Схемы импульсных блоков питания: Схема импульсного блока питания и его сборка своими руками

Импульсные источники питания, теория и простые схемы

Импульсный источник питания - это инверторная система, в которой входное переменное напряжение выпрямляется, а потом полученное постоянное напряжение преобразуется в импульсы высокой частоты и установленой скважности, которые как правило, подаются на импульсный трансформатор.

Импульсные трансформаторы изготавливаются по такому же принципу, как и низкочастотные трансформаторы, только в качестве сердечника используется не сталь (стальные пластины), а феромагнитные материалы - ферритовые сердечники.

Как работает импульсный источник питания

Рис. Как работает импульсный источник питания.

Выходное напряжение импульсного источника питания стабилизировано, это осуществляется посредством отрицательной обратной связи, что позволяет удерживать выходное напряжение на одном уровне даже при изменении входного напряжения и нагрузочной мощности на выходе блока.

Обратная отрицательная связь может быть реализована при помощи одной из дополнительных обмоток в импульсном трансформаторе, или же при помощи оптрона, который подключается к выходным цепям источника питания. Использование оптрона или же одной из обмоток трансформатора позволяет реализовать гальваническую развязку от сети переменного напряжения.

Основные плюсы импульсных источников питания (ИИП):

  • малый вес конструкции;
  • небольшие размеры;
  • большая мощность;
  • высокий КПД;
  • низкая себестоимость;
  • высокая стабильность работы;
  • широкий диапазон питающих напряжений;
  • множество готовых компонентных решений.

К недостаткам ИИП можно отнести то что такие блоки питания являются источниками помех, это связано с принципом работы схемы преобразователя. Для частичного устранения этого недостатка используют экранировку схемы. Также из-за этого недостатка в некоторых устройствах применение данного типа источников питания является невозможным.

Импульсные источники питания стали фактически непре­менным атрибутом любой современной бытовой техники, потреб­ляющей от сети мощность свыше 100 Вт. В эту категорию попадают компьютеры, телевизоры, мониторы.

Для создания импульсных источников питания, примеры конкретного воплощения которых будут приведены ниже, приме­няются специальные схемные решения.

Так, для исключения сквозных токов через выходные тран­зисторы некоторых импульсных источников питания используют специальную форму импульсов, а именно, биполярные импульсы прямоугольной формы, имеющие между собой промежуток во времени.

Продолжительность этого промежутка должна быть больше времени рассасывания неосновных носителей в базе вы­ходных транзисторов, иначе эти транзисторы будут повреждены. Ширина управляющих импульсов с целью стабилизации выходно­го напряжения может изменяться с помощью обратной связи.

Обычно для обеспечения надежности в импульсных ис­точниках питания используют вьюоковольтные транзисторы, ко­торые в силу технологических особенностей не отличаются в лучшую сторону (имеют низкие частоты переключения, малые коэффициенты передачи по току, значительные токи утечки, большие падения напряжения на коллекторном переходе в от­крытом состоянии).

Особенно это касается устаревших ныне мо­делей отечественных транзисторов типа КТ809, КТ812, КТ826, КТ828 и многих других. Стоит сказать, что в последние годы поя­вилась достойная замена биполярным транзисторам, традицион­но используемых в выходных каскадах импульсных источников питания.

Это специальные высоковольтные полевые транзисто­ры отечественного, и, главным образом, зарубежного производ­ства. Кроме того, существуют многочисленные микросхемы для импульсных источников питания.

Содержание

Схема генератора импульсов регулируемой ширины

Биполярные симметричные импульсы регулируемой ши­рины позволяет получить генератор импульсов по схеме на рис.1. Устройство может быть использовано в схемах авторегулирования выходной мощности импульсных источников питания. На микросхеме DD1 (К561ЛЕ5/К561 ЛАТ) собран гене­ратор прямоугольных импульсов со скважностью, равной 2.

Симметрии генерируемых импульсов добиваются регулировкой резистора R1. Рабочую частоту генератора (44 кГц) при необхо­димости можно изменить подбором емкости конденсатора С1.

Схема формирователя импульсов

Рис. 1. Схема формирователя биполярных симметричных импульсов регулируемой длительности.

На элементах DA1.1, DA1.3 (К561КТЗ) собраны компарато­ры напряжения; на DA1.2, DA1.4 — выходные ключи. На входы компараторов-ключей DA1.1, DA1.3 в противофазе через форми­рующие RC-диодные цепочки (R3, С2, VD2 и R6, СЗ, VD5) пода­ются прямоугольные импульсы.

Заряд конденсаторов С2, СЗ происходит по экспоненциальному закону через R3 и R5, соответ­ственно; разряд — практически мгновенно через диоды VD2 и VD5. Когда напряжение на конденсаторе С2 или СЗ достигнет по­рога срабатывания компараторов-ключей DA1.1 или DA1.3, соот­ветственно, происходит их включение, и резисторы R9 и R10, а также управляющие входы ключей DA1.2 и DA1.4 подключаются к положительному полюсу источника питания.

Поскольку включение ключей производится в противофазе, такое переключение происходит строго поочередно, с паузой меж­ду импульсами, что исключает возможность протекания сквозного тока через ключи DA1.2 и DA1.4 и управляемые ими транзисторы преобразователя, если генератор двухполярных импульсов ис­пользуется в схеме импульсного источника питания.

Плавное ре­гулирование ширины импульсов осуществляется одновременной подачей стартового (начального) напряжения на входы компарато­ров (конденсаторы С2, СЗ) с потенциометра R5 через диодно-ре-зистивные цепочки VD3, R7 и VD4, R8. Предельный уровень управляющего напряжения (максимальную ширину выходных им­пульсов) устанавливают подбором резистора R4.

Сопротивление нагрузки можно подключить по мостовой схеме — между точкой соединения элементов DA1.2, DA1.4 и кон­денсаторами Са, Сb. Импульсы с генератора можно подать и на транзисторный усилитель мощности.

При использовании генератора двухполярных импульсов в схеме импульсного источника питания в состав резистивного де­лителя R4, R5 следует включить регулирующий элемент — поле­вой транзистор, фотодиод оптрона и т.д., позволяющий при уменьшении/увеличении тока нагрузки автоматически регулиро­вать ширину генерируемого импульса, управляя тем самым вы­ходной мощностью преобразователя.

В качестве примера практической реализации импульсных источников питания приведем описания и схемы некоторых из них.

Схема испульсного источника питания

Импульсный источник питания (рис. 2) состоит из выпря­мителей сетевого напряжения, задающего генератора, формиро­вателя прямоугольных импульсов регулируемой длительности, двухкаскадного усилителя мощности, выходных выпрямителей и схемы стабилизации выходного напряжения.

Задающий генератор выполнен на микросхеме типа К555ЛАЗ (элементы DDI .1, DDI .2) и вырабатывает прямоугольные импульсы частотой 150 кГц. На элементах DD1.3, DD1.4 собран RS-триггер, на выходе которого частота вдвое меньше — 75 кГц. Узел управления длительностью коммутирующих импульсов реализован на микро­схеме типа К555ЛИ1 (элементы DD2.1, DD2.2), а регулировка дли­тельности осуществляется с помощью оптрона U1.

Выходной каскад формирователя коммутирующих импуль­сов собран на элементах DD2.3, DD2.4. Максимальная мощность на выходе формирователя импульсов достигает 40 мВт. Предва­рительный усилитель мощности выполнен на транзисторах VT1, VT2 типа КТ645А, а оконечный — на транзисторах VT3, VT4 типа КТ828 или более современных. Выходная мощность каскадов — 2 и 60…65 Вт, соответственно.

На транзисторах VT5, VT6 и оптроне U1 собрана схема стабилизации выходного напряжения. Если напряжение на выхо­де источника питания ниже нормы (12 В), стабилитроны VD19, VD20 {КС182+КС139) закрыты, транзистор VT5 закрыт, транзи­стор VT6 открыт, через светодиод (U1.2) оптрона протекает ток, ограниченный сопротивлением R14; сопротивление фотодиода (U1.1) оптрона минимально.

Сигнал, снимаемый с выхода элемен­та DD2.1 и поступающий на входы схемы совпадения DD2.2 на­прямую и через регулируемый элемент задержки (R3 — R5, С4, VD2, U1.1), в силу его малой постоянной времени поступает практически одновременно на входы схемы совпадения (элемент DD2.2).

На выходе этого элемента формируются широкие управ­ляющие импульсы. На первичной обмотке трансформатора Т1 (выходах элементов DD2.3, DD2.4) формируются двухполярные импульсы регулируемой длительности.

Схема импульсного источника питания

Рис. 2. Схема импульсного источника питания.

Если по какой-либо причине напряжение на выходе источни­ка питания будет увеличиваться сверх нормы, через стабилитроны VD19, VD20 начнет протекать ток, транзистор VT5 приоткроется, VT6 — закроется, уменьшая ток через светодиод оптрона U1.2.

При этом возрастает сопротивление фотодиода оптрона U1.1. Длительность управляющих импульсов уменьшается, и происхо­дит уменьшение выходного напряжения (мощности). При коротком замыкании нагрузки светодиод оптрона гаснет, сопротивление фотодиода оптрона максимально, а длительность управляющих импульсов — минимальна. Кнопка SB1 предназначена для запус­ка схемы.

При максимальной длительности положительные и отрица­тельные управляющие импульсы не перекрываются во времени, поскольку между ними существует временная просечка, обу­словленная наличием резистора R3 в формирующей цепи.

Тем самым снижается вероятность протекания сквозных токов через выходные относительно низкочастотные транзисторы оконечного каскада усиления мощности, которые имеют большое время рас­сасывания избыточных носителей на базовом переходе. Выход­ные транзисторы установлены на ребристые теплоотводящие радиаторы с площадью не менее 200 см^2. В базовые цепи этих транзисторов желательно установить сопротивления величиной 10…51 Ом.

Каскады усиления мощности и схема формирования двух­полярных импульсов получают питание от выпрямителей, выпол­ненных на диодах VD5 — VD12 и элементах R9 — R11, С6 — С9, С12, VD3, VD4.

Трансформаторы Т1, Т2 выполнены на ферритовых коль­цах К10x6x4,5 ЗОООНМ; ТЗ — К28х16х9 ЗОООНМ. Первичная об­мотка трансформатора Т1 содержит 165 витков провода ПЭЛШО 0,12, вторичные — 2×65 витков ПЭЛ-2 0,45 (намотка в два прово­да).

Первичная обмотка трансформатора Т2 содержит 165 вит­ков провода ПЭВ-2 0,15 мм, вторичные — 2×40 витков того же провода. Первичная обмотка трансформатора ТЗ содержит 31 виток провода МГШВ, продетого в кембрик и имеющего сечение 0,35 мм^2, вторичная обмотка имеет 3×6 витков провода ПЭВ-2 1,28 мм (параллельное включение). При подключении обмоток трансформаторов необходимо правильно их фазировать. Начала обмоток показаны на рисунке звездочками.

Источник питания работоспособен в диапазоне измене­ния сетевого напряжения 130…250 В. Максимальная выходная мощность при симметричной нагрузке достигает 60…65 Вт (ста­билизированное напряжение положительной и отрицательной по­лярности 12 S и стабилизированное напряжение переменного тока частотой 75 кГц, снимаемые,со вторичной обмотки транс­форматора Т3). Напряжение пульсаций на выходе источника пи­тания не превышает 0,6 В.

При налаживании источника питания сетевое напряжение на него подают через разделительный трансформатор или фер-рорезонансный стабилизатор с изолированным от сети выходом. Все перепайки в источнике допустимо производить только при полном отключении устройства от сети.

Последовательно с вы­ходным каскадом на время налаживания устройства рекоменду­ется включить лампу накаливания 60 Вт на 220 В. Эта лампа защитит выходные транзисторы в случае ошибок в монтаже. Оптрон U1 должен иметь напряжение пробоя изоляции не менее 400 В. Работа устройства без нагрузки не допускается.

Сетевой импульсный источник питания

Сетевой импульсный источник питания (рис. 3) разрабо­тан для телефонных аппаратов с автоматическим определителем номера или для других устройств с потребляемой мощностью 3…5Вт, питаемых напряжением 5…24В.

Источник питания защищен от короткого замыкания на вы­ходе. Нестабильность выходного напряжения не превышает 5% при изменении напряжения питания от 150 до 240 В и тока нагруз­ки в пределах 20… 100% от номинального значения.

Управляемый генератор импульсов обеспечивает на базе транзистора VT3 сигнал частотой 25…30 кГц.

Дроссели L1, L2 и L3 намотаны на магнитопроводах типа К10x6x3 из пресспермаллоя МП140. Обмотки дросселя L1, L2 со­держат по 20 витков провода ПЭТВ 0,35 мм и расположены каж­дая на своей половине кольца с зазором между обмотками не менее 1 мм.

Дроссель L3 наматывают проводом ПЭТВ 0,63 мм виток к витку в один слой по внутреннему периметру кольца. Трансформатор Т1 выполнен на магнитопроводе Б22 из феррита М2000НМ1.

Принципиальная схема сетевого импульсного источника питания

Рис. 3. Схема сетевого импульсного источника питания.

Его обмотки наматывают на разборном каркасе ви­ток к витку проводом ПЭТВ и пропитывают клеем. Первой нама­тывают в несколько слоев обмотку I, содержащую 260 витков провода 0,12 мм. Таким же проводом наматывают экранирующую обмотку с одним выводом (на рис. 3 показана пунктирной лини­ей), затем наносят клей БФ-2 и обматывают одним слоем лакот-кани.

Обмотку III наматывают проводом 0,56 мм. Для выходного напряжения 5В она содержит 13 витков. Последней наматывают обмотку II. Она содержит 22 витка провода 0,15…0,18 мм. Между чашками обеспечивают немагнитный зазор.

Высоковольтный источник постоянного напряжения

Для создания высокого напряжения (30…35 кВ при токе на­грузки до 1 мА) для питания электроэффлювиальной люстры (люстры А. Л. Чижевского) предназначен источник питания посто­янного тока на основе специализированной микросхемы типа К1182ГГЗ.

Источник питания состоит из выпрямителя сетевого напря­жения на диодном мосте VD1, конденсатора фильтра С1 и высоковольтного полумостового автогенератора на микросхеме DA1 типа К1182ГГЗ. Микросхема DA1 совместно с трансформатором Т1 преобразует постоянное выпрямленное сетевое напряжение в высокочастотное (30…50 кГц) импульсное.

Выпрямленное сетевое напряжение поступает на микросхе­му DA1, а стартовая цепочка R2, С2 запускает автогенератор микросхемы. Цепочки R3, СЗ и R4, С4 задают частоту генерато­ра. Резисторы R3 и R4 стабилизируют длительность полуперио­дов генерируемых импульсов. Выходное напряжение повышается обмоткой L4 трансформатора и подается на умножитель напря­жения на диодах VD2 — VD7 и конденсаторах С7 — С12. Выпрям­ленное напряжение подается на нагрузку через ограничительный резистор R5.

Конденсатор сетевого фильтра С1 рассчитан на рабочее на­пряжение 450 В (К50-29), С2 — любого типа на напряжение 30 В. Конденсаторы С5, С6 выбирают в пределах 0,022…0,22 мкФ на напряжение не менее 250 В (К71-7, К73-17). Конденсаторы умно­жителя С7 — С12 типа КВИ-3 на напряжение 10 кВ. Возможна за­мена на конденсаторы типов К15-4, К73-4, ПОВ и другие на рабочее напряжение 10кB или выше.

Принципиальная схема высоковольтного импульсного источника питания

Рис. 4. Схема высоковольтного источника питания постоянного тока.

Высоковольтные диоды VD2 — VD7 типа КЦ106Г (КЦ105Д). Ограничительный резистор R5 типа КЭВ-1. Его можно заменить тремя резисторами типа МЛТ-2 по 10 МОм.

В качестве трансфор­матора используется телевизионный строчный трансформатор, например, ТВС-110ЛА. ВЬюоковольтную обмотку оставляют, ос­тальные удаляют и на их месте размещают новые обмотки. Об­мотки L1, L3 содержат по 7 витков провода ПЭЛ 0,2 мм, а обмотка L2 — 90 витков такого же провода.

Цепочку резисторов R5, ограничивающих ток короткого замыкания, рекомендуется включить в «минусовой» провод, кото­рый подводится к люстре. Этот провод должен иметь вьюоко-вольтную изоляцию.

Корректор коэффициента мощ­ности

Устройство, именуемое корректором коэффициента мощ­ности (рис. 5), собрано на основе специализированной микро­схемы TOP202YA3 (фирма Power Integration) и обеспечивает коэффициент мощности не менее 0,95 при мощности нагрузки 65 Вт. Корректор приближает форму тока, потребляемую нагруз­кой, к синусоидальной.

Схема корректора мощности

Рис. 5. Схема корректора коэффициента мощности на микро­схеме TOP202YA3.

Максимальное напряжение на входе — 265 В. Средняя час­тота преобразователя — 100 кГц. КПД корректора — 0,95.

Импульсный источник питания с микросхемой

Схема источника питания с микросхемой той же фирмы Po­wer Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.

Пре­образователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номина­лах и элементах устройство позволяет подключать нагрузку, по­требляющую 20 Вт при напряжении 24 В. КПД преобразователя приближается к 90%. Частота преобразования — 100 Гц. Устрой­ство защищено от коротких замыканий в нагрузке.

Импульсный блок питания на микросхеме фирмы Power Integration

Рис. 6. Схема импульсного источника питания 24В на микросхеме фирмы Power Integration.

Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в таблице 1.

Таблица 1. Характеристики микросхем серии TOP221Y — TOP227Y.

Тип микросхемы Рmax, Вт Ток срабатывания защиты, А Сопротивление открытого тран­зистора, Ом
TOP221Y 7 0,25 31,2
T0P222Y 15 0,5 15,6
T0P223Y 30 1 7,8
T0P224Y 45 1,5 5,2
T0P225Y 60 2 3,9
T0P226Y 75 2,5 3,1
T0P227Y 90 3 2,6

Простой и высокоэффек­тивный преобразователь напряжения

На основе одной из микросхем ТОР200/204/214 фирмы Power Integration может быть собран простой и высокоэффек­тивный преобразователь напряжения (рис. 7) с выходной мощ­ностью до 100 Вт.

Схема простого высокоеффективного преобразователя напряжения

Рис. 7. Схема импульсного Buck-Boost преобразователя на микросхеме ТОР200/204/214.

Преобразователь содержит сетевой фильтр (С1, L1, L2), мостовой выпрямитель (VD1 — VD4), собственно сам преобразо­ватель U1, схему стабилизации выходного напряжения, выпрями­тели и выходной LC-фильтр.

Входной фильтр L1, L2 намотан в два провода на феррито-вом кольце М2000 (2×8 витков). Индуктивность полученной катуш­ки — 18…40 мГн. Трансформатор Т1 выполнен на ферритовом сердечнике со стандартным каркасом ETD34 фирмы Siemens или Matsushita, хотя можно использовать и иные импортные сердечни­ки типа ЕР, ЕС, EF или отечественные Ш-образные ферритовые сердечники М2000.

Обмотка I имеет 4×90 витков ПЭВ-2 0,15 мм; II — 3×6 того же провода; III — 2×21 витков ПЭВ-2 0,35 мм. Все об­мотки наматывают виток к витку. Между слоями должна быть обеспечена надежная изоляция.

Источник: Шустов М.А. Практическая схемотехника. Преобразователи напряжения (2002).

Исправления: в схеме на рисунке 3 для катушки L2 изменена точка, указывающая начало намотки.

Импульсный блок питания из сгоревшей лампочки

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.

 

Оглавление статьи.

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностю 20 Ватт.

     

  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

 

Вступление.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

 

Вернуться наверх к меню

 

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

 

Вернуться наверх к меню

 

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Вернуться наверх к меню

 

Импульсный трансформатор для блока питания.

 

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. 🙂 Проверено на практике.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки. 🙂

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Вернуться наверх к меню

 

Ёмкость входного фильтра и пульсации напряжения.

 

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

 

Вернуться наверх к меню

 

Блок питания мощностью 20 Ватт.

 

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

 

Вернуться наверх к меню

 

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

 

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

 

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

 

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.

 

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

 

Мощность, выделяемая на нагрузке – 100 Ватт.

Частота автоколебаний при максимальной нагрузке – 90 кГц.

Частота автоколебаний без нагрузки – 28,5 кГц.

Температура транзисторов – 75ºC.

Площадь радиаторов каждого транзистора – 27см².

Температура дросселя TV1 – 45ºC.

TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Вернуться наверх к меню

 

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

 

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

 

1. Мостовая схема.

2. Схема с нулевой точкой.

 

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

 

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.

 

100 / 5 * 0,4 = 8(Ватт)

 

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

 

100 / 5 * 0,8 * 2 = 32(Ватт).

 

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности. 🙂


 

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

 

Вернуться наверх к меню

 

Как правильно подключить импульсный блок питания к сети?

 

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

 

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

 

А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

 

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

 

Будьте осторожны, берегитесь ожога!

 

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Вернуться наверх к меню

 

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Вернуться наверх к меню

 

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Вернуться наверх к меню

 

Источник http://oldoctober.com/

cxema.org - Самый простой импульсный блок питания

Представляю самый простой миниатюрный импульсный блок питания, который может быть успешно повторён начинающим радиолюбителем. Он отличается надежностью, работает в широком диапазоне питающих напряжений, имеет компактные размеры.

Блок питания обладает относительно небольшой мощностью, в пределах 2-х ватт, зато он буквально неубиваемый, не боится даже долговремнных коротких замыканий.

Схема проще даже самых простых импульсных источников питания, к которым относятся зарядные устройства для мобильных телефонов.

Самый простой импульсный блок питания

Блок питания представляет собой  маломощный импульсный источник питания автогенераторного типа, собранный всего на одном транзисторе. Автогенератор запитывается от сети через токоограничительный резистор R1 и однополупериодный выпрямитель в виде диода VD1.

Самый простой импульсный блок питания, трансформаторСамый простой импульсный блок питания, трансформатор

Импульсный трансформатор имеет три обмотки, коллекторная или первичная, базовая обмотка и вторичная.

Самый простой импульсный блок питания, трансформаторСамый простой импульсный блок питания, трансформатор

Важным моментом является намотка трансформатора, и на печатной плате и на схеме указаны начала обмоток, так что проблем возникнуть не должно. Расчетов не делал, а количество витков обмоток позаимствованы от трансформатора для зарядки сотовых телефонов, так как схематика почти та же, количество обмоток тоже. Первой мотается первичная обмотка, которая состоит из 200 витков, диаметр провода от 0,08 до 0,1 мм, затем ставиться изоляция и таким же проводом мотается базовая обмотка, которая содержит от 5 до 10 витков. Поверх мотаем выходную обмотку, количество ее витков зависит от того, какое напряжение вам нужно, по моим скромным подсчетам получается около 1 вольта на один виток.

Сердечник для трансформатора можно найти в нерабочих блоках питания от мобильных телефонов, светодиодных драйверов и прочих маломощных источников питания, которые как правило построены именно на базе однотактных схем, в состав которых входит нужный трансформатор.

Самый простой импульсный блок питания, сердечник трансформатораСамый простой импульсный блок питания, сердечник трансформатора

Один момент - блок однотактный и между половинками сердечника должен быть немагнитный зазор, такой зазор имеется у сердечников с зарядных устройств сотовых телефонов. Зазор относительно небольшой (пол миллиметра хватит сполна). Если не находите трансформаторов с зазором, его можно сделать искусственным образом, подложив между половинками сердечника один слой офисной бумаги.

Самый простой импульсный блок питания, готовый трансформаторСамый простой импульсный блок питания, готовый трансформатор

Готовый трансформатор собирают обратно, половинки сердечника стягиваются скажем скотчем либо намертво склеиваются суперклеем.

Самый простой импульсный блок питания, собранная плата без трансформатора Самый простой импульсный блок питания, собранная плата без трансформатора

Схема не имеет стабилизации выходного напряжения и узлов защиты от коротких замыканий, но как не странно  ей не страшны никакие короткие замыкания. При коротких замыканиях естественно повышается ток в первичной цепи, но он ограничивается ранее упомянутым резистором, и все лишнее рассеивается на резисторе в виде тепла, так что блок можно смело замыкать, даже долговременно. Такое решение снижает КПД источника питания в целом, но зато делает его буквально неубиваемым, в отличии от тех же самых зарядок для мобильных телефонов.

Самый простой импульсный блок питанияСамый простой импульсный блок питания

Самый простой импульсный блок питанияСамый простой импульсный блок питания

Самый простой импульсный блок питанияСамый простой импульсный блок питания

Резистор указанного номинала ограничивает входной ток на уровне 14, 5 мА, по закону ома, зная напряжение в сети легко можно рассчитать мощность, которая составляет в районе 3,3 ватт, это мощность на входе, с учетом кпд преобразователя выходная мощность будет процентов на 20-30 меньше этого. Увеличить мощность можно, для этого достаточно снизить сопротивление указанного резистора.

Силовой транзистор - это маломощный высоковольтный биполярный транзистор обратной проводимости, подойдут ключи типа MJE13001, 13003, 13005, более мощные ставить нет смысла, первого варианта вполне хватает.

На выходе схемы установлен выпрямитель на базе импульсного диода, для снижения потерь советую использовать диод шоттки, рассчитанный на ток 1А. Далее фильтрующий конденсатор, светодиодный индикатор включения и пара резисторов.

Самый простой импульсный блок питания, готовый трансформаторСамый простой импульсный блок питания, готовый трансформатор

Самый простой импульсный блок питания, готовый трансформаторСамый простой импульсный блок питания, готовый трансформатор

О недостатках схемы:

  • Ограничительный резистор на входе снижает кпд, не на много, но снижает, взамен он гарантирует безопасную работу блока;
  • Ограниченная выходная мощности -  для того, чтобы на этой основе построить блок питания скажем ватт на 10-20, нужно снизит его сопротивление и увеличит мощност, чтобы нагрев не выходил за рамки, а это неудобно и увеличивает размеры блока питания в целом.

Но с другой стороны, схожие схемы применяются там, где нужна мощность в пределах 3-5 ватт, например в моем случае блок предназначен для питания небольшого кулера, поэтому мощность ограничена в пределах 2-х ватт.

Области применения - их очень много, так, как блок имеет гальваническую развязку от сети, следовательно, он безопасен и его выходное напряжение никак не связано с сетью. Отличный вариант для запитки светодиодов, вентиляторов охлаждения, питания каких-то маломощных схем и многое другое.

Печатная плата тут 

Схемы импульсных блоков питания на микросхемах IR2153

- Интересно, а что можно увидеть, если низе́нько пролететь над глухим бурятским селением тарбагатайского района, вооружившись комплексом радиолокационного наблюдения?
- Что, что? Узкораспахнутые глаза нескольких офонаревших финно-угров, а так же электромагнитную мешанину помех в полосе частот 1...100 МГц.
Железный конь пришёл на смену крестьянской лошадке! Энергосберегающие лампы, телевизоры, компьютеры, зарядные устройства и прочий хай-тек с импульсными источниками питания - на смену лампочке Ильича!
Вот и приходится бедолаге-радиолюбителю уживаться с разномастными ИБП, излучающими в эфир интенсивный высокочастотный шлак во всех КВ-диапазонах.
А что тут попишешь? Прогресс как-никак..., технологичность, блин..., массогабариты, мать их за ногу...

И чтобы не застрять на обочине инновационного пути, поклонимся и припадём к импульсным блокам питания и мы. А начнём с двуполярного импульсного источника для мощного усилителя мощности.

Что нужно правильному ИПБ для комфортного выполнения своих непосредственных обязанностей?

1. Мягкий, он же плавный, пуск при включении импульсного блока питания, предотвращающий превышение допустимых токов полупроводников от работы на фактически короткозамкнутую нагрузку, образующуюся вследствие мгновенного заряда ёмкостей выпрямителя.
Часто используемые для этих целей термисторы не так уж и хороши, в силу инерционной зависимости изменения сопротивления от температуры. Результат - кирдык блоку питания из-за того, что просто выключили и тут же включили БП тумблером.

2. Правильная и быстрая защита ИБП от токовых перегрузок и КЗ, полностью отключающая устройство от сети при возникновении нештатных ситуаций.
Распространённое шунтирование на землю точки питания микросхемы-драйвера, управляющего ключевыми транзисторами, может выручить далеко не во всех ситуациях. Слабым звеном здесь оказывается наличие электролитического конденсатора в цепи питания, приводящего к существенной задержке такого обесточивания микросхемы со всеми вытекающими невесёлыми последствиями.

3. Наличие входных и выходных LC-фильтров для предотвращения проникновения импульсных помех в сеть и нагрузку.

4. Компактность, надёжность и радующая глаз простота исполнения.

Тезисы оформлены без нарушений требований, переходим к схеме электрической принципиальной импульсного блока питания.

Плавный пуск и схема защиты импульсного блока питания
Рис.1

Начнём со схемы (Рис.1), обеспечивающей мягкий и плавный пуск ИБП. Она же является устройством защиты импульсного блока питания от токовых перегрузок и КЗ, она же содержит элементы, предотвращающие проникновение импульсных помех в питающую сеть, она же формирует необходимые постоянные напряжения, необходимые для работы драйвера и ключевых транзисторов.

- Так, а что там, собственно-то, осталось? С гулькин хрен! Надо ж было сразу всё рисовать, а не размножать всякие писульки! - резонно зафиксирует мысль подготовленный радиолюбитель.

Торопиться не надо!
Во-первых, приведённая схема сгодится не только для преобразователей, собранных на IR2153, но и для любых других устройств, независимо от используемой элементной базы. Низковольтное напряжение (15В) может быть выбрано любой величины, посредством замены D2 на стабилитрон с соответствующим напряжением пробоя.

Во-вторых, даже при изготовлении источника питания на заявленной в заголовке микросхеме IR2153, имеет серьёзный резон сначала собрать приблуду, приведённую на Рис.1, десяток раз проверить соответствие принципиальной схеме, прозвонить тестером на отсутствие КЗ между дорожками платы, далее, подключившись к сети, убедиться в наличии работоспособности, а затем уже продолжать все дальнейшие манипуляции.
Настройки схема не требует, при отсутствии ошибок сразу запашет как зверь!

А вот теперь можно повеселиться по полной программе! Любые дефективные двигания шаловливыми ручонками при сборке преобразователя, ключевых транзисторов и импульсного трансформатора будут моментально зафиксированы устройством защиты и не приведут к каким-либо серьёзным последствиям для элементов схемы. Ручонки могут пострадать, элементы - вряд ли!

Как это всё работает?

Переключатель S1 - это тумблер без фиксации, алгоритм работы (on)-off-(on), количество контактных групп - 2.
В момент перевода тумблера в состояние "вкл" через сопротивление R1 и двухполупериодный выпрямитель Br1 начинается заряд входного сглаживающего конденсатора C3.
Номинал резистора выбран такой величины, чтобы максимальный импульсный ток, протекающий через элементы в начальный момент включения, не превышал 10А.

По мере заряда конденсатора увеличивается и ток через последовательную цепочку R2, LED1, Ref1, D2. Через несколько десятков миллисекунд этот ток достигает значения, достаточного для включения реле Ref1. После включения реле, его контакты К1 замыкают и R1, и контакты тумблера. Всё - плавный пуск импульсного блока питания завершён, светодиод горит, можно отпускать пипку переключателя.

Выключение блока питания у нас завязано на схеме защиты, реализованной на транзисторах Т1, Т2, включённых по схеме эквивалента тиристора. Какой должна быть эта схема для предотвращения ложных срабатываний, мы подробно рассмотрели на странице   Ссылка на страницу .

Схема обладает небольшим и предсказуемым током включения (около 100мкА), что позволяет отказаться от построечных резисторов при выборе необходимого порога срабатывания. Величина сопротивления R=R6IIR7 выбирается исходя из формулы R=0,77/Iср, т.е. в нашем случае Iср=0,77/0,5=1,54А.

Механизмы выключения ИБП - что при нажатии кнопки S1 в положение "выкл", что при срабатывании защиты абсолютно идентичны. Под воздействием напряжения, превышающем пороговый уровень на переходе база-эмиттер транзистора Т1, аналог тиристора переходит в проводящее состояние, верхний вывод реле замыкается на нулевую точку, реле отщёлкивается, блок питания от сети полностью отключается.

П-образный фильтр С1, Др1, С2 служит для предотвращения проникновения импульсных помех в сеть. Я использовал готовый 2х2.2мГн, 2A фирмы Epcos, позволяющий работать с мощностями до 600Вт. Если не влом заняться самообразованием, то можно намотать и самостоятельно на Amidon-овских кольцах их карбонильного железа марок: 26, 38, 40, 45, 52. Всю необходимую информацию можно найти на сайте производителя.

Диодный мост должен быть рассчитан на постоянное обратное напряжение не менее 400В, у меня под рукой оказалась радиодеталь с большим запасом по мощности - BR1004 на 10А.

Реле должно выдерживать необходимый максимальный коммутируемый ток и не гнушаться работой с сетевым напряжением. Ток срабатывания не должен превышать 20мА, как правило в документации такие реле называются - High Sensitive. У меня выбор пал на NRP05-A-12D, 12V / 5A, 250VAC.

Ограничений по максимальной мощности импульсного блока питания у приведённой схемы защиты и плавного пуска - нет. Естественным образом следует озаботиться выбором элементов Др1 и Br1, соответствующих максимальным токам, гуляющим по высоковольтным цепях устройства.

Принято считать, что минимальная величина ёмкости электролитического конденсатора С3 должна составлять 100МкФ на каждые 100Вт мощности. Увеличение этого значения в 1,5 - 2 раза, пойдёт только на пользу характеристикам ИБП, хотя и излишний фанатизм не приветствуется во избежание чрезмерного увеличения массогабаритных характеристик.

Стабилитрон D1 я пририсовал на схеме на всякий пожарный уже в процессе написания статьи для исключения возможного включения реле обратным напряжением, накопленным на С4 в момент срабатывания транзисторной защёлки. В оригинале всё прекрасно работает и без него!

Что-то, как-то слишком многословно получилось.
«Краткость есть душа ума...». Ну да ладно, продолжим разговор на следующей странице.

Плавный пуск и схема защиты импульсного блока питания

 

Импульсный блок питания из энергосберегающей лампы | RUQRZ.COM


В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.


Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы КЛЛ от импульсного БП

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для предобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

Схема энергосберегающей лампы

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

БП с дополнительным импульсным трансформатором

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт

Блок питания мощностью 20 Ватт

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60ºС
Температура транзисторов – 42ºС

Блок питания мощностью 100 Ватт

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Блок питания мощностью 100 Ватт

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

Действующий стоваттный импульсный блок питания

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Каково назначение элементов схемы импульсного блока питания?

Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Что еще почитать по теме:

Схемотехника блоков питания персональных компьютеров. Часть 1.

Принцип работы импульсного блока питания

Один из самых важных блоков персонального компьютера - это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки  на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

  • Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

  • Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

  • Узел управления. Является "мозгом" блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

  • Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

  • Выходные выпрямители. С помощью выпрямителя происходит выпрямление - преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

Упрощённая структура импульсного блока питания персонального компьютера

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Схема сетевого фильтра и выпрямителя БП ПК

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Плата с неустановленными элементами фильтра

Как говорится: "No comment Плата с неустановленными элементами фильтра".

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 ("230/115"). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110...127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220...230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180...220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов "моста" (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Далее

Главная &raquo Мастерская &raquo Текущая страница

 

Как работают схемы импульсного источника питания (SMPS)

SMPS является аббревиатурой от слова Switch Mode Power Supply. Название ясно указывает на то, что концепция имеет отношение к импульсам или переключению используемых устройств. Давайте узнаем, как работают адаптеры SMPS для преобразования сетевого напряжения в более низкое напряжение постоянного тока.

Преимущество топологии SMPS

В адаптерах SMPS идея состоит в том, чтобы переключать входное напряжение сети на первичную обмотку трансформатора, чтобы на вторичной обмотке трансформатора можно было получить более низкое значение напряжения постоянного тока.

Однако вопрос в том, что то же самое можно сделать с обычным трансформатором, так зачем же такая сложная конфигурация, когда функционирование может быть просто реализовано с помощью обычных трансформаторов?

Хорошо, концепция была разработана именно для того, чтобы исключить использование тяжелых и громоздких трансформаторов с очень эффективными версиями цепей питания SMPS.

Несмотря на то, что принцип работы очень похож, результаты сильно отличаются.

Наше сетевое напряжение также является пульсирующим напряжением или переменным током, который обычно подается в обычный трансформатор для необходимых преобразований, но мы не можем сделать трансформатор меньшего размера даже при токе до 500 мА.

Причиной этого является очень низкая частота, связанная с нашими входами сети переменного тока.
При 50 Гц или 60 Гц это значение чрезвычайно низкое для реализации их в выходах с высоким постоянным током с использованием меньших трансформаторов.

Это связано с тем, что с уменьшением частоты потери на вихревые токи при намагничивании трансформатора возрастают, что приводит к огромным потерям тока из-за нагрева, и в результате весь процесс становится очень неэффективным.

Чтобы компенсировать вышеуказанные потери, используются относительно большие сердечники трансформатора с соответствующей толщиной провода, что делает весь блок тяжелым и громоздким.

Схема источника питания с переключением режимов решает эту проблему очень умно.

Если более низкая частота увеличивает потери на вихревые токи, это означает, что увеличение частоты приведет к обратному результату.

То есть, если увеличить частоту, трансформатор можно сделать намного меньше, но при этом обеспечить более высокий ток на их выходах.

Это именно то, что мы делаем с цепью SMPS. Давайте разберемся с функционированием в следующих пунктах:

Как работают адаптеры SMPS

На принципиальной электрической схеме источника питания с переключением входной переменный ток сначала выпрямляется и фильтруется для получения соответствующей величины постоянного тока.

Вышеуказанный постоянный ток применяется к конфигурации генератора, включающей в себя высоковольтный транзистор или полевой транзистор, подключенный к первичной обмотке небольшого ферритового трансформатора большого размера.

Контур становится автоколебательным типом конфигурации, который начинает колебаться с некоторой предопределенной частотой, установленной другими пассивными компонентами, такими как конденсаторы и резисторы.

Частота обычно выше 50 кГц.

Эта частота индуцирует эквивалентное напряжение и ток на вторичной обмотке трансформатора, определяемый числом витков и SWG провода.

Из-за использования высоких частот потери на вихревые токи становятся пренебрежимо малыми, а выход постоянного тока высокого тока становится доступным благодаря меньшим трансформаторам с ферритовыми сердечниками и относительно более тонкой обмотке провода.

Однако вторичное напряжение также будет на первичной частоте, поэтому оно еще раз выпрямляется и фильтруется с использованием диода быстрого восстановления и конденсатора высокого значения.

Результатом на выходе является идеально отфильтрованный низкий постоянный ток, который можно эффективно использовать для работы любой электронной схемы.

В современных версиях SMPS вместо транзисторов на входе используются микросхемы высокого класса.
Микросхемы оснащены встроенным высоковольтным модулем для поддержания высокочастотных колебаний и многими другими защитными функциями.

Что такое встроенная защита для SMPS

Эти микросхемы имеют адекватную встроенную схему защиты, такую ​​как защита от лавин, защита от перегрева и защита от перенапряжения, а также функция пакетного режима.

Лавинная защита гарантирует, что ИС не будет повреждена во время пикового тока включения питания.

Защита от перегрева обеспечивает автоматическое отключение микросхемы, если трансформатор намотан неправильно, и потребляет больше тока от микросхемы, делая ее опасно горячей.

Пакетный режим - интересная функция, включенная в современные блоки SMPS.

Здесь выход DC подается обратно на чувствительный вход IC. Если по какой-либо причине, как правило, из-за неправильной вторичной обмотки или выбора резисторов, выходное напряжение поднимается выше определенного предварительно определенного значения, микросхема отключает входное переключение и пропускает переключение в прерывистые импульсы.

Это помогает контролировать напряжение на выходе, а также ток на выходе.

Эта функция также гарантирует, что если выходное напряжение отрегулировано до некоторой высокой точки, а выход не загружен, ИС переключается в пакетный режим, гарантируя, что устройство работает с перерывами, пока выход не будет адекватно загружен, это экономит энергию устройство находится в режиме ожидания или когда выход не работает. .

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и учебными пособиями.
Если у вас есть запрос, связанный со схемой, вы можете общаться через комментарии, я буду рад помочь!

Цепи питания :: Next.gr

  • Вам нужен надежный драйвер полного моста для управления трансформатором обратной связи? Ну, это твоя последняя остановка. Есть много схем обратной связи, но большинство из них не будут длиться долго. Общеизвестно, что знаменитый ЗВС изобретен ....

  • Космическая схема импульсного источника питания приемника CDVB3188V На этом же континенте показана схема импульсного источника питания приемника CDVB3188C континента, в основном от входной цепи переменного тока, anti-j.,

  • Здесь описан конкретный модуль, в котором используется схема импульсного источника питания CF8865, поскольку в этой схеме используется встроенный модуль управления, соответствующий конкретным модулям CF8865. В конце концов ..

  • На рисунке (а) показана блок-схема внутренней структуры M62213FP.M62213FP - контроллер высокоскоростного импульсного источника питания. Состоит из генератора, ШИМ сравнения ..

  • , представленный 5V TOP414G, показана 2A выходная изолированная схема импульсного источника питания. C1 - конденсатор входного фильтра. VDz VD1 состав и защита первичного зажима ..

  • Принципиальная схема привода: Основная функция схемы управления - выходной усилитель мощности контроллера ширины импульса переменной ширины в качестве сигнала возбуждения для переключателя питания высокого напряжения.,

  • Dragon -ZL-2801A Схема импульсного источника питания DVD-машины типа Dragon Показывает схему импульсного источника питания DVD-машины типа Dragon ZL-2801A, которая в основном поступает от входной цепи переменного тока ..

  • East Shi IDS-2000F Цепь импульсного источника питания STB East Shi IDS -2000F Цепь импульсного источника питания STB в основном от входной цепи переменного тока, схема коммутации колебаний, outp.,

  • Электрооборудование, поставляемое в секцию питания схемы питания, как показано ниже: ..

  • , образованный цепью импульсного источника питания постоянного тока 15В TOP224Y, 2А, показанной на фиг.Использование трех интегральных микросхем: ICl - монолитный регулятор TOP224Y, IC2 - оптопара ..

  • LA9472A - это 2A монолитный понижающий импульсный стабилизатор, работающий в непрерывном режиме и реализованный в новой технологии BCD, позволяющей интегрировать изолированные вертикальные силовые транзисторы DMOS со смешанными CMOS / биполярными транзисторами.Устройство может доставить ....

  • Эта схема обеспечивает включение / выключение, плавный пуск, контроль тока, отключение тока и защиту от перегрузки по току для источника питания 30 В постоянного тока при нормальных токах нагрузки до 2 А. Переключатель включается командным импульсом «вкл»; он выключен...

  • Эта схема, рассчитанная на сопротивление, обеспечивает до 8 А при 5 В постоянного тока, работающего от 24 до 32 В постоянного тока. Два силовых полевых МОП-транзистора в цепи работают попеременно в течение равных периодов. Частота переключения составляет 150 кГц, установленная контроллером PWM125. Выход двух МОП-транзисторов ....

  • Эта схема обеспечивает регулируемый постоянный ток с пульсациями менее 100 мВ для применения в микропроцессорах.Необходимые рабочие напряжения снимаются с сети резисторов для прокачки, подключенных к нерегулируемому источнику питания 28 В. Выход компаратора LM710 ....

  • Этот низковольтный сильноточный выход, источник питания которого работает от входа 220 В переменного тока. В этой схеме генератор релаксации D2 ST2, Q3, Cl и диак, инициирует проведение выходного переключающего транзистора Ql, время включения которого равно....

  • Схема показывает источник питания 50 Вт с выходом 5 В 10 A. Это обратный преобразователь, работающий в непрерывном режиме. Схема имеет первичную сторону, а контроллер вторичной стороны обеспечит полную защиту от неисправностей, таких как перегрузка по току. ..

  • Строительный блок с переключаемыми конденсаторами LTC10432 обеспечивает не перекрывающийся дополнительный привод для мощных полевых МОП-транзисторов с Q1 по Q4.МОП-транзисторы расположены так, что Cl и C2 поочередно располагаются последовательно, а затем параллельно. На этапе серии, + 12 В ....

  • Простой импульсный стабилизатор с питанием от батареи обеспечивает 5 В от источника 9 В с КПД 80% и выходной мощностью 50 мА. Когда Q1 включен, напряжение на его коллекторе возрастает, заставляя ток проходить через индуктор.Выходное напряжение повышается, вызывая выход А1 ....

  • A показывает схему COR / CAS для использования ретранслятора. CR1 - кремниевый диод. 2 может быть любым реле с 12-вольтовой катушкой (с длительным сроком службы ..

  • Импульсные источники питания

    обладают гораздо большей эффективностью, чем традиционные.,

  • В обычных приложениях ИС переключающего регулятора регулируют VQVT, управляя током через внешний индуктор. Однако микросхема в А, управляющая сетью диод-конденсатор вместо катушки индуктивности, обеспечивает сопоставимые характеристики для небольших нагрузок. ....

  • Импульсный регулятор Max650 вырабатывает регулируемые 5 В от больших отрицательных напряжений, таких как -48 В на телефонных линиях.Полученный источник питания работает с несколькими внешними компонентами, включая трансформатор, и выдает 250 мА. ....

  • Блок питания использует два полевых транзистора MOSPOWER VN4000A на 400 В в конфигурации с полумостовым переключателем питания. Доступные выходы: + 5 В, 20 А и ± 15 В (или ± 12 В) при 1 А. Поскольку линейные трехполюсные регуляторы используются для слаботочных выходов, ± 12 В....

  • LT1172 генерирует положительное и отрицательное напряжение от входа 5 В. LT1172 настроен ..

  • A показывает типовое поверхностное крепление LTC 1148, обеспечивающее 5 В при 2 А при входном напряжении 5.От 5 до 13,5 В. Эффективность работы, показанная на рисунке B, достигает пика 97% и превышает 90% от 10 мА до 2 А при входе 10 В. Ql и Q2 составляют главный выключатель ....

  • TOP100Y, состоящий из цепи питания постоянного тока с переключением постоянного тока +5 В, 1 А, с обратной связью. Этот вылет ..

  • Схема импульсного источника питания 35 Вт с выходом телевизионной приставки показана на рисунке 5.Пятиполосное напряжение соответственно: Uo1 (+ 30 В, 100 мА), Uo2 (+ 18 В, 550 мА), Uo3 (+ 5 В, 2,5 А) ..

  • Это еще один вид продления срока службы лампы паука накаливания, он имеет две функции: во-первых, просто путем электропорации, ..

  • Нестабильность напряжения 12 В, сначала необходимо проверить выходной блок импульсного источника питания, как показано на фиг.Вторичная обмотка ..

  • Эта схема управления ШИМ подает управляющий импульс на выключатель питания DMOS в цепи обратного хода. Выходной сигнал ШИМ представляет собой импульс, ширина которого пропорциональна входному управляющему напряжению и частота повторения которого определяется внешними часами ....

  • Схема показана.C1 - конденсатор входного фильтра. VDz VD1 состав и первичный зажим .png "> схема защиты. Управление ..

  • Как показано в схеме переключающего источника питания (SIR a 80145A) телевизора Sony KV-S29MHl (серия S); (А) - часть колебаний мощности; (б) является частью регулятора; (в) это выходной раздел...

,Конструкция импульсного источника питания

SMPS; Принципиальные схемы

<------------------------------------------------- -------------------------------------------------- ------------------------>

Очевидно, что электрическая энергия не используется в том виде, в котором она была произведена или распределена. Все электронные системы требуют той или иной формы преобразования энергии, что может быть достигнуто различными методами. Блок питания (PSU) относится к устройству, которое передает электрическую энергию от источника к нагрузке с использованием электронных схем.Конечно, блок питания на самом деле не обеспечивает питание , он просто преобразует его из одной формы в другую, так что «преобразователь» был бы более точным термином для такого устройства. Типичным применением источника питания является преобразование напряжения переменного тока в сеть в набор регулируемых напряжений постоянного тока, необходимых для электронного оборудования. Существуют различные типы блоков питания в зависимости от режима их работы. Еще в 70-х годах большинство PSE были линейными, КПД составлял около 50%, удельная мощность составляла менее одного ватта на кубический дюйм, а коэффициент мощности был равен 0.5-0.7. В настоящее время большинство блоков питания имеют тип SMPS с КПД более 90%, плотностью мощности в десятки ватт на кубический дюйм и коэффициентом мощности до 0,99. Этот тип является основной темой этого сайта.

ЧТО ЭТО?

SMPS обозначает импульсный источник питания. Это электронное устройство, в котором преобразование и регулирование энергии обеспечивается силовыми полупроводниками, которые с высокой частотой непрерывно переключаются между состояниями «включено» и «выключено». Выходной параметр (обычно выходное напряжение) регулируется изменением рабочего цикла, частоты или сдвига фазы этих переходов.

КАК ЭТО РАБОТАЕТ?

. Поток энергии в любом блоке питания контролируется силовыми полупроводниками. Однако в разных системах они работают в разных режимах. В устаревших системах они работали в линейном режиме , а избыточная мощность рассеивалась в последовательном транзисторе. Когда полупроводник работает в режиме с переключением , он может управлять потоком энергии с низкими потерями: когда переключатель включен, он имеет низкое падение напряжения и пропустит любой наложенный на него ток; когда он выключен, он блокирует поток тока.В результате в таком электронном устройстве рассеиваемая мощность, которая является произведением напряжения и тока, может быть относительно низкой в ​​обоих состояниях. Вот почему блоки питания в режиме переключения предлагают большую эффективность по сравнению с линейными. Такие блоки также меньше по размеру и легче по весу из-за уменьшенного размера пассивных компонентов и меньшего тепловыделения. Более высокая эффективность и меньший размер в сочетании с достижениями в области полупроводниковых технологий и различными нормативами в области энергоэффективности сделали «переключатель» доминирующим типом блока питания практически во всем спектре приложений.Большинство блоков питания, производимых сегодня для приложений ввода переменного тока, также включают в себя еще одну ступень преобразования - интерфейсную часть с коррекцией коэффициента мощности (PFC). На рынке представлено огромное разнообразие готовых блоков питания и модулей постоянного тока, соответствующих большинству практических требований и стандартов безопасности. Тем не менее, нестандартные конструкции все еще разрабатываются, когда есть необходимость в особых характеристиках или необычном форм-факторе, особенно для тяжелых условий эксплуатации в военных целях или авионики.

Обычно преобразователи мощности можно классифицировать на четыре типа в зависимости от формы входных и выходных напряжений: переменный ток в постоянный ток (также называемый автономным источником постоянного тока), постоянный ток в постоянный ток (преобразователь напряжения или тока), переменный ток в переменный ток ( преобразователь частоты или циклоконвертер) и постоянный ток в переменный (инвертор).В дополнение к основному DC-DC преобразователю, большинство блоков питания, производимых сегодня для приложений ввода переменного тока, также включают в себя другой внешний интерфейс с коррекцией коэффициента мощности (PFC) и могут включать в себя дополнительные установленные на плате регуляторы для вспомогательных выходов.

Область техники, которая занимается проектированием и анализом схем и устройств преобразования энергии, называется силовой электроники , хотя проектирование источников питания является настоящей междисциплинарной задачей. Он включает в себя вопросы цепи, магнетизма, терморегулирования, контроля и соответствия.Этот сайт является информационным руководством по SMPS / силовой электронике. Здесь вы найдете учебное пособие, инструменты, обзоры, схемы и другие бесплатные онлайн-ресурсы по всем аспектам проектирования и выбора импульсного источника питания, информацию о других устройствах преобразования энергии, а также базовые справочные материалы по электротехнике и электронные формулы.

Цепи и схемы импульсного источника питания

<------------------------------------------------- -------------------------------------------------- ----------------------->

Стремление промышленности к созданию более компактной, легкой и более эффективной электроники привело к разработке технологии преобразования мощности с переключением режимов около четырех десятилетий назад. По определению, импульсные источники питания (SMPS) являются устройствами, которые используют в своей работе электронные компоненты для управления питанием, которые непрерывно коммутируют и отключают с относительно высокой частотой.Эти электронные переключатели эффективно подключают и отключают индуктор (и) и конденсатор (ы) накопления энергии к входному источнику или выходу. Выходные фильтры затем усредняют скорость передачи энергии и обеспечивают постоянный ток, протекающий в нагрузку. Изменяя рабочий цикл, частоту или сдвиг фазы этих коммутаций, можно управлять требуемым выходным параметром (например, напряжением). Высокая рабочая частота («F») приводит к меньшему размеру импульсных источников питания, поскольку обычно размер силовых трансформаторов, катушек индуктивности и конденсаторов фильтра обратно пропорционален частоте.Работа в режиме переключения также снижает потери энергии и повышает эффективность - когда переключатель «выключен», его ток близок к нулю; когда он включен, напряжение на нем низкое.

Конечно, вы не можете изучить SMPS дизайн с одной веб-страницы - это руководство предназначено только для того, чтобы начать.
При разработке SMPS вы должны составить список технических и нормативных требований. В большинстве случаев при поиске на сайтах производителей вы можете найти стандартный готовый блок питания, который соответствует вашим потребностям и уже имеет необходимые сертификаты агентства безопасности.Если вам все еще нужно спроектировать один, первым делом выберите наиболее экономически эффективную топологию для вашего приложения. Существует около десятка базовых топологий, практически используемых в отрасли. Очевидно, что лучшая конфигурация для данного приложения выбирается на основе конкретных требований к блоку питания (включая факторы стоимости и времени). Поскольку при использовании топологии существует много совпадений, на практике этот выбор обычно зависит от личного опыта дизайнера - инженеры любят делать то, что им удобно.Если это ваш первый проект, вы можете начать с этого руководства по выбору топологии. Затем просмотрите руководства для семинаров TI, которые содержат примечания по применению и подробные образцы проектов с практическими схемами и процедурами расчета.


Buck converter
Вольт-секундный баланс на л в непрерывном режиме:
(Vin-V Q -Vout) × тонна =
(Vout + V D ) × Toff

Решение для Вут:
Vout = (Vin-V Q ) D-V D (1-D) .Пренебрегая V Q и V D : Vout≈VinD , где D = ton / (ton + toff) - рабочий цикл Выбрав топологию, нужно определить частоту работы. Типичный частотный диапазон автономной схемы SMPS составляет от 50 кГц до 500 кГц. Модули преобразователя постоянного тока в постоянный ток для низкого напряжения (

) Еще одна важная вещь, которую необходимо изучить, - это функция преобразования выходного сигнала на вход преобразователя. Коэффициент усиления постоянного тока рассчитывается на основе того факта, что в устойчивом состоянии чистое вольт-секунды через любой индуктор и чистый ампер-секунда через любой конденсатор в течение одного цикла переключения должен быть равен нулю.Диаграмма слева иллюстрирует эту концепцию для конвертера доллара.

Ниже вы найдете теорию, SMPS схемы и руководства по проектированию, учебные пособия по силовой электронике и другие полезные онлайн-ресурсы для инженеров и любителей. Если вы не хотите случайным образом просматривать веб-страницы, этот список сэкономит вам часы исследований. ,

Отправить ответ

avatar
  Подписаться  
Уведомление о