивные элементы. Отметим, что реактивное сопротивление индуктивностей растет с увеличением частоты. Соответственно, с изменением сопротивления нагрузки от частоты, растет и коэффициент усиления такого каскада.
Помимо биполярных транзисторов широкое распространение приобрели более современные элементы — полевые транзисторы (рис. 3.7 — 3.9).
Рис. 3.7. Схема с общим истоком (ОИ)
Рис. 3.8. Схема с общим стоком (ОС)
По аналогии со схемами включения биполярных транзисто ров полевые включают с общим истоком, общим стоком и с об щим затвором.
Основные расчетные соотношения для этих схем включения полевых транзисторов приведены в таблице 3.4, где S — крутизна характеристики полевого транзистора, мА/В; R, — внутреннее сопротивление транзистора.
Рис. 3.9. Схема с общим затвором (03)
Основные расчетные соотношения для этих схем включения полевых транзисторов приведены в таблице 3.4, где S — крутизна характеристики полевого транзистора, мА/В; R, — внутреннее сопротивление транзистора.
Ориентировочно величина R1 (рис. 3.7 — 3.9) может быть от нескольких Ом до единиц МОм R2 — несколько кОм. Отметим, что, как и для биполярных транзисторов, полевые также допускают работу с отсечкой, с насыщением; активный и инверсный режимы.
Для увеличения коэффициента передачи по току биполярного транзистора используют «составные» транзисторы, включаемые по схеме Дарлингтона (рис. 3.10 — 3.13). Общий их коэффициент усиления несколько отличается от произведения коэффициентов усиления каждого из транзисторов. Одновременно ухудшается температурная стабильность схемы.
Рис. 3.10
Рис. 3.11
Рис. 3.12
Рис. 3.13
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год
Для начинающих. Схемы включения транзистора. / Блог им. Nikolay / Блоги по электронике
Рассмотрим схему включения транзистора с общим эмиттером.— сам термин названия данного включение уже говорит о специфике данной схемы. Общий эмиттер а в крации это ОЭ, подразумевает тот факт, что у входа данной схемы и выхода общий эмиттер.
Рассмотрим схему:
в этой схеме видим два источника питания, первый 1.5 вольт, использован как входной сигнал для транзистора и всей схемы. Второй источник питания 4.5 вольт, его роль питание транзистора, и всей схемы. Элемент схемы Rн – это нагрузка транзистора или проще говоря потребитель.
Теперь проследим саму работу данной схемы: источник питания 1.5 вольт служит входным сигналом для транзистора, поступая на базу транзистора он открывает его. Если рассматривать полный цикл прохода тока базы, то это будет так: ток проходит от плюса к минусу, то есть исходя от источника питания 1.5 вольт, а именно с клеммы + ток проходит по общему эмиттеру проходя по базе и замыкает свою цепь на клемме – батареи 1.5 вольт. В момент прохождения тока по базе транзистор открыт, тем самым транзистор позволяет второму источнику питания 4.5 вольт запитать Rн. посмотрим прохождение тока от второго источника питания 4.5 вольт. При открывании транзистора входным током базы, с источника питания 4.5 вольт выходит ток по эмиттеру транзистора и выходит из коллектора прям на нагрузку Rн.
Теперь рассмотрим схему включения транзистора с общим коллектором:
На данной схеме видим, что тут общий по входу и выходу транзистора коллектор. По этому эта схема называется с общим коллектором ОК.
Рассмотрим её работу: как и в предыдущей схеме поступает входной сигнал на базу, (в нашем случае это ток базы) открывает транзистор. При открывании транзистора ток с батареи 4.5 в проходит от клеммы батареи + через нагрузку Rн поступает на эмиттер транзистора проходит по коллектору и заканчивает свой круг. Вход каскада при таком включении ОК обладает высоким сопротивлением, обычно от десятых долей мегаома до нескольких мегаом из-за того, что коллекторный переход транзистора заперт. А выходное сопротивление каскада – напротив, мало, что позволяет использовать такие каскады для согласования предшествующего каскада с нагрузкой. Каскад с транзистором, включённым по схеме с общим коллектором, не усиливает напряжение, но усиливает ток (обычно в 10 … 100 раз). К данным подробностям еще вернемся в следующих статьях, так как не возможно охватить все и всех за один раз.
Название ОБ это уже нам теперь говорит о многом – значит по включению транзистора общая база относительно входа и выхода транзистора.
В данной схеме входной сигнал подают между базой и эмиттером – чем нам служит батарея с номиналом 1.5 в, ток проходя свой цикл от плюса через эмиттер транзистора по его базе, тем самым открывает транзистор для прохода напряжения с коллектора на нагрузку Rн. Входное сопротивление каскада невелико и обычно лежит в пределах от единиц до сотни ом, что относят к недостатку описываемого включения транзистора. Кроме того, для функционирования каскада с транзистором, включённым по схеме с общей базой, необходимо два отдельных источника питания, а коэффициент усиления каскада по току меньше единицы. Коэффициент усиления каскада по напряжению часто достигает от десятков до нескольких сотен раз.
Вот рассмотрели три схемы включения транзистора, для расширения познаний могу добавить следующее:
Чем выше частота сигнала, поступающего на вход транзисторного каскада, тем меньше коэффициент усиления по току.
Коллекторный переход транзистора обладает высоким сопротивлением. Повышение частоты приводит к снижению реактивной ёмкости коллекторного перехода, что приводит к его существенному шунтированию и ухудшению усилительных свойств каскада.
Сравнение схем включения транзисторов | Основы электроакустики
Сравнение схем включения транзисторов
Схемы включения биполярных транзисторов. Сравнительные данные свойств транзисторов в схемах с ОБ, ОК и ОЭ приведены в табл. 132. В схеме с общей базой эмиттерный переход включен в прямом направлении, поэтому при незначительных изменениях напряжения ДUэ сильно меняется ток ДIэ, вследствие чего входное сопротивление транзистора rвх = ДUэ/ДIэ при UK=const мало (десятки омов). Коллекторный переход включен в обратном направлении, поэтому изменения напряжения на этом переходе ДUк незначительно влияют на изменения тока ДIк, вследствие чего выходное сопротивление гвых = ДUк/ДIк при Iэ=const велико (до нескольких мегаомов). Большое различие входных и выходных сопротивлений затрудняет согласование каскадов в многокаскадных усилителях.
Параметры | Сравнительные показатели свойств транзисторов в схемах | ||
с общей базой | с общим эмиттером | с общим коллектором | |
Коэффициенты передачи по току | 0,6 — 0,95
| Десятки — сотни | Больше, чем в схеме с ОЭ |
усиления по напря жению | Тысячи | Меньше, чем в схеме с ОБ | 0,7 — 0,99 |
усиления по мощности | Менее чем на схеме с ОЭ | Большое (тысячи) | Меньше, чем в схеме с ОЭ |
Сопротивление: |
|
|
|
входное
| Малое (единицы — десятки омов) | Большое (десятки —тысячи омов) | Большое (сотни килоомов)
|
выходное
| Большое (тысячи омов — единицы мегаомов) | Сотни омов, — десятки килоомов | Единицы омов — десятки килоомов |
Сдвиг фаз | 0° | 180° | 0° |
В схеме с ОБ входным (управляющим) является ток Iэ, а выходным — ток Iк. Последний всегда меньше тока эмиттера, так как часть инжектируемых носителей заряда рекомбинирует в базе, поэтому а=ДIк/ДIэ<1. Коэффициент усиления по напряжению Kн в схеме велик, поскольку изменения токов на входе ДIэ и выходе ДIк почти одинаковы, а rВЫх>rвх. Коэффициент усиления по мощности также велик (Kм=аKн=1000). Эмиттерный переход включается в проводящем направлении, поэтому изменения тока 13, а следовательно, и тока Iк происходят без фазового сдвига (Ф=0°).
В схеме с общим эмиттером управляющим служит ток базы Is — Is — Iк. Поскольку большинство носителей зарядов, инжектируемых эмиттером, достигает коллекторной области [Iк= (0,9 ч-0,99) Iэ] и лишь незначительная часть рекомбинирует в базе, ток базы мал: Iб=(0,01-0,1) Iэ. При этих условиях Kтэ = ДIк/ДIб>Kтб=ДIк/ДIэ и составляет 10 — 150. Усиление по напряжению примерно такое же, как и в схеме с ОБ. Благодаря высокому коэффициенту передачи тока эта схема обеспечивает большое (Kм до 10000) усиление по мощности.
Напряжение в схеме с ОЭ на входе U3 и выходе UK одного порядка, поэтому гВх=ДUэ/ДIэ здесь больше, чем в схеме с ОБ, и достигает десятков — тысяч омов. В этой схеме напряжение коллекторного источника Ек частично приложено к эмиттерному переходу, поэтому изменения ДUк вызывают большие изменения тока ДIк, вследствие чего rвых=ДUк/ДIк при Iб=const меньше, чем в схеме с ОБ, что облегчает согласование каскадов в многокаскадных усилителях.
В схеме с ОЭ положительные полуволны подводимого напряжения сигнала действуют в противофазе с напряжением смещения, поэтому ток Iэ, а следовательно, и Iк уменьшаются; отрицательные полуволны сигнала действуют согласованно с напряжением смещения, и токи 1д и Iк возрастают. В результате напряжение сигнала, снимаемое с нагрузки в выходной цепи, будет (по отношению к общей точке схемы) противофазным с напряжением подводимого сигнала (т. е. ф=180°).
В схеме с общим коллектором входным является ток Iб, а выходным Iэ. Так как во входной цепи проходит малый ток базы, входное сопротивление rВX=ДUвх/ДIвх достигает десятков килоомов, Выходное напряжение в схеме приложено к эмиттерному переходу, поэтому малые изменения этого напряжения вызывают большие изменения Iэ, вследствие чего rВых=ДUвых/ДIвых мало (десятки омов).
Напряжение подводимого сигнала Uвх и выходное напряжение Uвых в схеме действуют встречно, т. е. U36 = Uвx — Uвых. Для получения на эмиттерном переходе требуемого напряжения необходимо скомпенсировать выходное напряжение, что достигается при Uвх>Uвых. В этих условиях схема с ОК не дает усиления по напряжению (Kн<1). Коэффициент передачи по току Kт=ДIэ/ДIб =ДIэ/(ДIэ — ДIк) = 1/(1 — а) здесь несколько больше, чем в схеме с ОЭ. Отсутствие усиления по напряжению приводит к снижению усиления по мощности против схем с ОБ и ОЭ.
В схеме отрицательные полуволны подводимого напряжения сигнала Uвх действуют встречно напряжению смещения, поэтому результирующее прямое напряжение на эмиттерном переходе и ток Iэ=Iб+Iк уменьшаются. При этом напряжение сигнала, снимаемое с нагрузки в цепи эмиттера, повторяет фазу напряжения подводимого сигнала, т. е. Ф=0 (эмиттерный повторитель).
Схема с ОИ является инвертирующим усилителем, способным усиливать сигналы по напряжению и току и обладает сравнительно небольшими междуэлектродными емкостями, (Сзи=1-20 пФ; Сзс=0,5-8 пФ; Сси<Сзи). Входная емкость СВх.и = Сзи+СэС, проходная Спр.и = Сзс, выходная СВых.и=Сзс+ССи. Крутизна S характеристики Iс=Ф(Uз) представляет собой внешнюю проводимость прямой передачи и для транзисторов малой мощности составляет 0,5 — 10 мСм. Выходное сопротивление сравнительно велико (обычно многократно превышает сопротивление нагрузки), поэтому коэффициент усиления каскада &»5Rн достигает десятков единиц. Входное сопротивление (если пренебречь областями очень низких и высоких частот) .носит емкостной характер; входная емкость Свх= — Сэя+SRнСзс. Поскольку междуэлектродные емкости малы, на параметры схемы существенно влияют емкости монтажа См= 1-5-3 пФ. Общая шунтирующая емкость С0=СЕ1+См определяет частоту верхнего среза fв.ср=1/(2пС0Rн).
Схема с ОЗ подобно схеме с ОБ не изменяет полярности сигнала и обеспечивает его-усиление по напряжению аналогично усилению сигнала в схеме с ОИ. Входное сопротивление гвх= U3m/Iит вследствие потребления от источника сигнала сравнительно большого тока Iст=Iит=SUзот оказывается незначительным. Выходное сопротивление rвых~rси(1+SRи) из-за влияния отрицательной обратной связи по току (элементом которой является внутреннее сопротивление источника сигнала RИ) велико. Влияние емкостной составляющей входной проводимости мало (так как она шунтирована сравнительно большой активной проводимостью gВх=1/rвх=S), поэтому каскад с ОЗ более широкополосен, чем схема с ОИ.
Схема с ОС не меняет фазу входного сигнала на выходе (истоковый повторитель), значительно усиливает ток (но не может усиливать напряжение), обладает высоким активным входным сопротивлением, малой входной емкостью СВх = Сзс+С3и(1 — K), где K. = Ucm/UC3m=SRн/(1+SRн), и небольшим выходным сопротивлением r=l/S (близким к входному сопротивлению схемы с, ОЗ), большой широкополосностью благодаря малой входной емкости.
Схемы составных транзисторов. Составной транзистор представляет собой комбинацию двух (и более) транзисторов, соединенных таким образом, что число внешних выводов этой комбинированной схемы равно числу выводов одиночного транзистора. Составной транзистор, выполненный по схеме сдвоенного эмиттер-ного повторителяне изменяет полярности сигнала, обладает большим коэффициентом передачи тока hzi=hziVihziVz, имеет большое входное и малое выходное сопротивления.
Составной транзистор в виде усилителя на разноструктурных (р-n-р и n-р-n) транзисторах содержит два каскада с ОЭ с глубокой последовательной ООС по напряжению. Поскольку каждый каскад изменяет полярность сигнала, в целом схема представляет собой неинвертирующий усилитель. С выхода схемы напряжение подается на вход (эмиттер первого транзистора) в про-тивофазе с входным сигналом, подводимым к цепи базы. Приведенный составной транзистор обладает свойствами эмиттерного повторителя. Его коэффициент усиления меньше единицы, а из-за ОС входное сопротивление велико, выходное мало. Точкой малого выходного сопротивления является коллектор транзистора V2, так как от него начинается цепь ОС по напряжению, поэтому вывод коллектора транзистора V2 играет роль эмиттера составного транзистора, а вывод эмиттера V2 — роль его коллектора. При выбранных структурах транзисторов, VI и V2 схема обладает свойствами р-n-р-транзистора.
Составной транзистор, выполненный по каскодной схеме представляет собой усилитель, в котором транзистор VI включен по схеме с ОЭ, a V2 — по схеме с ОБ. Схема эквивалентна одиночному транзистору, включенному по схеме с ОЭ с пара* метрами, близкими к параметрам транзистора VI. Последний обладает высоким выходным сопротивлением, что обеспечивает транзи« стору V2 получение широкой полосы частот
Основные схемы включения транзисторов
Усилитель представляет собой четырехполюсник, два вывода которого предназначены для подключения входного сигнала и два оставшихся вывода служат для снятия с них усиленного сигнала (напряжения или тока). У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя. В зависимости от того, какой вывод транзистора является общим как для входа, так и для выхода усилителя, схемы включения транзистора называются:
- Схема с общим эмиттером
- Схема с общей базой
- Схема с общим коллектором
Следует отметить, что данные схемы включения применяются не только для биполярных транзисторах, но и для всех типов полевых транзисторов. В них эти схемы будут называться схемами с общим истоком, общим затвором и общим стоком соответственно. Во всех последующих схемах границы четырехполюсника усилителя будут показаны пунктирной линией. Для подключения источника сигнала и нагрузки в них предусмотрено по два вывода.
Схема с общим эмиттером
Наиболее распространенной схемой включения транзистора является схема с общим эмиттером (ОЭ). Это связано с наибольшим усилением этой схемы по мощности. Схема с общим эмиттером обладает усилением, как по напряжению, так и по току. Функциональная схема включения транзистора с общим эмиттером приведена на рисунке 1.
Рисунок 1. Функциональная схема включения транзистора с общим эмиттером
На данной схеме цепи питания коллектора и базы транзистора не показаны. Мы рассмотрим их позднее при подробном изучении схемы усилительного каскада с общим эмиттером. Входное сопротивление схемы включения транзистора с общим эмиттером определяется входной характеристикой транзистора. Оно зависит от базового, а, следовательно, и коллекторного тока транзистора. Для большинства маломощных усилителей оно составляет значение порядка 2,5 кОм.
Что касается амплитудно-частотной характеристики схемы с общим эмиттером, то в данном включении транзистора верхняя частота усиления будет минимальная по сравнению с остальными схемами включения транзистора. Верхняя частота усиления транзистора, включенного по схеме с общим эмиттером, ограничена частотой fβ (fh31э). [Подробнее]
Схема с общей базой
Схема с общей базой обычно применяется на высоких частотах. Коэффициент усиления по мощности данной схемы включения транзистора меньше по сравнению со схемой с общим эмиттером. Это связано с тем, что схема включения транзистора с общей базой не усиливает по току. В данной схеме производится усиление только по напряжению. Функциональная схема включения транзистора с общей базой приведена на рисунке 2.
Рисунок 2. Функциональная схема включения транзистора с общей базой
На этой схеме цепи питания коллектора и базы тоже не показаны. В качестве входного сопротивления схемы включения транзистора с общей базой служит эмиттерное сопротивление транзистора, поэтому входное сопротивление схемы с общей базой мало. Её входное сопротивление самое маленькое из всех схем включения транзистора, однако для данной схемы это не является недостатком, т.к. входное сопротивление высокочастотных усилителей должно быть равно 50 Ом.
Амплитудно-частотная характеристика схемы с общей базой — самая широкополосная из всех схем включения транзистора, поэтому она широко используется в высокочастотных усилителях радиочастоты. Частотная характеристика схемы с общей базой ограничивается предельной частотой усиления транзистора fα (fh31б). [Подробнее]
Схема с общим коллектором
Схема с общим коллектором обычно применяется для получения высокого входного сопротивления. Коэффициент усиления по мощности данной схемы включения транзистора меньше по сравнению со схемой с общим эмиттером и соизмерим с коэффициентом усиления схемы с общей базой. Это связано с тем, что схема включения транзистора с общим коллектором не усиливает по напряжению. В данной схеме производится усиление только по току. Функциональная схема включения транзистора с общим коллектором приведена на рисунке 3.
Рисунок 3. Функциональная схема включения транзистора с общим коллектором
На схеме, приведенной на рисунке 5, цепи питания коллектора и базы не показаны. В качестве входного сопротивления схемы включения транзистора с общим коллектором служит сумма сопротивления базы транзистора (как в схеме с общим эмиттером) и пересчитанного ко входу сопротивления резистора в цепи эмиттера, поэтому входное сопротивление схемы с общим коллектором очень велико. Её входное сопротивление самое большое из всех схем включения транзистора.
Амплитудно-частотная характеристика схемы включения транзистора с общим коллектором достаточно широкополосна. Однако полоса пропускания усилителя может быть серьёзно ограничена из-за шунтирования высокого входного сопротивления схемы с общим коллектором паразитными емкостями, поэтому в основном схема с общим коллектором применяется в качестве буферного усилителя с высоким входным сопротивлением. Иногда она применяется для ослабления влияния нагрузки на характеристики высокочастотных генераторов и синтезаторов частоты. [Подробнее]
- Шило В. Л. «Линейные интегральные схемы в радиоэлектронной аппаратуре» под ред. Е.И. Гальперина — М.: «Сов. радио» 1974
- Усилительный каскад на биполярном транзисторе Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
- Биполярный транзистор. Часть 5
Вместе со статьей «Схемы включения транзистора» читают:
СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА
Любой усилитель, независимо от частоты, содержит от одного до нескольких каскадов усиления. Для того, чтобы иметь представление по схемотехнике транзисторных усилителей, рассмотрим более подробно их принципиальные схемы.
Транзисторные каскады, в зависимости от вариантов подключения транзисторов, подразделяются на:
1 Каскад с общим эмиттером (на схеме показан каскад с фиксированным током базы – это одна из разновидностей смещения транзистора).
2 Каскад с общим коллектором
3 Каскад с общей базой
Каскад с общим эмиттером обладает высоким усилением по напряжению и току. К недостаткам данной схемы включения можно отнести невысокое входное сопротивление каскада (порядка сотен ом), высокое (порядка десятков Килоом) выходное сопротивление. Отличительная особенность – изменение фазы входного сигнала на 180 градусов (то есть – инвертирование). Благодаря высокому коэффициенту усиления схема с ОЭ имеет преимущественное применение по сравнению с ОБ и ОК.
Рассмотрим работу каскада подробнее: при подаче на базу входного напряжения – входной ток протекает через переход «база-эмиттер» транзистора, что вызывает открывание транзистора и, в следствии этого, увеличение коллекторного тока. В цепи эмиттера транзистора протекает ток, равный сумме тока базы и тока коллектора. На резисторе в цепи коллектора, при прохождении через него тока, возникает некоторое напряжение, величиной значительно превышающей входное. Таким образом происходит усиление транзистора по напряжению. Так как ток и напряжение в цепи – величины взаимосвязанные, аналогично происходит и усиление входного тока.
Схема с общим коллектором обладает высоким входным и низким выходным сопротивлениями. Коэффициент усиления по напряжению этой схемы всегда меньше 1. Входное сопротивление каскада с ОК зависит от сопротивления нагрузки (Rн) и больше его (приблизительно) в Н21э раз . (Величина «Н21э» – это статический коэффициент усиления данного экземпляра транзистора, включенного по схеме с Общим Эмиттером). Данная схема используется для согласования каскадов, либо в случае использования источника входного сигнала с высоким входным сопротивлением. В качестве такого источника можно привести, например, пьезоэлектрический звукосниматель или конденсаторный микрофон. Схема с ОК не изменяет фазы входного сигнала. Иногда такую схему называют Эмиттерным повторителем .
Схема включения транзистора с общей базой используется преимущественно в каскадах усилителей высоких частот. Усиление каскада с ОБ обеспечивает усиление только по напряжению. Данное включение транзистора позволяет более полно использовать частотные характеристики транзистора при минимальном уровне шумов. Что такое частотная характеристика транзистора? Это – способность транзистора усиливать высокие частоты, близкие к граничной частоте усиления, Эта величина зависит от типа транзистора. Более высокочастотный транзистор способен усиливать и более высокие частоты. С повышением рабочей частоты, коэффициент усиления транзистора понижается. Если для построения усилителя использовать, например, схему с общим эмиттером, то при некоторой (граничной) частоте каскад перестает усиливать входной сигнал. Использование этого – же транзистора, но включенного по схеме с общей базой, позволяет значительно повысить граничную частоту усиления. Каскад, собранный по схеме с общей базой, обладает низким входным и невысоким выходным сопротивлениями (эти параметры очень хорошо согласуются при работе в антенных усилителях с использованием так называемых «коаксиальных» несимметричных высокочастотных кабелей, волновое сопротивление которых как правило не превышает 100 ом). Если сравнивать величины сопротивлений для каскада с ОЭ и ОБ, то входное сопротивление каскада с ОБ в (1+Н21э) раз меньше, чем с ОЭ, а выходное в (1+Н21э) раз больше. Каскад с ОБ не изменяет фазы входного сигнала.
В практике радиолюбителя иногда приходится использовать параллельное включение транзисторов для увеличения выходной мощности (коллекторного тока). Один из вариантов данного включения приведен ниже:
При таком включении нужно стремиться использовать транзисторы с близкими параметрами Вст. Транзисторы большой мощности при этом должны устанавливаться на один теплоотвод. Для дополнительного выравнивания токов в данной схеме в цепях эмиттеров применены резисторы. Сопротивление резисторов следует выбирать исходя из падения напряжения на них (в интервале рабочих токов) около 1 вольта (или, по крайней мере, – не менее 0,7 вольта). Данная схема должна применяться с большой осторожностью, так как даже транзисторы одного типа и из одной партии выпуска имеют очень большой разброс по параметрам. Выход из строя одного из транзисторов неизбежно приведет к выходу из строя и других транзисторов в цепочке. При параллельном включении двух транзисторов максимальный суммарный ток коллектора не должен превышать 1,6-1,7 от предельного тока коллектора одного из транзисторов! Количество транзисторов, включенных по этой схеме может быть сколько угодно большим – все зависит от целесообразности.
В радиолюбительской практике иногда необходим транзистор с проводимостью, отличной от имеющегося (например – в выходном каскаде УЗЧ и проч.) . Выйти из положения позволяет схема включения, приведенная ниже:
В данном каскаде используется как правило маломощный транзистор VT1 необходимой проводимости, транзистор VT2 необходимой мощности , но другой проводимости. Данный каскад (в частности) эквивалентен транзистору с проводимостью N-P-N большой мощности с высоким коэффициентом передачи тока базы (h31Э). Если мы используем в качестве VT1, VT2 транзисторы противоположной проводимости – получим мощный составной транзистор с проводимостью P-N-P.
Если в данной схеме применить транзисторы одной структуры – получим так называемый Составной транзистор. Такое включение транзисторов называют Схемой Дарлингтона . Промышленность выпускает такие транзисторы в одном корпусе. Существуют как маломощные (типа КТ3102 и т.п.) так и мощные (например – КТ825) составные транзисторы.
А сейчас поговорим немного о температурной стабилизации усилителя.
Транзистор, являясь полупроводниковым прибором, изменяет свои параметры при изменении рабочей температуры. Так, при повышении температуры, усилительные свойства транзистора ухудшаются. Обусловлено это рядом причин : при повышении температуры значительно увеличивается такой параметр транзистора, как обратный ток коллектора . Увеличение обратного тока коллектора транзистора приводит к значительному увеличению коллекторного тока и к смещению рабочей точки в сторону увеличения тока. При некоторой температуре коллекторный ток транзистора возрастает до такой величины, при которой транзистор перестает реагировать на слабый входной (базовый) ток. Попросту говоря – каскад перестает быть усилительным. Для того, чтобы расширить диапазон рабочих температур, необходимо применять дополнительные меры по температурной стабилизации рабочей точки транзистора. Самым простым способом является коллекторная стабилизация рабочего тока смещения. Рассмотренная нами выше схема каскада по схеме с общим эмиттером является схемой с фиксированным током базы. Ток коллектора в данной схеме зависит от параметров конкретного экземпляра транзистора и должен устанавливаться индивидуально при помощи подбора величины резистора R1. При смене транзистора начальный (при отсутствии сигнала) ток коллектора приходится подбирать заново, так как транзисторы даже одного типа имеют очень большой разброс статического коэффициента усиления тока базы (h31 Э). Другая разновидность каскада – схема с фиксированным напряжением смещения. Эта схема также обладает недостатками, описанными выше:
Для повышения термостабильности каскада необходимо использовать специальные схемы включения:
Схема коллекторной стабилизации, обладая основными недостатками схемы с общим эмиттером (подбор резистора базового смещения под конкретный экземпляр транзистора), тем не менее позволяет расширить диапазон рабочих температур каскада. Как видим, данная схема отличается подключением резистора смещения не к источнику питания, а в коллекторную цепь. Благодаря такому включению удалось значительно (за счет применения отрицательной обратной связи ) расширить диапазон рабочих температур каскада. При увеличении обратного тока коллектора транзистора, увеличивается ток коллектора, что вызывает более полное открывание транзистора и уменьшение коллекторного напряжения. Уменьшение коллекторного напряжения, в свою очередь, уменьшает напряжение начального смещения транзистора, что вызывает уменьшение коллекторного тока до приемлемой величины. Таким образом – осуществляется отрицательная обратная связь, которая несколько уменьшает усиление каскада, но зато позволяет увеличить максимальную рабочую температуру.
Более качественную стабилизацию температурных параметров каскада усиления можно осуществить, если несколько усложнить схему и применить так называемую » эмиттерную » температурную стабилизацию . Данная схема, несмотря на сложность, позволяет каскаду сохранять усилительные свойства в очень широком интервале рабочих температур. Кроме того, применение данной схемы стабилизации дает возможность замены транзисторов без последующей настройки. Отдельно скажу о конденсаторе С3 . Этот конденсатор служит для повышения коэффициента усиления каскада на переменном токе. Он устраняет отрицательную обратную связь каскада. Емкость этого конденсатора зависит от рабочей частоты усилителя. Для усилителя звуковых частот емкость конденсатора может колебаться от 5 до 50 микрофарад, для диапазона радиочастот – от 0,01 до 0,1 микрофарады (но его в некоторых случаях может и не быть) .
Теперь давайте попробуем расчитать термостабильный каксад по постоянному току:
ВНИМАНИЕ! Данные расчета получаются довольно приблизительные! Окончательный номинал резистора R1 потребуется подобрать при наладке более точно!
Для начала нам нужно определиться с исходными данными для расчета. На верхнем прямоугольнике даны постоянные величины соответственно для германиевого (Ge) и кремниевого (Si) транзистора.
Теперь давайте расчитаем работу каскада по переменному току:
Сначала определяем сопротивление Rэ. Для нашего случая (ток коллектора 1 миллиампер) Rэ = 26 ом,
Далее определим проводимость S = 38.46 микросименса (ориентировочно),
Вычисляем значение R11. Для транзистора типа КТ315Б среднее значение параметра h31э равно 200, отсюда R11 равно 5200,
Величину Rb необходимо определить для вычисления входного сопротивления каскада, являющегося нагрузкой расчитываемого. Она равна (при номиналах резисторов, взятых в нашем примере) 5,75 килоом,
Для упрощения расчета можно не вычислять сопротивление Rн, а принять его равным R3.
Ожидаемый коэффициент усиления данного каскада на транзисторе типа КТ315Б со средним значением h31э равным 200 получается около 40.
Следует иметь в виду, что полученное значение коэффициента усиления каскада весьма приблизительно! На практике это значение может отличаться в 1,5 – 2 раза (иногда – больше) и зависит от конкретного экземпляра транзистора!
При расчете коэффициента усиления транзистороного каскада по переменному току следует учитывать, что этот коэффициент зависит от частоты усиливаемого сигнала. Максимальная частота примененного транзистора должна быть по крайней мере в 15-20 раз выше предельной частоты усиления (определяется по справочнику).
Для написания этой странички использовались материалы из книги «Краткий радиотехнический справочник.» Авторы Богданович и Ваксер, Издательство «Беларусь» 1976 год.
Литература по теме: Небольшой учебник «Азы транзисторной схемотехники» (около 380 килобайт), найденный мной в интернете, можно скачать по этой ссылке .
Книжка «Расчет схем на транзисторах» лежит здесь (довольно древняя – 1969 года издания, но вполне актуальная!) обьем около 8 мБайт.
Транзистор, как полупроводниковый прибор, имеющий три электрода (эмиттер, базу, коллектор), можно включить тремя основными способами (рис. 3.1 — 3.6). Как известно, входной сигнал поступает на усилитель по двум проводам; выходной сигнал отводится также по двум проводам. Следовательно, для трех-электродного усилительного прибора при подаче входного и съеме выходного сигнала по двум проводам один из электродов будет непременно общим. Соответственно тому, какой из электродов в схеме включения транзистора будет являться общим, различают три основные схемы включения: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ).
Рис. 3.1. Схема с общим эммитером (ОЭ)
Рис. 3.2. Схема с общим коллектором (ОК)
Практические варианты схем включения транзисторов структуры п-р-п и р-п-р приведены на рис. 3.1 — 3.6. Как следует из сопоставления рисунков, схемы эти идентичны и различаются лишь полярностью подаваемого напряжения.
Для определения входного (RBX.) и выходного (RBbix.) сопротивления каждой из схем включения, а также коэффициентов усиления по току (К,), напряжению (Ки) и мощности (КР=К|ХКи) расчетные и экспериментальные значения и формулы приведены в таблицах 3.1 и 3.2.
Таблица с формулами приведена для приближенных расчетов, а для первоначальной, первичной оценки и сравнения свойств основных схем включения транзисторов предназначена вторая таблица с численными оценками.
Рис. 3.3. Схема с общей базой (ОБ)
Обозначения в таблице следующие: RH — сопротивление нагрузки; R3 — сопротивление эмиттера или отношение изменения напряжения на эмиттерном переходе к изменению тока эмиттера в режиме короткого замыкания в выходной цепи по переменному току; RB — сопротивление базы или отношение изменения напряжения между эмиттером и базой к изменению тока коллектора в режиме холостого хода входной цепи по переменному току; а — коэффициент усиления по току для схемы с общей базой; р — коэффициент усиления по току для схемы с общим эмиттером.
Рис. 3.4. Схема с общим эммитером (ОЭ)
Рис. 3.5. Схема с общим коллектором (ОК)
Рис. 3.6. Схема с общей базой (ОБ)
Наиболее часто в практических схемах используют режим включения транзистора с общим эмиттером (как обладающий наибольшим коэффициентом усиления по мощности).
Эмиттерные повторители (схемы с общим коллектором) применяют для согласования высокого выходного сопротивления источника сигнала с низким входным сопротивлением нагрузки. Для построения высокочастотных усилителей (имеющих низкое входное сопротивление) используют схемы с общей базой.
В зависимости от наличия, полярности и величины потенциалов на электродах транзисторов различают несколько режимов его работы. Насыщение — транзистор открыт, напряжение на переходе К— Э минимально, ток через переходы максимален. Отсечка — транзистор закрыт, напряжение на переходе К — Э максимально, ток через переходы минимален. Активный — промежуточный между режимом насыщения и отсечки. Инверсный — характеризуется подачей на электроды транзистора обратной (инверсной) полярности рабочего напряжения.
В переключательно-коммутирующих схемах, имеющих только два состояния: включено (сопротивление ключевого элемента близко к нулю) и выключено (сопротивление ключевого элемента стремится к бесконечности), используются режимы насыщения и отсечки. Активный режим широко применяют для усиления сигналов. Инверсный режим используют достаточно редко, поскольку улучшить показатели схемы при таком включении транзистора не удается.
Для того чтобы без расчетов первоначально оценить величины RC-элементов, входящих в состав схем (рис. 3.1, 3.2, 3.4, 3.5), можно принять величину сопротивления в коллекторной (эмиттерной) цепи равной нескольким кОм, а величину сопротивления в цепи базы в 30. 50 раз большим. При этом напряжение на коллекторе (эмиттере) должно быть равно половине напряжения питания. Для схемы с общей базой (рис. 3.3, 3.6) величина сопротивления R3, обычно не превышает 0,1. 1 кОм, величина сопротивления R2 составляет несколько кОм.
Величины реактивных сопротивлений конденсаторов С1 — СЗ для наиболее низких частот, которые требуется усилить, должны быть примерно на порядок ниже соединенных с ними активных сопротивлений R1 — R3 (рис. 3.1 — 3.6). В принципе, величины этих емкостей можно было бы выбрать со значительным запасом, но в этом случае увеличиваются габариты переходных конденсаторов, их стоимость, токи утечки, длительность переходных процессов и т.д.
В качестве примера приведем таблицу 3.3 для быстрого определения величины реактивного сопротивления конденсаторов для нескольких частот.
Напомним, что реактивное сопротивление конденсатора Хс, Ом, можно вычислить по формуле:
Для постоянного тока реактивное сопротивление конденсаторов стремится к бесконечности. Следовательно, для усилителей постоянного тока (нижняя граничная частота усиления равна нулю) переходные конденсаторы не требуются, а для разделения каскадов необходимо предусматривать специальные меры. Конденсаторы в цепях постоянного тока равносильны обрыву цепи. Поэтому при построении схем усилителей постоянного тока используют схемы с непосредственными связями между каскадами. Разумеется, в этом случае необходимо согласование уровней межкаскадных напряжений.
При усилении переменного тока в цепи нагрузки усилительных каскадов зачастую используют индуктивные элементы. Отметим, что реактивное сопротивление индуктивностей растет с увеличением частоты. Соответственно, с изменением сопротивления нагрузки от частоты, растет и коэффициент усиления такого каскада.
Помимо биполярных транзисторов широкое распространение приобрели более современные элементы — полевые транзисторы (рис. 3.7 — 3.9).
Рис. 3.7. Схема с общим истоком (ОИ)
Рис. 3.8. Схема с общим стоком (ОС)
По аналогии со схемами включения биполярных транзисто ров полевые включают с общим истоком, общим стоком и с об щим затвором.
Основные расчетные соотношения для этих схем включения полевых транзисторов приведены в таблице 3.4, где S — крутизна характеристики полевого транзистора, мА/В; R, — внутреннее сопротивление транзистора.
Рис. 3.9. Схема с общим затвором (03)
Основные расчетные соотношения для этих схем включения полевых транзисторов приведены в таблице 3.4, где S — крутизна характеристики полевого транзистора, мА/В; R, — внутреннее сопротивление транзистора.
Ориентировочно величина R1 (рис. 3.7 — 3.9) может быть от нескольких Ом до единиц МОм R2 — несколько кОм. Отметим, что, как и для биполярных транзисторов, полевые также допускают работу с отсечкой, с насыщением; активный и инверсный режимы.
Для увеличения коэффициента передачи по току биполярного транзистора используют «составные» транзисторы, включаемые по схеме Дарлингтона (рис. 3.10 — 3.13). Общий их коэффициент усиления несколько отличается от произведения коэффициентов усиления каждого из транзисторов. Одновременно ухудшается температурная стабильность схемы.
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год
Схемы включения транзисторов — Ремонт220
Автор Светозар Тюменский На чтение 3 мин. Просмотров 2.8k. Опубликовано Обновлено
Что такое транзистор более или менее представляют практически все, кому довелось иметь дело с различными электроприборами, особенно – созданием и починкой этих самых приборов. Однако правильно подключить транзистор может не каждый. Тем более что подключать их следует согласно одной из нескольких схем.
Прежде чем перейти непосредственно к включению, давайте вспомним, чем различаются два типа приборов, о которых пойдет речь в статье – биполярные и полевые транзисторы.
Биполярный транзистор – это полупроводниковый прибор, в котором к трем последовательно расположенным слоям полупроводника подключены электроды.
Полевой транзистор – это полупроводниковый прибор, ток которого изменяется под воздействием электрического поля, которое создается на затворе благодаря напряжению. В полевом транзисторе используются заряды только одного типа, что существенно отличает его от биполярного транзистора.
В сегодняшней статье мы рассмотрим схемы включения биполярного и полевого транзистора. И в том, и в другом случае существуют три основные схемы. О достоинствах и недостатках каждой из них скажем отдельно.
Схемы включения биполярного транзистора
1. Схема с общим эмиттером.
Считается, что подобная схема позволяет получить наибольшее усиление по мощности, а потому именно она наиболее распространена. Еще одним преимуществом является удобство питания от одного источника. На коллектор и базу идет подача питающего напряжения одного знака. Из недостатков следует отметить более низкие температурные и частотные свойства. Усиление в схеме с общим эмиттером будет снижаться при повышении частоты. Да и каскад при усилении будет вносить искажения, зачастую – значительные.
2. Схема с общей базой.
Подобный план включения значительного усиления не даст, зато обладает температурными и частотными свойствами. В этом его преимущество перед предыдущей схемой. Правда применяется он не так часто. Как и в схеме с общим эмиттером, здесь такой же коэффициент усиления напряжения. И входное сопротивление в десятки раз ниже. Плюс ко всему, такая схема вносит намного меньше искажений при усилении, чем первая.
3. Схема с общим коллектором.
Иначе ее еще называют эмиттерным повторителем. Главная особенность подобной схемы в том, что в ней очень сильна отрицательная обратная связь. Связано это с тем, что напряжение на входе полностью передается обратно на вход. В такой схеме отсутствует фазовый сдвиг между напряжением входным и выходным. Кстати, именно поэтому она называется эмиттерным повторителем (из-за напряжения). Важным преимуществом такой схемы является очень высокое сопротивление на входе и достаточно небольшое – на выходе.
Схема включения полевых транзисторов
Распространены три схемы включения полевых транзисторов. Первая схема – с общим истоком. Вторая – с общим стоком. Третья – с общим затвором.
Самой распространенной является схема с общим истоком. Она очень похожа на схему биполярного транзистора с общим эмиттером. Очень большое усиление мощности и тока достигается каскадом с общим истоком.
Схема с общим затвором также сравнима с одной из схем биполярных транзисторов, а именно – с общей базой. Усиления тока она не дает, а потому не трудно предположить, что в ней и усиление мощности намного меньше, чем в схеме с общим истоком.
Последняя схема – с общим затвором – имеет достаточно ограниченное применение на практике. Связано это в первую очередь с тем, что каскад общего затвора имеет крайне низкое сопротивление на входе.
Транзисторв качестве переключателя — Использование транзисторного переключения
При использовании в качестве усилителя сигнала переменного тока напряжение смещения базы транзисторов прикладывается таким образом, что оно всегда работает в своей «активной» области, то есть используется линейная часть кривых выходных характеристик.
Тем не менее, биполярные транзисторы типа NPN и PNP можно заставить работать как твердотельный переключатель типа «ВКЛ / ВЫКЛ», смещая вывод базы транзистора иначе, чем в усилителе сигнала.
Твердотельные переключатели — одно из основных применений транзисторов для включения или выключения выхода постоянного тока. Некоторым устройствам вывода, таким как светодиоды, требуется всего несколько миллиампер при напряжении постоянного тока логического уровня, и поэтому они могут управляться непосредственно выходом логического элемента. Однако мощным устройствам, таким как двигатели, соленоиды или лампы, часто требуется больше энергии, чем от обычного логического элемента, поэтому используются транзисторные переключатели.
Если в схеме используется биполярный транзистор в качестве переключателя , то смещение транзистора, NPN или PNP, настраивается для работы транзистора по обе стороны кривых «ВАХ», которые мы видели ранее.
Рабочие зоны транзисторного переключателя известны как область насыщения и область отсечки . Это означает, что мы можем игнорировать рабочую схему смещения точки Q и делителя напряжения, необходимую для усиления, и использовать транзистор в качестве переключателя, перемещая его вперед и назад между его положениями «полностью выключено» (отсечка) и «полностью отключено». ON ”(насыщенность), как показано ниже.
Операционные регионы
Розовая заштрихованная область внизу кривых представляет область «отсечки», а синяя область слева представляет область «насыщенности» транзистора.Обе эти области транзистора определены как:
1. Обрезка
Здесь рабочими условиями транзистора являются нулевой входной базовый ток (I B ), нулевой выходной ток коллектора (I C ) и максимальное напряжение коллектора (V CE ), что приводит к образованию большого обедненного слоя и отсутствию тока. протекает через устройство. Поэтому транзистор полностью выключен.
Характеристики отсечки
|
Затем мы можем определить «область отсечки» или «режим ВЫКЛ» при использовании биполярного транзистора в качестве переключателя, когда оба перехода смещены в обратном направлении, V B <0.7v и I C = 0. Для транзистора PNP потенциал эмиттера должен быть отрицательным по отношению к базе.
2. Область насыщенности
Здесь транзистор будет смещен так, что будет приложена максимальная величина базового тока, что приведет к максимальному току коллектора, что приведет к минимальному падению напряжения на коллектор-эмиттер, в результате чего слой обеднения будет как можно меньшим, а через транзистор будет протекать максимальный ток. Поэтому транзистор включен «полностью».
Характеристики насыщенности
|
Затем мы можем определить «область насыщения» или «режим включения» при использовании биполярного транзистора в качестве переключателя, когда оба перехода смещены в прямом направлении, V B > 0.7v и I C = Максимум. Для транзистора PNP потенциал эмиттера должен быть положительным по отношению к базе.
Тогда транзистор работает как твердотельный переключатель «однополюсный однопроходный» (SPST). Когда нулевой сигнал подается на базу транзистора, он выключается, действуя как разомкнутый переключатель, и течет нулевой ток коллектора. При подаче положительного сигнала на базу транзистора он включается, действуя как замкнутый переключатель, и через устройство протекает максимальный ток цепи.
Самый простой способ переключить мощность от умеренного до высокого — использовать транзистор с выходом с открытым коллектором и вывод эмиттера транзистора, подключенный непосредственно к земле. При таком использовании выход с открытым коллектором транзистора может, таким образом, «сливать» подаваемое извне напряжение на землю, тем самым контролируя любую подключенную нагрузку.
Пример транзистора NPN в качестве переключателя, используемого для управления реле, приведен ниже. При индуктивных нагрузках, таких как реле или соленоиды, диод маховика помещается поперек нагрузки для рассеивания обратной ЭДС, генерируемой индуктивной нагрузкой, когда транзистор переключается в положение «ВЫКЛ», и таким образом защищает транзистор от повреждения.Если нагрузка имеет очень высокий ток или напряжение, например двигатели, нагреватели и т. Д., То ток нагрузки можно контролировать с помощью подходящего реле, как показано на рисунке.
Базовая схема переключения транзисторов NPN
Схема напоминает схему с общим эмиттером , которую мы рассматривали в предыдущих руководствах. Разница на этот раз в том, что для работы транзистора в качестве переключателя транзистор должен быть либо полностью выключен (отключен), либо полностью включен (насыщен).Идеальный транзисторный переключатель имел бы бесконечное сопротивление цепи между коллектором и эмиттером, когда он был полностью выключен, что приводило к нулевому току, протекающему через него, и нулевому сопротивлению между коллектором и эмиттером, когда он был полностью включен, что давало максимальный ток.
На практике, когда транзистор выключен, через транзистор протекают небольшие токи утечки, а когда он полностью включен, устройство имеет низкое значение сопротивления, вызывая небольшое напряжение насыщения (V CE ) на нем.Несмотря на то, что транзистор не является идеальным переключателем, как в области отсечки, так и в области насыщения мощность, рассеиваемая транзистором, минимальна.
Для протекания тока базы необходимо сделать входную клемму базы более положительной, чем у эмиттера, увеличив ее выше 0,7 В, необходимых для кремниевого устройства. Изменяя это напряжение база-эмиттер V BE , также изменяется базовый ток, который, в свою очередь, регулирует величину тока коллектора, протекающего через транзистор, как обсуждалось ранее.
Когда протекает максимальный ток коллектора, транзистор считается насыщенным . Величина базового резистора определяет, какое входное напряжение требуется и соответствующий базовый ток для полного включения транзистора.
Транзисторкак пример переключателя No1
Используя значения транзисторов из предыдущих руководств: β = 200, Ic = 4 мА и Ib = 20 мкА, найдите значение базового резистора (Rb), необходимое для полного включения нагрузки, когда напряжение на входных клеммах превышает 2.5в.
Следующее наименьшее предпочтительное значение: 82 кОм, это гарантирует, что транзисторный ключ всегда находится в состоянии насыщения.
Транзисторкак пример переключателя No2
Опять же, используя те же значения, найдите минимальный базовый ток, необходимый для включения транзистора «полностью» (насыщение) для нагрузки, которая требует тока 200 мА при увеличении входного напряжения до 5,0 В. Также рассчитайте новое значение Rb.
Базовый ток транзистора:
Базовое сопротивление транзистора:
Транзисторные переключателииспользуются для широкого спектра применений, таких как сопряжение устройств с большим током или высоким напряжением, таких как двигатели, реле или лампы, с низковольтными цифровыми ИС или логическими элементами, такими как элементы И или элементы ИЛИ.Здесь выходной сигнал цифрового логического элемента составляет всего + 5 В, но управляемому устройству может потребоваться питание 12 или даже 24 В. Или для нагрузки, такой как двигатель постоянного тока, может потребоваться регулирование скорости с помощью серии импульсов (широтно-импульсная модуляция). Транзисторные переключатели позволят нам сделать это быстрее и проще, чем с обычными механическими переключателями.
Цифровой логический транзисторный переключатель
Базовый резистор Rb требуется для ограничения выходного тока логического элемента.
Транзисторный переключатель PNP
Мы также можем использовать транзисторы PNP в качестве переключателя, разница на этот раз в том, что нагрузка подключена к земле (0 В), а транзистор PNP переключает на нее питание. Чтобы включить транзистор PNP, работающий как переключатель, клемма базы подключается к земле или к нулевому напряжению (LOW), как показано.
Схема переключения транзистора PNP
Уравнения для расчета сопротивления базы, тока коллектора и напряжений точно такие же, как и для предыдущего транзисторного переключателя NPN.На этот раз разница в том, что мы переключаем мощность с помощью транзистора PNP (ток источника) вместо переключения заземления с помощью транзистора NPN (ток стока).
Транзисторный переключатель Дарлингтона
Иногда коэффициент усиления постоянного тока биполярного транзистора слишком мал для прямого переключения тока или напряжения нагрузки, поэтому используются несколько переключающих транзисторов. Здесь один маленький входной транзистор используется для включения или выключения гораздо большего выходного транзистора управления током. Чтобы максимизировать усиление сигнала, два транзистора соединены в «Конфигурацию комплементарного усиления» или, что чаще называют «Конфигурация Дарлингтона », где коэффициент усиления является произведением двух отдельных транзисторов.
Транзисторы Дарлингтона просто содержат два отдельных биполярных транзистора типа NPN или PNP, соединенных вместе, так что коэффициент усиления по току первого транзистора умножается на коэффициент усиления по току второго транзистора, чтобы создать устройство, которое действует как один транзистор с очень высокий коэффициент усиления по току для гораздо меньшего тока базы. Общий коэффициент усиления по току Beta (β) или значение hfe устройства Дарлингтона является произведением двух отдельных коэффициентов усиления транзисторов и дается как:
Таким образом, транзисторы Дарлингтона с очень высокими значениями β и большими токами коллектора возможны по сравнению с одним транзисторным переключателем.Например, если первый входной транзистор имеет коэффициент усиления по току 100, а второй переключающий транзистор имеет коэффициент усиления по току 50, то общий коэффициент усиления по току будет 100 * 50 = 5000. Так, например, если ток нагрузки сверху равен 200 мА. , то базовый ток Дарлингтона составляет всего 200 мА / 5000 = 40 мкА. Значительное снижение по сравнению с предыдущим 1 мА для одного транзистора.
Ниже приведены примеры двух основных типов конфигураций транзисторов Дарлингтона.
Конфигурации транзисторов Дарлингтона
Вышеупомянутая конфигурация транзисторного переключателя Дарлингтона NPN показывает коллекторы двух транзисторов, соединенных вместе с эмиттером первого транзистора, подключенным к клемме базы второго транзистора, поэтому ток эмиттера первого транзистора становится током базы второго транзистора. переключив его в положение «ВКЛ».
Первый или «входной» транзистор принимает входной сигнал на свою базу. Этот транзистор усиливает его обычным образом и использует его для управления вторыми более крупными «выходными» транзисторами. Второй транзистор снова усиливает сигнал, что дает очень высокий коэффициент усиления по току. Одной из основных характеристик транзисторов Дарлингтона является их высокий коэффициент усиления по току по сравнению с одиночными биполярными транзисторами.
Помимо повышенных возможностей переключения тока и напряжения, еще одним преимуществом «транзисторного переключателя Дарлингтона» является его высокая скорость переключения, что делает его идеальным для использования в цепях инвертора, цепях освещения и в системах управления двигателями постоянного тока или шаговыми двигателями.
Одно отличие, которое следует учитывать при использовании транзисторов Дарлингтона по сравнению с обычными одинарными биполярными типами при использовании транзистора в качестве переключателя, заключается в том, что входное напряжение база-эмиттер (V BE ) должно быть выше примерно на 1,4 В для кремниевых устройств из-за последовательное соединение двух PN-переходов.
Краткое описание транзисторакак переключателя
Затем, чтобы подвести итог, при использовании транзистора в качестве коммутатора применяются следующие условия:
- Транзисторные переключатели могут использоваться для переключения и управления лампами, реле или даже двигателями.
- При использовании биполярного транзистора в качестве переключателя они должны быть либо «полностью выключены», либо «полностью включены». Говорят, что транзисторы
- , которые полностью включены, находятся в области насыщенности . Полностью выключенные транзисторы
- находятся в области отсечки .
- При использовании транзистора в качестве переключателя небольшой ток базы управляет гораздо большим током нагрузки коллектора.
- При использовании транзисторов для переключения индуктивных нагрузок, таких как реле и соленоиды, используется «диод маховика».
- Когда необходимо контролировать большие токи или напряжения, можно использовать транзисторы Дарлингтона .
В следующем уроке о транзисторах мы рассмотрим работу переходного полевого транзистора, известного как JFET. Мы также построим кривые выходных характеристик, обычно связанные со схемами усилителя JFET, в зависимости от напряжения источника и напряжения затвора.
Работа транзистора в качестве переключателя
В этом руководстве по транзистору мы узнаем о работе транзистора в качестве переключателя.Переключение и усиление — это две области применения транзисторов и транзисторов, поскольку коммутатор является основой для многих цифровых схем. Мы изучим различные режимы работы (активный, насыщенный и отключенный) транзистора, то, как транзистор работает как переключатель (как NPN, так и PNP), а также некоторые практические прикладные схемы, использующие транзистор в качестве переключателя.
Введение
Транзисторы — это трехслойное трехполюсное полупроводниковое устройство, которое часто используется в операциях усиления и переключения сигналов.Как одно из важных электронных устройств, транзистор нашел применение в огромном количестве приложений, таких как встроенные системы, цифровые схемы и системы управления.
Вы можете найти транзисторы как в цифровой, так и в аналоговой области, поскольку они широко используются для различных приложений, таких как схемы переключения, схемы усилителя, схемы питания, цифровые логические схемы, регуляторы напряжения, схемы генераторов и т. Д.
В этой статье основное внимание уделяется переключающему действию транзистора и дается краткое объяснение транзистора как переключателя.
Краткое описание BJT
Существует два основных семейства транзисторов: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET). Биполярный транзистор или просто БЮТ представляет собой трехслойное полупроводниковое устройство с тремя выводами и двумя переходами. Он состоит из двух PN-переходов, соединенных спина к спине с общим средним слоем.
Когда мы говорим термин «транзистор», он часто относится к BJT. Это устройство, управляемое током, в котором выходной ток регулируется входным током.Название биполярное указывает на то, что два типа носителей заряда, то есть электроны и дырки, проводят ток в BJT, где дырки являются носителями положительного заряда, а электроны — носителями отрицательного заряда.
Транзистор имеет три области: базу, эмиттер и коллектор. Эмиттер является сильно легированным выводом и испускает электроны в базу. Вывод базы слегка легирован и передает электроны, инжектированные эмиттером, на коллектор. Вывод коллектора умеренно легирован и собирает электроны с базы.Этот коллектор больше по сравнению с двумя другими областями, поэтому он может рассеивать больше тепла.
BJT бывают двух типов: NPN и PNP. Оба они работают одинаково, но различаются по смещению и полярности источника питания. В транзисторе PNP материал N-типа зажат между двумя материалами P-типа, тогда как в случае транзистора NPN материал P-типа зажат между двумя материалами N-типа.
Эти два транзистора могут быть сконфигурированы в различных типах, например, с общим эмиттером, общим коллектором и общей базой.
Если вы хотите работать с MOSFET в качестве коммутатора, сначала изучите основы MOSFET.
Режимы работы транзисторов
В зависимости от условий смещения, таких как прямое или обратное, транзисторы имеют три основных режима работы, а именно области отсечки, активности и насыщения.
Активный режим
В этом режиме транзистор обычно используется как усилитель тока. В активном режиме два перехода смещены по-разному, что означает, что переход эмиттер-база смещен в прямом направлении, тогда как переход коллектор-база смещен в обратном направлении.В этом режиме ток течет между эмиттером и коллектором, и величина протекающего тока пропорциональна базовому току.
Режим отсечки
В этом режиме коллекторный базовый переход и эмиттерный базовый переход смещены в обратном направлении. Поскольку оба PN-перехода имеют обратное смещение, ток почти не протекает, за исключением небольших токов утечки (обычно порядка нескольких наноампер или пикоампер). BJT в этом режиме выключен и по сути является разомкнутой цепью.
Область отсечки в основном используется в коммутационных и цифровых логических схемах.
Режим насыщения
В этом режиме работы переходы эмиттер-база и коллектор-база смещены в прямом направлении. Ток свободно течет от коллектора к эмиттеру с практически нулевым сопротивлением. В этом режиме транзистор полностью включен и представляет собой замкнутую цепь.
Область насыщения также в основном используется в коммутационных и цифровых логических схемах.
На рисунке ниже показаны выходные характеристики BJT. На приведенном ниже рисунке область отсечки имеет рабочие условия, когда выходной ток коллектора равен нулю, нулевой базовый входной ток и максимальное напряжение коллектора.Эти параметры приводят к образованию большого обедненного слоя, который также не позволяет току течь через транзистор. Следовательно, транзистор полностью выключен.
Аналогично, в области насыщения транзистор смещен таким образом, что прикладывается максимальный ток базы, что приводит к максимальному току коллектора и минимальному напряжению коллектор-эмиттер. Это приводит к уменьшению размера обедненного слоя и пропусканию максимального тока через транзистор. Следовательно, транзистор полностью открыт.
Следовательно, из приведенного выше обсуждения мы можем сказать, что транзисторы можно заставить работать как твердотельный переключатель ВКЛ / ВЫКЛ, работая транзистором в областях отсечки и насыщения. Этот тип коммутационного приложения используется для управления светодиодами, двигателями, лампами, соленоидами и т. Д.
Транзистор как переключатель
Транзистор может использоваться для переключения для размыкания или замыкания цепи. Твердотельное переключение этого типа обеспечивает значительную надежность и меньшую стоимость по сравнению с обычными реле.
В качестве переключателей можно использовать транзисторы NPN и PNP. В некоторых приложениях в качестве переключающего устройства используется силовой транзистор, при этом может потребоваться другой транзистор уровня сигнала для управления мощным транзистором.
Транзистор NPN как переключатель
На основе напряжения, приложенного к клемме базы, выполняется операция переключения транзистора. Когда между базой и эмиттером приложено достаточное напряжение (V IN > 0,7 В), напряжение коллектор-эмиттер примерно равно 0.Следовательно, транзистор действует как короткое замыкание. Коллекторный ток V CC / R C протекает через транзистор.
Аналогично, когда на вход не подается напряжение или нулевое напряжение, транзистор работает в области отсечки и действует как разомкнутая цепь. В этом типе коммутационного соединения нагрузка (здесь светодиод используется в качестве нагрузки) подключается к коммутационному выходу с контрольной точкой. Таким образом, когда транзистор включен, ток будет течь от источника к земле через нагрузку.
Пример транзистора NPN в качестве переключателя
Рассмотрим пример ниже, где сопротивление базы R B = 50 кОм, сопротивление коллектора R C = 0,7 кОм, V CC составляет 5 В, а значение бета равно 125. В основании подается входной сигнал в диапазоне от 0 В до 5 В. Мы собираемся увидеть выход на коллекторе, изменяя напряжение V I в двух состояниях: 0 и 5 В, как показано на рисунке.
I C = V CC / R C , когда V CE = 0
I C = 5 В / 0.7 кОм
I C = 7,1 мА
Базовый ток I B = I C / β
I B = 7,1 мА / 125
I B = 56,8 мкА
Из выше расчетов, максимальное или пиковое значение тока коллектора в цепи составляет 7,1 мА, когда V CE равен нулю. И соответствующий ток базы для этого тока коллектора составляет 56,8 мкА.
Итак, понятно, что при увеличении тока базы выше 56.8 мкА, тогда транзистор переходит в режим насыщения.
Рассмотрим случай, когда на входе подается нулевое напряжение. Это приводит к тому, что базовый ток равен нулю, и, поскольку эмиттер заземлен, базовый переход эмиттера не смещен в прямом направлении. Следовательно, транзистор находится в выключенном состоянии, а выходное напряжение коллектора равно 5 В.
Когда V I = 0 В, I B = 0 и I C = 0,
В C = V CC — (I C * R C )
= 5V — 0
= 5V
Предположим, что приложенное входное напряжение составляет 5 вольт, тогда базовый ток можно определить, применив закон Кирхгофа для напряжения.
Когда V I = 5 В,
I B = (V I — V BE ) / R B
Для кремниевого транзистора, V BE = 0,7 В
Таким образом, I B = (5 В — 0,7 В) / 50 кОм
= 86 мкА, что больше 56,8 мкА
Следовательно, поскольку базовый ток превышает 56,8 мкА, транзистор будет доведен до насыщения, т. Е. , он полностью включен, когда на входе подается 5В.Таким образом, выход на коллекторе становится примерно нулевым.
Транзистор PNP как переключатель
Транзистор PNP работает так же, как NPN для операции переключения, но ток течет от базы. Этот тип переключения используется для конфигураций с отрицательным заземлением. Для транзистора PNP клемма базы всегда смещена отрицательно по отношению к эмиттеру.
При этом переключении базовый ток протекает, когда базовое напряжение более отрицательное. Проще говоря, низкое напряжение или более отрицательное напряжение вызывает короткое замыкание транзистора, в противном случае это будет разомкнутая цепь.
При этом нагрузка подключается к транзисторному коммутационному выходу с опорной точкой. Когда транзистор включен, ток течет от источника через транзистор к нагрузке и, наконец, к земле.
Пример транзистора PNP в качестве переключателя
Подобно схеме транзисторного переключателя NPN, вход схемы PNP также является базой, но эмиттер подключен к постоянному напряжению, а коллектор подключен к земле через нагрузку, как показано на рисунке .
В этой конфигурации база всегда смещена отрицательно по отношению к эмиттеру за счет соединения базы на отрицательной стороне и эмиттера на положительной стороне входного источника питания. Итак, напряжение V BE отрицательное, а напряжение питания эмиттера относительно коллектора положительное (V CE положительное).
Следовательно, для проводимости транзистора эмиттер должен быть более положительным как по отношению к коллектору, так и по отношению к базе. Другими словами, база должна быть более отрицательной по отношению к эмиттеру.
Для расчета токов базы и коллектора используются следующие выражения.
I C = I E — I B
I C = β * I B
I B = I C / β
Рассмотрим пример выше, что нагрузка требует тока 100 мА, а бета-значение транзистора равно 100. Тогда ток, необходимый для насыщения транзистора, равен
Минимальный базовый ток = ток коллектора / β
= 100 мА / 100
= 1 мА
Следовательно, когда базовый ток равен 1 мА, транзистор будет полностью открыт.Но для гарантированного насыщения транзистора требуется практически на 30% больше тока. Итак, в этом примере требуемый базовый ток составляет 1,3 мА.
Практические примеры транзистора в качестве переключателя
Транзистор для переключения светодиода
Как обсуждалось ранее, транзистор можно использовать в качестве переключателя. На схеме ниже показано, как транзистор используется для переключения светоизлучающего диода (LED).
- Когда переключатель на клемме базы разомкнут, ток через базу не течет, поэтому транзистор находится в состоянии отсечки.Таким образом, транзистор работает как разомкнутый контур, и светодиод гаснет.
- Когда переключатель замкнут, базовый ток начинает течь через транзистор, а затем достигает насыщения, в результате чего загорается светодиод.
- Резисторы установлены для ограничения токов, протекающих через базу и светодиод. Также можно изменять интенсивность светодиода, изменяя сопротивление на пути тока базы.
Транзистор для работы реле
Также можно управлять работой реле с помощью транзистора.С помощью небольшой схемы транзистора, способного возбуждать катушку реле, так что внешняя нагрузка, подключенная к ней, управляется.
- Рассмотрим приведенную ниже схему, чтобы узнать, как работает транзистор для подачи питания на катушку реле. Входной сигнал, приложенный к базе, приводит к переходу транзистора в область насыщения, в результате чего в цепи происходит короткое замыкание. Таким образом, на катушку реле подается напряжение и срабатывают контакты реле.
- При индуктивных нагрузках, особенно при переключении двигателей и катушек индуктивности, резкое отключение питания может поддерживать высокий потенциал на катушке.Это высокое напряжение может привести к значительному повреждению остальной цепи. Следовательно, мы должны использовать диод параллельно с индуктивной нагрузкой, чтобы защитить схему от индуцированных напряжений индуктивной нагрузки.
Транзистор для управления двигателем
- Транзистор также можно использовать для однонаправленного управления и регулирования скорости двигателя постоянного тока путем переключения транзистора через равные промежутки времени, как показано на рисунке ниже.
- Как упоминалось выше, двигатель постоянного тока также является индуктивной нагрузкой, поэтому мы должны разместить на нем диод свободного хода для защиты цепи.
- Переключая транзистор в областях отсечки и насыщения, мы можем многократно включать и выключать двигатель.
- Также можно регулировать скорость двигателя от состояния покоя до полной скорости, переключая транзистор на регулируемые частоты. Мы можем получить частоту переключения от управляющего устройства или микросхемы, например микроконтроллера.
У вас есть четкое представление о том, как транзистор можно использовать в качестве переключателя? Мы надеемся, что предоставленная информация с соответствующими изображениями и примерами проясняет всю концепцию переключения транзисторов.Далее, если у вас есть сомнения, предложения и комментарии, вы можете написать ниже.
Заключение
Полное руководство по использованию транзистора в качестве переключателя. Изучите основы биполярного переходного транзистора, области работы транзистора, работу транзисторов NPN и PNP в качестве переключателя, практическое применение переключающего транзистора.
Транзисторы — learn.sparkfun.com
Добавлено в избранное Любимый 79Приложения I: переключатели
Одно из самых фундаментальных применений транзистора — использовать его для управления потоком энергии к другой части схемы — используя его в качестве электрического переключателя.Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.
Транзисторные переключатели являются важными строительными блоками; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.
Транзисторный переключатель
Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:
Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.
В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом выводе. Вывод микроконтроллера ввода / вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.
Когда напряжение на базе превышает 0,6 В (или какое бы значение у вашего транзистора могло быть V th ), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0.6V транзистор находится в режиме отсечки — ток не течет, потому что это похоже на разрыв цепи между C и E.
Схема, приведенная выше, называется переключателем низкого уровня , потому что переключатель — наш транзистор — находится на стороне низкого (заземления) цепи. В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:
Подобно схеме NPN, база — это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер подключен к высокому уровню, а нагрузка подключена к транзистору со стороны земли.
Эта схема работает так же хорошо, как и переключатель на основе NPN, но есть одно огромное отличие: чтобы включить нагрузку, база должна быть низкой. Это может вызвать осложнения, особенно если высокое напряжение нагрузки (V CC — 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить выключатель , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .
Базовые резисторы!
Вы заметите, что каждая из этих схем использует последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.
Напомним, что в некотором смысле транзистор — это просто пара соединенных между собой диодов. Мы смещаем диод база-эмиттер в прямом направлении, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток.Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.
Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.
Резистор должен быть достаточно большим, чтобы эффективно ограничивать ток, но достаточно маленьким, чтобы питать базу достаточным током .Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.
Цифровая логика
Транзисторыможно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.
(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)
Инвертор
Вот схема транзистора, которая реализует инвертор , или НЕ вентиль:
Инвертор на транзисторах.
Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером. Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтянут до VCC
.(На самом деле это основная конфигурация транзистора, называемая с общим эмиттером .Подробнее об этом позже.)
И Ворота
Вот пара транзисторов, используемых для создания логического элемента И с 2 входами :
2-входной логический элемент И на транзисторах.
Если один из транзисторов выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то на выходе схемы также высокий уровень.
OR Выход
И, наконец, логический элемент ИЛИ с двумя входами :
2-входной логический элемент ИЛИ на транзисторах.
В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню. Если оба транзистора выключены, то через резистор выводится низкий уровень.
Н-образный мост
H-мост — это транзисторная схема, способная управлять двигателями как по часовой, так и против часовой стрелки . Это невероятно популярная трасса — движущая сила бесчисленных роботов, которые должны уметь двигаться как вперед на , так и на назад.
По сути, H-мост представляет собой комбинацию четырех транзисторов с двумя входными линиями и двумя выходами:
Вы можете догадаться, почему это называется H-мостом?
(Примечание: обычно у хорошо спроектированного H-моста есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)
Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.
H-мост имеет таблицу истинности, которая выглядит примерно так:
Вход A | Вход B | Выход A | Выход B | Направление двигателя |
---|---|---|---|---|
0 | 0 | 1 | 1 | Остановлено (торможение) |
0 | 1 900 | 1 | 0 | По часовой стрелке |
1 | 0 | 0 | 1 | Против часовой стрелки |
1 | 1 | 0 | 0 | Остановлено (торможение) |
Осцилляторы
Генератор — это схема, которая генерирует периодический сигнал, который колеблется между высоким и низким напряжением.Генераторы используются во всевозможных схемах: от простого мигания светодиода до генерации тактового сигнала для управления микроконтроллером. Есть много способов создать схему генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы.
Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух дополняющих осциллирующих сигналов.
Помимо двух транзисторов, конденсаторы являются настоящим ключом к этой схеме.Колпачки поочередно заряжаются и разряжаются, в результате чего два транзистора поочередно включаются и выключаются.
Анализ работы этой схемы — отличное исследование работы конденсаторов и транзисторов. Для начала предположим, что C1 полностью заряжен (сохраняется напряжение около В CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:
- Если Q1 включен, то левая пластина C1 (на схеме) подключена примерно к 0 В. Это позволит C1 разряжаться через коллектор Q1.
- Пока C1 разряжается, C2 быстро заряжается через резистор меньшего номинала — R4.
- Как только C1 полностью разрядится, его правая пластина будет подтянута примерно до 0,6 В, что включит Q2.
- На этом этапе мы поменяли местами состояния: C1 разряжен, C2 заряжен, Q1 выключен, а Q2 включен. Теперь танцуем в другую сторону.
- Q2 включен, позволяет C2 разряжаться через коллектор Q2.
- Когда Q1 выключен, C1 может относительно быстро заряжаться через R1.
- Как только C2 полностью разрядится, Q1 снова включится, и мы вернемся в состояние, в котором мы начали.
Может быть трудно осознать. Вы можете найти еще одну отличную демонстрацию этой схемы здесь.
Выбирая определенные значения для C1, C2, R2 и R3 (и сохраняя R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора:
Итак, при значениях для конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора будет около 1.5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду.
Как вы, наверное, уже заметили, существует тонна схем, в которых используются транзисторы. Но мы почти не коснулись поверхности. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Пришло время увидеть больше примеров!
← Предыдущая страница
Режимы работы Транзисторные схемы
| Клуб электроники
Транзисторные схемы | Клуб электроникиТипы | Токи | Функциональная модель | Использовать как переключатель | Выход IC | Датчики | Инвертор | Дарлингтон пара
Следующая страница: Емкость
См. Также: Транзисторы
На этой странице объясняется работа транзисторов в простых схемах, в основном их использование в качестве переключателей.Практические вопросы, такие как тестирование, меры предосторожности при пайке и идентификация выводов, рассматриваются в страница транзисторов.
Типы транзисторов
Есть два типа стандартных (биполярных) транзисторов, NPN и PNP , с разными обозначениями схем. Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор. Большинство используемых сегодня транзисторов являются NPN-транзисторами, потому что их проще всего сделать из кремния. Эта страница в основном посвящена транзисторам NPN, и новичкам следует сначала сосредоточиться на этом типе.
Выводы имеют маркировку база (B), коллектор (C) и эмиттер (E). Эти термины относятся к внутренней работе транзистора, но их не так много. Помогите понять, как используется транзистор, поэтому относитесь к ним как к ярлыкам.
Обозначения схем транзисторов
Пара Дарлингтона — это два транзистора, соединенных вместе. чтобы дать очень высокий коэффициент усиления по току.
Помимо стандартных (биполярный переход) транзисторов, есть полевых транзисторов , которые обычно обозначаются как FET s.У них разные символы схем и свойства, и они не рассматриваются на этой странице.
Rapid Electronics: транзисторы
Токи транзисторов
На схеме показаны два пути тока через транзистор.
Малый базовый ток управляет большим током коллектора .
Когда переключатель замкнут , небольшой ток течет в основание (B) транзистор. Этого достаточно, чтобы светодиод B тускло светился.Транзистор усиливает этот небольшой ток, чтобы позволить большему току течь через его коллектор (C) к его эмиттеру (E). Этот ток коллектора достаточно велик, чтобы светодиод C светился ярко.
При разомкнутом переключателе базовый ток не течет, поэтому транзистор отключается коллекторный ток. Оба светодиода выключены.
Вы можете построить эту схему с двумя стандартными 5-миллиметровыми красными светодиодами и любыми маломощными светодиодами общего назначения. Транзистор NPN (например, BC108, BC182 или BC548).Это хороший способ проверить транзистор и убедиться, что он работает.
Транзистор усиливает ток и может использоваться как переключатель, как описано на этой странице.
С подходящими резисторами (и конденсаторами для переменного тока) транзистор может усиливать напряжение, такое как аудиосигнал. но это еще не рассматривается на этом веб-сайте.
Режим общего эмиттера
Это устройство, в котором эмиттер (E) находится в цепи управления (базовый ток) а в управляемой цепи (коллекторный ток) называется общим эмиттерным режимом .Это наиболее широко используемая схема транзисторов, поэтому ее нужно изучить в первую очередь.
Функциональная модель транзистора NPN
Функционирование транзистора сложно объяснить и понять с точки зрения его внутренней структуры. Более полезно использовать эту функциональную модель.
- Переход база-эмиттер ведет себя как диод.
- A базовый ток I B протекает только при напряжении V BE через переход база-эмиттер равен 0.7В или больше.
- Малый базовый ток I B управляет большим током коллектора Ic варьируя сопротивление R CE .
- Ic = h FE × I B (если транзистор не открыт и не насыщен). h FE — коэффициент усиления по току (строго по постоянному току), Типичное значение для h FE равно 100 (это отношение, поэтому у него нет единиц измерения).
- Сопротивление коллектор-эмиттер R CE контролируется током базы I B :
I B = 0 , R CE = бесконечность, транзистор выключен
I B малый , R CE уменьшенный, транзистор частично включен
I B увеличено , R CE = 0, транзистор полностью открыт («насыщен»)
Дополнительные примечания:
- Базовый ток I B должен быть ограничен, чтобы предотвратить повреждение транзистора. и резистор может быть подключен последовательно с базой. Транзисторы
- имеют максимальный ток коллектора Ic.
- Коэффициент усиления по току h FE может широко варьироваться , даже для однотипных транзисторов!
- Транзистор, заполненный на на (с R CE = 0), называется « насыщенный ».
- При насыщении транзистора напряжение коллектор-эмиттер В CE снижается почти до 0В.
- При насыщении транзистора определяется ток коллектора Ic. напряжением питания и внешним сопротивлением в цепи коллектора, а не коэффициент усиления транзистора по току.В результате соотношение Ic / I B для насыщенного транзистора коэффициент усиления по току меньше FE .
- Ток эмиттера I E = Ic + I B , но Ic намного больше, чем I B , поэтому примерно I E = Ic.
Использование транзистора в качестве переключателя
Когда транзистор используется в качестве переключателя, он должен быть либо ВЫКЛ. , либо полностью ВКЛ. . Он никогда не должен быть включен частично (со значительным сопротивлением между C и E), потому что в В этом состоянии транзистор может перегреться и выйти из строя.
В полностью открытом состоянии напряжение V CE на транзисторе почти равно нулю, и транзистор находится в считается насыщенным , потому что он больше не может пропускать ток коллектора Ic.
Устройство, переключаемое транзистором, называется нагрузкой .
При выборе транзистора для использования в качестве переключателя необходимо учитывать его максимальный ток коллектора. Ic (макс.) и его минимальное усиление по току ч FE (мин.) . Номинальное напряжение транзистора может быть проигнорировано при напряжении питания менее 15 В.
Технические данные транзистора
Большинство поставщиков предоставляют данные о транзисторах, которые они продают, например Быстрая электроника.
Мощность, развиваемая переключающим транзистором, должна быть очень маленькой
Мощность, развиваемая в транзисторе, отображается как тепла , и транзистор будет разрушен, если станет слишком горячим. Это не должно быть проблемой для транзистора, используемого в качестве переключателя, если он был выбран и настроен правильно, потому что мощность, развиваемая внутри него, будет очень маленькой.
Мощность (тепло), развиваемая в транзисторе: Мощность = Ic × V CE |
- Когда OFF : Ic равно нулю, поэтому мощность равна нулю .
- Когда полный ВКЛ : V CE почти равен нулю, поэтому мощность очень мала .
Может ли реле быть лучше транзисторного переключателя?
Транзисторы не могут переключать переменный ток или высокое напряжение (например, электросеть), и они обычно не лучший выбор для коммутации больших токов (> 5A).Реле подходят для всех этих ситуаций, но учтите, что для переключения тока катушки реле может все же потребоваться маломощный транзистор. Для получения дополнительной информации, включая преимущества и недостатки, см. страницу реле.
Защитный диод для нагрузок с катушкой, таких как реле и двигатели
Если транзистор переключает нагрузку с помощью катушки, такой как двигатель или реле, диод должен быть подключен к нагрузке, чтобы защитить транзистор от кратковременное высокое напряжение, возникающее при отключении нагрузки.
На схеме показано, как защитный диод подключен к нагрузке «в обратном направлении», в данном случае катушка реле.
Для этого подходит сигнальный диод типа 1N4148.
Зачем нужен защитный диод?
Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается. при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку. (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это предотвращает индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.
Подключение транзистора к выходу включения / выключения цифровой ИС
Большинство микросхем не могут обеспечивать большие выходные токи, поэтому может потребоваться использование транзистора. для переключения большего тока, необходимого для таких устройств, как лампы, двигатели и реле.Микросхема таймера 555 необычна тем, что может обеспечивать относительно большой ток до 200 мА, Достаточно для многих реле и других нагрузок без транзистора.
Базовый резистор ограничивает ток, протекающий в базу транзистора, чтобы предотвратить его повреждение. но он также должен пропускать достаточный базовый ток, чтобы транзистор был полностью насыщен. при включении.
Транзистор, который не полностью насыщен при включении, может перегреться и выйти из строя. особенно если транзистор переключает большой ток (> 100 мА).
В следующем разделе объясняется, как выбрать транзистор и базовый резистор для обеспечения полного насыщения.
Переключение нагрузки с другим напряжением питания
Транзистор может использоваться для включения ИС, подключенной к источнику низкого напряжения (например, 5 В) для переключения тока нагрузки с отдельным источником постоянного тока (например, 12 В).
Два источника питания должны быть связаны. Обычно их соединения 0 В связаны и транзистор NPN используется на выходе IC. Однако, если на выходе IC используется транзистор PNP, положительные (+) соединения вместо этого должны быть связаны.
Выбор транзистора и базового резистора для цифрового выхода ИМС
Следуйте этому пошаговому руководству, чтобы выбрать подходящий транзистор для подключения к выходу включения / выключения. цифровой ИС (логический вентиль, счетчик, PIC, микроконтроллер и т. д.) для переключения нагрузки, такой как лампа, двигатель или реле. Данные о транзисторах можно получить у большинства поставщиков, например см. Быстрая электроника.
1. Выберите правильный тип транзистора, NPN или PNP
Вы хотите, чтобы нагрузка включалась, когда выход IC высокий? Или когда он или низкий?
- Для включения, когда на выходе IC высокий , используйте NPN-транзистор .
- Для включения, когда на выходе IC низкий , используйте PNP-транзистор .
Транзисторы NPN и PNP подключаются по-разному, как показано на схемах ниже, но Расчеты и требуемые свойства одинаковы для обоих типов транзисторов.
Транзисторный переключатель NPN
нагрузка включена, когда выход IC высокий
Транзисторный переключатель PNP
нагрузка включена, когда выход IC низкий
2.Узнайте напряжение питания и характеристики нагрузки.
Для определения требуемых свойств транзистора вам необходимо знать следующие значения:
- Vs = напряжение питания нагрузки.
- R L = сопротивление нагрузки (например, сопротивление катушки реле).
- Ic = ток нагрузки (= Vs / R L ).
- Максимальный выходной ток микросхемы — см. Техническое описание микросхемы. Если вы не можете найти эту информацию, примите низкое значение, например 5 мА.
- Vc = напряжение питания IC (обычно это Vs, но оно будет другим, если IC и нагрузка имеют отдельные источники питания).
Примечание: не путайте IC (интегральная схема) с Ic (ток коллектора).
3. Определить требуемые свойства транзистора
Выберите транзистор правильного типа (NPN или PNP из шага 1), чтобы удовлетворить следующие требования:
- Максимальный ток коллектора Ic (макс.) транзистора должен быть больше тока нагрузки:
Ic (max)> напряжение питания Vs сопротивление нагрузки R L - Минимальный коэффициент усиления по току транзистора h FE (мин) должен быть не менее 5
умноженный на ток нагрузки Ic, деленный на максимальный выходной ток IC.
ч FE (мин)> 5 × ток нагрузки Ic макс. Ток IC
4. Определите значение для базового резистора R
BБазовый резистор (R B ) должен пропускать ток, достаточный для обеспечения нормальной работы транзистора. полностью насыщен при включении, и хорошо бы увеличить ток базы (I B ) примерно в пять раз значение, которое просто насыщает транзистор.Воспользуйтесь приведенной ниже формулой, чтобы найти подходящее сопротивление для R B и выбрать ближайшее стандартное значение.
R B = 0,2 × R L × h FE (см. Примечание) |
Примечание: Если ИС и нагрузка имеют разные напряжения питания, например 5 В для ИС но 12 В для нагрузки используйте формулу ниже для R B :
R B = | Vc × h FE | , где Vc — напряжение питания IC |
5 × Ic |
5.Проверьте, нужен ли вам защитный диод
Если включаемой и выключаемой нагрузкой является двигатель, реле или соленоид (или любое другое устройство с катушкой): диод должен быть подключен к нагрузке, чтобы защитить транзистор от короткого замыкания. высокое напряжение, возникающее при отключении нагрузки. Обратите внимание, что диод подключен «в обратном направлении», как показано на рисунке. на диаграммах выше.
Пример
Выход из КМОП-микросхемы серии 4000 необходим для работы реле с 100, включается, когда выход IC высокий.Напряжение питания составляет 6 В как для ИС, так и для нагрузки. ИС может обеспечивать максимальный ток 5 мА.
- Требуется транзистор NPN , потому что катушка реле должна быть включена, когда выход IC высокий.
- Ток нагрузки = Vs / R L = 6/100 = 0,06 A = 60 мА, поэтому транзистор должен иметь Ic (макс.)> 60 мА .
- Максимальный ток от ИС составляет 5 мА, поэтому транзистор должен иметь ч FE (мин)> 60 (5 × 60 мА / 5 мА).
- Выберите транзистор малой мощности общего назначения BC182 с Ic (макс.) = 100 мА и ч FE (мин) = 100 .
- R B = 0,2 × R L × h FE = 0,2 × 100 × 100 = 2000, поэтому выберите R B = 1k8 или 2k2 .
- Для катушки реле требуется защитный диод .
Rapid Electronics: транзисторы
Использование транзистора в качестве переключателя с датчиками
На схемах ниже показано, как подключить LDR (датчик освещенности) к транзистору, чтобы светочувствительный переключатель цепи на светодиоде. Есть две версии: одна включается в темноте, другая при ярком свете.Переменный резистор регулирует чувствительность. Для переключения светодиода можно использовать любой транзистор малой мощности общего назначения.
Если транзистор переключает нагрузку с помощью катушки (например, двигателя или реле) вместо светодиода, вы должны включить защитный диод поперек нагрузки.
Если переменный резистор находится между + Vs и базой, вы должны добавить резистор с фиксированным номиналом не менее 1к (10к в примере ниже) для защиты транзистора, когда переменный резистор уменьшен до нуля, в противном случае чрезмерная база ток разрушит транзистор.
Светодиод загорается, когда LDR темно
Светодиод загорается при яркости LDR
Обратите внимание, что переключающее действие этих простых схем не очень хорошее, потому что будет промежуточная яркость, когда транзистор будет частично на (не насыщенный). В этом состоянии транзистор может перегреться, если он не коммутирует небольшой ток. Нет проблем с небольшим током светодиода, но больший ток лампы, двигателя или реле может вызвать перегрев.
Другие датчики, например термистор, могут использоваться с этими схемами, но для них может потребоваться другой переменный резистор. Вы можете рассчитать приблизительное значение переменного резистора (Rv), используя мультиметр для определения минимального и максимального значений сопротивления датчика (Rmin и Rmax), а затем по этой формуле:
Значение переменного резистора: Rv = квадратный корень из (Rmin × Rmax) |
Например, LDR: Rmin = 100, Rmax = 1M, поэтому Rv = квадратный корень из (100 × 1M) = 10к.
Вы можете сделать гораздо лучшую схему переключения, подключив датчики к подходящему IC (чип). Действие переключения будет намного более резким без частичного включения.
Транзисторный инвертор (НЕ затвор)
Дарлингтон пара
Пара Дарлингтона — это два транзистора, соединенных вместе так, что ток, усиливаемый первым, усиливается. далее вторым транзистором.
Пара ведет себя как одиночный транзистор с очень высоким коэффициентом усиления по току, так что для включения пары требуется лишь крошечный базовый ток.
Коэффициент усиления по току пары Дарлингтона (h FE ) равен двум индивидуальным коэффициентам усиления (h FE1 и h FE2 ), умноженные вместе — это дает паре очень высокий коэффициент усиления по току, например 10000.
Коэффициент усиления тока пары Дарлингтона: ч FE = h FE1 × h FE2 |
Обратите внимание, что для включения пары Дарлингтона должно быть 0,7 В на обоих переходах база-эмиттер, которые являются соединены последовательно так 1.Для включения требуется 4В.
Rapid Electronics: транзисторы Дарлингтона
Транзисторы Дарлингтона
пары Дарлингтона доступны в виде корпуса «транзистор Дарлингтона» с тремя выводами. (B, C и E) эквивалентно стандартному транзистору.
Вы также можете сделать свою собственную пару Дарлингтона из двух обычных транзисторов. TR1 может быть маломощным, но TR2 может потребоваться высокая мощность. Максимальный ток коллектора Ic (max) для пары такой же, как Ic (max) для TR2.
Цепь сенсорного переключателя
Пара Дарлингтона достаточно чувствительна, чтобы реагировать на небольшой ток, проходящий через ваша кожа, и его можно использовать для изготовления сенсорного переключателя , как показано на схеме.
Для этой схемы, которая просто зажигает светодиод, два транзистора могут быть любого общего назначения. транзисторы малой мощности назначения.
100к резистор защищает транзисторы, если контакты соединены куском провода.
Схема сенсорного переключателя
Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку.У них есть широкий ассортимент компонентов, инструментов и материалов для электроники, и я рад рекомендую их как поставщика.
Следующая страница: Емкость | Исследование
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
клуб электроники.инфо © Джон Хьюс 2021
Биполярный переходной транзистор (BJT) в качестве переключателя | Биполярные переходные транзисторы
Транзисторы с биполярным переходом (также известные как BJT) могут использоваться как усилитель , фильтр, выпрямитель, генератор или даже переключатель, , пример которого мы рассмотрим в первом разделе. Транзистор будет работать как усилитель или другая линейная схема, если транзистор смещен в линейную область. Транзистор можно использовать в качестве переключателя, если он смещен в областях насыщения и отсечки.Это позволяет току течь (или нет) в других частях цепи.
Поскольку ток коллектора транзистора пропорционально ограничен его базовым током, его можно использовать как своего рода переключатель с управлением по току. Относительно небольшой поток электронов, проходящий через базу транзистора, может контролировать гораздо больший поток электронов через коллектор.
Использование BJT в качестве переключателя: пример
Предположим, у нас есть лампа, которую мы хотим включать и выключать выключателем.Такая схема была бы чрезвычайно простой, как на рисунке ниже (а).
Для иллюстрации давайте вставим транзистор вместо переключателя, чтобы показать, как он может управлять потоком электронов через лампу. Помните, что управляемый ток через транзистор должен проходить между коллектором и эмиттером.
Поскольку мы хотим контролировать ток через лампу, мы должны расположить коллектор и эмиттер нашего транзистора там, где были два контакта переключателя.Мы также должны убедиться, что ток лампы будет перемещаться на против в направлении стрелки эмиттера, чтобы гарантировать правильное смещение перехода транзистора, как показано на рисунке ниже (b).
(а) механический переключатель, (б) транзисторный переключатель NPN, (в) транзисторный переключатель PNP.Для работы также можно было выбрать транзистор PNP. Его применение показано на рисунке выше (c).
Выбор между NPN и PNP действительно произвольный.Все, что имеет значение, — это поддержание правильного направления тока для правильного смещения перехода (поток электронов идет под углом к стрелке символа транзистора).
На приведенных выше рисунках база любого BJT не подключена к подходящему напряжению, и ток не течет через базу. Следовательно, транзистор не может включиться. Возможно, проще всего было бы подключить переключатель между базовым и коллекторным проводами транзистора, как показано на рисунке (а) ниже.
Транзистор: а — отсечка, лампа выключена; (б) насыщенный, лампа включена. Отсечкаи насыщенные транзисторы
Если переключатель разомкнут, как показано на рисунке (а), базовый провод транзистора останется «плавающим» (ни к чему не подключен), и ток через него не будет проходить. В этом состоянии транзистор называется отсечкой .
Если переключатель замкнут, как показано на рисунке (b), ток сможет течь от базы к эмиттеру транзистора через переключатель.Этот базовый ток позволит протекать гораздо большему току от коллектора к эмиттеру, таким образом зажигая лампу. В этом состоянии максимального тока цепи транзистор называется насыщенный .
Конечно, использование транзистора в этом качестве для управления лампой может показаться бессмысленным. Вместо транзистора для этой функции будет достаточно обычного переключателя.
Зачем использовать транзистор для управления током?
Здесь можно отметить два момента.Во-первых, это тот факт, что при таком использовании контактам переключателя необходимо управлять только тем небольшим током базы, который необходим для включения транзистора; сам транзистор обрабатывает большую часть тока лампы. Это может быть важным преимуществом, если переключатель имеет низкий номинальный ток: небольшой переключатель может использоваться для управления относительно сильноточной нагрузкой.
Что еще более важно, поведение транзистора по управлению током позволяет нам использовать что-то совершенно другое для включения или выключения лампы.Рассмотрим рисунок ниже, где пара солнечных элементов обеспечивает 1 В, чтобы преодолеть напряжение 0,7 В база-эмиттер транзистора, чтобы вызвать ток базы, который, в свою очередь, управляет лампой.
Солнечный элемент служит датчиком освещенности.Или мы могли бы использовать термопару (многие из которых соединены последовательно), чтобы обеспечить необходимый базовый ток для включения транзистора на рисунке ниже.
Одна термопара обеспечивает менее 40 мВ.Многие подключенные последовательно могут производить транзистор V BE с напряжением более 0,7 В, чтобы вызвать ток базы и, как следствие, ток коллектора к лампе.Даже микрофон (см. Рисунок ниже) с достаточным напряжением и током (от усилителя) на выходе может включить транзистор, при условии, что его выход выпрямляется из переменного тока в постоянный, так что PN-переход эмиттер-база внутри транзистора всегда будет смещенный вперед:
Усиленный микрофонный сигнал выпрямляется до постоянного тока для смещения базы транзистора, обеспечивая больший ток коллектора.К настоящему моменту суть должна быть очевидна. Для включения транзистора можно использовать любой достаточный источник постоянного тока, и этот источник тока должен составлять лишь часть тока, необходимого для включения лампы.
Здесь мы видим, что транзистор работает не только как переключатель, но и как усилитель t rue: для управления относительно большим количеством мощности используется сигнал с относительно низким энергопотреблением. Обратите внимание, что фактическая мощность для зажигания лампы исходит от батареи, расположенной справа от схемы.Это не значит, что слабый сигнальный ток от солнечного элемента, термопары или микрофона волшебным образом преобразуется в большее количество энергии. Скорее, эти небольшие источники энергии просто контролируют мощность батареи, чтобы зажечь лампу.
BJT as Switch ОБЗОР:
- Транзисторы могут использоваться в качестве переключающих элементов для управления мощностью постоянного тока нагрузки. Коммутируемый (регулируемый) ток проходит между эмиттером и коллектором; управляющий ток проходит между эмиттером и базой.
- Когда транзистор пропускает через него нулевой ток, говорят, что он находится в состоянии отсечки , (полностью непроводящий).
- Когда через транзистор проходит максимальный ток, говорят, что он находится в состоянии насыщения (полностью проводящий).
СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:
Транзисторный усилитель с общим эмиттером»Примечания по электронике
Конфигурация усилителя с общим эмиттером обеспечивает усиление по напряжению и является одной из наиболее широко используемых конфигураций транзисторов для проектирования электронных схем.
Руководство по проектированию схем транзисторов Включает:
Проектирование схем транзисторов
Конфигурации схемы
Общий эмиттер
Конструкция схемы с общим эмиттером
Эмиттер-повторитель
Общая база
См. Также: Типы транзисторных схем
Схема усилителя на транзисторах с общим эмиттером является одной из основных схем для использования в проектировании электронных схем, предлагая множество преимуществ.
Конфигурация схемы с общим эмиттером используется во многих областях проектирования электронных схем: в качестве усилителя звука, в качестве основного переключателя для логических схем, в качестве аналогового усилителя общего назначения и во многих других приложениях.
Конфигурация схемы с общим эмиттером обеспечивает усиление по напряжению в сочетании с умеренным усилением по току, а также со средним входным и средним выходным сопротивлением. Таким образом, конфигурация с общим эмиттером является хорошей универсальной схемой для использования во многих приложениях.
Также на этом этапе стоит отметить, что усилитель на транзисторах с общим эмиттером инвертирует сигнал на входе. Следовательно, если на вход усилителя с общим эмиттером поступает растущий сигнал, это приведет к падению выходного напряжения.Другими словами, он имеет изменение фазы на 180 ° в цепи.
В зависимости от конструкции самой электронной схемы, общий эмиттер не использует слишком много электронных компонентов, иногда всего два резистора, хотя, если требуется настройка смещения для аналоговых схем, можно использовать четыре резистора и три конденсатора.
Основы транзисторного усилителя с общим эмиттером
Из трех типов конфигурации транзисторов, используемых в проектировании электронных схем, общий эмиттер является наиболее широко используемым из-за его ключевых свойств.
Сигнал усилителя с общим эмиттером подается на базу, а выходной сигнал снимается с коллекторной цепи. Однако, как следует из названия этой схемы, ключевым атрибутом является то, что схема эмиттера является общей как для ввода, так и для вывода.
Конфигурация схемы с общим эмиттером транзистораКонфигурация с общим эмиттером одинаково применима как к вариантам транзистора NPN, так и к вариантам транзистора PNP. Тем не менее, разновидность NPN более широко используется из-за более широкого использования транзисторов NPN.
Обзор характеристик усилителя на транзисторах с общим эмиттером
При выборе конфигурации транзистора для использования в конструкции электронной схемы необходимо учитывать различные атрибуты трех типов: общий эмиттер, общий коллектор и общую базу, и выбрать наиболее подходящий.
В таблице ниже приведены основные характеристики конфигурации транзистора с общим эмиттером.
Характеристики усилителя на транзисторах с общим эмиттером | |||
---|---|---|---|
Параметр | Характеристики | ||
Коэффициент усиления напряжения | средний | ||
Прирост текущей | Средний | ||
Прирост мощности | Высокая | ||
Соотношение фаз вход / выход | 180 ° | ||
Входное сопротивление | средний | ||
Выходное сопротивление | средний |
Из этих характеристик видно, что конфигурация с общим эмиттером обеспечивает хорошие универсальные характеристики.Одним из ключевых факторов является то, что он обеспечивает хороший уровень усиления по напряжению — атрибут, который требуется при проектировании электронных схем для многих приложений.
Схема также относительно проста и требует нескольких электронных компонентов, в зависимости от того, как выполняются требования к конструкции электронной схемы.
Уровни импеданса усилителя с общим эмиттером
Одним из ключевых атрибутов, которые следует учитывать при проектировании любой электронной схемы, являются уровни импеданса.
Входное сопротивление обычно составляет около 1 кОм, хотя оно может значительно варьироваться в зависимости от значений схемы и условий. Низкое входное сопротивление возникает из-за того, что вход подается через базу и эмиттер, где есть прямое смещение,
Также выходной импеданс может быть относительно высоким. Опять же, это значительно варьируется в зависимости от выбранных значений электронных компонентов и допустимых уровней тока. Выходное сопротивление может достигать 10 кОм или, возможно, больше.Однако, если сток позволяет потреблять более высокие уровни тока, выходное сопротивление может быть значительно уменьшено. Уровень сопротивления или импеданса определяется тем фактом, что выходной сигнал снимается с коллектора, где есть обратносмещенный переход.
Коэффициент усиления транзисторного усилителя с общим эмиттером
Еще один важный фактор, который следует учитывать при проектировании электронной схемы, — это достижимый уровень усиления. Можно определить два вида усиления: усиление по току и усиление по напряжению.
Коэффициент усиления по току для схемы усилителя с общим эмиттером обозначается греческим символом β. Это отношение тока коллектора к току базы. Это можно представить как отношение выходного тока к входному. Чтобы получить точное значение коэффициента усиления сигнала, часто используется коэффициент усиления по току для небольших входных изменений тока. Используя это значение, коэффициент усиления по току β и изменения входного и выходного тока связаны следующим образом:
Где
β = усиление по току
ΔIc = изменение тока коллектора
ΔIb = изменение базового тока
Чтобы посмотреть на коэффициент усиления по напряжению схемы усилителя с общим эмиттером, необходимо посмотреть на сопротивления или импедансы для входа и выхода.
β = ΔIcΔIb = ΔVcRcΔVbRb Av = ΔVcΔVb
Следовательно:
Av = β RcRb Где
Av = усиление по напряжению
Rc = выходное сопротивление коллекторной цепи
Rb = входное сопротивление базовой цепи
Соотношение фаз на входе и выходе с общим эмиттером
Транзисторный усилитель с общим эмиттером — единственная конфигурация, которая обеспечивает инверсию на 180 ° между входным и выходным сигналами.
Причину этого можно увидеть из того факта, что по мере увеличения входного напряжения увеличивается ток через базовую цепь.В свою очередь, это увеличивает ток в цепи коллектора, то есть имеет тенденцию включать транзистор. Это приводит к падению напряжения между выводами коллектора и эмиттера.
Таким образом, увеличение напряжения между базой и эмиттером привело к падению напряжения между выводами коллектора и эмиттера, другими словами, фаза двух сигналов была инвертирована.
Практические схемы усилителя с общим эмиттером
При проектировании электронных схем для различных приложений и для удовлетворения различных требований можно использовать один из множества вариантов схемы транзистора с общим эмиттером.
В то время как основные теоретические схемы, показанные выше, способны описать основную работу усилителя с общим эмиттером в концепции.
Однако, чтобы схема могла работать в реальной системе, необходимо добавить другие элементы, такие как смещение, развязка и т.п. В результате общая схема усилителя с общим эмиттером использует несколько компонентов, чтобы гарантировать, что он может работать требуемым образом.
Усилитель простой логики с общим эмиттером
Первый пример — это простейшая форма схемы с общим эмиттером, в которой используется очень мало электронных компонентов.Обычно он используется для управления нагрузкой с цифрового выхода предыдущего каскада.
Схема базового транзисторного усилителя с общим эмиттеромR1 | R1 ограничивает базовый ток и предотвращает повреждение эмиттерного перехода базы. Он должен быть рассчитан таким образом, чтобы обеспечить достаточный ток коллектора при минимальном усилении тока транзистора, и включать некоторый запас для обеспечения его правильного включения. | |
R2 | Этот резистор обеспечивает заземление и помогает регулировать скорость переключения транзистора. | |
R3 | Это резистор нагрузки коллектора в усилителе с общим эмиттером. |
При управлении небольшим транзистором общего назначения от логического выхода 5 В типичные значения могут быть 2 кОм для R1 и 22 кОм для R2.
Простой усилитель с общим эмиттером для управления реле
Часто бывает полезно использовать простую схему с общим эмиттером для управления реле.Простая схема, показанная выше, может быть адаптирована для управления реле.
Необходимо учитывать ток, необходимый для переключения и удержания реле, и в базовой цепи должен протекать ток, достаточный для протекания необходимого тока в цепи коллектора.
Для многих реле сопротивление резистора R1 может быть около 2 кОм, а R2 — 22 кОм, но они должны быть рассчитаны в конструкции электронной схемы, чтобы обеспечить требуемый ток.
Схема управления реле на простом транзисторе с общим эмиттеромСледует отметить, что при высоком входном напряжении реле срабатывает.Это когда коллектор включен, и напряжение коллектора понижено.
Диод включен для подавления обратной ЭДС, индуцированной при отключении тока, протекающего через катушку реле. Важно предотвратить повреждение транзистора.
Схема общего эмиттера с использованием транзистора смещения с одной базой
Схема с общим эмиттером с использованием транзистора смещения с одной базойR1 | R1 ограничивает базовый ток и предотвращает повреждение эмиттерного перехода базы.Он должен быть рассчитан таким образом, чтобы обеспечить достаточный ток коллектора при минимальном усилении тока транзистора, и включать некоторый запас для обеспечения его правильного включения. | |
R1 | Этот резистор обеспечивает смещение для транзистора. Его значение следует рассчитать, чтобы получить требуемый ток коллектора. | |
R3 | Это резистор нагрузки коллектора в усилителе с общим эмиттером.Его значение рассчитывается таким образом, чтобы при токе покоя коллектора оно упало наполовину от напряжения шины, при условии, что конструкция электронной схемы используется в качестве линейного усилителя. |
Этот тип схемы с общим эмиттером очень прост, минимизирует количество электронных компонентов и использует один резистор для смещения базы. Он не обеспечивает производительность, требуемую для многих схем, поскольку коэффициент усиления транзистора будет варьироваться от одного устройства к другому, и это изменит работу схемы.
Схема общего эмиттера с использованием транзистора смещения с одной базой (2)
Эта версия эмиттерного повторителя смещения базы с одним резистором предлагает немного большую предсказуемость схемы.
Подключение резистора смещения между коллектором и базой обеспечивает дополнительную стабильность для условий постоянного тока.
Схема с общим эмиттером с использованием транзистора смещения с одной базой между коллектором и базойТранзисторный усилитель с общим эмиттером со смещением постоянного тока и связью по переменному току
На схеме ниже показана конструкция электронной схемы усилителя с общим эмиттером с резисторами, обеспечивающими необходимое смещение для линейной работы, а также конденсаторы связи и развязки для работы на переменном токе.
Схема базового транзисторного усилителя с общим эмиттеромВ схеме имеется ряд компонентов, которые обеспечивают различные функции, чтобы позволить всей схеме работать требуемым образом:
R1, R2 | Эти резисторы обеспечивают смещение для базы транзистора. | |
R3 | Это резистор нагрузки коллектора в усилителе с общим эмиттером. | |
R4 | Этот резистор в усилителе с общим эмиттером обеспечивает обратную связь по постоянному току, чтобы гарантировать, что условия постоянного тока в цепи поддерживаются. | |
C1, C2 | Эти конденсаторы обеспечивают связь по переменному току между ступенями. Их нужно выбирать так, чтобы они обеспечивали незначительное реактивное сопротивление на рабочих частотах. | |
C3 | Это байпасный конденсатор. Эффект R4 заключается в уменьшении коэффициента усиления схемы. Обход резистора позволяет достичь более высоких уровней усиления переменного тока. | |
Схема, показанная выше, представляет собой базовый усилитель с общим эмиттером, связанный по переменному току.
Схема с общим эмиттером может использоваться в различных формах.- иногда в качестве транзисторного логического выхода, усилителя с прямой связью и во многих других областях. Он широко используется, обеспечивая хороший компромисс между коэффициентом усиления по напряжению и току, а также входным и выходным сопротивлением.
Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .
Его режимы работы и его работа
Основным устройством в области электрики и электроники является регулируемый клапан, который позволяет слабым сигналом регулировать больший поток, аналогично соплу, которое регулирует поток воды из насосов, трубок и т. Д. другие. Когда-то этот регулируемый клапан, который применялся в области электричества, представлял собой вакуумные лампы. Электронные лампы были реализованы и использовались хорошо, но с этим были большие сложности и потребление огромной электроэнергии, которая передавалась в виде тепла, что сокращало срок службы лампы.В качестве компенсации этой проблемы транзистор был устройством, которое обеспечило хорошее решение, удовлетворяющее требованиям всей электротехнической и электронной промышленности. Это устройство было изобретено «Уильямом Шокли» в 1947 году. Чтобы обсудить больше, давайте углубимся в подробную тему знания, что такое транзистор, реализации транзистора в качестве переключателя и многих характеристик.
Что такое транзистор?
Транзистор — это трехконтактное полупроводниковое устройство, которое может использоваться для коммутации приложений, усиления слабых сигналов, а тысячи и миллионы транзисторов соединены между собой и встроены в крошечную интегральную схему / микросхему, которая создает компьютерную память.Переключатель транзистора, который используется для размыкания или замыкания цепи, что означает, что транзистор обычно используется в качестве переключателя в электронных устройствах только для приложений с низким напряжением из-за его низкого энергопотребления. Транзистор работает как переключатель, когда он находится в областях отсечки и насыщения.
Типы биполярных транзисторов
По сути, транзистор состоит из двух PN-переходов, эти переходы формируются путем размещения полупроводникового материала N-типа или P-типа между парой полупроводниковых материалов противоположного типа.
Транзисторы с биполярным переходом подразделяются на типы
Транзистор имеет три вывода: база, эмиттер и коллектор. Эмиттер — это сильно легированный вывод, и он испускает электроны в базовую область. Клемма базы слегка легирована и пропускает электроны, инжектированные эмиттером, на коллектор. Коллекторный вывод промежуточно легирован и собирает электроны с базы.
Транзистор типа NPN представляет собой композицию из двух легированных полупроводниковых материалов N-типа между легированным полупроводниковым слоем P-типа, как показано выше.Точно так же транзисторы типа PNP представляют собой композицию из двух легированных полупроводниковых материалов P-типа между легированным полупроводниковым слоем N-типа, как показано выше. Функционирование транзисторов NPN и PNP одинаково, но они различаются по смещению и полярности источника питания.
Транзистор в качестве переключателя
Если в схеме используется BJT-транзистор в качестве переключателя, то смещение транзистора, NPN или PNP, настроено для работы транзистора с обеих сторон кривых ВАХ, показанных ниже.Транзистор может работать в трех режимах: в активной области, в области насыщения и в области отсечки. В активной области транзистор работает как усилитель. В качестве транзисторного переключателя он работает в двух областях: Область насыщения (полностью включен) и Область отсечки (полностью выключена). Транзистор как схема переключателя — транзистор
как переключательТранзисторы обоих типов NPN и PNP могут работать как переключатели. В некоторых приложениях силовой транзистор используется в качестве коммутационного инструмента.В этом состоянии может не потребоваться использование другого сигнального транзистора для управления этим транзистором.
Рабочие режимы транзисторов
Из приведенных выше характеристик видно, что розовая заштрихованная область в нижней части кривых представляет область отсечки, а синяя область слева представляет область насыщения транзистора. эти области транзистора определены как
Область отсечки
Условиями работы транзистора являются нулевой входной базовый ток (IB = 0), нулевой выходной ток коллектора (Ic = 0) и максимальное напряжение коллектора (VCE), что приводит к в большом слое истощения и отсутствие тока, протекающего через устройство.
Таким образом, транзистор переключается в положение «Полностью выключено». Таким образом, мы можем определить область отсечки при использовании биполярного транзистора в качестве переключателя, поскольку переходы NPN-транзисторов имеют обратное смещение, VB <0,7 В и Ic = 0. Точно так же для транзисторов PNP потенциал эмиттера должен быть –ve по отношению к базе транзистора.
Cut-Off ModeЗатем мы можем определить «область отсечки» или «режим OFF» при использовании биполярного транзистора в качестве переключателя, как если бы оба перехода были смещены в обратном направлении, IC = 0 и VB <0.7v. Для транзистора PNP потенциал эмиттера должен быть отрицательным по отношению к клемме базы.
Характеристики области отсечки
Характеристики области отсечки следующие:
- Как база, так и входные клеммы заземлены, что означает «0» В.
- Уровень напряжения на переходе база-эмиттер ниже 0,7 В
- Переход база-эмиттер находится в обратном смещении
- Здесь транзистор функционирует как ОТКРЫТЫЙ переключатель
- Когда транзистор полностью ВЫКЛЮЧЕН, он перемещается в область отсечки
- Переход база-коллектор находится в в состоянии обратного смещения
- На клемме коллектора не будет протекания тока, что означает Ic = 0
- Значение напряжения на переходе эмиттер-коллектор и на выходных клеммах равно «1»
Область насыщения
В В этой области транзистор будет смещен так, что будет приложена максимальная величина базового тока (IB), что приведет к максимальному току коллектора (IC = VCC / RL), а затем к минимальному значению коллектор-эмиттер. падение напряжения (VCE ~ 0).В этом состоянии обедненный слой становится минимально возможным и максимальным током, протекающим через транзистор. Поэтому транзистор включен «полностью».
Saturation ModeОпределение «области насыщения» или «режима включения» при использовании биполярного NPN-транзистора в качестве переключателя как если бы оба перехода были смещены в прямом направлении, IC = максимум, и VB> 0,7v. Для транзистора PNP потенциал эмиттера должен быть + ve по отношению к базе. Это , работающий транзистора как переключатель .
Характеристики области насыщения
Характеристики насыщения :
- И база, и входные клеммы подключены к Vcc = 5 В
- Уровень напряжения на переходе база-эмиттер больше 0,7 В
- База- эмиттерный переход находится в прямом смещенном состоянии
- Здесь транзистор функционирует как ЗАКРЫТЫЙ переключатель
- Когда транзистор полностью выключен, он перемещается в область насыщения
- Переход база-коллектор находится в прямом смещенном состоянии
- Текущий ток на клемме коллектора Ic = (Vcc / RL)
- Значение напряжения на переходе эмиттер-коллектор и на выходных клеммах равно «0».
- Когда напряжение на переходе коллектор-эмиттер равно «0», это означает идеальное условие насыщения
Кроме того, работу транзистора как переключателя можно подробно объяснить следующим образом:
Транзистор как переключатель — NPN
В зависимости от значения приложенного напряжения на краю базы транзистора выполняется переключение.Когда имеется хорошее напряжение, которое составляет ~ 0,7 В между эмиттером и краями базы, поток напряжения на коллекторе к краю эмиттера равен нулю. Таким образом, транзистор в этом состоянии работает как переключатель, а ток, протекающий через коллектор, считается током транзистора.
Таким же образом, когда на входной вывод не подается напряжение, транзистор работает в области отсечки и работает как разомкнутая цепь. В этом методе переключения подключенная нагрузка контактирует с точкой переключения, где она действует как контрольная точка.Таким образом, когда транзистор переходит в состояние «ВКЛ», ток будет протекать от вывода источника к земле через нагрузку.
NPN-транзистор в качестве переключателяЧтобы прояснить этот метод переключения, давайте рассмотрим пример.
Предположим, что транзистор имеет значение сопротивления базы 50 кОм, сопротивление на краю коллектора составляет 0,7 кОм, а приложенное напряжение составляет 5 В и принимает значение бета как 150. На краю базы сигнал, который изменяется от 0 до 5 В. применены. Это соответствует тому, что выход коллектора наблюдается путем изменения значений входного напряжения, которые составляют 0 и 5 В.Рассмотрим следующую диаграмму.
Если V CE = 0, тогда I C = V CC / R C
IC = 5 / 0,7
Таким образом, ток на клемме коллектора составляет 7,1 мА
При значении бета 150 , тогда Ib = Ic / β
Ib = 7,1 / 150 = 47,3 мкА
Итак, базовый ток составляет 47,3 мкА
При указанных выше значениях максимальное значение тока на клемме коллектора составляет 7,1 мА в напряжение между коллектором и эмиттером равно нулю, а значение тока базы равно 47.3 мкА. Таким образом, было доказано, что когда значение тока на краю базы увеличивается выше 47,3 мкА, то транзистор NPN переходит в область насыщения.
Предположим, что транзистор имеет входное напряжение 0 В. Это означает, что ток базы равен «0», и когда эмиттерный переход заземлен, эмиттер и базовый переход не будут находиться в состоянии прямого смещения. Итак, транзистор находится в выключенном состоянии, а значение напряжения на краю коллектора равно 5 В.
Vc = Vcc — (IcRc)
= 5-0
Vc = 5V
Предположим, что транзистор имеет входное напряжение 5V.Здесь значение тока на краю базы можно узнать, используя принцип напряжения Кирхгофа.
Ib = (Vi — Vbe) / Rb
Когда рассматривается кремниевый транзистор, он имеет Vbe = 0,7 В
Итак, Ib = (5-0,7) / 50
Ib = 56,8 мкА
Таким образом , было доказано, что когда значение тока на краю базы увеличивается выше 56,8 мкА, то транзистор NPN переходит в область насыщения при условии на входе 5 В.
Транзистор в качестве переключателя — PNP
Функциональные возможности переключения для транзисторов PNP и NPN аналогичны, но отличие состоит в том, что в транзисторе PNP ток протекает от клеммы базы.Эта конфигурация переключения используется для отрицательного заземления. Здесь базовая кромка имеет соединение с отрицательным смещением в соответствии с эмиттерной кромкой. Когда напряжение на клемме базы больше -ve, будет протекать базовый ток. Чтобы было ясно, что, когда существуют клапаны с очень минимальным или отрицательным напряжением, это делает транзистор короткозамкнутым, если не разомкнутым, либо высоким импедансом.
В этом типе подключения нагрузка связана с коммутационным выходом вместе с контрольной точкой.Когда транзистор PNP находится во включенном состоянии, ток будет течь от источника к нагрузке, а затем к земле через транзистор.
Транзистор PNP в качестве переключателяКак и при переключении транзистора NPN, вход транзистора PNP также находится на краю базы, в то время как вывод эмиттера соединен с фиксированным напряжением, а вывод коллектора соединен с землей через нагрузку. На рисунке ниже поясняется схема.
Здесь клемма базы всегда находится в состоянии отрицательного смещения в соответствии с фронтом эмиттера и базой, которую он подключил на отрицательной стороне, а эмиттер на положительной стороне входного напряжения.Это означает, что напряжение от базы к эмиттеру отрицательное, а напряжение от эмиттера к коллектору положительное. Таким образом, проводимость транзистора будет, когда напряжение эмиттера будет более положительным, чем напряжение на выводах базы и коллектора. Таким образом, напряжение на базе должно быть более отрицательным, чем на других клеммах.
Чтобы узнать значения токов коллектора и базы, нам понадобятся следующие выражения.
Ic = Ie — Ib
Ic = β. Ib
Где Ub = Ic / β
Чтобы прояснить этот метод переключения, давайте рассмотрим пример.
Предположим, что цепи нагрузки требуется 120 мА, а бета-значение транзистора равно 120. Тогда значение тока, необходимое для перехода транзистора в режим насыщения, равно
Ib = Ic / β
= 120 мА / 100
Ib = 1 мАмп
Таким образом, когда базовый ток составляет 1 мАмп, тогда транзистор полностью находится в состоянии ВКЛ. В то время как в практических сценариях для правильного насыщения транзистора требуется примерно 30-40 процентов большего тока.Это означает, что базовый ток, необходимый для устройства, составляет 1,3 мА.
Операция переключения транзистора Дарлингтона
В некоторых случаях коэффициент усиления постоянного тока в устройстве BJT очень минимален для прямого переключения напряжения или тока нагрузки. Из-за этого используются переключающие транзисторы. В этом состоянии небольшое транзисторное устройство включено для включения и выключения переключателя и повышенного значения тока для регулирования выходного транзистора.
Чтобы увеличить усиление сигнала, два транзистора соединены способом «комплементарной конфигурации сложения усиления».В этой конфигурации коэффициент усиления является результатом работы двух транзисторов.
Транзистор ДарлингтонаТранзисторы Дарлингтона обычно входят в состав двух биполярных транзисторов типа PNP и NPN, где они соединены таким образом, что значение усиления исходного транзистора умножается на значение усиления второго транзисторного устройства.
Это дает результат, в котором устройство работает как одиночный транзистор с максимальным усилением по току даже для минимального значения базового тока.Полный коэффициент усиления по току устройства переключения Дарлингтона является произведением значений коэффициента усиления по току как PNP, так и NPN транзисторов, и это представлено как:
β = β1 × β2
С учетом вышеупомянутых пунктов, транзисторы Дарлингтона, имеющие максимальное β и коллектор. текущие значения потенциально связаны с переключением одного транзистора.
Например, когда входной транзистор имеет значение усиления по току 100, а второй имеет значение усиления 50, тогда общий коэффициент усиления по току равен
β = 100 × 50 = 5000
Итак, когда нагрузка ток составляет 200 мА, тогда значение тока в транзисторе Дарлингтона на клемме базы составляет 200 мА / 5000 = 40 мкА, что является большим уменьшением по сравнению с прошлым 1 мА для одного устройства.
Конфигурации Дарлингтона
В транзисторе Дарлингтона есть в основном два типа конфигурации, а именно
Конфигурация переключателя транзистора Дарлингтона демонстрирует, что выводы коллектора двух устройств соединены с выводом эмиттера исходного транзистора, который имеет соединение с базовым краем второго транзисторного устройства. Таким образом, значение тока на выводе эмиттера первого транзистора будет формироваться, поскольку входной ток второго транзистора, таким образом, переводит его в состояние «Включено».
Входной транзистор, который является первым, получает свой входной сигнал на клемме базы. Входной транзистор обычно усиливается и используется для управления следующими выходными транзисторами. Второе устройство усиливает сигнал, что приводит к максимальному значению усиления по току. Одной из важнейших особенностей транзистора Дарлингтона является его максимальное усиление по току по сравнению с одним устройством BJT.
В дополнение к возможности максимальных характеристик переключения напряжения и тока, другим дополнительным преимуществом является максимальная скорость переключения.Эта операция переключения позволяет использовать устройство специально для цепей инвертора, двигателя постоянного тока, цепей освещения и регулирования шагового двигателя.
Разница, которую следует учитывать при использовании транзисторов Дарлингтона по сравнению с обычными одинарными типами BJT при реализации транзистора в качестве переключателя, заключается в том, что входное напряжение на переходе базы и эмиттера должно быть больше, что составляет почти 1,4 В для кремниевого типа. устройство, так как из-за последовательного соединения двух PN-переходов.
Некоторые из общих практических применений транзистора в качестве переключателя
В транзисторе, если ток не течет в цепи базы, ток не может течь в цепи коллектора. Это свойство позволит использовать транзистор в качестве переключателя. Транзистор можно включать или выключать, меняя базу. Есть несколько применений схем переключения, работающих на транзисторах. Здесь я рассмотрел транзистор NPN, чтобы объяснить несколько приложений, в которых используется транзисторный переключатель.
Световой выключатель
Схема разработана с использованием транзистора в качестве переключателя для зажигания лампы при ярком освещении и выключения ее в темноте и светозависимого резистора (LDR) в делителе потенциала. Когда в окружающей среде темнота, сопротивление LDR становится высоким. Затем транзистор выключается. Когда LDR подвергается воздействию яркого света, его сопротивление падает до меньшего значения, что приводит к увеличению напряжения питания и увеличению тока базы транзистора. Теперь транзистор включен, коллекторный ток течет и лампочка загорается.
Переключатель с обогревом
Одним из важных компонентов цепи переключателя с обогревом является термистор. Термистор — это тип резистора, который реагирует в зависимости от окружающей температуры. Его сопротивление увеличивается при низкой температуре и наоборот. Когда термистор нагревается, его сопротивление падает, а базовый ток увеличивается, после чего увеличивается ток коллектора, и срабатывает сирена. Эта конкретная схема подходит как система пожарной сигнализации.
Переключатель с подогревомУправление двигателем постоянного тока (драйвер) в случае высокого напряжения
Предположим, что на транзистор не подается напряжение, тогда транзистор отключается и ток через него не течет. Следовательно, реле остается в выключенном состоянии. Питание на двигатель постоянного тока подается с нормально замкнутой (NC) клеммы реле, поэтому двигатель будет вращаться, когда реле находится в состоянии ВЫКЛ. Подача высокого напряжения на базу транзистора BC548 вызывает включение транзистора и включение катушки реле.
Практический пример
Здесь мы узнаем значение базового тока, необходимого для полного перехода транзистора в состояние ВКЛ, когда нагрузке требуется ток 200 мА, когда входное значение увеличивается до 5 В. Также знайте стоимость руб.
Значение базового тока транзистора
Ib = Ic / β с учетом β = 200
Ib = 200 мА / 200 = 1 мА
Значение базового сопротивления транзистора Rb = (Vin — Vbe) / Ib
Руб = (5-0.7) / 1 × 10 -3
Rb = 4,3 кОм
Транзисторные переключатели широко используются в различных приложениях, таких как взаимодействие оборудования с большим током или высоким напряжением, такого как двигатели, реле или освещение, с минимальными затратами. значение напряжения, цифровые ИС или используемые в логических элементах, таких как элементы И или ИЛИ. Кроме того, когда выходной сигнал логического элемента составляет + 5 В, тогда как устройству, которое необходимо регулировать, может потребоваться напряжение питания 12 или даже 24 В.
Или такой нагрузке, как двигатель постоянного тока, может потребоваться контроль скорости с помощью нескольких непрерывных импульсов. Транзисторные переключатели позволяют выполнять эту операцию быстрее и проще по сравнению с традиционными механическими переключателями.
Зачем использовать транзистор вместо переключателя?
При использовании транзистора вместо переключателя даже минимальная величина тока базы регулирует более высокий ток нагрузки на выводе коллектора. Используя транзисторы вместо переключателя, эти устройства поддерживаются реле и соленоидами.Тогда как в случае, когда необходимо регулировать более высокие уровни токов или напряжений, используются транзисторы Дарлингтона.
В целом, вкратце, некоторые из условий, которые применяются при работе транзистора в качестве переключателя, следующие:
- При использовании BJT в качестве переключателя, тогда необходимо использовать либо неполное, либо полное состояние ВКЛ.
- При использовании транзистора в качестве переключателя минимальное значение тока базы регулирует повышенный ток нагрузки коллектора.
- При реализации транзисторов для переключения как реле и соленоидов, то лучше использовать диоды маховика.
- Для регулирования больших значений напряжения или тока лучше всего подходят транзисторы Дарлингтона.
И эта статья предоставила исчерпывающую и ясную информацию о транзисторе, рабочих областях, работе как коммутатор, характеристиках, практических применениях.