Схемы подключения электродвигателей: типы, особенности и инструкции

Какие бывают схемы подключения электродвигателей. Как правильно подключить трехфазный и однофазный двигатель. Чем отличаются асинхронные, синхронные и коллекторные двигатели. Какие особенности нужно учитывать при подключении разных типов электромоторов.

Содержание

Основные типы электродвигателей и их схемы подключения

Существует несколько основных типов электродвигателей, которые различаются по конструкции и принципу работы:

  • Асинхронные двигатели
  • Синхронные двигатели
  • Коллекторные двигатели

Каждый тип имеет свои особенности подключения и эксплуатации. Рассмотрим их подробнее.

Асинхронные двигатели

Асинхронные двигатели наиболее распространены в промышленности. Их главная особенность — скорость вращения ротора отстает от скорости вращения магнитного поля статора. Подключение асинхронных двигателей может осуществляться по схемам «звезда» или «треугольник».

Синхронные двигатели

В синхронных двигателях скорость вращения ротора в точности совпадает с частотой вращения магнитного поля статора. Они обладают высоким КПД, но сложнее в запуске. Для пуска синхронных двигателей часто используются специальные схемы с пусковыми обмотками.


Коллекторные двигатели

Коллекторные двигатели широко применяются в бытовой технике. Они могут работать как от постоянного, так и от переменного тока. Подключение коллекторных двигателей обычно осуществляется по двух- или четырехпроводной схеме.

Схемы подключения трехфазных электродвигателей

Трехфазные асинхронные двигатели — самый распространенный тип электродвигателей в промышленности. Для их подключения используются две основные схемы:

Схема «звезда»

При подключении по схеме «звезда» концы обмоток соединяются в общую точку, а начала подключаются к трем фазам сети. Эта схема применяется при напряжении сети 380 В.

Схема «треугольник»

В схеме «треугольник» обмотки соединяются последовательно в замкнутый контур, а в места соединений подключаются фазы сети. Такая схема используется при напряжении 220 В.

Переключение со «звезды» на «треугольник» позволяет изменять пусковые характеристики двигателя.

Особенности подключения однофазных двигателей

Однофазные двигатели широко применяются в бытовой технике. Их подключение имеет ряд особенностей:


  • Необходимо использование пусковой обмотки или конденсатора для создания вращающегося магнитного поля
  • Часто применяются схемы с тремя выводами — для рабочей и пусковой обмоток
  • Направление вращения меняется переключением концов одной из обмоток

Как определить выводы обмоток двигателя

Чтобы правильно подключить двигатель, необходимо определить выводы его обмоток. Для этого используются следующие методы:

  1. Проверка сопротивления обмоток мультиметром
  2. Прозвонка обмоток
  3. Проверка по маркировке на корпусе двигателя

При отсутствии маркировки приходится экспериментировать, соблюдая меры предосторожности.

Реверс электродвигателя: схемы и особенности

Реверс (изменение направления вращения) двигателя осуществляется различными способами в зависимости от его типа:

  • Для трехфазных двигателей — переключением любых двух фаз питания
  • Для однофазных — изменением подключения пусковой обмотки
  • Для коллекторных — сменой полярности питания обмоток ротора или статора

При реверсе необходимо учитывать особенности конкретного двигателя и механизма, который он приводит в движение.


Защита электродвигателей при подключении

Для обеспечения надежной и безопасной работы электродвигателей применяются различные виды защиты:

  • Тепловая защита от перегрузки
  • Защита от короткого замыкания
  • Защита от обрыва фазы
  • Защита от перенапряжения и пониженного напряжения

Выбор конкретных устройств защиты зависит от типа двигателя и условий его эксплуатации.

Частотное регулирование скорости электродвигателей

Современным способом управления скоростью вращения асинхронных двигателей является частотное регулирование. Оно позволяет:

  • Плавно изменять скорость в широком диапазоне
  • Обеспечивать экономию электроэнергии
  • Улучшать динамические характеристики привода

Для частотного регулирования применяются специальные преобразователи частоты, подключаемые между сетью и двигателем.

Типичные ошибки при подключении электродвигателей

При самостоятельном подключении двигателей часто допускаются следующие ошибки:

  • Неправильное определение выводов обмоток
  • Ошибки в схеме подключения
  • Несоответствие напряжения питания параметрам двигателя
  • Отсутствие или неправильный выбор защиты
  • Неверное подключение заземления

Чтобы избежать этих ошибок, следует внимательно изучить документацию на двигатель и соблюдать правила электробезопасности.



Типовые схемы подключения электродвигателя — 125 фото типовых схем подключения через пускатель

В настоящее время количество электрических приборов в каждом доме просто огромно. Большинство данных вещей работает при помощи помещенного в систему электродвигателя, который и запускает любой прибор. Однако при выходе из строя приборы просто выбрасываются в большинстве своем.

Мало кому известно, что даже после прекращения работы самого прибора электродвигатель, который в нем находится все еще остается рабочим. Подключив его к другому прибору вы можете получить дополнительный срок службы и пользу от двигателя.

Однако для подключения к тому или иному устройству необходимо точно знать, какая из схем электродвигателя имеет место быть, это помогут сделать фото в сети разных типов.

В данном материале мы поговорим о том, какие типовые схемы подключения электрических двигателей бывают.

Краткое содержимое статьи:

Какой двигатель подключать самостоятельно

Так как схем подключения электродвигателей очень много и большинство из них сложны для домашних мастеров, как, например, структурная схема электродвигателя, не все двигатели получится подключить дома.

Однако несколько вариантов для подключения своими руками все же имеется:

  • Асинхронный трехфазный двигатель, обмотка которого выполнена в виде звездочки или треугольника.
  • Тот же тип, но с одной фазой подключения.
  • И коллекторный аппарат с щеточным вариантом подключения.

Для того, чтобы подключать остальные разновидности электоромоторов потребуется специализированное оборудование. Да и знания в этой области нужны более обширные, чем есть у каждого домашнего самоделкина.

Для того, чтобы работал любой электрический прибор домашнего использования необходимо иметь однофазный двигатель. Так же подойдет и трехфазная модель, однако в любом случае он может поделиться мощностью не более 3 кВт.

Многие мастера для подключения в гаражах и мастерских данных вариантов приборов делают трехфазную сеть. Это позволяет «выжать» из мотора наибольшую мощность для работы приборов.

Но и этого хватает на получение только 5-10 кВт мощности, чего в принципе достаточно для работ.

Какие знания потребуются

В школе на уроках физики все мы изучали действие электродвигателя и его устройство. Но навряд ли по данным знаниям можно понять, как подключать его к сети. Да и школьные знания уже давно подзабыты.

Именно поэтому есть определенные правила и теоретические знания, которые необходимы будут в этом процессе. Вот, что потребуется изучить:

  • В первую очередь потребуется изучить всю конструкцию электродвигателей разных моделей.
  • Так же необходимо будет узнать, какие есть варианты схем способов подключения двигателя и для чего необходима обмотка.
  • Еще одно, что важно знать в таком случае — устройство вспомогательных компонентов двигателя.

Ранее все данные можно было узнать о двигателе по прикрепленной на нем табличке. Там даже указывалась схема подключения прибора.

Однако в настоящее время не на всех моделях можно отыскать даже номер и серию мотора. Таким образом, все это придется узнавать из справочника или в сети и с применением мультиметра.

Прибор укажет на наличие или отсутствие короткого замыкания по корпусу устройства.

Популярная типовая схема подключения

Самый простой вид типовой схемы подключения электродвигателя считается коллекторный тип со щетками. Такой вариант наиболее распространен из-за большого количества приборов с данным вариантом двигателя в доме.

Данный вид двигателя характерен для стиральных и посудомоечных машин, кофеварок и прочих приборов, в которых ограниченное время работы.

К однофазной сети очень просто подключить именно такой вариант электромотора. Процесс работы осуществляется, когда при нажатой кнопке пуска происходит замыкание контакта.

Таким образом, пока кнопка остается в нажатом состоянии, двигатель работает. Так же возможно наличие в приборе сразу двух слоев обмотки. Это позволит при переключении режима работать устройству при пониженном вращении.

Также при подключении коллекторного двигателя обращайте внимание на качество щеток. Ну а далее важно только учесть схемы подключения фаз двигателя.

Фото схем подключения электродвигателя

  • Генератор из асинхронного двигателя: схема, таблица, инструкция, как сделать своими руками + фото от мастера!

  • Солнечная батарея своими руками — пошаговая инструкция как изготовить и провести монтаж солнечной батареи в домашних условиях (фото и видео-инструкция)

  • Как подобрать солнечную электростанцию: готовые решения, принцип работы, как выбрать и установить своими руками (фото + видео-инструкция)

https://www.youtube.com/watch?v=PjZextDphQU

Вам понравилась статья? Поделитесь 😉

 

типы моторов, их особенности и инструкция по работе

Вначале рассмотрим разницу между устройствами 380 и 220 вольт. Настолько очевидна, насколько непонятна непосвященным. Привыкли, каждый домашний прибор подключается двумя проводами, один является фазой, второй – схемной землей. Большая часть техники заземляется. Если речь касается однофазных двигателей, делается на случай пробоя обмотки-корпус. Фаза появится на кожухе – хорошего мало. Рассмотрим способы подключения электродвигателей согласно типу, начнем количеством фаз – одна или три.

Трехфазные и однофазные двигатели

Схемы подключения двигателя звезда, треугольник

Предваряя обсуждение подключения двигателя звезда/треугольник, начитаем теорию. Трехфазный и однофазный двигатели снабжены иногда тремя проводами подключения. Бросьте далеко ходить. Возьмем следующие два случая:

  1. Трехфазный двигатель имеет внутреннюю коммутацию обмоток схемой звезда. Полюсы  снабжены одной общей точкой. Три фазы подключаются к противоположным концам обмоток. Катушки абсолютно идентичные, одинаковые. Внутри создается вращающееся движущееся поле, за счет которого движется вал. Ротор представлен барабаном силумина с медными прожилками. Ток не подводится, магнитные полюсы образуют путем наведенных токов. Захватываются вращающим полем ротора, начинается движение. Особенностью конструкции назовем невозможность (без специальных мер) подключения сети 230 вольт. Потребовалось бы соединить обмотки схемой треугольника, сделать невозможно. Разумеется, статор можно вскрыть, найти общую точку, сделать три отвода, разорвав контакты меж катушками. Второй особенностью двигателя является отсутствие нулевого провода. Многих положение дел ставит в тупик – куда девается ток? Заряды двигаются по проводам меж фазами. Закон электротехники гласит: для подключения трех фаз нагрузке необязательно иметь общий провод, если потребление трех ветвей одинаковое. В противном случае понадобится нейтраль предоставить. Жизненный пример: допустим, нужно подключить на 380 вольт электрочайник. Маразм? Каждая фаза амплитудой 230 вольт, рабочие хотят кипятку – невозможно отказать. Берем одну из фаз, другой вывод вилки вешаем на нейтраль. Учтите, фазы в пределах одного потребителя нужно нагружать поровну (грубо говоря, по чайнику каждой линии дайте), иначе негативные последствия коснутся питающего трансформатора подстанции.

    Электрические коммутации двигателя

  2. Однофазный двигатель может иметь три вывода. Заземление ни при чем, идет отдельно ушком на корпус. Что касается трех выводов, питают пусковую (либо конденсаторную), рабочую обмотку. Одни провод общий, будет схемная земля. Без сего двигатель работать откажется. Правда, трехфазный двигатель проще? Потому используют производства. Что касается подключения однофазного двигателя, одна катушка обычно имеет большее сопротивление. Разница значительнее, двукратной показывает пусковую обмотку. Сопротивление большего номинала. Нужно параллельно повесить конденсатор (емкость определяется, например, минимальным потребляемым током), когда вал раскрутится, цепь обрывается. Иначе, спустя промежуток времени, пусковая обмотка выйдет из строя вследствие чрезмерного перегрева. Если двигатель конденсаторный (бифилярный), цепь с конденсатором работает постоянно. Нормальный режим, благодаря сдвигу фаз, созданному реактивным элементом, образуется вращающееся поле статора нужной формы.

Итак, лежит два двигателя, видом похожие, подключать нужно разным образом. Важной частью корпуса выступает схема подключения электродвигателя. Расположена на шильдике, выбита на кожухе. Становится понятно, на сколько фаз рассчитан мотор, как врубить в цепь. Информация отсутствует – попробуем доработать недочет своими руками. Понадобится китайский тестер.

У трехфазного двигателя три контакта попарно будут давать одинаковое сопротивление, равное удвоенному значению номинала обмотки. Мотор 230 вольт результаты измерений даст неодинаковые:

  • Самый большой показатель тестера меж фазными концами. Напряжение 220 вольт подается напрямую одному, другому через конденсатор. Емкость сильно зависит от мощности, скорости вращения вала. Параметр определяет средняя нагрузка вала в рабочем режиме.
  • Наименьшее значение образуется меж концами рабочей обмотки.
  • Третий номинал занимает промежуточное положение. Сумма с сопротивлением рабочей обмотки равняется первому пункту списка.

Нейтраль присоединяем меж обмотками, отводит ток дисбаланса. Толщина проводки вдвое меньше, нежели фаз. Методика отключения в нужный момент пусковой обмотки использует пускозащитные реле. Вручную не контролируют.

Вопрос приобретения узла тесно касается использования специальных справочников. Чужеродное пускозащитное реле с данным типом электродвигателя использовать категорически нельзя. Велика вероятность некорректной работы, выхода прибора из строя. Практически умельцы вручную обрывают цепь. Способ неправильный, имеет право существовать.

Добавим, что пропадание одной фазы может негативно сказаться на некоторых типах моторов. Экспериментируя с агрегатом, реализуя подключение двигателя звезда-треугольник, старайтесь избегать ситуаций. Принято осуществлять пуск специальными защитными автоматами, вырубающими питание при возникновении опасности.

Синхронные, асинхронные, коллекторные двигатели

Помимо количества фаз видим конструктивный признак. С точки зрения потребителя момент является главным. Коллекторные двигатели используются бытовой техникой преимущественно. Поставить на замену асинхронные с аналогичными параметрами, нерентабельно. Коллекторный двигатель получается намного меньшего размера (зато перегревается сильнее). Важно определить тип. Хотя по большому счету трехфазные электродвигатели асинхронного типа являются доминирующим звеном сельскохозяйственных, гаражных, других применений. Вопрос питания обсуждается отдельно.

Обсудим три типа двигателей:

Электродвигатель

  1. Коллекторные снабжают двумя-четырьмя выводами. Последнее делает возможным реверс. Поменяем полярность включения статора, ротора. Коллекторные двигатели отличаются возможность работы от переменного и постоянного тока. В последнем случае характеристики получаются оптимальными. Становится возможным благодаря постоянно переключающимся рабочим обмоткам ротора (секции коллектора). Поле статора постоянное. Главное, чтобы присутствовала нужная полярность. Схема подключения электродвигателя постоянного тока напоминает переменный. Скорость вращения вала регулируется амплитудой питающего напряжения. Либо берется делитель, сформированный силовым ключом, либо отсекается часть цикла синусоиды. Эффект получается схожий: падает действующее значение напряжения.
  2. Асинхронные двигатели по факту доминирующими в промышленности. Реверс образуется изменением полярности включения пусковой обмотки однофазных двигателей, коммутацией последовательности фаз трехфазных. Изменение скорости реализуется аналогичным путем. Варьирование амплитуды питающего напряжения. Асинхронные двигатели обладают плохой приспособленностью к смене скоростей. Очередная причина редкого применения в бытовой технике. Пришла пора сказать: коллекторные двигатели обычно рассчитаны на одну фазу, асинхронные питаются напряжением 380 вольт. Расстановка сил образуется, благодаря соответствующей коммутации обмоток. На практике реализуется подключением электродвигателя треугольником, звездой. Удается воспроизвести вращающееся поля внутри статора. Почему схема подключения асинхронного двигателя звездой непригодна напряжению 230 вольт. Приходится создать сдвиги фаз, становится возможным для схемы треугольника. На одну обмотку подается сетевое напряжение 230 вольт, на вторую – сдвинутое конденсатором на 90 градусов, на третьей образуется разница, изменяемая по нужному закону. Далеко от идеала: подключения электродвигателя звездой и треугольником неравноценны.

    Синхронный двигатель

  3. Синхронные двигатели называются за вращение вала по закону изменения питающего напряжения. В бытовой технике, промышленности используется редко, исключая область сервоприводов. Асинхронные двигатели названы за скорость вращения вала, отличающуюся от частоты питающего напряжения. Вал проскальзывает, эффект используется регулировать обороты. Синхронные двигатели стоят особняком, сфера использования ограничена. Чем отличаются таким особенным. Хороший КПД. Ротор выполняется по схеме с токосъемником, лишен щеток, отсутствует необходимость разделения поверхности сегментами (ток поступает постоянно). Вроде делает возможным применение, где коллекторные моторы пасуют. Замечены некоторые проблемы. Трехфазный синхронный двигатель невозможно запустить вращением фаз статора. Вал за счет инерционности не поддается полю. Приходится применять изыски раскрутки. Тема интересная. Ротор синхронного двигателя питается постоянным током, обмотки – одной-тремя фазами, определяется типом мотора.

Давайте пойме отличие синхронных двигателей от асинхронных. Литература вопрос тщательно обходит. Ответ лежит на поверхности: поле статора синхронного двигателя намного сильнее, ротор намагничен (либо фазный) поэтому вращение  не проскальзывает. Обеспечивается синхронность вращения вала питающему напряжению. Частота определена количества полюсов. Чтобы решить проблемы со стартом (см. выше), используются, например, такие методики:

  1. Вал синхронного двигателя с барабаном, снабженным беличьей клеткой, врубается при пуске через реостат. Образуется поле, как в асинхронном двигателе, захватывающее вал, служит стартовым рычагом. Обороты набраны – цепь разрывается. Реостат нужен погасить токи индукции. Выбирайте сопротивление в 7-8 больше, нежели номинал «беличьей клетки».
  2. Иногда заметите на роторе синхронного двигателя – не поверите – коллектор. Старт выполняется за счет щеток, в дальнейшем из работы выключаются.

И если подключение асинхронного двигателя звезда-треугольник изъедено сполна, синхронные двигатели обсуждаются мало. Встречаются нечасто.

Схемы мотор-редуктора — Bodine Electric Support

Главная > Поддержка > Литература > Схемы подключения

Вернись


Справочная таблица соединений для BLDC C1/D1 Стандартный 8-полюсный, 120° Comm Мотор-редукторы и двигатели 07410918

Справочная таблица соединений для выхода датчика Холла, фазный ток и состояние для 8-полюсного, 120-градусная коммутация BLDC Class Взрывозащищенные двигатели I/Div 1 и мотор-редукторы 34B6-FX с ЧЕТНЫМ числом ступеней редуктора (-FX2 или -FX4). Загрузите, чтобы просмотреть этот ресурс. Лит номер 07410918.B (последнее обновление 05/2021).

Загрузить PDF
Электронная почта


Справочная таблица подключений для BLDC C1/D1 Стандартный 8-полюсный, 120° Коммуникационный мотор-редуктор 07410949 (нечетные ступени) 8-полюсные мотор-редукторы BLDC с углом коммутации 120 градусов класса I/разд. 1 34B6-FX, взрывозащищенные, с нечетным числом ступеней редуктора (-FX1 или -FX3).

Загрузите, чтобы просмотреть этот ресурс. Лит номер 07410949.B (последнее обновление 05/2021).

Скачать PDF
Электронная почта


Схема подключения мотор-редукторов и двигателей PMDC 07410101

Загрузите для просмотра этого ресурса.

Скачать PDF
Электронная почта


Техническая информация и схемы соединений для мотор-редукторов и мотор-редукторов PMDC [неметрические]

Этот файл в формате pdf содержит схемы соединений для наших мотор-редукторов и мотор-редукторов PMDC. Выдержка из нашего последнего каталога продукции (S-16, 2008 г.). Пожалуйста, используйте наш «Быстрый поиск» на домашней странице для получения актуальной и актуальной информации.

Скачать PDF
Электронная почта


Техническая информация и схемы соединений для мотор-редукторов и двигателей переменного тока [неметрические]

Этот файл в формате pdf содержит схемы соединений для наших двигателей переменного тока и мотор-редукторов. Выдержка из нашего последнего каталога продукции (S-16, 2008 г.). Пожалуйста, используйте наш «Быстрый поиск» на домашней странице для получения актуальной и актуальной информации.

Скачать PDF
Электронная почта


Техническая информация и схемы соединений для мотор-редукторов и двигателей переменного и постоянного тока [метрическая система]

Схемы подключения для наших метрических продуктов AC и PMDC, перечисленных в нашем новом каталоге S-17. Наши метрические двигатели и мотор-редукторы были разработаны с учетом международных стандартов. Все двигатели и мотор-редукторы соответствуют стандарту IEC 60034-1, 2010. Актуальные чертежи САПР, спецификации и информацию о наличии можно найти на этом веб-сайте: http://www.bodine-electric.com/metricproducts

Скачать PDF
E -Mail


Схема подключения стоковых мотор-редукторов постоянного тока и двигателей с коммутацией 120° (22B4-60P) 07410825

Скачать для просмотра этого ресурса

Скачать PDF
Электронная почта


Схема подключения стоковых BLDC мотор-редукторов и двигателей с коммутацией 60° 07410268

Скачать для просмотра этого ресурса.

Загрузить PDF
Электронная почта


Схема подключения для 230/460 В переменного тока, 9-проводных, реверсивных, 3-фазных мотор-редукторов и двигателей 07410012

Нажмите «Загрузить PDF», чтобы просмотреть эту схему подключения. Чтобы убедиться, что это правильная схема подключения для вашего продукта Bodine, проверьте номер схемы подключения в таблице «Технические характеристики» на странице соответствующего товара/модели.

Загрузить PDF
Электронная почта


Схема подключения для 230 В переменного тока, 3-проводных, реверсивных, 3-фазных мотор-редукторов и двигателей 07410007

Нажмите «Загрузить PDF», чтобы просмотреть эту схему подключения. Чтобы убедиться, что это правильная схема подключения для вашего продукта Bodine, проверьте номер схемы подключения в таблице «Технические характеристики» на странице соответствующего товара/модели.

Скачать PDF
Электронная почта


/

MK Diamond — электрические схемы двигателя

Главная > Инструкции/документы

Электрические схемы электродвигателя MK Diamond

Нажмите, чтобы загрузить в формате PDF.

Часть МК # Модель   Характеристики двигателя   Номер схемы
06-550-10 Балдор Электропроводка 1 л.с., 1725 об/мин, 120 В, 1 фаза ВТС-50  
152759 Балдор Проводка 5 л. с., 2850 об/мин, 1 фаза, 50 Гц Скарификаторы 36J655Y994G1
154197 Балдор Проводка 5 л.с., 2850 об/мин, 3 фазы, 50 Гц   М3613Т-50
154292 Балдор Проводка 3/4 л.с. 110 В 60 Гц МК-660 Б31138Х
154633 Милуоки Проводка 20 А, 2 скорости Манта IV  
155350 Балдор Проводка 50 Гц МК-101 34К363И984Г1
155540 Милуоки Проводка 20 А, 2 скорости Манта IV  
157801-C-WD   Проводка   ВХ-4  
157801-C-WH   Привязь   ВХ-4  
157801-С Чанг     БХ-3, БХ 4, БД-1270, СДГ-7, ТХ-3  
157801-ИС Санко Проводка      
157801-Р Риоби Технические характеристики 120 В/15 А    
157801-TX3   Привязь 115 В, 15 А, переменный ток ТХ-3  
160107-М   Сборка МОТОР, 5 л. с., 230 В МК-ДДГ  
160107 Балдор Проводка 5 л.с., 3450 об/мин, 1 фаза, 60 Гц МК-ДДГ 36K686-2895G1
160501 Балдор Проводка 5 л.с., 230/360/480 В, 3 фазы, 50 Гц    
161099 Балдор Электропроводка 1,5 л. с., 1725 об/мин, 1 фаза, 60 Гц МК-2000, HP18-24 19E126W211G1
161099 Балдор Проводка 1,5 л.с., 1725 об/мин, 1PH, 60 Гц МК-2000 Одновольтовый 35U127L924G1
161179 Балдор Проводка 3 л.с., 1725 об/мин МК-СДГ 36Л397Т574Г1
161666 Лисон Проводка 0,75 л. с., 1800 об/мин, 115/208-230 В    
161672 Балдор Проводка .33 л.с., 1725 об/мин, 1 фаза, 60 Гц Комбинированная кабина, GP6, TS6, BD10  
161678 Лисон Проводка 0,33 л.с., 1 фаза, 1500 об/мин    
162077 Сога Технические характеристики 2 л. с., 220 В, 50 Гц    
162078 Сога Проводка 2 л.с., 115 В, 60 Гц МК-212  
163929 Балдор Проводка 1,5 л.с., 1140 об/мин, 1 фаза, 60 Гц   35U026P084G1
165675 Балдор Проводка 10 л. с. 230 В 60 Гц 1 фаза МК-1600 Л3712Т
165676 Балдор Электропроводка 10 л.с., 208–230/460 В, 3 фазы МК-5000 ЭМ3714Т
166785 Балдор Проводка 10 л.с. 575 В 60 Гц 3 фазы   ЭМ3714Т-5
167488 Балдор Проводка 20 л. с., 3520 об/мин, 3 фазы, 60 Гц   ЭМ4106Т
167489 Балдор Проводка 30 л.с., 1760 об/мин, 3 фазы, 60 Гц МК-4000Б  
167538 Балдор Проводка 10 л.с., 1460 об/мин, 3 фазы, 50 Гц    
167909 Балдор Проводка . 75 л.с., 1425 об/мин, 1PH, 50 Гц    
168022 Балдор Проводка 1,5 л.с., 3400 об/мин, 1PH, 60 Гц MK-100, MK-101, торцовочная пила BD, MK-1080 17E949X279G1
168022G-BRK Балдор Проводка 1,5 л.с., 3400 об/мин, 1PH, 60 Гц MK-100, MK-101, торцовочная пила BD, MK-1080, MK-2000 4F897R405G1
168022Г Балдор Проводка 1,5 л. с., 3400 об/мин, 1PH, 60 Гц   34F818R006G1
168022ГХ Дом на холме Проводка 1,5H МК-2000 HHAC56008
168022ГР Лисон Проводка 1,5 л.с.   М6К34ФЗ5А
168022GW Вег Проводка 1,5 л. с. 2P 56C 1 фаза 115/208-230 В 60 Гц   00156ES1B56C-S
168092 Балдор Проводка 2 л.с., 1725 об/мин, 1 фаза, 60 Гц    
168501 Балдор Технические характеристики 2 л.с., 230 В, 60 Гц, 3450 об/мин   34Л610С595Г1
168504 Балдор Проводка . 5 л.с. ГП8, ХП14 34Л621С602Г1
168773 Балдор Технические характеристики .33 л.с.    
169223G-WD Балдор Проводка     34М300Р006Г1
169223G_IR Балдор Проводка 1,5 л. с., 3400 об/мин, 1PH, 60 Гц МК-101Про24 ИР_34М300Р006Г1
169556 Балдор Проводка 1/3 л.с., 60 Гц, 1800 об/мин ГП6  
169745 Сога Проводка 115 В 60 Гц BD7, Откидная пила  
170063 Лисон Проводка 15 л. с. Масонатор  
170400 Балдор Проводка 10 л.с., 1425 об/мин, 1PH, 50 Гц   37М293Т233Г1
170990 Балдор Технические характеристики 9 л.с. 380 В 60 Гц    
171179 Лисон Электропроводка 1-1/2 л. с., 115 В, 60 Гц, 1725 об/мин СХ-3 113938
171256 Балдор Проводка 1HP, 1425 об/мин, 1PH, 50 Гц, ВТС-50 35Л593Т980Г1
172414-RW Балдор Проводка 5 л.с., 230 В, 1 фаза, 3450 об/мин   Л3608ТМ
172414   Сборка 5 л. с., 230 В, 1 фаза, 3450 об/мин МК-1605  
172422 Балдор Проводка 5 л.с., 230 В, 1 фаза, 1725 об/мин   Л3612ТМ
172424 Балдор Электропроводка 5 л.с., 230/460 В, 3 фазы, 1725 об/мин МК-5000 ЭМ3615Т
172426 Балдор Проводка 7,5 л. с., 230/460 В, 3 фазы, 1725 об/мин МК-5000 ЭМ3710Т
172554 ВЭГ Сборка 0 л.с. 230 В 60 Гц 1 фаза 1725 об/мин МК-5010  
172555   Проводка 10 л.с. 230 В 60 Гц 1 фаза 1725RP МК-1600  
172556   Сборка 10 л. с., 208–230/460 В, 3 фазы, 1725 об/мин МК-5010 Суперматик  
172557 ВЭГ Сборка 5 л.с., 208–230 В, 1 фаза, 1730 об/мин МК-5005  
172558 ВЭГ Сборка л.с., 230/460 В, 3 фазы, 1725 об/мин МК-5005Т  
172559 ВЭГ Сборка 7,5 л. с., 230/460 В, 3 фазы, 1725 об/мин МК-5007Т  
172561 ВЭГ Сборка 10 л.с., 208–230/460 В, 3 фазы, 1725 об/мин МК-1610Б  
172578 Балдор Проводка 1 л.с., 1725 об/мин, 1 фаза, 60 Гц   ВЛ3510Т
172660 Балдор Электропроводка 5 л. с., 220 В/50 Гц, 1 фаза, 1450 об/мин    
172661   Сборка 5 л.с., 220 В/50 Гц, 1 фаза, 1450 об/мин МК-5005S 50 Гц  
172707 Балдор Проводка 1/2 л.с., 115/230 В, 1725 об/мин Откидная пила BD EL11206
172708   Сборка 1/2 л. с., 115/230 В, 1725 об/мин, Откидная пила BD  
172709 Балдор   5 л.с., 3450 об/мин, 1 фаза, 60 Гц   КЛ3608ТМ
172721   Сборка 10 л.с., 400 В/50 Гц, 3 фазы, 1460 об/мин МК-5010Т  
172724 Балдор Проводка 10 л. с., 1460 об/мин, 3 фазы, 50 Гц,   ЭМ3714Т-58
172728 Балдор Проводка 2 л.с., 3450 об/мин, 1 фаза, 60 ч МК-1280 Л3515М
172729 ВЭГ Проводка 2 л.с. 230 В 3450 об/мин L3515M МК-2002  
172760 Дом на холме Технические характеристики 3/4 л. с., 120 В    
172773 ВЭГ Технические характеристики 10 л.с. 4P 213/5T 1 фаза 230 В 60 Гц   01018ES1DFD215T-W22
172774 ВЭГ Проводка 5HP 2P 182/4TC 1 фаза 208-230/460 В 60 Гц   00536ES1E184TC-W22
172775 ВЭГ Технические характеристики 5 л. с., 230/460 В, 3 фазы, 1725RP   00518ET3E184T-S
172776 ВЭГ Проводка 7,5 л.с., 230/460 В, 3 фазы, 1725 об/мин   00718ET3E213T-S
172777 ВЭГ Проводка 10 л.с., 230/460 В, 3 фазы, 1725 об/мин   01018ET3E215T-S
172796 Балдор Проводка 10 л. с., 1725 об/мин, 1 фаза, 60 Гц   Л1512Т
172900 ВЭГ Сборка МТР, 10 л.с., 575 В, 3 фазы, 1725 об/мин МК-5010Т  
172902 ВЭГ Проводка 10 л.с., 575 В, 3 фазы, 1725 об/мин   01018ЭТ3х315Т-С
172923 ВЭГ Сборка 1,5 л.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *