Какие бывают схемы подключения электродвигателей. Как правильно подключить трехфазный и однофазный двигатель. Чем отличаются асинхронные, синхронные и коллекторные двигатели. Какие особенности нужно учитывать при подключении разных типов электромоторов.
Основные типы электродвигателей и их схемы подключения
Существует несколько основных типов электродвигателей, которые различаются по конструкции и принципу работы:
- Асинхронные двигатели
- Синхронные двигатели
- Коллекторные двигатели
Каждый тип имеет свои особенности подключения и эксплуатации. Рассмотрим их подробнее.
Асинхронные двигатели
Асинхронные двигатели наиболее распространены в промышленности. Их главная особенность — скорость вращения ротора отстает от скорости вращения магнитного поля статора. Подключение асинхронных двигателей может осуществляться по схемам «звезда» или «треугольник».
Синхронные двигатели
В синхронных двигателях скорость вращения ротора в точности совпадает с частотой вращения магнитного поля статора. Они обладают высоким КПД, но сложнее в запуске. Для пуска синхронных двигателей часто используются специальные схемы с пусковыми обмотками.
Коллекторные двигатели
Коллекторные двигатели широко применяются в бытовой технике. Они могут работать как от постоянного, так и от переменного тока. Подключение коллекторных двигателей обычно осуществляется по двух- или четырехпроводной схеме.
Схемы подключения трехфазных электродвигателей
Трехфазные асинхронные двигатели — самый распространенный тип электродвигателей в промышленности. Для их подключения используются две основные схемы:
Схема «звезда»
При подключении по схеме «звезда» концы обмоток соединяются в общую точку, а начала подключаются к трем фазам сети. Эта схема применяется при напряжении сети 380 В.
Схема «треугольник»
В схеме «треугольник» обмотки соединяются последовательно в замкнутый контур, а в места соединений подключаются фазы сети. Такая схема используется при напряжении 220 В.
Переключение со «звезды» на «треугольник» позволяет изменять пусковые характеристики двигателя.
Особенности подключения однофазных двигателей
Однофазные двигатели широко применяются в бытовой технике. Их подключение имеет ряд особенностей:
- Необходимо использование пусковой обмотки или конденсатора для создания вращающегося магнитного поля
- Часто применяются схемы с тремя выводами — для рабочей и пусковой обмоток
- Направление вращения меняется переключением концов одной из обмоток
Как определить выводы обмоток двигателя
Чтобы правильно подключить двигатель, необходимо определить выводы его обмоток. Для этого используются следующие методы:
- Проверка сопротивления обмоток мультиметром
- Прозвонка обмоток
- Проверка по маркировке на корпусе двигателя
При отсутствии маркировки приходится экспериментировать, соблюдая меры предосторожности.
Реверс электродвигателя: схемы и особенности
Реверс (изменение направления вращения) двигателя осуществляется различными способами в зависимости от его типа:
- Для трехфазных двигателей — переключением любых двух фаз питания
- Для однофазных — изменением подключения пусковой обмотки
- Для коллекторных — сменой полярности питания обмоток ротора или статора
При реверсе необходимо учитывать особенности конкретного двигателя и механизма, который он приводит в движение.
Защита электродвигателей при подключении
Для обеспечения надежной и безопасной работы электродвигателей применяются различные виды защиты:
- Тепловая защита от перегрузки
- Защита от короткого замыкания
- Защита от обрыва фазы
- Защита от перенапряжения и пониженного напряжения
Выбор конкретных устройств защиты зависит от типа двигателя и условий его эксплуатации.
Частотное регулирование скорости электродвигателей
Современным способом управления скоростью вращения асинхронных двигателей является частотное регулирование. Оно позволяет:
- Плавно изменять скорость в широком диапазоне
- Обеспечивать экономию электроэнергии
- Улучшать динамические характеристики привода
Для частотного регулирования применяются специальные преобразователи частоты, подключаемые между сетью и двигателем.
Типичные ошибки при подключении электродвигателей
При самостоятельном подключении двигателей часто допускаются следующие ошибки:
- Неправильное определение выводов обмоток
- Ошибки в схеме подключения
- Несоответствие напряжения питания параметрам двигателя
- Отсутствие или неправильный выбор защиты
- Неверное подключение заземления
Чтобы избежать этих ошибок, следует внимательно изучить документацию на двигатель и соблюдать правила электробезопасности.
Типовые схемы подключения электродвигателя — 125 фото типовых схем подключения через пускатель
В настоящее время количество электрических приборов в каждом доме просто огромно. Большинство данных вещей работает при помощи помещенного в систему электродвигателя, который и запускает любой прибор. Однако при выходе из строя приборы просто выбрасываются в большинстве своем.
Мало кому известно, что даже после прекращения работы самого прибора электродвигатель, который в нем находится все еще остается рабочим. Подключив его к другому прибору вы можете получить дополнительный срок службы и пользу от двигателя.
Однако для подключения к тому или иному устройству необходимо точно знать, какая из схем электродвигателя имеет место быть, это помогут сделать фото в сети разных типов.
В данном материале мы поговорим о том, какие типовые схемы подключения электрических двигателей бывают.
Краткое содержимое статьи:
Какой двигатель подключать самостоятельно
Так как схем подключения электродвигателей очень много и большинство из них сложны для домашних мастеров, как, например, структурная схема электродвигателя, не все двигатели получится подключить дома.
Однако несколько вариантов для подключения своими руками все же имеется:
- Асинхронный трехфазный двигатель, обмотка которого выполнена в виде звездочки или треугольника.
- Тот же тип, но с одной фазой подключения.
- И коллекторный аппарат с щеточным вариантом подключения.
Для того, чтобы подключать остальные разновидности электоромоторов потребуется специализированное оборудование. Да и знания в этой области нужны более обширные, чем есть у каждого домашнего самоделкина.
Для того, чтобы работал любой электрический прибор домашнего использования необходимо иметь однофазный двигатель. Так же подойдет и трехфазная модель, однако в любом случае он может поделиться мощностью не более 3 кВт.
Многие мастера для подключения в гаражах и мастерских данных вариантов приборов делают трехфазную сеть. Это позволяет «выжать» из мотора наибольшую мощность для работы приборов.
Но и этого хватает на получение только 5-10 кВт мощности, чего в принципе достаточно для работ.
Какие знания потребуются
В школе на уроках физики все мы изучали действие электродвигателя и его устройство. Но навряд ли по данным знаниям можно понять, как подключать его к сети. Да и школьные знания уже давно подзабыты.
Именно поэтому есть определенные правила и теоретические знания, которые необходимы будут в этом процессе. Вот, что потребуется изучить:
- В первую очередь потребуется изучить всю конструкцию электродвигателей разных моделей.
- Так же необходимо будет узнать, какие есть варианты схем способов подключения двигателя и для чего необходима обмотка.
- Еще одно, что важно знать в таком случае — устройство вспомогательных компонентов двигателя.
Ранее все данные можно было узнать о двигателе по прикрепленной на нем табличке. Там даже указывалась схема подключения прибора.
Однако в настоящее время не на всех моделях можно отыскать даже номер и серию мотора. Таким образом, все это придется узнавать из справочника или в сети и с применением мультиметра.
Прибор укажет на наличие или отсутствие короткого замыкания по корпусу устройства.
Популярная типовая схема подключения
Самый простой вид типовой схемы подключения электродвигателя считается коллекторный тип со щетками. Такой вариант наиболее распространен из-за большого количества приборов с данным вариантом двигателя в доме.
Данный вид двигателя характерен для стиральных и посудомоечных машин, кофеварок и прочих приборов, в которых ограниченное время работы.
К однофазной сети очень просто подключить именно такой вариант электромотора. Процесс работы осуществляется, когда при нажатой кнопке пуска происходит замыкание контакта.
Таким образом, пока кнопка остается в нажатом состоянии, двигатель работает. Так же возможно наличие в приборе сразу двух слоев обмотки. Это позволит при переключении режима работать устройству при пониженном вращении.
Также при подключении коллекторного двигателя обращайте внимание на качество щеток. Ну а далее важно только учесть схемы подключения фаз двигателя.
Фото схем подключения электродвигателя
Генератор из асинхронного двигателя: схема, таблица, инструкция, как сделать своими руками + фото от мастера!
Солнечная батарея своими руками — пошаговая инструкция как изготовить и провести монтаж солнечной батареи в домашних условиях (фото и видео-инструкция)
Как подобрать солнечную электростанцию: готовые решения, принцип работы, как выбрать и установить своими руками (фото + видео-инструкция)
https://www.youtube.com/watch?v=PjZextDphQU
youtube.com/embed/hwvm5GXfPtc?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>Вам понравилась статья? Поделитесь 😉
типы моторов, их особенности и инструкция по работе
Вначале рассмотрим разницу между устройствами 380 и 220 вольт. Настолько очевидна, насколько непонятна непосвященным. Привыкли, каждый домашний прибор подключается двумя проводами, один является фазой, второй – схемной землей. Большая часть техники заземляется. Если речь касается однофазных двигателей, делается на случай пробоя обмотки-корпус. Фаза появится на кожухе – хорошего мало. Рассмотрим способы подключения электродвигателей согласно типу, начнем количеством фаз – одна или три.
Трехфазные и однофазные двигатели
Схемы подключения двигателя звезда, треугольник
Предваряя обсуждение подключения двигателя звезда/треугольник, начитаем теорию. Трехфазный и однофазный двигатели снабжены иногда тремя проводами подключения. Бросьте далеко ходить. Возьмем следующие два случая:
- Трехфазный двигатель имеет внутреннюю коммутацию обмоток схемой звезда. Полюсы снабжены одной общей точкой. Три фазы подключаются к противоположным концам обмоток. Катушки абсолютно идентичные, одинаковые. Внутри создается вращающееся движущееся поле, за счет которого движется вал. Ротор представлен барабаном силумина с медными прожилками. Ток не подводится, магнитные полюсы образуют путем наведенных токов. Захватываются вращающим полем ротора, начинается движение. Особенностью конструкции назовем невозможность (без специальных мер) подключения сети 230 вольт. Потребовалось бы соединить обмотки схемой треугольника, сделать невозможно. Разумеется, статор можно вскрыть, найти общую точку, сделать три отвода, разорвав контакты меж катушками. Второй особенностью двигателя является отсутствие нулевого провода. Многих положение дел ставит в тупик – куда девается ток? Заряды двигаются по проводам меж фазами. Закон электротехники гласит: для подключения трех фаз нагрузке необязательно иметь общий провод, если потребление трех ветвей одинаковое. В противном случае понадобится нейтраль предоставить. Жизненный пример: допустим, нужно подключить на 380 вольт электрочайник. Маразм? Каждая фаза амплитудой 230 вольт, рабочие хотят кипятку – невозможно отказать. Берем одну из фаз, другой вывод вилки вешаем на нейтраль. Учтите, фазы в пределах одного потребителя нужно нагружать поровну (грубо говоря, по чайнику каждой линии дайте), иначе негативные последствия коснутся питающего трансформатора подстанции.
Электрические коммутации двигателя
- Однофазный двигатель может иметь три вывода. Заземление ни при чем, идет отдельно ушком на корпус. Что касается трех выводов, питают пусковую (либо конденсаторную), рабочую обмотку. Одни провод общий, будет схемная земля. Без сего двигатель работать откажется. Правда, трехфазный двигатель проще? Потому используют производства. Что касается подключения однофазного двигателя, одна катушка обычно имеет большее сопротивление. Разница значительнее, двукратной показывает пусковую обмотку. Сопротивление большего номинала. Нужно параллельно повесить конденсатор (емкость определяется, например, минимальным потребляемым током), когда вал раскрутится, цепь обрывается. Иначе, спустя промежуток времени, пусковая обмотка выйдет из строя вследствие чрезмерного перегрева. Если двигатель конденсаторный (бифилярный), цепь с конденсатором работает постоянно. Нормальный режим, благодаря сдвигу фаз, созданному реактивным элементом, образуется вращающееся поле статора нужной формы.
Итак, лежит два двигателя, видом похожие, подключать нужно разным образом. Важной частью корпуса выступает схема подключения электродвигателя. Расположена на шильдике, выбита на кожухе. Становится понятно, на сколько фаз рассчитан мотор, как врубить в цепь. Информация отсутствует – попробуем доработать недочет своими руками. Понадобится китайский тестер.
У трехфазного двигателя три контакта попарно будут давать одинаковое сопротивление, равное удвоенному значению номинала обмотки. Мотор 230 вольт результаты измерений даст неодинаковые:
- Самый большой показатель тестера меж фазными концами. Напряжение 220 вольт подается напрямую одному, другому через конденсатор. Емкость сильно зависит от мощности, скорости вращения вала. Параметр определяет средняя нагрузка вала в рабочем режиме.
- Наименьшее значение образуется меж концами рабочей обмотки.
- Третий номинал занимает промежуточное положение. Сумма с сопротивлением рабочей обмотки равняется первому пункту списка.
Нейтраль присоединяем меж обмотками, отводит ток дисбаланса. Толщина проводки вдвое меньше, нежели фаз. Методика отключения в нужный момент пусковой обмотки использует пускозащитные реле. Вручную не контролируют.
Вопрос приобретения узла тесно касается использования специальных справочников. Чужеродное пускозащитное реле с данным типом электродвигателя использовать категорически нельзя. Велика вероятность некорректной работы, выхода прибора из строя. Практически умельцы вручную обрывают цепь. Способ неправильный, имеет право существовать.
Добавим, что пропадание одной фазы может негативно сказаться на некоторых типах моторов. Экспериментируя с агрегатом, реализуя подключение двигателя звезда-треугольник, старайтесь избегать ситуаций. Принято осуществлять пуск специальными защитными автоматами, вырубающими питание при возникновении опасности.
Синхронные, асинхронные, коллекторные двигатели
Помимо количества фаз видим конструктивный признак. С точки зрения потребителя момент является главным. Коллекторные двигатели используются бытовой техникой преимущественно. Поставить на замену асинхронные с аналогичными параметрами, нерентабельно. Коллекторный двигатель получается намного меньшего размера (зато перегревается сильнее). Важно определить тип. Хотя по большому счету трехфазные электродвигатели асинхронного типа являются доминирующим звеном сельскохозяйственных, гаражных, других применений. Вопрос питания обсуждается отдельно.
Обсудим три типа двигателей:
Электродвигатель
- Коллекторные снабжают двумя-четырьмя выводами. Последнее делает возможным реверс. Поменяем полярность включения статора, ротора. Коллекторные двигатели отличаются возможность работы от переменного и постоянного тока. В последнем случае характеристики получаются оптимальными. Становится возможным благодаря постоянно переключающимся рабочим обмоткам ротора (секции коллектора). Поле статора постоянное. Главное, чтобы присутствовала нужная полярность. Схема подключения электродвигателя постоянного тока напоминает переменный. Скорость вращения вала регулируется амплитудой питающего напряжения. Либо берется делитель, сформированный силовым ключом, либо отсекается часть цикла синусоиды. Эффект получается схожий: падает действующее значение напряжения.
- Асинхронные двигатели по факту доминирующими в промышленности. Реверс образуется изменением полярности включения пусковой обмотки однофазных двигателей, коммутацией последовательности фаз трехфазных. Изменение скорости реализуется аналогичным путем. Варьирование амплитуды питающего напряжения. Асинхронные двигатели обладают плохой приспособленностью к смене скоростей. Очередная причина редкого применения в бытовой технике. Пришла пора сказать: коллекторные двигатели обычно рассчитаны на одну фазу, асинхронные питаются напряжением 380 вольт. Расстановка сил образуется, благодаря соответствующей коммутации обмоток. На практике реализуется подключением электродвигателя треугольником, звездой. Удается воспроизвести вращающееся поля внутри статора. Почему схема подключения асинхронного двигателя звездой непригодна напряжению 230 вольт. Приходится создать сдвиги фаз, становится возможным для схемы треугольника. На одну обмотку подается сетевое напряжение 230 вольт, на вторую – сдвинутое конденсатором на 90 градусов, на третьей образуется разница, изменяемая по нужному закону. Далеко от идеала: подключения электродвигателя звездой и треугольником неравноценны.
Синхронный двигатель
- Синхронные двигатели называются за вращение вала по закону изменения питающего напряжения. В бытовой технике, промышленности используется редко, исключая область сервоприводов. Асинхронные двигатели названы за скорость вращения вала, отличающуюся от частоты питающего напряжения. Вал проскальзывает, эффект используется регулировать обороты. Синхронные двигатели стоят особняком, сфера использования ограничена. Чем отличаются таким особенным. Хороший КПД. Ротор выполняется по схеме с токосъемником, лишен щеток, отсутствует необходимость разделения поверхности сегментами (ток поступает постоянно). Вроде делает возможным применение, где коллекторные моторы пасуют. Замечены некоторые проблемы. Трехфазный синхронный двигатель невозможно запустить вращением фаз статора. Вал за счет инерционности не поддается полю. Приходится применять изыски раскрутки. Тема интересная. Ротор синхронного двигателя питается постоянным током, обмотки – одной-тремя фазами, определяется типом мотора.
Давайте пойме отличие синхронных двигателей от асинхронных. Литература вопрос тщательно обходит. Ответ лежит на поверхности: поле статора синхронного двигателя намного сильнее, ротор намагничен (либо фазный) поэтому вращение не проскальзывает. Обеспечивается синхронность вращения вала питающему напряжению. Частота определена количества полюсов. Чтобы решить проблемы со стартом (см. выше), используются, например, такие методики:
- Вал синхронного двигателя с барабаном, снабженным беличьей клеткой, врубается при пуске через реостат. Образуется поле, как в асинхронном двигателе, захватывающее вал, служит стартовым рычагом. Обороты набраны – цепь разрывается. Реостат нужен погасить токи индукции. Выбирайте сопротивление в 7-8 больше, нежели номинал «беличьей клетки».
- Иногда заметите на роторе синхронного двигателя – не поверите – коллектор. Старт выполняется за счет щеток, в дальнейшем из работы выключаются.
И если подключение асинхронного двигателя звезда-треугольник изъедено сполна, синхронные двигатели обсуждаются мало. Встречаются нечасто.
Схемы мотор-редуктора — Bodine Electric Support
Главная > Поддержка > Литература > Схемы подключения
Вернись
Справочная таблица соединений для BLDC C1/D1 Стандартный 8-полюсный, 120° Comm Мотор-редукторы и двигатели 07410918
Справочная таблица соединений для выхода датчика Холла, фазный ток и состояние для 8-полюсного, 120-градусная коммутация BLDC Class Взрывозащищенные двигатели I/Div 1 и мотор-редукторы 34B6-FX с ЧЕТНЫМ числом ступеней редуктора (-FX2 или -FX4). Загрузите, чтобы просмотреть этот ресурс. Лит номер 07410918.B (последнее обновление 05/2021).
Загрузить PDF
Электронная почта
Справочная таблица подключений для BLDC C1/D1 Стандартный 8-полюсный, 120° Коммуникационный мотор-редуктор 07410949 (нечетные ступени) 8-полюсные мотор-редукторы BLDC с углом коммутации 120 градусов класса I/разд. 1 34B6-FX, взрывозащищенные, с нечетным числом ступеней редуктора (-FX1 или -FX3).
Загрузите, чтобы просмотреть этот ресурс. Лит номер 07410949.B (последнее обновление 05/2021). Скачать PDF
Электронная почта
Схема подключения мотор-редукторов и двигателей PMDC 07410101
Загрузите для просмотра этого ресурса.
Скачать PDF
Электронная почта
Техническая информация и схемы соединений для мотор-редукторов и мотор-редукторов PMDC [неметрические]
Этот файл в формате pdf содержит схемы соединений для наших мотор-редукторов и мотор-редукторов PMDC. Выдержка из нашего последнего каталога продукции (S-16, 2008 г.). Пожалуйста, используйте наш «Быстрый поиск» на домашней странице для получения актуальной и актуальной информации.
Скачать PDF
Электронная почта
Техническая информация и схемы соединений для мотор-редукторов и двигателей переменного тока [неметрические]
Этот файл в формате pdf содержит схемы соединений для наших двигателей переменного тока и мотор-редукторов. Выдержка из нашего последнего каталога продукции (S-16, 2008 г.). Пожалуйста, используйте наш «Быстрый поиск» на домашней странице для получения актуальной и актуальной информации.
Скачать PDF
Электронная почта
Техническая информация и схемы соединений для мотор-редукторов и двигателей переменного и постоянного тока [метрическая система]
Схемы подключения для наших метрических продуктов AC и PMDC, перечисленных в нашем новом каталоге S-17. Наши метрические двигатели и мотор-редукторы были разработаны с учетом международных стандартов. Все двигатели и мотор-редукторы соответствуют стандарту IEC 60034-1, 2010. Актуальные чертежи САПР, спецификации и информацию о наличии можно найти на этом веб-сайте: http://www.bodine-electric.com/metricproducts
Скачать PDF
E -Mail
Схема подключения стоковых мотор-редукторов постоянного тока и двигателей с коммутацией 120° (22B4-60P) 07410825
Скачать для просмотра этого ресурса
Скачать PDF
Электронная почта
Схема подключения стоковых BLDC мотор-редукторов и двигателей с коммутацией 60° 07410268
Скачать для просмотра этого ресурса.
Загрузить PDF
Электронная почта
Схема подключения для 230/460 В переменного тока, 9-проводных, реверсивных, 3-фазных мотор-редукторов и двигателей 07410012
Нажмите «Загрузить PDF», чтобы просмотреть эту схему подключения. Чтобы убедиться, что это правильная схема подключения для вашего продукта Bodine, проверьте номер схемы подключения в таблице «Технические характеристики» на странице соответствующего товара/модели.
Загрузить PDF
Электронная почта
Схема подключения для 230 В переменного тока, 3-проводных, реверсивных, 3-фазных мотор-редукторов и двигателей 07410007
Нажмите «Загрузить PDF», чтобы просмотреть эту схему подключения. Чтобы убедиться, что это правильная схема подключения для вашего продукта Bodine, проверьте номер схемы подключения в таблице «Технические характеристики» на странице соответствующего товара/модели.
Скачать PDF
Электронная почта
/
MK Diamond — электрические схемы двигателя
Главная > Инструкции/документы
Электрические схемы электродвигателя MK Diamond
Нажмите, чтобы загрузить в формате PDF.