Как работают тиристорные регуляторы мощности для электродрелей. Какие схемы используются для регулировки оборотов. Почему тиристоры эффективны для управления коллекторными двигателями. Как собрать простой регулятор своими руками.
Принцип работы тиристорного регулятора мощности
Тиристорный регулятор мощности позволяет плавно изменять напряжение, подаваемое на электродвигатель дрели, тем самым регулируя ее обороты. Основой такого регулятора является тиристор — полупроводниковый прибор, способный пропускать ток только в одном направлении при подаче управляющего сигнала.
Принцип действия тиристорного регулятора основан на фазовом управлении напряжением. При этом тиристор открывается не в начале каждого полупериода сетевого напряжения, а с некоторой задержкой. Чем больше задержка открытия тиристора, тем меньшее напряжение подается на двигатель дрели.
Схемы тиристорных регуляторов для электродрелей
Для регулировки оборотов электродрелей чаще всего используются следующие схемы тиристорных регуляторов:

- Однополупериодная схема на одном тиристоре — самая простая, но обеспечивает регулировку только в небольшом диапазоне
- Двухполупериодная схема на двух тиристорах — позволяет плавно регулировать обороты во всем диапазоне
- Схема с симистором — наиболее современный вариант, требует меньше компонентов
Рассмотрим подробнее принципиальную схему двухполупериодного регулятора на двух тиристорах:
Преимущества тиристорных регуляторов для электроинструмента
Тиристорные регуляторы имеют ряд важных преимуществ для применения в электроинструменте:
- Плавная регулировка оборотов во всем диапазоне
- Высокий КПД и низкие потери энергии
- Компактность и легкость конструкции
- Надежность и долговечность
- Возможность точной настройки под конкретный инструмент
Именно поэтому тиристорные регуляторы широко применяются в современных моделях электродрелей, шуруповертов, болгарок и другого электроинструмента.
Особенности применения тиристорных регуляторов в электродрелях
При использовании тиристорных регуляторов в электродрелях необходимо учитывать следующие особенности:

- Регулятор должен быть рассчитан на соответствующую мощность двигателя дрели
- Необходимо обеспечить хороший теплоотвод от силовых элементов
- Схема должна быть защищена от помех и перенапряжений в сети
- Желательно применение плавного пуска для снижения пусковых токов
- Регулятор должен обеспечивать стабильные обороты под нагрузкой
При правильном подборе и настройке тиристорный регулятор позволяет значительно расширить функциональность электродрели.
Сборка простого тиристорного регулятора своими руками
Для самостоятельной сборки простого тиристорного регулятора оборотов электродрели потребуются следующие компоненты:
- Тиристор КУ202Н или аналогичный на ток 5-10А
- Диод КД202А
- Конденсатор 0.1 мкФ
- Резисторы 10 кОм, 100 Ом
- Переменный резистор 22-47 кОм
- Радиатор для тиристора
Схема собирается на монтажной плате. Важно обеспечить надежную изоляцию всех токоведущих частей. После проверки работоспособности регулятор можно установить в корпус дрели.
Настройка и эксплуатация тиристорного регулятора
После сборки регулятор необходимо правильно настроить:

- Установите минимальное сопротивление переменного резистора
- Подключите регулятор к дрели и включите питание
- Плавно увеличивайте сопротивление до начала вращения двигателя
- Проверьте весь диапазон регулировки от минимальных до максимальных оборотов
- При необходимости подберите оптимальное значение емкости конденсатора
В процессе эксплуатации следите за нагревом регулятора. При сильном нагреве необходимо улучшить теплоотвод или снизить нагрузку на дрель.
Меры безопасности при работе с тиристорными регуляторами
При самостоятельном изготовлении и использовании тиристорных регуляторов необходимо соблюдать следующие меры безопасности:
- Используйте качественные изолированные провода и разъемы
- Надежно изолируйте все токоведущие части регулятора
- Не прикасайтесь к элементам схемы при включенном питании
- Не превышайте допустимую мощность нагрузки регулятора
- При появлении запаха гари немедленно отключите устройство
- Не используйте самодельные регуляторы в сырых помещениях
Соблюдение этих простых правил позволит безопасно эксплуатировать тиристорный регулятор в составе электроинструмента.

Тиристорный регулятор мощности своими руками схема
В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.
В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.
Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.
Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.
Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.
Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.
Как совершает свою работу тиристор?
Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.
Тиристор обладает сразу тремя выводами тока:
Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.
Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.
Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.
Область использования тиристорных устройств
В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.
Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?
Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.
Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.
Как работает такое устройство?
Описанные ниже характеристики будет соответствовать большинству схем.
- Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
- Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.
При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.
Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).
В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.
Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.
Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.
Тиристорный регулятор напряжения своими руками
Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.
Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.
Способы регулирования фазового напряжения в сети
- Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
- Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
- Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.
На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.
Схемы на тиристорах
Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.
Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.
- VD — КД209 (либо близкие по его общим характеристикам).
- R 1 — сопротивление с особым номиналом в 15 кОм.
- R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
- Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).
Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.
В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже
В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте – оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция – регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.
К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.
Вы также можете заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.
Область применения тиристорных регуляторов
Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в принципе работы тиристора, ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.
Как работает тиристор?
Тиристор – это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:
Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод – катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.
Вам, скорее всего, не всё понятно? Не стоит отчаиваться – ниже будет подробно описан процесс работы готового устройства.
Область применения тиристорных регуляторов
В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.
Можно ли регулировать обороты двигателя?
Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют «болгарками», и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.
Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.
Схема тиристорного регулятора мощности на одном и двух тиристорах
Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.
Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.
Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.
Как это работает?
Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора
Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?
Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.
Заштрихованная область – это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.
Разберемся, как работает конкретно наш тиристорный регулятор мощности
Оговорим заранее, что вместо слов «положительная» и «отрицательная» будут использованы «первая» и «вторая» (полуволна).
Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для ограничения тока управления, а R1 и R2 – для термостабилизации схемы.
Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.
Применение регулятора в быту и техника безопасности
Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.
Испытанная временем схема регулирования тока мощных потребителей отличается простотой в наладке, надежностью в эксплуатации и широкими потребительскими возможностями. Она хорошо подходит для управления режимом сварки, для пуско-зарядных устройств и для мощных узлов автоматики.
Принципиальная схема
При питании мощных нагрузок постоянным током часто применяется схема (рис.1) выпрямителя на четырех силовых вентилях. Переменное напряжение подводится к одной диагонали «моста», выходное постоянное (пульсирующее) напряжение снимается с другой диагонали. В каждом полупериоде работает одна пара диодов (VD1-VD4 или VD2-VD3).
Это свойство выпрямительного «моста» существенно: суммарная величина выпрямленного тока может достигать удвоенной величины предельного тока для каждого диода. Предельное напряжение диода не должно быть ниже амплитудного входного напряжения.
Поскольку класс напряжения силовых вентилей доходит до четырнадцатого (1400 В), с этим для бытовой электросети проблем нет. Существующий запас по обратному напряжению позволяет использовать вентили с некоторым перегревом, с малыми радиаторами (не злоупотреблять!).
Рис. 1. Схема выпрямителя на четырех силовых вентилях.
Внимание! Силовые диоды с маркировкой «В» проводят ток, «подобно» диодам Д226 (от гибкого вывода к корпусу), диоды с маркировкой «ВЛ» – от корпуса к гибкому выводу.
Использование вентилей различной проводимости позволяет выполнить монтаж всего на двух двойных радиаторах. Если же с корпусом устройства соединить «корпуса» вентилей «ВЛ» (выход «минус»), то останется изолировать всего один радиатор, на котором установлены диоды с маркировкой «В». Такая схема проста в монтаже и «наладке», но возникают трудности, если приходится регулировать ток нагрузки.
Если со сварочным процессом все понятно (присоединять «балласт»), то с пусковым устройством возникают огромные проблемы. После пуска двигателя огромный ток не нужен и вреден, поэтому необходимо его быстро отключить, так как каждое промедление укорачивает срок службы батареи (нередко батареи взрываются!).
Очень удобна для практического исполнения схема, показанная на рис.2, в которой функции регулирования тока выполняют тиристоры VS1, VS2, в этот же выпрямительный мост включены силовые вентили VD1, VD2. Монтаж облегчается тем, что каждая пара «диод-тиристор» крепится на своем радиаторе. Радиаторы можно применить стандартные (промышленного изготовления).
Другой путь – самостоятельное изготовление радиаторов из меди, алюминия толщиной свыше 10 мм. Для подбора размеров радиаторов необходимо собрать макет устройства и «погонять» его в тяжелом режиме. Неплохо, если после 15-минутной нагрузки корпуса тиристоров и диодов не будут «обжигать» руку (напряжение в этот момент отключить!).
Корпус устройства необходимо выполнить так, чтобы обеспечивалась хорошая циркуляция нагретого устройством воздуха. Не помешает установка вентилятора, который «помогает» прогонять воздух снизу вверх. Удобны вентиляторы, устанавливаемые в стойках с компьютерными платами либо в «советских» игровых автоматах.
Рис. 2. Схема регулятора тока на тиристорах.
Возможно выполнение схемы регулируемого выпрямителя полностью на тиристорах (рис.3). Нижняя (по схеме) пара тиристоров VS3, VS4 запускается импульсами от блока управления.
Импульсы приходят одновременно на управляющие электроды обоих тиристоров. Такое построение схемы «диссонирует» с принципами надежности, но время подтвердило работоспособность схемы («сжечь» тиристоры бытовая электросеть не может, поскольку они выдерживают импульсный ток 1600 А).
Тиристор VS1 (VS2) включен как диод – при положительном напряжении на аноде тиристора через диод VD1 (или VD2) и резистор R1 (или R2) на управляющий электрод тиристора будет подан отпирающий ток. Уже при напряжении в несколько вольт тиристор откроется и до окончания полуволны тока будет проводить ток.
Второй тиристор, на аноде которого было отрицательное напряжение, не будет запускаться (это и не нужно). На тиристоры VS3 и VS4 из схемы управления приходит импульс тока. Величина среднего тока в нагрузке зависит от моментов открывания тиристоров – чем раньше приходит открывающий импульс, тем большую часть периода соответствующий тиристор будет открыт.
Рис. 3. Схемы регулируемого выпрямителя полностью на тиристорах.
Открывание тиристоров VS1, VS2 через резисторы несколько «притупляет» схему: при низких входных напряжениях угол открытого состояния тиристоров оказывается малым – в нагрузку проходит заметно меньший ток, чем в схеме с диодами (рис.2).
Таким образом, данная схема вполне пригодна для регулировки сварочного тока по «вторичке» и выпрямления сетевого напряжения, где потеря нескольких вольт несущественна.
Эффективно использовать тиристорный мост для регулирования тока в широком диапазоне питающих напряжений позволяет схема, показанная на рис.4,
Устройство состоит из трех блоков:
- силового;
- схемы фазоимпульсного регулирования;
- двухпредельного вольтметра.
Трансформатор Т1 мощностью 20 Вт обеспечивает питание блока управления тиристорами VS3 и VS4 и открывание «диодов» VS1 и VS2. Открывание тиристоров внешним блоком питания эффективно при низком (автомобильном) напряжении в силовой цепи, а также при питании индуктивной нагрузки.
Рис. 4. Тиристорный мост для регулировки тока в широком диапазоне.
Рис. 5. Принципиальная схема блока управления тиристорами.
Открывающие импульсы тока с 5-вольтовых обмоток трансформатора подводятся в противофазе к управляющим электродам VS1, VS2. Диоды VD1, VD2 пропускают к управляющим электродам только положительные полуволны тока.
Если фазировка открывающих импульсов «подходит», то тиристорный выпрямительный мост будет работать, иначе тока в нагрузке не будет.
Этот недостаток схемы легко устраним: достаточно повернуть наоборот сетевую вилку питания Т1 (и пометить краской, как нужно подключать вилки и клеммы устройств в сеть переменного тока). При использовании схемы в пуско-зарядном устройстве заметно увеличение отдаваемого тока по сравнению со схемой рис.3.
Очень выгодно наличие слаботочной цепи (сетевого трансформатора Т1). Разрывание тока выключателем S1 полностью обесточивает нагрузку. Таким образом, прервать пусковой ток можно маленьким концевым выключателем, автоматическим выключателем или слаботочным реле (добавив узел автоматического отключения).
Это очень существенный момент, поскольку разрывать сильноточные цепи, требующие для прохождения тока хорошего контакта, намного труднее. Мы не случайно вспомнили о фазировке трансформатора Т1. Если бы регулятор тока был «встроен» в зарядно-пусковое устройство или в схему сварочного аппарата, то проблема фазировки была бы решена в момент наладки основного устройства.
Наше устройство специально выполнено широкопрофильным (как пользование пусковым устройством определяется сезоном года, так и сварочные работы приходится вести нерегулярно). Приходится управлять режимом работы мощной электродрели и питать нихромовые обогреватели.
На рис.5 показана схема блока управления тиристорами. Выпрямительный мостик VD1 подает в схему пульсирующее напряжение от 0 до 20 В. Это напряжение через диод VD2 подводится к конденсатору С1, обеспечивается постоянное напряжение питания мощного транзисторного «ключа» на VT2, VT3.
Пульсирующее напряжение через резистор R1 подводится к параллельно соединенным резистору R2 и стабилитрону VD6. Резистор «привязывает» потенциал точки «А» (рис.6) к нулевому, а стабилитрон ограничивает вершины импульсов на уровне порога стабилизации. Ограниченные импульсы напряжения заряжают конденсатор С2 для питания микросхемы DD1.
Эти же импульсы напряжения воздействуют на вход логического элемента. При некотором пороге напряжения логический элемент переключается. С учетом инвертирования сигнала на выходе логического элемента (точка «В») импульсы напряжения будут кратковременными -около момента нулевого входного напряжения.
Рис. 6. Диаграмма импульсов.
Следующий элемент логики инвертирует напряжение «В», поэтому импульсы напряжения «С» имеют значительно большую длительность. Пока действует импульс напряжения «С», через резисторы R3 и R4 происходит заряд конденсатора C3.
Экспоненциально нарастающее напряжение в точке «Е», в момент перехода через логический порог, «переключает» логический элемент. После инвертирования вторым логическим элементом высокому входному напряжению точки «Е» соответствует высокое логическое напряжение в точке «F».
Двум различным величинам сопротивления R4 соответствуют две осциллограммы в точке «Е»:
- меньшее сопротивление R4 – большая крутизна – Е1;
- большее сопротивление R4 – меньшая крутизна – Е2.
Следует обратить внимание также на питание базы транзистора VT1 сигналом «В», во время снижения входного напряжения до нуля транзистор VT1 открывается до насыщения, коллекторный переход транзистора разряжает конденсатор С3 (происходит подготовка к зарядке в следующем полупериоде напряжения). Таким образом, логический высокий уровень появляется в точке «F» раньше или позже, в зависимости от сопротивления R4:
- меньшее сопротивление R4 – раньше появляется импульс – F1;
- большее сопротивление R4 – позже появляется импульс – F2.
Усилитель на транзисторах VT2 и VT3 «повторяет» логические сигналы -точка «G». Осциллограммы в этой точке повторяют F1 и F2, но величина напряжения достигает 20 В.
Через разделительные диоды VD4, VD5 и ограничительные резисторы R9 R10 импульсы тока воздействуют на управляющие электроды тиристоров VS3 VS4 (рис.4). Один из тиристоров открывается, и на выход блока проходит импульс выпрямленного напряжения.
Меньшему значению сопротивления R4 соответствует большая часть полупериода синусоиды – h2, большему – меньшая часть полупериода синусоиды – h3 (рис.4). В конце полупериода ток прекращается, и все тиристоры закрываются.
Рис. 7. Схема автоматического двухпредельного вольтметра.
Таким образом, различным величинам сопротивления R4 соответствует различная длительность «отрезков» синусоидального напряжения на нагрузке. Выходную мощность можно регулировать практически от 0 до 100%. Стабильность работы устройства определяется применением «логики» – пороги переключения элементов стабильны.
Конструкция и налаживание
Если ошибок в монтаже нет, то устройство работает стабильно. При замене конденсатора С3 потребуется подбор резисторов R3 и R4. Замена тиристоров в силовом блоке может потребовать подбора R9, R10 (бывает, даже силовые тиристоры одного типа резко отличаются по токам включения – приходится менее чувствительный отбраковывать).
Измерять напряжение на нагрузке можно каждый раз «подходящим» вольтметром. Исходя из мобильности и универсальности блока регулирования, мы применили автоматический двухпредельный вольтметр (рис.7).
Измерение напряжения до 30 В производится головкой PV1 типа М269 с добавочным сопротивлением R2 (регулируется отклонение на всю шкалу при 30 В входного напряжения). Конденсатор С1 необходим для сглаживания напряжения, подводимого к вольтметру.
Для «загрубления» шкалы в 10 раз служит остальная часть схемы. Через лампу накаливания (бареттер) HL3 и подстроечный резистор R3 запитывается лампа накаливания оптопары U1, стабилитрон VD1 защищает вход оптрона.
Большое входное напряжение приводит к снижению сопротивления резистора оптопары от мегаом до ки-лоом, транзистор VT1 открывается, реле К1 срабатывает. Контакты реле при этом выполняют две функции:
- размыкают подстроечное сопротивление R1 – схема вольтметра переключается на высоковольтный предел;
- вместо зеленого светодиода HL2 включается красный светодиод HL1.
Красный, более заметный, цвет специально выбран для шкалы больших напряжений.
Внимание! Подстройка R1(шкала 0. 300) производится после подстройки R2.
Питание к схеме вольтметра взято из блока управления тиристорами. Развязка от измеряемого напряжения осуществлена с помощью оптрона. Порог переключения оптрона можно установить немного выше 30 В, что облегчит подстройку шкал.
Диод VD2 необходим для защиты транзистора от всплесков напряжения в момент обесточивания реле. Автоматическое переключение шкал вольтметра оправдано при использовании блока для питания различных нагрузок. Нумерация выводов оптрона не дана: с помощью тестера нетрудно различить входные и выходные выводы.
Сопротивление лампы оптрона равно сотням ом, а фоторезистора – мегаом (в момент измерения лампа не запитана). На рис.8 показан вид устройства сверху (крышка снята). VS1 и VS2 установлены на общем радиаторе, VS3 и VS4 – на отдельных радиаторах.
Резьбу на радиаторах пришлось нарезать под тиристоры. Гибкие выводы силовых тиристоров обрезаны, монтаж осуществлен более тонким проводом.
Рис. 8. Вид устройства сверху.
На рис.9 показан вид на лицевую панель устройства. Слева расположена ручка регулирования тока нагрузки, справа – шкала вольтметра. Около шкалы закреплены светодиоды, верхний (красный) расположен около надписи «300 В».
Клеммы устройства не очень мощные, так как применяется оно для сварки тонких деталей, где очень важна точность поддержания режима. Время пуска двигателя небольшое, поэтому ресурса клеммных соединений хватает.
Рис. 9. Вид на лицевую панель устройства.
Верхняя крышка крепится к нижней с зазором в пару сантиметров для обеспечения лучшей циркуляции воздуха.
Устройство легко поддается модернизации. Так, для автоматизации режима запуска двигателя автомобиля не нужны дополнительные детали (рис.10).
Необходимо между точками «D» и «E» блока управления включить нормально замкнутую контактную группу реле К1 из схемы двухпредельного вольтметра. Если перестройкой R3 не удастся довести порог переключения вольтметра до 12. 13 В, то придется заменить лампу HL3 более мощной (вместо 10 установить 15 Вт).
Пусковые устройства промышленного изготовления настраиваются на порог включения даже 9 В. Мы рекомендуем настраивать порог переключения устройства на более высокое напряжение, так как еще до включения стартера аккумулятор немного подпитывается током (до уровня переключения). Теперь пуск производится немного «подзаряженным» аккумулятором вместе с автоматическим пусковым устройством.
Рис. 10 . Автоматизация режима запуска двигателя автомобиля.
По мере увеличения бортового напряжения автоматика «закрывает» подачу тока от пускового устройства, при повторных пусках в нужные моменты подпитка возобновляется. Имеющийся в устройстве регулятор тока (скважности выпрямленных импульсов) позволяет ограничить величину пускового тока.
Н.П. Горейко, В.С. Стовпец. г. Ладыжин. Винницкая обл. Электрик-2004-08.
схема. Кнопка включения, плавный пуск и регулятор оборотов
Планирую купить +117 Добавить в избранное Обзор понравился +65 +138В данной статье мы рассмотрим схему и принцип работы простейшего регулятора оборотов двигателя электроинструмента, и единственное условие — двигатель должен быть коллекторным — с характерными ламелями на роторе и щетками (которые порой искрят).
Приведенная схема содержит минимум деталей, и подойдет для электроинструмента мощностью до 1,8 кВт и выше, для дрели или болгарки. Похожая схема используется для регулировки оборотов в автоматических стиральных машинах, в которых стоят коллекторные высокоскоростные двигатели, а также в диммерах для ламп накаливания. Подобные схемы, в принципе, позволят регулировать температуру нагрева жала паяльника, электрического обогревателя на базе ТЭНов и т. д.
Потребуются следующие радиоэлектронные компоненты:
Резистор постоянный R1 — 6,8 кОм, 5 Вт.
Переменный резистор R2 — 2,2 кОм, 2 Вт.
Резистор постоянный R3 — 51 Ом, 0,125 Вт.
Конденсатор пленочный C1 — 2 мкф 400 В.
Конденсатор пленочный C2 — 0,047 мкф 400 вольт.
Диоды VD1 и VD2 — на напряжение до 400 В, на ток до 1 А.
Тиристор VT1 — на необходимый ток, на обратное напряжение не менее 400 вольт.
В основе схемы — тиристор. Тиристор представляет собой полупроводниковый элемент с тремя выводами: анод, катод, и управляющий электрод. После подачи на управляющий электрод тиристора короткого импульса положительной полярности, тиристор превращается в диод, и начинает проводить ток до тех пор, пока в его цепи этот ток не прервется или не сменит направление.
После прекращения тока или при смене его направления, тиристор закроется и перестанет проводить ток, пока не будет подан следующий короткий импульс на управляющий электрод. Ну а поскольку напряжение в бытовой сети переменное синусоидальное, то каждый период сетевой синусоиды тиристор (в составе данной схемы) станет отрабатывать строго начиная с установленного момента (в установленной фазе), и чем меньше во время каждого периода тиристор будет открыт, тем ниже будут обороты электроинструмента, а чем, соответственно, дольше тиристор будет открыт, тем выше будут обороты.
Как видите, принцип прост. Но применительно к электроинструменту с коллекторным двигателем, схема работает хитрее, и об этом мы расскажем далее.
Итак, в сеть здесь включены параллельно: измерительная цепь управления и силовая цепь. Измерительная цепь состоит из постоянного и переменного резисторов R1 и R2, из конденсатора C1, и диода VD1. Для чего нужна эта цепь? Это делитель напряжения. Напряжение с делителя, и что важно, противо-ЭДС с ротора двигателя, складываются в противофазе, и формируют импульс для открывания тиристора. Когда нагрузка постоянна, то и время открытого состояния тиристора постоянно, следовательно обороты стабилизированы и постоянны.
Как только нагрузка на инструмент, и следовательно на двигатель, увеличивается, то величина противо-ЭДС уменьшается, поскольку обороты снижаются, значит сигнал на управляющий электрод тиристора возрастает, и открывание происходит с меньшей задержкой, то есть мощность подводимая к двигателю возрастает, увеличивая упавшие обороты. Так обороты сохраняются постоянными даже под нагрузкой.
В результате совместного действия сигналов от противо-ЭДС и с резистивного делителя, нагрузка не сильно влияет на обороты, а без регулятора это влияние было бы существенным. Таким образом при помощи данной схемы достижима устойчивая регулировка оборотов в каждом положительном полупериоде сетевой синусоиды. При средних и малых скоростях вращения этот эффект более выражен.
Однако, при повышении оборотов, то есть при повышении напряжения, снимаемого с переменного резистора R2, стабильность поддержания скорости постоянной снижается.
Лучше на этот случай предусмотреть шунтирующую кнопку SA1 параллельно тиристору. Функция диодов VD1 и VD2 — обеспечение однополупериодного режима работы регулятора, так как напряжения с делителя и с ротора сравниваются лишь в отсутствие тока через двигатель.
Конденсатор C1 расширяет зону регулирования на малых скоростях, а конденсатор C2 снижает чувствительность к помехам от искрения щеток. Тиристор нужен высокочувствительный, чтобы ток менее 100 мкА смог бы его открыть.
Для качественного сверления отверстий плат необходимо использовать электродрель со стабилизатором крутящего момента и оборотов. Транзисторный стабилизированный блок имеет большие потери мощности на регулируемом транзисторе. Большой вес и габариты трансформатора и радиаторов не позволяют выполнить переносной вариант прибора.
Тиристорные регуляторы напряжения выгодно отличаются малым весом и техническими возможностями стабилизации оборотов и крутящего момента электродвигателя. Падение напряжения на силовом тиристоре в импульсном режиме незначительно и при небольшой мощности отпадает потребность в радиаторе.
Характеристики:
Напряжение сети 220Вольт
Мощность 300 Ватт
Ток нагрузки 10 Ампер
Стабилизация 86,7%
Схема регулятора оборотов электродрели стабилизирует крутящий момент введением положительной обратной связи с электродвигателя М1 через RC цепь R12C2 VD2R6R1C1 на эмиттер однопереходного двухбазового транзистора VT1
Диод VD2 позволяет подавать на эмиттер транзистора VT1 только импульсы положительной полярности со щёток электродвигателя дрели М1. Переменный резистор R6 работает как регулятор оборотов, и в тоже время стабилизирует их при изменении нагрузки:
Без Обратной связи 0,6А 22,2 В 13ватт 260 об. мин
С обратной связью обороты падают незначительно, при холостом ходе в 600 оборотов.
Характеристики двухбазовых транзисторов:
Iэ max, мA | UБ1Б2 max, B | UБ2Э max, B | Pmax, мВт | RБ1Б2, кOm | fmax, кГц | ||
Однопереходные двухбазовые транзисторы предназначены для работы в генераторах периодических и однократных импульсов Сопротивление между выводами транзисторов зависят от тока управляющего эмиттерного перехода. На входной вольтамперной характеристике однопереходных транзисторов имеется участок с отрицательным дифференциальным сопротивлением. При некотором напряжении на эмиттере происходит отпирание транзистора и быстрое нарастание тока через базу. Процесс происходит лавинообразно.
Однопереходный транзистор относится к семейству тиристоров. Однопереходный транзистор входит в транзисторно – тиристорную сборку КУ106А-Г и представляет собой гибридный прибор, состоящий из однопереходного транзистора и триодного тиристора.
Схема:
Отпирающий импульс с однопереходного транзистора VT1 поступает на управляющий электрод тиристора VS1,который переходит в проводящее состояние и остаётся в нём пока текущий через тиристор VS1 прямой ток больше тока удержания.
Напряжение с резистора R3 цепи катода VS1 через резисторы R7R9 поступает на управляющий электрод мощного тиристора VS2 и приводит его в открытое состояние.
Порог включения тиристора VS2 устанавливается резистором R9. ввиду большого разброса входных характеристик.Анод силового тиристора непосредственно связан с электромотором электродрели М1.
Импульсы отрицательной полярности возникшие при вращении электродвигателя устраняютCя диодом VD3.
Часть напряжения с коллектора двигателя поступает на стабилизацию вращения – в эммитер двухбазового транзистора VT1.
Светодиод HL1 индицирует напряжение на электродвигателе элекродрели и снижает импульсные помехи напряжением более 300 Вольт.
Диод VD3 обеспечивает протекание обратного тока якоря электродвигателя в то время, когда тиристор заперт. В начале каждого полупериода напряжение выпрямителя через диод VD2 и резисторы R1,R6 поступает на зарядку конденсатора С1, противо –э.д.с в этот момент еще отсутствует. Далее напряжение на аноде тиристора VS2 будет равно разнице напряжения диодного моста VD4-VD7 и противо- э.д.с якоря, то есть от скорости вращения.
Уменьшение скорости при увеличении момента нагрузки на валу снижает противо-э.д.с и ускоряет зарядку конденсатора С1, уменьшает угол задержки отпирания тиристора -снижение скорости почти полностью компенсируется.
Импульсы напряжения с резистора R3 поступают на управляющий электрод маломощного тиристора VS1 для предварительного усиления, далее через резисторы установки порога включения R7,R9
на управляющий электрод мощного силового тиристора VS2.Цепь VD1,R9 снижает влияние сетевого напряжения и нагрузки на работу релаксационного генератора на транзисторе VT1.
Ток тиристора VS1 ограничен номиналом резистора R4,снижать его значение не рекомендуется, так как будет нарушено восстановление управляемости, то есть снизится интервал между переходом тока и напряжения тиристора через ноль в отрицательную полярность и обратно в положительную.
Время восстановления зависит от многих факторов: прямого и обратного тока, амплитуды запираемого напряжения и напряжения на управляющем электроде.
Кстати, радиопомехи создает обратный ток, который почти мгновенно спадает на этапе запирания тиристора с очень большой скоростью и может вызвать перенапряжения.
Принудительная коммутация создаётся установкой диода VD3 и позволяет прервать ток в тиристоре VS2 на время достаточное для запирания.
Практические испытания регулятора оборотов электродрели в разных режимах с изменением номиналов радиокомпонентов подтвердили теоретические обоснования в использовании положительной обратной связи для стабилизации скорости и оборотов электродвигателя:
Обороты холостого хода не превышали 600 об/мин,
нагрузка на вал электродвигателя в обоих случаях была около 4 кг силы, электродвигатель типа ДПР 72-Ф6-06 постоянного тока, длина корпуса 80мм, диаметр 40 мм.
Крутящий момент возрос при наличии обратной связи, обороты упали незначительно.
Радиодетали в схеме не дефицитные:
резисторы на мощность 0,25 ватт типа МЛТ, двухбазовый транзистор VT1 и тиристор VS1 можно заменить сборкой КУ106В-Г, тип силового тиристора и трансформатора зависит от напряжения и мощности используемого электродвигателя. Хорошо работают в схеме трансформаторы типа ТН-54 с четырьмя обмотками по 6,3 вольта и ток более трех ампер, соединённых в последовательную цепь.
Кремневая диодная сборка типа PBL405 имеет небольшое падение напряжения и не требует радиатора.
На плоский тиристор VS2 установить небольшой радиатор 60*40*50.
Регулировка схемы регулятора оборотов электродрели заключается в следующем: при минимальном значении сопротивления резистора R6 (обороты) установить порог включения тиристора VS2 изменением номинала резистора R9, далее увеличением сопротивления резистора R6 установить требуемые обороты электродвигателя.
На рисунке печатного монтажа расположены почти все радиодетали кроме цепей коммутации, силового трансформатора и диодного моста, регулятор оборотов и светодиодный индикатор HL1 установлены на верхней крышке корпуса, на боковой стороне закреплены предохранитель FU1, выключатель SA1 и вывод силового шнура.
Литература:
1. Тиристоры. Технический справочник 1971г. Перевод с английского. Издательство «Энергия».
2.Регулятор оборотов электродрели. В.Новиков. « Радиомир» №5 2006 г. стр.19
3.Резисторы,конденсаторы,трансформаторы, дроссели, коммутационные устройства РЭА. Справочник. Минск « Беларусь» 1994 г.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
VT1 | Транзистор | КТ117Б | 1 | В блокнот | ||
VS1 | Тиристор & Симистор | КУ101Е | 1 | В блокнот | ||
VS2 | Тиристор & Симистор | КУ202Е | 1 | В блокнот | ||
VD1 | Стабилитрон | Д818Б | 1 | В блокнот | ||
VD2 | Диод | КД503Б | 1 | В блокнот | ||
VD3 | Выпрямительный диод | 1N4005 | 1 | В блокнот | ||
VD4-VD7 | Диод | PBL405 | 4 | В блокнот | ||
С1-С4 | Конденсатор | 0.1 мкФ | 4 | В блокнот | ||
С5 | Конденсатор | 0.05 мкФ 630 В | 1 | В блокнот | ||
R1 | Резистор | 4.7 кОм | 1 | В блокнот | ||
R2 | Резистор | 910 Ом | 1 | В блокнот | ||
R3, R12 | Резистор | 100 Ом | 2 | В блокнот | ||
R4 | Резистор | 1.2 кОм | 1 | В блокнот | ||
R5 | Резистор | 360 Ом | 1 | В блокнот | ||
R6 | Переменный резистор | 100 кОм | 1 | В блокнот | ||
R7 | Резистор | 1.5 кОм | 1 | В блокнот | ||
R8 | Резистор | 1 кОм | 1 |
Дрель является самым распространённым электроинструментом в быту и строительстве. Но рано или поздно может аппарату может потребоваться ремонт. Как устранить основные неисправности своими руками, читайте ниже.
Устройство и неисправности электрической дрели
Дрели могут быть разных размеров и цветов, но внутри всегда одна и та же схема.
Основные составляющие ударной дрели:
- Металлический корпус редуктора.
Индукционные кольца.
Конденсатор.
Сетевой кабель.
Кнопка реверса.
Регулятор оборотов.
Электродвигатель.
Кнопка пуска.
Кнопка переключения между обычным и ударным режимами.
В простой дрели без ударного механизма нет металлического корпуса редуктора. Подшипники вала и редуктора вставлены в корпус дрели.
Основные неисправности дрели:
Неисправности двигателя:
- Деформация вала.
- Выработка якоря.
- Нарушение крепления полюсов к станине в статоре.
- Короткое замыкание на корпус или между витками.
Разрыв провода обмоток от перегрузки или абразивной пыли.
Все эти неисправности, за исключением неисправностей двигателя, нетрудно устранить самостоятельно. Ремонт двигателя возможен при наличии определённых навыков и знаний. Иногда проще отнести его в мастерскую или купить и установить новый. Установка любого нового узла дешевле ремонта в мастерской, так как профессионалы за одну замену берут оплату, равную стоимости узла.
Видео: устройство дрели
- Дрель не должна работать более 20–25 минут непрерывно после включения в сеть.
- Необходимо чистить патрон от грязи и смазывать.
Недопустим перегрев прибора до температуры обжигания рук.
Нельзя использовать сильно тупые свёрла.
Ремонт дрели своими руками
Для того чтобы найти неисправность, дрель нужно разобрать.
Как разобрать инструмент
Некоторые дрели имеют дополнительную ручку и ограничитель глубины сверления.
Необходимо расслабить крепление струбцины и стащить ручку через патрон.
У других моделей дополнительная ручка вкручивается в корпус дрели.
Если на рукоятке дрели есть накладка, соединяющая две половины корпуса, то она поддевается плоской отвёрткой и снимается.
- Выкрутите весь крепёж и снимите верхнюю часть корпуса. Обратите внимание, что два винта в том месте, где корпус держит вал патрона, короче остальных.
- Открутите шурупы крепления шнура к корпусу. Провода и остальные составляющие дрели аккуратно извлеките из своих пазов.
- Достаньте щётки с щёткодержателями из своих гнёзд.
Патрон с валом и большой шестернёй 2 легко отсоединяется от корпуса дрели. Извлеките металлический корпус редуктора 1 вместе с двигателем. На валу есть шарик, который нельзя терять, потому что подобрать такой же будет сложно.
Снимите статор.
Снимите корпус редуктора со шпинделя электродвигателя.
Замена щёток
Сигналами для проверки состояния щёток служит искрение в области коллектора, снижение оборотов и нагревание дрели. Если этих проблем нет, то состояние щёток нужно проверять периодически. При износе хотя бы одной из щёток на 40 процентов меняйте обе. Разберите корпус дрели. Щётки извлекаются вместе с щёткодержателями. В некоторых моделях есть заглушки на корпусе, которые выкручиваются.
Заглушки для извлечения щёток
Щётка вынимается из щёткодержателя и на её место вставляется новая.
Видео: замена щёток дрели
Кнопка включения, плавный пуск и регулятор оборотов
Регулятор оборотов дрели может быть совмещён с плавным пуском либо выведен в отдельное колёсико на корпусе, либо колёсико установлено на кнопку пуска.
Устройство и принцип действия кнопки с регулятором оборотов:
Регулятор оборотов, так же, как и плавный пуск, выходит из строя из-за неисправности микросхемы. Если он расположен отдельно от кнопки включения, разберите корпус, отсоедините контакты и замените его на новый. Если регулятор установлен на кнопке, разберите корпус и извлеките из него кнопку включения.
Заменить кнопку проще, чем её разобрать и отремонтировать, потому что в ней много мелких деталей. Но если вы решились, то аккуратно разбирайте корпус кнопки, чтобы не потерять выпрыгивающие пружинки.
- Ножом или плоской отвёрткой аккуратно подденьте защёлки и фиксаторы. Снимите крышку.
Контактные площадки стираются и образуется пыль, которая оседает внутри пластмассовой коробки. Диэлектрические поверхности становятся проводниками электрического тока. Из-за этого обороты и плавный пуск не регулируются. Удалите металлическую пыль ватой, смоченной спиртом. Контакты можно поскоблить ножом, но только не наждачной бумагой, чтобы не испортить их поверхность.
Извлеките микросхему из другой половинки корпуса кнопки. Прозвоните все элементы. Повреждённые замените.
Часто внутренняя очистка корпуса кнопки восстанавливает её работу.
Не работает реверс или дрель не крутит вправо
При прямом вращении ротора конец первой обмотки статора подключается к первой щётке. При обратном ко второй. Такое переключение происходит в кнопке реверса. Если дрель перестаёт крутить в ту или другую сторону, значит, цепь не замыкается. Необходимо провести диагностику кнопки и в случае неисправности заменить её или разобрать и почистить контакты.
Реверс прозванивается в несколько заходов:
- Установите флажок реверса в правое положение.
- Вставьте щупы мультиметра в два отверстия с одной стороны кнопки реверса. Проверьте наличие звукового сигнала прибора. Теперь вставьте щупы в два отверстия с другой стороны. Звуковой сигнал есть с двух сторон, значит, правое положение реверса работает.
- Теперь установите реверс в левое положение.
Вставьте щупы в два отверстия, но с разной стороны кнопки. Потом в другие два отверстия. Проверьте звуковой сигнал мультиметра.
Если хотя бы на одном этапе не было прозвона, кнопка неисправна. Можно её разобрать. Если в обоих положениях переключателя контакты замыкаются, то очистьте их и ещё раз прозвоните. Если не помогло, тогда замените кнопку.
Возьмите булавку, вставьте в отверстие и извлеките провод. Выньте все провода аналогичным образом.
К реверсу подведены провода со статора и щёток. Они подключаются по диагонали, поэтому зарисуйте схему, чтобы потом не перепутать. Или приклейте скотчем к каждому проводу метки.
Подключение дрели к кабелю без кнопки
Демонтируйте кнопку включения. В неё входят две жилы сетевого кабеля. Если у дрели был реверс, то от статора и щёток выходят по два провода. Всего получается четыре. Чтобы соединить их с двумя жилами сетевого кабеля проделайте следующее:
- Два конца разных обмоток статора соедините друг с другом и подключите к щётке.
Два других соединённых конца статора и провод от второй щётки соедините с сетевыми проводами.
Тщательно изолируйте места соединений.
Малые и высокие обороты вращения
Если дрель не работает на малых оборотах, проверьте плавный пуск и регулятор оборотов. Если работает только на малых оборотах и греется, дополнительно проверьте щётки электродвигателя и износ коллектора.
Дрель не включается
В беспроводной дрели зарядите аккумулятор. Если не помогло или дрель проводная, снимите верхнюю крышку корпуса и проверьте мультиметром следующие элементы:
Шнур электропитания.
Пусковой конденсатор.
Кнопку пуска.
Контакты.
Если все провода и контакты целы, нажмите кнопку пуска и проверьте работу двигателя.
Дрель трещит, но не крутится
Разберите корпус и включите двигатель. Если он работает, значит, стёрлись зубья большой шестерёнки редуктора. Если двигатель не работает, проверьте щётки, обмотки статора и ротора.
Ремонт ротора
Прежде чем взять прибор для диагностики, осмотрите коллектор и обмотку.
На нём могут быть повреждения. Если проводка оплавилась, подгоревший изоляционный лак оставит чёрные следы или специфический запах. Можно увидеть погнутые и смятые витки либо токопроводящие частицы, например, остатки припоя. Эти частицы являются причиной короткого замыкания между витками. Повреждения коллектора: приподнятые, изношенные или пригоревшие пластины.
Проведите диагностику мультиметром:
Якорь можно спасти, если не нарушена балансировка. Если во время работы прибора слышен прерывистый гул и идёт сильная вибрация, то это нарушение балансировки. Такой якорь подлежит замене. А отремонтировать можно обмотку и коллектор. Небольшие короткие замыкания устраняются. Если повреждена значительная часть обмотки, её можно перемотать. Изношенные и сильно повреждённые ламели проточить, нарастить или впаять. К тому же не стоит браться за ремонт якоря, если вы неуверены в своих возможностях. Лучше его заменить или отнести на ремонт в мастерскую.
Чтобы заменить якорь, нужно разобрать дрель, вынуть его из статора и отсоединить от редуктора.
Видео: замена ротора дрели
Не сильно выработанный коллектор исправляется проточкой. Но если пластины стёрлись до пластмассовой основы или частично выгорели, то восстановление производится пайкой или гальваническим наращиванием.
Если коллектор был изношен полностью, то после пайки его хватит не более, чем на месяц активного использования. А не до конца повреждённые пластины после такого ремонта выдерживают несколько замен щёток и не выпаиваются. Вам понадобится нарезать медные пластины по размерам и впаять их с большим количеством припоя. Лишнее сточить напильником и отшлифовать.
При гальваническом наращивании восстановленная медь очень твёрдая.
Срок службы коллектора как у нового. Гальваническим наращиванием можно восстановить как полностью стёртый коллектор, так и частично повреждённые пластины. Восстановленный коллектор необходимо проточить и разделить пластины бормашиной или ножовочным полотном.
Перемотка якоря
- Запишите или зарисуйте направление обмотки.
- Ножовкой по металлу или кусачками удалите лобовые части обмотки.
Аккуратно, не повреждая пазовые изоляторы, выбейте стержни оставшихся частей обмотки с помощью молотка и металлического зубила.
Надфилем удалите остатки пропитки. Посчитайте проводники в пазу и измерьте диаметр провода. Нарисуйте схему. Нарежьте из картона гильзы для изоляции и вставьте их в пазы.
После намотки сварите выводы секций с пластинами коллектора. Проверьте обмотку тестером.
Пропитайте обмотку эпоксидной смолой.
Ремонт статора
Проверка работоспособности статора мультиметром:
- Поставьте режим сопротивления 200 Ом. Соедините щупы прибора с концами одной обмотки. Единица означает обрыв, а ноль — короткое замыкание между витками. Если показывает наличие сопротивления более 1,5 Ом, то проверяйте вторую обмотку. У обеих обмоток должно быть приблизительно одинаковое сопротивление.
Теперь необходимо проверить отсутствие пробоя на массу, то есть замыкание обмотки с металлическим корпусом статора. В мультиметре поставьте режим максимального сопротивления. Соедините один щуп с концом обмотки, другой щуп с металлическим корпусом статора. Единица говорит об отсутствии пробоя.
Повреждённую обмотку статора можно перемотать самостоятельно. Это намного легче перемотки якоря. Для качественной намотки катушек вам понадобится эмальпровод и электрокартон.
Замена подшипников якоря
У якоря два подшипника разного размера. Тот, что больше, находится со стороны крыльчатки. Подшипники снимаются специальным съёмником. Но если его нет, то нужно подвесить якорь на металлических пластинах так, чтобы подшипник был над пластинами, а якорь снизу. Постучите деревяшкой по валу, чтобы выбить его из подшипника.
Для опрессовки на валу нового подшипника используется длинная торцевая головка на ¼ дюйма.
Возьмите головку и уприте её во внутреннюю обойму подшипника.
Постучите по ней молотком.
Оденьте металлический корпус редуктора на подшипник.
Слегка постучите по нему молотком, чтобы он сел на место.
Если аккумулятор дрели не заряжается
Если батарея не держит заряд, разберите её. Она состоит из нескольких элементов питания. Проверьте тестером напряжение в каждом. Нерабочий элемент замените.
Проведите диагностику зарядного устройства:
Слетает опорная тарелка
Дрель можно использовать для шлифовки различных материалов с помощью специальных насадок. Для этого приобретается опорная тарелка.
Она может быть пластиковая или резиновая. Наждачная бумага на ней крепится двумя способами: на липучку или прижимной шайбой. У тарелок есть свои недостатки:
Поэтому лучше приобретать пластиковую опорную тарелку с прижимной шайбой. Либо с подвижным хвостовиком. Эти тарелки самые надёжные и удобны в эксплуатации.
Но если у вас оказалась резиновая тарелка, то её можно переделать.
Замена ударного механизма
Элементы редуктора ударной дрели:
При запуске дрели вращается двигатель и шпиндель. От шпинделя передаётся вращение большой шестерёнке редуктора. Когда включается удар, то вал углубляется в корпус редуктора, а зубчики соединяются и входят в зацепление. Вал вращается, и храповики отскакивают друг от друга. Образуется возвратно-поступательное движение. Когда включается работа дрели без удара, то сам переключатель играет роль ограничителя. Он не даёт валу опуститься в корпус редуктора настолько глубоко, чтобы эти зубчики касались друг друга. Существуют разновидности переключателей:
В корпусе редуктора на самом переключателе стоит подшипник. При включении безударного режима вал упирается в этот подшипник.
В некоторых дрелях нет подшипника, но на валу переключателя есть выемка. Когда вал попадает в неё при повороте переключателя, он проваливается и включается удар.
В третьих моделях стоит планка переключателя с отверстием. Принцип действия такой же. При частом переключении режимов на планке образуется выработка, и удар перестаёт отключаться, так как вал в углублённом положении.
При износе ударного механизма узел подлежит замене.
Ремонт патрона дрели
Патроны, которые устанавливают на современные дрели, делятся на следующие типы:
- Ключевой. Один из самых распространённых типов. Для закрепления оснастки вам потребуется ключ, которым крепко затягивается патрон в трёх отверстиях. Обычно используется в ударных дрелях, где шанс проворачивания сверла при работе значительно выше, чем у безударной дрели.
Быстрозажимной. Бывает одномуфтовый и двухмуфтовый, металлический и пластиковый. Замена оснастки происходит без помощи ключа. Имеет недостаток — не самая надёжная фиксация.
Конус Морзе. Этот патрон универсален и очень надёжен. Оснастка сидит в нём, как влитая, и не проворачивается. На конус Морзе можно установить любой другой тип патрона с помощью переходника. Такой патрон не устанавливают на бытовые дрели.
Если вам понадобилось заменить патрон дрели, разожмите кулачки и проверьте наличие винта, которым патрон крепится к валу. Если он присутствует, его нужно выкрутить. Трудно откручиваемый винт обрабатывают аэрозолем WD-40 или тормозной жидкостью. Отверните сам патрон от вала. В случае с конусом Морзе патрон сбивается с вала киянкой или деревянной палкой. Насаживается аналогично.
Не любой патрон встанет на любую дрель. Патроны различаются размером и диаметром оснастки, которую они могут держать. Если внешний диаметр нового патрона будет больше, вы не сможете надеть на дрель дополнительную ручку. Проверьте соответствие резьбы патрона и резьбы шпинделя дрели. Для дрелей разного функционала патроны различны. Например, существуют патроны, которые подходят только для безударных дрелей или не могут работать при обратном вращении. А есть универсальные патроны, которые подходят ко всем типам дрели. Быстрозажимные и ключевые патроны с одинаковой резьбой взаимозаменяемы. Независимо от их размера. Если вам не нужно через патрон одевать дополнительную ручку, то такой вариант замены возможен.
От забивания строительного мусора в патрон оснастка плохо зажимается кулачками. Поэтому его необходимо разобрать и очистить. А повреждённые детали заменить. Особую сложность представляет разбор ключевого патрона.
Обойма посажена с натягом на втулку, поэтому будем использовать молоток и тиски.
- Установите патрон на тиски так, чтобы втулка с кулачками смотрела вверх.
- Положите сверху металлическую пластину и ударьте молотком резким ударом. Втулка со всем содержимым уйдёт вниз.
- Снимите обойму и шайбу, состоящую из двух половинок. Извлеките кулачки. Пронумеруйте их и посадочные места на втулке, чтобы при сборке они сели в свои гнёзда.
- Поставьте обратно все детали. Наденьте обойму. Вставьте патрон в тиски, но теперь кулачками вниз. Кулачки должны быть спрятаны внутрь. Положите на основание втулки металлическую пластину и забейте её в обойму.
Спрячьте кулачки.
Проверьте целостность всех деталей. Повреждённые замените.
Щёткой очистите детали от мусора. Промойте керосином или соляркой. Смажьте смазкой ШРУС. Она лучше Литола тем, что не пропускает влагу и предназначена для сильно трущихся механизмов.
Дрель можно отремонтировать самостоятельно, изучив её устройство и принципы работы отдельных узлов.
Сегодня невозможно найти человека, который бы не знал о существовании электрической дрели. Многим приходилось пользоваться этим инструментом. Но как устроена эта незаменимая в хозяйстве вещь, известно далеко не каждому.
Внутри корпуса дрели расположен электродвигатель, система его охлаждения, редуктор, регулятор оборотов дрели. О работе регулятора оборотов дрели стоит поговорить несколько подробнее. Все детали во время работы изнашиваются, особенно подвержена этому процессу кнопка включения дрели. А с ней непосредственно связана система регулировки оборотов.
Назначение регулятора оборотов
Регулятор оборотов современной электрической дрели располагается внутри кнопки включения прибора. Достичь таких малых размеров позволяет микропленочная технология, по которой он собран. Все детали и сама плата, на которой расположены эти детали, отличаются малыми размерами. Основная деталь регулятора – симистор. Принцип его работы состоит в изменении момента замыкания цепи и включения симистора. Происходит это так:
- После включения кнопки симистор получает на свой управляющий электрод напряжение, имеющее синусоидальную форму.
- Симистор открывается, и ток начинает течь через нагрузку.
При большей амплитуде управляющего напряжения симистор включается раньше. Амплитуда управляется с помощью переменного резистора, который соединен с пусковым курком дрели. Схема подключения кнопки в разных моделях может быть немного разной. Только не стоит путать регулятор оборотов с устройством управления реверсом. Это совершенно разные вещи. Иногда они могут размещаться в разных корпусах. Регулятор оборотов может предусматривать подключение конденсатора и обоих проводов от розетки.
Вернуться к оглавлению
Использование дрели в качестве станка
Рисунок 1. Типовая схема регулятора оборотов дрели.
Ручная дрель может применяться нестандартно. На ее основе делают разнообразные станки: сверлильный, шлифовальный, циркулярный и другие. В таких станках функция регулирования оборотов является очень важной. У большинства бытовых дрелей обороты регулируются кнопкой пуска аппарата. Чем сильнее она нажата, тем выше обороты. Но фиксируются они только на максимальных значениях. Это в большинстве случаев может оказаться существенным недостатком.
Можно выйти из данной ситуации путем самостоятельного изготовления выносного варианта регулятора оборотов. В качестве регулятора вполне можно применить диммер, который обычно применяют для регулировки освещенности. Схема регулятора довольно проста и представлена на рис. 1. Для его изготовления нужно к розетке присоединить провода разной длины. Длинный провод другим концом присоединяется к вилке. Остальное собирается по схеме. Рекомендуется использовать дополнительный автоматический выключатель, который отключит устройство в случае аварии.
Самодельный регулятор оборотов готов. Можно выполнить пробный пуск. Если он работает нормально, можно поместить его в подходящего размера коробку и закрепить на станине будущего станка в удобном месте.
Вернуться к оглавлению
Ремонт кнопки с регулятором оборотов
Рисунок 2. Схема регулятора оборотов для микродрели.
Ремонт кнопки представляет собой довольно непростой процесс, требующий определенных навыков. При открытии корпуса некоторые детали могут просто выпасть и потеряться. Поэтому в работе нужна осторожность. В случае неполадок обычно выходит из строя симистор. Стоит эта деталь очень дешево. Разборка и ремонт происходят в следующем порядке:
- Разобрать корпус кнопки.
- Промыть и прочистить внутренности.
- Снять плату с находящейся на ней схемой.
- Выпаять сгоревшую деталь.
- Впаять новую деталь.
Разобрать корпус очень просто. Нужно отогнуть боковины и вывести крышку из фиксаторов. Делать все нужно аккуратно и осторожно, чтобы не потерять 2 пружинки, которые могут выскочить. Чистить и протирать внутренности рекомендуется спиртом. Зажимы-контакты в форме медных квадратиков выдвигаются из пазов, плата легко снимается. Сгоревший симистор обычно хорошо виден. Осталось выпаять его и впаять на его место новую деталь. Сборка регулятора производится в обратном порядке.
Как регулируются обороты в дрели. Как устроен регулятор оборотов дрели: схема
Как ни странно, но ручная электрическая дрель может использоваться не только по своему прямому назначению, но и несколько нестандартно. Так, при помощи этого инструмента можно сделать самодельные станки. К примеру, сверлильный станок, циркулярный, шлифовальный и так далее. Однако следует отметить, что не все электрические дрели имеют такую функцию, как регулирование частоты оборотов. А ведь в самодельных станках регулирование оборотов является неотъемлемой функцией.
Конечно, большинство современных дрелей снабжены регуляторами оборотов. Так, на корпусе дрели есть специальный курок, который изменяя положение, увеличивает или уменьшает частоту оборотов. Но, практически все встроенные регуляторы фиксируют частоту лишь при максимальном нажатии. При этом на средних и малых оборотов фиксации нет, что и является существенным недостатком. Также, дрель может находиться в неудобном рабочем положении, из-за чего регулирование будет сложным.
Достаточно эффективным и простым решением этой задачи будет изготовление выносного регулятора оборотов. Такой регулятор оборотов дрели можно сделать своими руками, причем достаточно просто. В качестве такого регулятора можно использовать диммер – устройство для регулировки степени освещенности. При изготовлении необходимо задействовать и другие предметы, а именно вилку и розетку. Схематически, вы можете увидеть данное устройство на рисунке, представленном ниже.
Заметим, что исполнение такого регулятора можно выполнить несколькими способами. Наиболее простыми являются два: с применением автоматического выключателя, и без него. Стоит учесть, что такое устройство является самодельным, а имея дело с электрической сетью, будьте осторожны при его изготовлении и использовании.
Теперь, немного подробнее об изготовлении. Исполняя первый вариант, возьмите в руки розетку, и прикрутите к ее концам два провода так, чтоб один при этом был длиннее. Затем, длинный конец подключите к одной из клемм на вилке. Второй провод закрепляете на присоединениях у диммера, а второй его вывод соединяете со второй клеммой электрической вилки. При использовании второго варианта, необходимо внести несколько изменений в схему, а именно, расположить на проводе между вилкой и диммером автоматический выключатель. Как правило, в диммерах установлены обычные выключатели, но нам нужен автоматический, который в случае чего отключит наше устройство от сети.
Таким образом, регулятор оборотов дрели готов, и для удобства его можно поместить в специальный корпус, или же закрепить на деревянной панели.
Еще несколько хороших статей:
Из дрели при помощи дополнительных устройств можно сделать различные приспособления, которые будут заменять различные станки, такие как сверлильный, токарный, шлифовальный и другие. Но если у станков из дрели нет возможности регулировать частоту вращения, то работать на них будет не очень удобно.
Современные дрели часто снабжены регулятором оборотов в виде курка. В этом случаи частота вращения зависит от степени нажатия. При этом фиксатор курка, фиксирует курок при выбранной частоте вращения далеко не во всех моделях дрелей, а фиксирует курок только при максимальном нажатии, то есть при максимальных оборотах, что может свести на нет такой регулятор оборотов. Еще один недостаток встроенного регулятора в том, что когда дрель вставлена в какое либо устройство, она может находится в таком положении, при котором пользоваться регулятором оборотов неудобно, даже если в нем отсутствуют другие недостатки.
Для станков из дрели удобнее пользоваться выносным регулятором в котором исключены недостатки описанные выше. Можно сделать такой регулятор из диммера (регулятора освещения) и розетки. Принципиальная схема такого регулятора следующая:
Исполнение этой схемы может быть различным. Мы приведем два варианта, не самых лучших с точки зрения безопасности. Конечно же регулятор должен быть сделан так чтобы внутренняя часть была закрыта со всех сторон, а не так как сделано на рисунках.
Пользоваться таким регулятором частоты вращения очень удобно, вилка регулятора вставляется в розетку сети, а вилка дрели в розетку регулятора. Курок дрели фиксируется в нажатом до предела положении, а частота вращения управляется поворотом ручки диммера. Только необходимо чтобы мощность дрели не превышала мощности диммера. Такой регулятор можно использовать не только для регулирования частоты вращения но и для управления нагревом паяльника или кипятильника.
При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.
Все бюджетные варианты УШМ имеют несколько недостатков. Во-первых, не имеется системы плавного пуска. Это очень важная опция. Наверняка все из вас включали этот мощный электроинструмент в сеть, и при запуске наблюдали, как падает накал лампочки, которая также подключена к этой сети.
Такое явление происходит по той причине, что мощные электродвигатели в момент запуска потребляют огромные токи, из-за которых проседает напряжение сети. Это может вывести из строя сам инструмент, особенно китайского производства с ненадежными обмотками, которые могут в один прекрасный день сгореть во время пуска.
То есть система мягкого старта защитит и сеть, и инструмент. К тому же в момент запуска инструмента происходит мощная отдача или толчок, а в случае внедрения системы мягкого старта такого, разумеется, не будет.
Во-вторых, отсутствует регулятор оборотов, который позволит долго работать инструментом, не нагружая его.
Схема, представленная ниже, от промышленного образца:
Она внедряется производителем в дорогие приборы.
К схеме можно подключать не только «болгарку», но и, в принципе, любые приборы – дрель, фрезерные и токарные станки. Но с учетом того, что в инструменте должен стоять именно коллекторный двигатель.
С асинхронными двигателями такое не пройдет. Там необходим частотный преобразователь.
Итак, необходимо сделать печатную плату и приступить к сборке.
В качестве регулирующего элемента задействован сдвоенный операционный усилитель LM358, который с помощью транзистора VT1 управляет силовым симистором.
Итак, силовым звеном в этой схеме является мощный симистор типа BTA20-600.
Такого симистора не оказалось в магазине и пришлось купить BTA28. Он чуть мощнее того, что по схеме. В общем, для двигателей с мощностью до 1 кВт можно использовать любой симистор с напряжением не ниже 600 В и током от 10-12 А. Но лучше иметь некоторый запас и взять симисторы на 20 А, все равно они стоят копейки.
Во время работы симистор будет греться, поэтому на него необходимо установить теплоотвод.
Чтобы не было вопросов по поводу того, что двигатель при пуске может потреблять токи, которые значительно превышают максимальный ток симистора, и последний может попросту сгореть, помните, что схема имеет мягкий старт, и пусковые токи можно не принимать во внимание.
Наверняка всем знакомо явление самоиндукции. Этот эффект наблюдается при размыкании цепи, к которой подключена индуктивная нагрузка.
То же самое и в этой схеме. Когда резко прекращается подача питания на двигатель, ток самоиндукции с него может спалить симистор. А снабберная цепь гасит самоиндукцию.
Резистор в этой цепи имеет сопротивление от 47 до 68 Ом, а мощность от 1 до 2 Вт. Конденсатор пленочный на 400 В. В данном варианте самоиндукция как побочный эффект.
Резистор R2 обеспечивает токогашение для низковольтной цепи управления.
Сама схема в какой-то мере является и нагрузкой, и стабилизирующим звеном. Благодаря этому после резистора можно не стабилизировать питание. Хотя в сети есть такие же схемы с дополнительным стабилитроном, использовать его бессмысленно, поскольку напряжение на выводах питания операционного усилителя в пределах нормы.
Возможные варианты замен для маломощных транзисторов можно увидеть на следующей картинке:
Печатная плата, которая упоминалась ранее, представляет собой только плату для устройства плавного пуска, и в ней нет компонентов для регулировки оборотов. Это сделано специально, поскольку в любом случае регулятор нужно выводить с помощью проводов.
Настройка регулятора выполняется с помощью многооборотного подстроечного резистора на 100 кОм.
Если нужен более мощный регулятор, то его можно собрать по следующей схеме:
Если все в порядке, то после отключения от сети сразу же нужно проверить симистор на ощупь – он должен быть холодным.
Если все работает нормально – «болгарка» запускается плавно, и регулируются обороты, — то пора приступать к тестам под нагрузкой.
Прикрепленные файлы :
Схема подключение аналоговой камеры видеонаблюдения к телевизору, компьютеру Подключение цифровой камеры видеонаблюдения
Наверное, нет такого человека, который бы не слышал о существовании электродрели. Многие даже пользовались ею, но вот устройство дрели и принцип работы знают не многие. Исключить этот пробел поможет данная статья.
Устройство дрели (простейшая китайская электродрель): 1 — регулятор оборотов, 2 — реверс, 3 — щеткодержатель со щеткой, 4 — статор двигателя, 5 — крыльчатка для охлаждения электродвигателя, 6 — редуктор.
Электродвигатель . Коллекторный электродвигатель дрели содержит три основных элемента — статор, якорь и угольные щетки. Статор выполнен из электротехнической стали высокой магнитной проницаемости. Имеет цилиндрическую форму и пазы для укладки статорных обмоток. Статорных обмоток две и расположены они друг напротив друга. Статор жестко крепиться в корпусе дрели.
Устройство дрели: 1 — статор, 2 — обмотка статора (вторая обмотка под ротором), 3 — ротор, 4 — пластины коллектора ротора, 5 — щеткодержатель со щеткой, 6 — реверс, 7 — регулятор оборотов.
Регулятор оборотов . Обороты дрели регулирует симисторный регулятор, расположенный в кнопке включения. Надо отметить простую схему регулировки и малое количество деталей. Собран этот регулятор в корпусе кнопки на подложке из текстолита по микроплёночной технологии. Сама плата имеет миниатюрные размеры, что позволило поместить её в корпусе курка. Ключевой момент — это то, что в регуляторе дрели (в симисторе) происходит разрыв и замыкание цепи за миллисекунды. И регулятор никак не изменяет напряжение, которое приходит из розетки (однако меняется среднеквадратичное значение напряжения, которое показывают все вольтметры измеряющее переменное напряжение ). Точнее, происходит импульсно-фазовое управление. Если кнопка нажата слегка, то время когда цепь замкнута самое маленькое. По мере нажатия, время, когда цепь замкнута, увеличивается. Когда кнопка нажата до предела, время, когда цепь замкнута, максимально или цепь вообще не размыкается.
Диаграммы напряжения: в сети (на входе регулятора), на управляющем электроде симистора, на нагрузке (на выходе регулятора).
Показано как будет меняться напряжение на выходе регулятора, если нажимать курок дрели.
Электрическая схема дрели. «рег. обор.» — регулятор оборотов электродрели, «1-я ст.обм.» — первая статорная обмотка, «2-я ст.обм.» — вторая статорная обмотка, «1-я щет.» — первая щетка, «2-я щет.» — вторая щетка.
Регулятор оборотов и реверс находятся в отдельных корпусах. На фото видно, что к регулятору оборотов подключено только два провода.
Схема реверса дрели
Схема на реверсе электродрели (на фото реверс отсоединен от регулятора оборотов)
Схема подключения реверса электродрели
Схема подключения кнопки (регулятора оборотов) дрели.
Подключение кнопки электродрели
Редуктор . Редуктор дрели предназначен для уменьшения оборотов сверла и увеличения крутящего момента. Чаще встречается шестеренчатый редуктор с одной передачей. Встречаются дрели и с несколькими передачами, например двумя, при этом сам механизм чем-то напоминает коробку передач автомобиля.
Ударное действие дрели . Некоторые дрели имеют ударный режим, для долбления отверстий в бетонных стенах. Для этого сбоку большой шестеренки ставится волнистая «шайба», и такая же «шайба» напротив.
Большая шестеренка с волнистостью сбоку
При сверлении с включенным режимом удара, когда сверло упирается, например, в бетонную стену, волнистые «шайбы» соприкасаются и за счет своей волнистости имитируют удары. «Шайбы» со временем стираются, и требую замены.
Волнистые поверхность не соприкасаются благодаря пружине
Соприкасающиеся волнистые поверхности. Пружина растянута.
При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.
Автоматический регулятор оборотов микро дрели
Конструкция, которая покорила своей повторяемостью и удобством использования. Придумал и реализовал схему в далёком 1989 году болгарин Александър Савов:
Схема автоматического регулятора оборотов микро дрели проста в исполнении построена на основе ОУ LM385 принцип работы не сверлим — обороты минимальны. Даем нагрузку на сверло, обороты увеличиваются до максимума.
В схеме применены легкодоступные детали.
Микросхему LM317 необходимо установить на радиатор во избежание её перегрева.
Конденсаторы электролитические на номинальное напряжение 16В.
Диоды 1N4007 можно заменить на любые другие рассчитанные на ток не менее 1А.
Светодиод АЛ307 любой другой. Печатная плата выполнена на одностороннем стеклотекстолите.
Резистор R5 мощностью не менее 2Вт, или проволочный.
БП должен иметь запас по току, на напряжение 12В.
Регулятор работоспособен при напряжении 12-30В, но свыше 14В придется заменить конденсаторы на соответствующие по напряжению. Готовое устройство после сборки начинает работать сразу.
Резистором P1 выставляем требуемую частоту вращения на холостом ходу. Резистор P2 служит для установки чувствительности к нагрузке, им выбираем нужный момент увеличения оборотов. Если увеличить емкость конденсатора C4, то увеличится время задержки высоких оборотов или если двигатель работает рывками.
Я увеличил емкость до 47uF.
Двигатель для устройства не критичен. Только необходимо чтобы он был в хорошем состоянии.
Я долго мучился, уже подумал, что схемы был глюк, что она непонятно как регулирует обороты, или уменьшает обороты во время сверления.
Но разобрал двигатель, прочистил коллектор, подточил графитовые щетки, смазал подшипники, собрал.
Установил искрогасящие конденсаторы. Схема заработала прекрасно.
Теперь не нужен неудобный выключатель на корпусе микродрели.
Схема отлично работает:
1. маленькая нагрузка – патрон крутится не быстро.
Схеме глубоко безразлично с какими моторами работать:
Если болгарка не оснащена регулятором оборотов, можно ли установить его самостоятельно?
Большинство угловых шлифовальных машин (УШМ), в простонародье болгарок, имеют регулятор оборотов.
Регулятор оборотов расположен на корпусе УШМ
Рассмотрение различных регулировок нужно начать с анализа электрической схемы болгарки.
простейшее представление электросхемы шлифовальной машины
Более продвинутые модели автоматически поддерживают скорость вращения вне зависимости от нагрузки, но чаще встречаются инструменты с ручной регулировкой оборотов диска. Если на дрели или электрическом шуруповерте используется регулятор куркового типа, то на УШМ такой принцип регулирование невозможен. Во-первых – особенности инструмента предполагают другой хват при работе. Во-вторых – регулировка во время работы недопустима, поэтому значение оборотов выставляется при выключенном моторе.
Для чего вообще регулировать скорость вращения диска болгарки?
- При резке металла разной толщины, качество работы сильно зависит от скорости вращения диска.
Если резать твердый и толстый материал – необходимо поддерживать максимальную скорость вращения. При обработке тонкой жести или мягкого металла (например, алюминия) высокие обороты приведут к оплавлению кромки или быстрому замыливанию рабочей поверхности диска; - Резка и раскрой камня и кафеля на высокой скорости может быть опасной.
К тому же диск, который крутится с высокими оборотами, выбивает из материала мелкие куски, делая поверхность реза щербатой. Причем для разных видов камня выбирается разная скорость. Некоторые минералы как раз обрабатываются на высоких оборотах; - Шлифовальные работы и полировка в принципе невозможны без регулирования скорости вращения.
Неправильно выставив обороты, можно испортить поверхность, особенно – если это лакокрасочное покрытие на автомобиле или материал с низкой температурой плавления; - Использование дисков разного диаметра автоматически подразумевает обязательное наличие регулятора.
Меняя диск Ø115 мм на Ø230 мм, скорость вращения необходимо уменьшить практически вдвое. Да и удержать в руках болгарку с 230 мм диском, вращающимся на скорости 10000 об/мин практически нереально; - Полировка каменных и бетонных поверхностей в зависимости от типа используемых коронок производится на разных скоростях. Причем при уменьшении скорости вращения крутящий момент не должен снижаться;
- При использовании алмазных дисков необходимо уменьшать количество оборотов, так как от перегрева их поверхность быстро выходит из строя.
Разумеется, если ваша болгарка работает только в качестве резака для труб, уголка и профиля – регулятор оборотов не потребуется. А при универсальном и разностороннем применении УШМ он жизненно необходим.
Типовая схема регулятора оборотов
Вот так выглядит плата регулятора оборотов в сборе
Регулятор оборотов двигателя – это не просто переменный резистор, понижающий напряжение. Необходим электронный контроль величины силы тока, иначе с падением оборотов будет пропорционально снижаться мощность, а соответственно и крутящий момент. В конце концов, наступит критически малая величина напряжения, когда при малейшем сопротивлении диска электродвигатель просто не сможет повернуть вал.
Поэтому, даже самый простой регулятор необходимо рассчитать и выполнить в виде проработанной схемы.
А более продвинутые (и соответственно дорогие) модели оснащаются регуляторами на основе интегральной микросхемы.
Интегральная схема регулятора. (наиболее продвинутый вариант)
Если рассматривать электрическую схему болгарки в принципе, то она состоит из регулятора оборотов и модуля плавного пуска. Электроинструменты, оснащенные продвинутыми электронными системами, существенно дороже своих простых собратьев. Поэтому далеко не каждый домашний мастер в состоянии приобрести такую модель. А без этих электронных блоков останется лишь обмотка электромотора и клавиша включения.
Надежность современных электронных компонентов УШМ превосходит ресурс обмоток двигателя, поэтому не стоит бояться приобретения электроинструмента, оснащенного такими приспособлениями. Ограничителем может быть лишь цена изделия. Мало того, пользователи недорогих моделей без регулятора рано или поздно приходят к самостоятельной его установке. Блок можно приобрести в готовом виде или изготовить самостоятельно.
Изготовление регулятора оборотов своими руками
Попытки приспособить обычный диммер мдля регулировки яркости лампы ничего не даст. Во-первых, эти устройства рассчитаны на совершенно другую нагрузку. Во-вторых, принцип работы диммера не совместим с управлением обмоткой электромотора. Поэтому приходится монтировать отдельную схему, и придумывать, как ее разместить в корпусе инструмента.
ВАЖНО! Если вы не имеете навыков работы с электросхемами – лучше приобрести готовый фабричный регулятор, или УШМ с этой функцией.
Самоделный регулятор скорости
Простейший тиристорный регулятор скорости вращения легко можно сделать самостоятельно. Для этого понадобится пять радиоэлементов, которые продаются на любом радиорынке.
Электрическая схема тиристорного регулятор скорости для вашего инструмента
Компактность исполнения позволяют разместить схему в корпусе УШМ без ущерба эргономике и надежности. Однако такая схема не позволяет сохранять крутящий момент при падении оборотов. Вариант подойдет для снижения оборотов при резке тонкой жести, проведении полировальных работ, обработке мягких металлов.
Если ваша болгарка используется для обработки камня, или на нее можно установить диски размером более 180 мм, необходимо собрать более сложную схему, где в качестве модуля управления используется микросхема КР1182ПМ1, или ее зарубежный аналог.
Электросхема регулировки оборотов с применением микросхемы КР1182ПМ1
Такая схема контролирует силу тока при любых оборотах, и позволяет минимизировать потерю крутящего момента при их снижении. К тому же, эта схема бережнее относится к двигателю, продлевая его ресурс.
Вопрос, как сделать регулировку оборотов инструмента, возникает при стационарном его размещении. Например, при использовании болгарки в качестве циркулярной пилы. В таком случае, регулятором оснащается точка подключения (автомат или розетка), и регулировка оборотов происходит дистанционно.
Вне зависимости от способа исполнения, регулятор оборотов УШМ расширяет возможности инструмента и добавляет комфорта при его использовании.
Сергей | 28.06.2016 00:10
Цитата: » Большинство угловых шлифовальных машин (УШМ), в простонародье болгарок, имеют регулятор оборотов.» Так может писать только человек, который никогда болгарки не покупал. Сходите в супермаркет строительный в раздел электроинструментов и посчитайте, сколько там будет болгарок с регулировкой оборотов — штук 5 может быть найдете из 20-ти.
sposport | 28.06.2016 11:44
Полно болгарок с регулировкой оборотов. Возможно пропущено слово «продвинутых» или «дорогих», с этим можно согласиться. А то что в магазинах битком не пойми чего, так маркет маркету рознь.
erikra | 25.08.2016 19:37
Ремонт электродрели своими руками
При наличии определенных навыков, осуществить ремонт дрели в домашних условиях достаточно просто. Из многочисленных случаев поломок дрели можно выделить несколько характерных неисправностей, к которым приводят неправильная эксплуатация электроинструмента или бракованные элементы от завода-изготовителя. К таким типичным поломкам можно отнести:
— выход из строя элементов двигателя (статор, якорь).
— износ щеток или их обгорание.
— поломка регулятора и реверсного переключателя.
— износ опорных подшипников.
— некачественный зажим в патроне инструмента.
Устройство электродрели (простейшая китайская электродрель):
1 — регулятор оборотов, 2 — реверс, 3 — щеткодержатель со щеткой, 4 — статор двигателя, 5 — крыльчатка для охлаждения электродвигателя, 6 — редуктор.
Коллекторный электродвигатель дрели содержит три основных элемента — статор, якорь и угольные щетки. Статор выполнен из электротехнической стали высокой магнитной проницаемости. Имеет цилиндрическую форму и пазы для укладки статорных обмоток. Статорных обмоток две и расположены они друг напротив друга. Статор жестко крепиться в корпусе дрели.
Устройство электродрели:
1 — статор, 2 — обмотка статора (вторая обмотка под ротором), 3 — ротор, 4 — пластины коллектора ротора, 5 — щеткодержатель со щеткой, 6 — реверс, 7 — регулятор оборотов.
Ротор представляет собой вал, на который прессуется сердечник из электротехнической стали. По всей длине сердечника протачиваются канавки, через равное расстояние, для укладки якорных обмоток. Обмотки наматываются цельным проводом с отводами для крепления к коллекторным пластинам. Таким образом, образовывается якорь, разделённый на сегменты. Коллектор находится на хвостовике вала и жестко укреплен на нем. Ротор во время работы вращается внутри статора на подшипниках, которые расположены в начале и конце вала.
По пластинам во время работы двигаются подпружиненные щетки. Кстати, когда проводится ремонт дрели, следует особое внимание уделить именно им. Щетки прессуются из графита, имеют вид параллелепипеда с вмонтированными гибкими электродами.
Самый распространенный вид поломки, это износ щеток двигателя, замену которых можно произвести самостоятельно в домашних условиях. Иногда, щетки можно заменить без разборки корпуса дрели. У некоторых моделей достаточно выкрутить заглушки из установочных окошек и установить новые щетки. У других моделей, для замены требуется разборка корпуса, в этом случае необходимо аккуратно достать щеткодержатели и извлечь из них изношенные щетки.
Щетки продаются во всех нормальных магазинах электроинструмента, и часто к новой электродрели прилагается дополнительная пара щеток.
Не стоит ждать, пока щетки износятся до минимального размера. Это чревато тем, что между щеткой и коллекторными пластинами увеличивается зазор. Как следствие происходит повышенное искрообразование, коллекторные пластины сильно нагреются и могут «отойти9quot; от основания коллектора, что приведет к необходимости замены якоря.
Определить необходимость замены щеток можно по повышенному искрообразованию, которое просматривается в вентиляционных прорезях корпуса. Второй способ определения, это хаотичное «дергание9quot; дрели во время работы.
На второе место, по числу поломок дрели, можно поставить неисправность элементов двигателя и чаще всего якоря. Выход из строя якоря или статора происходит по двум причинам — неправильная эксплуатация и некачественный моточный провод. Производители с мировым именем применяют дорогой моточный провод с двойной изоляцией термостойким лаком, что в разы повышает надежность двигателей. Соответственно в дешевых моделях качество изоляции моточного провода оставляет желать лучшего. Неправильная эксплуатация сводится к частым перегрузкам дрели или продолжительной работе, без перерывов для остывания двигателя. Ремонт дрели своими руками перемоткой якоря или статора, в этом случае без специальных приспособлений невозможен. Только замена элемента полностью (исключительно опытные ремонтники смогут произвести перемотку якоря или статора своими руками).
Для замены ротора или статора необходимо разобрать корпус, отсоединить провода, щетки, при необходимости снять приводную шестерню, и извлечь двигатель целиком вместе с опорными подшипниками. Заменить неисправный элемент и установить двигатель на место.
Определить неисправность якоря можно по характерному запаху, увеличению искрообразования, при этом искры имеют круговое движение по направлению движения якоря. Ярко выраженные «подгоревшие9quot; обмотки можно увидеть при визуальном осмотре. Но если мощность двигателя упала, но нет вышеописанных признаков, то следует прибегнуть к помощи измерительных приборов — омметра и мегомметра.
Обмотки (статора и якоря) подвержены только трем повреждениям — межвитковой электрический пробой, пробой на «корпус9quot; (магнитопровод) и обрыв обмотки. Пробой на корпус определяется довольно просто, достаточно щупами мегомметра прикоснуться к любому выходу обмотки и магнитопроводу. Сопротивление более 500 Мом указывает на отсутствие пробоя. Следует учитывать, что измерения следует проводиться мегомметром, у которого измерительное напряжение не меньше 100 вольт. Делая измерения простеньким мультиметром, нельзя точно определить, что пробоя точно нет, однако можно определить, что пробой точно есть.
Межвитковой пробой якоря определить достаточно сложно, если, конечно, он не виден визуально. Для этого можно использовать специальный трансформатор, у которого имеется только первичная обмотка и разрыв магнитопровода в виде желоба, для установки в него якоря. При этом якорь со своим сердечником становиться вторичной обмоткой. Поворачивая якорь, так что бы в работе были обмотки поочередно, прикладываем к сердечнику якоря тонкую металлическую пластину. Если обмотка короткозамкнута, то пластина начинает сильно дребезжать, при этом обмотка ощутимо нагревается.
Нередко межвитковое замыкание обнаруживается на видимых участках провода или шинки якоря: витки могут быть погнуты, смяты (т.е. прижаты друг к другу), либо между ними могут быть какие либо токопроводящие частицы. Если так, то необходимо устранить эти замыкания, путём исправления помятостей шинки или извлечения инородных тел, соответственно. Также, замыкание может быть обнаружено между соседними пластинками коллектора.
Определить обрыв обмотки якоря можно, если к смежным пластинам якоря подключать миллиамперметр и постепенно поворачивать якорь. В целых обмотках будет возникать определенный одинаковый ток, обрывная покажет или увеличение тока или его полное отсутствие.
Обрыв обмоток статора определяется подключением омметра к разъединенным концам обмоток, отсутствие сопротивления указывает на полный обрыв.
Обороты дрели регулирует симисторный регулятор, расположенный в кнопке включения. Надо отметить простую схему регулировки и малое количество деталей. Собран этот регулятор в корпусе кнопки на подложке из текстолита по микроплёночной технологии. Сама плата имеет миниатюрные размеры, что позволило поместить её в корпусе курка. Ключевой момент — это то, что в регуляторе дрели (в симисторе) происходит разрыв и замыкание цепи за миллисекунды. И регулятор никак не изменяет напряжение, которое приходит из розетки (однако меняется среднеквадратичное значение напряжения, которое показывают все вольтметры измеряющее переменное напряжение) . Точнее, происходит импульсно-фазовое управление. Если кнопка нажата слегка, то время когда цепь замкнута самое маленькое. По мере нажатия, время, когда цепь замкнута, увеличивается. Когда кнопка нажата до предела, время, когда цепь замкнута, максимально или цепь вообще не размыкается.
Более научно это выглядит следующим образом. Принцип работы регулятора основан на изменении момента (фазы) включения симистора (замыкания цепи) относительно перехода сетевого напряжения через ноль (начала положительной или отрицательной полуволны питающего напряжения).
Диаграммы напряжения: в сети (на входе регулятора), на управляющем электроде симистора, на нагрузке (на выходе регулятора).
Чтобы легче было разобраться в работе регулятора, построим три временные диаграммы напряжений: сетевого, на управляющем электроде симистора и на нагрузке. После включения дрели в сеть на вход регулятора поступает переменное напряжение (верхняя диаграмма). Одновременно на управляющий электрод симистора подается напряжение синусоидальной формы (средняя диаграмма). В момент, когда его величина превысит напряжение включения симистора, симистор откроется (цепь замкнется) и сетевой ток потечет через нагрузку. После того как величина управляющего напряжения станет ниже пороговой, симистор остается открытым за счет того, что ток нагрузки превышает ток удержания. В тот момент, когда напряжение на входе регулятора меняет свою полярность, симистор закрывается. Далее процесс повторяется. Таким образом, напряжение на нагрузке будет иметь форму как на нижней диаграмме.
Чем больше амплитуда управляющего напряжения, тем раньше включится симистор, а следовательно, больше будет и длительность импульса тока в нагрузке. И наоборот, чем меньше амплитуда управляющего сигнала, тем меньше будет длительность этого импульса. Амплитуда управляющего напряжения управляется переменным резистором соединенным с курком дрели. Из диаграммы видно, что если не сдвигать по фазе управляющее напряжение, диапазон регулирования будет от 50 до 100%. Поэтому, чтобы диапазон расширить, управляющее напряжение сдвигают по фазе, и тогда в процессы нажатия на курок напряжение на выходе регулятора будет изменяться так, как показано на рисунке ниже.
Показано как будет меняться напряжение на выходе регулятора, если нажимать курок дрели.
Ремонт регулятора оборотов.
Присутствие напряжения на входных клеммах кнопки включения и отсутствие на выходных указывает на неисправности контактов или компонентов схемы регулятора оборотов. Произвести разборку кнопки можно аккуратно подцепив фиксаторы защитного кожуха и стянув его с корпуса кнопки. Визуальный осмотр клемм позволит судить об их работоспособности. Почерневшие клеммы очищаются от нагара спиртом или мелкой наждачной бумагой. Затем кнопка опять собирается и проверяется на наличие контакта, если ничего не изменилось, то кнопка с регулятором должна быть заменена. Регулятор оборотов выполнен на подложке и полностью залит изоляционным компаундом, поэтому ремонту не подлежит. Еще одна характерная неисправность кнопки это стирание рабочего слоя под ползунком реостата. Самый простой выход — замена кнопки целиком.
Ремонт кнопки дрели своими руками возможен только при наличии определенных навыков. Важно понимать, что после вскрытия корпуса, многие детали коммутации просто вывалятся из корпуса. Не допустить этого можно только плавным поднятием крышки изначально и желательной зарисовкой расположения контактов и пружинок.
Устройство реверса (если располагается не в корпусе кнопки) имеет свои перекидные контакты, поэтому так же подвержено пропаданию контакта. Механизм разборки и чистки такой же, как и кнопки.
При покупке нового регулятора оборотов, следует убедиться, что он рассчитан на мощность дрели, так при мощности дрели 750Вт, регулятор должен быть рассчитан на ток более 3,4А (750Вт/220В=3,4А).
Схема подключения проводов, и в частности схема подключения кнопки дрели, в разных моделях может отличаться. Самая простая схема, и лучше всего демонстрирующая принцип работы, следующая. Один повод из шнура питания подключается к регулятору оборотов.
Электрическая схема дрели.
«рег. обор.» — регулятор оборотов электродрели, «1-я ст.обм.» — первая статорная обмотка, «2-я ст.обм.» — вторая статорная обмотка, «1-я щет.» — первая щетка, «2-я щет.» — вторая щетка.
Чтобы не путаться, важно понять, что регулятор оборотов и устройство управления реверсом — это две разные детали, которые часто имеют разные корпуса.
Регулятор оборотов и реверс находятся в отдельных корпусах. На фото видно, что к регулятору оборотов подключено только два провода.
Единственный провод выходящий из регулятора оборотов подключается к началу первой обмотки статора. Если бы не было устройства реверса, конец первой обмотки соединялся бы с одной из щеток ротора, а вторая щетка ротора соединялась бы с началом второй обмотки статора. Конец второй обмотки статора ведет ко второму проводу шнура питания. Вот и вся схема.
Изменение направления вращения ротора происходит, когда конец первой обмотки статора подключается не к первой, а ко второй щетке, при этом первая щетка подключается к началу второй обмотки статора.
В устройстве реверса такое переключение и происходит, поэтому щетки ротора соединяются с обмотками статора через него. На этом устройстве может быть схема, показывающая, какие провода соединяются внутри.
Схема на реверсе электродрели
(на фото реверс отсоединен от регулятора оборотов).
Схема подключения реверса электродрели.
Черные провода ведут к щеткам ротора (5-й контакт пусть будет первая щетка, а 6-й контакт пусть будет вторая щетка), серые — к концу первой обмотки статора (пусть будет 4-й контакт) и началу второй (пусть будет 7-й контакт). При положении переключателя изображенном на фото, замкнуты конец первой обмотки статора с первой щеткой ротора (4-й с 5-м), и начало второй обмотки статора со второй щеткой ротора (7-й с 6-м). При переключении реверса во второе положение, соединяются 4-й с 6-м, и 7-й с 5-м.
Конструкция регулятора оборотов электродрели предусматривает подключение конденсатора и подключение к регулятору обоих проводов идущих от розетки. Схема на рисунке ниже, для лучшего понимания, чуть упрощена: нет устройства реверса, ещё не показаны обмотки статора, к которым и подключаются провода от регулятора (см. схемы выше).
Схема подключения кнопки (регулятора оборотов) дрели.
В случае описываемой электродрели, используется только два нижних контакта: крайний левый и крайний правый. Конденсатора нет, а второй провод сетевого шнура подключается прямо к статорной обмотке.
Подключение кнопки электродрели.
Редуктор дрели предназначен для уменьшения оборотов сверла и увеличения крутящего момента. Чаще встречается шестеренчатый редуктор с одной передачей. Встречаются дрели и с несколькими передачами, например двумя, при этом сам механизм чем-то напоминает коробку передач автомобиля.
Наличие посторонних звуков, скрежета и подклинивания патрона говорит о неисправности редуктора или механизма переключения передач, если он есть. В этом случае необходимо осмотреть все шестерни и подшипники. Если обнаружены изношенные шлицы или сломанные зубья на шестернях, то необходима полная замена этих элементов.
Подшипники проверяются на пригодность после съема их с оси якоря или корпуса дрели, при помощи специальных съемников. Зажимая двумя пальцами внутреннюю обойму, нужно прокрутить внешнюю обойму. Неравномерные проскакивания обоймы или «шелест9quot;, при прокручивании, говорят о необходимости замены подшипника. Не вовремя заменённый подшипник приведёт к заклиниванию якоря, или, в лучшем случаи, подшипник просто провернется в посадочном месте.
Ударное действие дрели.
Некоторые дрели имеют ударный режим, для долбления отверстий в бетонных стенах. Для этого сбоку большой шестеренки ставится волнистая «шайба9quot;, и такая же «шайба9quot; напротив.
Большая шестеренка с волнистостью сбоку.
При сверлении с включенным режимом удара, когда сверло упирается, например, в бетонную стену, волнистые «шайбы9quot; соприкасаются и за счет своей волнистости имитируют удары. «Шайбы9quot; со временем стираются, и требую замены.
Волнистые поверхность не соприкасаются благодаря пружине.
Соприкасающиеся волнистые поверхности. Пружина растянута.
Замена патрона дрели.
Патрон подвержен износу, а именно зажимные «губки9quot;, из-за попадания в него грязи и абразивных остатков стройматериалов. Если патрон подлежит замене, необходимо открутить винт фиксатор внутри патрона (левая резьба) и открутить его с вала.
Шнур проверяется омметром, один щуп подключается к контакту сетевой вилки, другой к жиле шнура. Отсутствие сопротивления указывает на обрыв. В этом случае ремонт дрели сводится к замене сетевого провода.
В заключении хочется добавить: при сборке дрели после её ремонта, следите, чтобы провода не оказались зажаты верхней крышкой. Если всё будет в порядке, две половинки схлопнутся без зазора. В противном случае, при затягивании шурупов провода может сплющить или перекусить.
Электрическая дрель является незаменимым помощником во всех видах домашнего ремонта: с ее помощью можно выполнять ряд задач от перемешивания красок, клея для обоев до основного предназначения — сверления различных отверстий. Быстрому износу подвергается кнопка включения изделия, которую приходится довольно часто ремонтировать или менять на новую. Чтобы провести эту довольно несложную операцию, пользователю нужна схема подключения кнопки дрели и знание самых распространенных неисправностей этой важной детали.
Диагностика поломки
Это простое с виду устройство во время использования подает сигналы пользователю, что в скором времени ему потребуется ремонт, только не все их понимают. Если дрель начинает работать с временными перебоями или кнопка требует более сильного нажатия, чем ранее, то это первые симптомы некорректной работы этой детали.
Когда вы используете аккумуляторную дрель, то первым делом надо замерить тестером напряжение аккумулятора – если меньше номинального, то он подлежит зарядке.
В данном случае нас особо интересует состояние и функциональные способности именно кнопки включения/выключения изделия. Проверить исправность ее работы довольно просто: надо открутить крепления основного корпуса, снять верхнюю крышку и проверить напряжение проводов, идущих к устройству, включив шнур питания в розетку. Когда прибор показывает поступление напряжения, а при нажатии на кнопку изделие не работает, то это говорит о том, что она сломана или произошло подгорание контактов внутри устройства.
Обычная кнопка вкл/выкл
Ремонт или замена кнопки дрели считается простым процессом, но необходимо иметь определённые навыки — при неосторожном открытии боковой стенки многие детали могут разлететься в разные стороны или выпасть из корпуса.
Как было написано выше, кнопка может не функционировать из-за окисления или подгорания контактов. Чтобы исправить это, необходимо разобрать ее . соблюдая следующий порядок.
- Осторожно подцепить фиксаторы защитного кожуха и открыть его.
- Нагар на контактах удалить с помощью спирта, или зачистить их наждачной бумагой.
- Затем произвести сборку и проверку.
Если все работает нормально, то значит, причина была в контактах, в противном случае требуется замена кнопки .
Следует знать, что часто стирается специальный слой, который при изготовлении наносится под ползунок реостата — в этом случае кнопка также подлежит замене.
Довольно часто схема подключения кнопки дрели используется для проверки функциональных способностей всей конструкции: только при ее наличии можно выполнить частичный ремонт или осуществить правильное подключение кнопки в случае ее замены. Схема должна идти вместе с инструкцией по эксплуатации изделия . если же ее по какой-то причине там нет, то поискать можно в интернете.
Кнопка включения с реверсом/регулятором оборотов
Представленная на фотографии кнопка для дрели кроме реверса, имеет встроенный регулятор оборотов электрического двигателя. Эта конструкция отличается повышенной сложностью, поэтому без особых навыков разобрать ее не представляется возможным: как только вы вскроете корпус, все детали «разбегутся» в разные стороны, т. к. их подпирают пружины. Не зная их правильного расположения, собрать назад всю конструкцию будет невозможно — проще купить новую, а подсоединение выполнить, сверяясь со специальной схемой, найти которую можно в интернете.
Современные дрели выпускаются с реверсом, поэтому кнопка выполняет сразу несколько функций:
- основное включение изделия в работу;
- регулировка оборотов вращения электродвигателя;
- включение реверса — изменение направления вращения ротора двигателя.
Внимание! Управление реверсом и регулятор оборотов находятся в разных корпусах — проверять их надо по отдельности.
Необходимо помнить, что в современных изделиях регулятор оборотов располагается на специальной подложке, и при изготовлении он заливается компаундом — изоляционным составом, который после затвердевания защищает все детали от механического, температурного и химического воздействия. Поэтому он ремонту не подлежит.
Как видно из схемы подключения, когда в ней присутствует кнопка дрели вместе с реверсом, переключение вращения осуществляется при помощи специального тумблера. При этом плюс или минус подается на разные щетки, поэтому якорь двигателя вращается в разном направлении.
Не стоит самостоятельно разбирать кнопку пуска дрели в случае сложной ее конструкции — отсоедините провода и отнесите в центр сервиса, где профессиональные специалисты проведут полную диагностику и ремонт.
Наша помощница может сверлить разные материалы, поэтому часто возникает много пыли и отходов. После каждого использования следует чистить дрель . тогда при следующем использовании устройство будет работать как швейцарские часы: без сбоев и досадных остановок.
Электрическая дрель является незаменимым помощником во всех видах домашнего ремонта: с ее помощью можно выполнять ряд задач от перемешивания красок, клея для обоев до основного предназначения — сверления различных отверстий. Быстрому износу подвергается кнопка включения изделия, которую приходится довольно часто ремонтировать или менять на новую. Чтобы провести эту довольно несложную операцию, пользователю нужна схема подключения кнопки дрели и знание самых распространенных неисправностей этой важной детали.
Это простое с виду устройство во время использования подает сигналы пользователю, что в скором времени ему потребуется ремонт, только не все их понимают. Если дрель начинает работать с временными перебоями или кнопка требует более сильного нажатия, чем ранее, то это первые симптомы некорректной работы этой детали.
Когда вы используете аккумуляторную дрель, то первым делом надо замерить тестером напряжение аккумулятора – если меньше номинального, то он подлежит зарядке.
В данном случае нас особо интересует состояние и функциональные способности именно кнопки включения/выключения изделия. Проверить исправность ее работы довольно просто: надо открутить крепления основного корпуса, снять верхнюю крышку и проверить напряжение проводов, идущих к устройству, включив шнур питания в розетку. Когда прибор показывает поступление напряжения, а при нажатии на кнопку изделие не работает, то это говорит о том, что она сломана или произошло подгорание контактов внутри устройства.
Обычная кнопка вкл/выкл
Ремонт или замена кнопки дрели считается простым процессом, но необходимо иметь определённые навыки — при неосторожном открытии боковой стенки многие детали могут разлететься в разные стороны или выпасть из корпуса.
Как было написано выше, кнопка может не функционировать из-за окисления или подгорания контактов. Чтобы исправить это, необходимо разобрать ее , соблюдая следующий порядок.
- Осторожно подцепить фиксаторы защитного кожуха и открыть его.
- Нагар на контактах удалить с помощью спирта, или зачистить их наждачной бумагой.
- Затем произвести сборку и проверку.
Если все работает нормально, то значит, причина была в контактах, в противном случае требуется замена кнопки .
Следует знать, что часто стирается специальный слой, который при изготовлении наносится под ползунок реостата — в этом случае кнопка также подлежит замене.
Довольно часто схема подключения кнопки дрели используется для проверки функциональных способностей всей конструкции: только при ее наличии можно выполнить частичный ремонт или осуществить правильное подключение кнопки в случае ее замены. Схема должна идти вместе с инструкцией по эксплуатации изделия , если же ее по какой-то причине там нет, то поискать можно в интернете.
Кнопка включения с реверсом/регулятором оборотов
Представленная на фотографии кнопка для дрели кроме реверса, имеет встроенный регулятор оборотов электрического двигателя. Эта конструкция отличается повышенной сложностью, поэтому без особых навыков разобрать ее не представляется возможным: как только вы вскроете корпус, все детали «разбегутся» в разные стороны, т. к. их подпирают пружины. Не зная их правильного расположения, собрать назад всю конструкцию будет невозможно — проще купить новую, а подсоединение выполнить, сверяясь со специальной схемой, найти которую можно в интернете.
Современные дрели выпускаются с реверсом, поэтому кнопка выполняет сразу несколько функций:
- основное включение изделия в работу;
- регулировка оборотов вращения электродвигателя;
- включение реверса — изменение направления вращения ротора двигателя.
Внимание! Управление реверсом и регулятор оборотов находятся в разных корпусах — проверять их надо по отдельности.
Необходимо помнить, что в современных изделиях регулятор оборотов располагается на специальной подложке, и при изготовлении он заливается компаундом — изоляционным составом, который после затвердевания защищает все детали от механического, температурного и химического воздействия. Поэтому он ремонту не подлежит.
Как видно из схемы подключения, когда в ней присутствует кнопка дрели вместе с реверсом, переключение вращения осуществляется при помощи специального тумблера. При этом плюс или минус подается на разные щетки, поэтому якорь двигателя вращается в разном направлении.
Не стоит самостоятельно разбирать кнопку пуска дрели в случае сложной ее конструкции — отсоедините провода и отнесите в центр сервиса, где профессиональные специалисты проведут полную диагностику и ремонт.
Наша помощница может сверлить разные материалы, поэтому часто возникает много пыли и отходов. После каждого использования следует чистить дрель , тогда при следующем использовании устройство будет работать как швейцарские часы: без сбоев и досадных остановок.
Тиристорный регулятор мощности для электродвигателя – Tokzamer
Регулятор оборотов электродвигателя: назначение, принцип работы
В большинстве современных бытовых и промышленных приборов применяются электрические машины, совершающие какую-либо полезную работу. В качестве рабочего инструмента в них могут выступать самые разнообразные приспособления, которые необходимо вращать с различной скоростью. Для изменения этого параметра используется регулятор оборотов электродвигателя.
Назначение
Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.
Однако на практике данная опция может преследовать и другие цели:
- Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
- Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
- Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
- Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
- Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
- Обеспечения достаточного момента на низких частотах вращения электрической машины.
Возможность реализации тех или иных функций у регуляторов оборотов определяет как принцип их действия, так и схематическое исполнение.
Принцип работы
Для регулировки оборотов может использоваться способ понижения или повышения напряжения, изменение силы тока и частоты, подаваемых в обмотки асинхронных и коллекторных электродвигателей. Поэтому далее рассмотрим варианты частотных преобразователей и регуляторов напряжения.
Среди используемых в промышленной и бытовой сфере следует выделить:
- Введение рабочего сопротивления – реализуется при помощи переменных резисторов, делителей и прочих преобразователей. Хорошо обеспечивает снижение в однофазных двигателях за счет контроля скольжения (разницы между магнитным полем статора и скоростью вращения асинхронных агрегатов). Для этого устанавливаются электродвигатели большей мощности, чтобы на них можно было подавать меньшее напряжение. Соотношение по скорости оборотов будет составлять до 2 раз в сторону уменьшения.
- Автотрансформаторный – выполняется путем перемещения подвижного контакта по обмотке, что снижает или увеличивает скорость вращения электродвигателя. Преимущество такого принципа заключается в четкой синусоиде переменного тока и большой перегрузочной способности.
- Тиристорный или симисторный – изменяет величину питающего напряжения посредством пары встречно включенных тиристоров или совместного включения с симистором. Этот способ применим не только в асинхронных двигателях, но и других бытовых приборах – диммерах, переключателях и т.д.
Рис. 1. Схема тиристорного регулятора
Как видите на схеме, подаваемое на тот же асинхронный однофазный электродвигатель напряжение, проходит через переменный резистор R1 на тиристор D1 и на управляющий электрод симистора T1. Перемещая ручку тиристорного регулятора R1 изменяем и скорость вращения однофазного электродвигателя.
- Транзисторный – позволяет изменять форму подаваемого напряжения за счет преобразования числа импульсов и временной паузы между подаваемым напряжением. Благодаря чему получил название широтно-импульсной модуляции, пример такого регулятора приведена на схеме ниже.
Регулировка оборотов на транзисторах
Здесь питание однофазного асинхронного двигателя производится от линии 220В через выпрямительный блок VD1-4, далее напряжение поступает на эмиттер и коллектор транзисторов VT1 и VT2. Подавая управляющий сигнал на базы этих транзисторов, и регулируют обороты мотора.
- Частотный – преобразует частоту подаваемого напряжения на обмотки однофазного или трехфазного асинхронного электродвигателя. Это наиболее современный способ, ранее он относился к дорогостоящим, но с появлением дешевых высоковольтных полупроводников и микроконтроллеров перешел в разряд наиболее эффективных. Может реализовываться с помощью транзисторов, микросхем или микроконтроллеров, способных уменьшать или увеличивать частоту ШИМ.
Пример частотного регулирования
- Полюсный – позволяет регулировать частоту вращения электродвигателя при переключении количества катушек в фазных обмотках, в результате чего изменяется направление и величина тока, протекающего в каждой из них. Реализуется как за счет намотки нескольких катушек для каждой из фаз, так и одновременным последовательным или параллельным соединением катушек, такой принцип приведен на рисунке ниже.
Регулировка оборотов переключением пар полюсов
Как выбрать?
Конкретная модель регулятора оборотов должна подбираться в соответствии с типом подключаемой электрической машины – коллекторный двигатель, трехфазный или однофазный электродвигатель. В соответствии с чем и подбирается определенный преобразователь частоты вращения.
Помимо этого для регулятора оборотов необходимо выбрать:
- Тип управления – выделяют два способа: скалярный и векторный. Первый из них привязывается к нагрузке на валу и является более простым, но менее надежным. Второй отстраивается по обратной связи от величины магнитного потока и выступает полной противоположностью первого.
- Мощность – должна выбираться не менее или даже больше, чем номинал подключаемого электродвигателя на максимальных оборотах, желательно обеспечивать запас, особенно для электронных регуляторов.
- Номинальное напряжение – выбирается в соответствии с величиной разности потенциалов для обмоток асинхронного или коллекторного электродвигателя. Если вы подключаете к заводскому или самодельному регулятору одну электрическую машину, будет достаточно именно такого номинала, если их несколько, частотный регулятор должен иметь широкий диапазон по напряжению.
- Диапазон частот вращения – подбирается в соответствии с конкретным типом оборудования. К примеру, для вращения вентилятора достаточно от 500 до 1000 об/мин, а вот станку может потребоваться до 3000 об/мин.
- Габаритные размеры и вес – выбирайте таким образом, чтобы они соответствовали конструкции оборудования, не мешали работе электродвигателя. Если под регулятор оборотов будет использоваться соответствующая ниша или разъем, то размеры подбираются в соответствии с величиной свободного пространства.
Подключение
Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.
Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:
Схема подключения регулятора
Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:
Распиновка регулятора
Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.
Проверьте цветовую маркировку
Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.
Тиристорный регулятор двигателя
Тиристорный регулятор двигателя чтобы можно было изменять частоту вращения вала электродвигателя переменного тока, его подключают к тиристорному регулятору мощности. При этом электродвигатель включают либо в разрыв сетевого провода, либо после выпрямительного моста, питающего анодную цепь тринистора. Если в цепи нагрузки контакт не нарушается, тиристорный регулятор двигателя работает надежно. При подключении же коллекторного электродвигателя характер нагрузки изменяется — ток через нее течет как бы импульсами, в результате чего на коллекторных щетках наблюдается искрение. Тиристорный регулятор с такой нагрузкой работает неустойчиво.
Предлагаемый тиристорный регулятор мощности, специально предназначенный для управления коллекторным электродвигателем (электродрель, вентилятор и т. д.), имеет некоторые особенности. Во-первых, электродвигатель с силовым тиристором включены в одну из диагоналей выпрямительного моста, а на другую подано сетевое напряжение. Кроме того, этот тринистор управляется не короткими импульсами, как в традиционных устройствах, а более широкими, благодаря чему кратковременные отключения нагрузки, характерные для работающего коллекторного электродвигателя, не сказываются на стабильности работы регулятора.
На однопереходном транзисторе VT1 собран генератор коротких (доли миллисекунд) положительных импульсов, используемых для управления вспомогательным тиристором VS1. Питается генератор трапецеидальным напряжением, получаемым благодаря ограничению стабилитроном VD1 положительных полуволн синусоидального напряжения, следующих с частотой 100 Гц. С появлением каждой полуволны такого напряжения конденсатор С1 начинает заряжаться через цепь из резисторов R1—R3. Скорость зарядки конденсатора можно регулировать в некоторых пределах переменным резистором R1.
Как только напряжение на конденсаторе достигает порога открывания транзистора (он зависит от напряжения на базах транзистора и может регулироваться резисторами R4 и R5), на резисторе R5 появляется положительный импульс, поступающий затем на управляющий электрод тринистора VS1. Этот тринистор открывается и появляющийся на резисторе R6 более длительный (по сравнению с управляющим) импульс включает силовой тринистор VS2. Через него напряжение питания поступает на электродвигатель M1.
Момент открывания управляющего и силового тиристоров, а значит, мощность на нагрузке (иначе говоря, частоту вращения вала электродвигателя) регулируют переменным резистором R1. Поскольку в анодную цепь тринистора VS2 включена индуктивная нагрузка, может наблюдаться самопроизвольное открывание тринистора даже без сигнала на управляющем электроде. Чтобы избежать этого, параллельно обмотке возбуждения LB электродвигателя включен диод VD2.
Кроме указанного на схеме тиристорный регулятор двигателя, вспомогательный тиристор VS1 может быть другой маломощный, с допустимым прямым напряжением не менее 100 В; тринистор VS2 — КУ202М, КУ201К, КУ201Л; стабилитрон — с напряжением стабилизации 27…36 В; диод VD2 — любой выпрямительный с током не менее 0,3 А и обратным напряжением более 400 В; диоды VD3—VD6 — рассчитанные на выпрямленный ток более пускового тока электродвигателя и обратное напряжение не менее 400 В. Переменный резистор — СП-1, постоянные — МЛТ-0,25 (R2—R6) и МЛТ-2 (R7), конденсатор — КМ-6.
Детали тиристорный регулятор двигателя, кроме переменного резистора и диода VD2 (его устанавливают на электродвигателе), монтируют на плате (рис. 2) из фольгированного стеклотекстолита. В местах точек 1—3 на плате устанавливают пустотелые заклепки (они видны на рис. 3), к которым в дальнейшем припаивают проводники от переменного резистора и электродвигателя. Плату с переменным резистором размещают в подходящем по габаритам корпусе, на стенке которого можно установить розетку для подключения электродвигателя.
При налаживании тиристорный регулятор двигателя пользуются стробоскопом, измеряющим частоту вращения патрона электродрели либо крыльчатки вентилятора, или вольтметром переменного тока (желательно электромагнитной или электродинамической системы), подключенным параллельно нагрузке. Сначала резистор R2 ставят сопротивлением 30 кОм, а вместо R3 включают переменный резистор сопротивлением 220 ком. Перемещая движок резистора R1 из одного крайнего положения в другое, отмечают изменение напряжения на нагрузке. С помощью резистора R3 устанавливают диапазон регулировки этого напряжения 90…220 В, после чего измеряют получившееся сопротивление резистора R3 и впаивают в регулятор постоянный резистор такого же или возможно близкого номинала. Если при минимальном питающем напряжении электродвигатель работает неустойчиво, устанавливают резистор R2 с меньшим сопротивлением.
Регулятор мощности тиристорный, напряжение и схемы своими руками
В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.
В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.
- Как совершает свою работу тиристор?
- Область использования тиристорных устройств
- Как работает такое устройство?
- Тиристорный регулятор напряжения своими руками
- Способы регулирования фазового напряжения в сети
- Схемы на тиристорах
Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.
Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.
Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.
Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.
Как совершает свою работу тиристор?
Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.
Тиристор обладает сразу тремя выводами тока:
- Катод.
- Анод.
- Управляемый электрод.
Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.
Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.
Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.
Область использования тиристорных устройств
В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.
Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?
Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.
Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.
Как работает такое устройство?
Описанные ниже характеристики будет соответствовать большинству схем.
- Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
- Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.
При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.
Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).
В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.
Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.
Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.
Тиристорный регулятор напряжения своими руками
Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.
Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.
Способы регулирования фазового напряжения в сети
- Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
- Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
- Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.
На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.
Схемы на тиристорах
Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.
Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.
- VD — КД209 (либо близкие по его общим характеристикам).
- R 1 — сопротивление с особым номиналом в 15 кОм.
- R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
- Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).
Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.
Устройство регулятора мощности своими руками
Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.
Простейший регулятор энергии
Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.
Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:
- металлическими;
- жидкостными;
- угольными;
- керамическими.
Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.
Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.
Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.
Виды современных устройств
Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.
На сегодняшний момент производство выпускает следующие типы приборов:
- Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
- Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
- Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
- Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.
При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:
- плавность регулировки;
- рабочую и пиковую подводимую мощность;
- диапазон входного рабочего сигнала;
- КПД.
Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.
Тиристорный прибор управления
Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.
Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.
Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.
Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.
Симисторный преобразователь мощности
Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.
Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.
Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.
Фазовый способ трансформации
Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.
Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.
При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.
Практические примеры для повторения
Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.
Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.
Доминирующая схема
Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.
Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.
При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.
В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.
Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.
Контроллер нагрева паяльника
Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.
Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.
Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.
Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.
Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.
Originally posted 2018-07-04 07:13:04.
Тиристорный регулятор мощности: схема, принцип работы и применение
Сборка регулятора напряжения на симисторах
В основе работы симисторного РН — фазовое смещение открывания ключа. Детали схемы можно разделить на две группы:
- силовые (ключ) — симистор;
- создающие управляющие импульсы, база на симметричном динисторе.
С помощью резисторов R1 и 2 сконструирован делитель напряжения. Сопротивление на первом переменное, что дает возможность регулировать значение на отрезке R2–C1. Между указанными деталями поставлен динистор DB3. Конструкция работает с мощностью около 100–150 Вт.
- В момент достижения напряжения на конденсаторе C1 точки открытия динистора, на симистор (он же является силовым ключом) VS1 поступает импульс для управления — он активируется.
- Через симистор начинает протекать ток на подключенный прибор.
- Положением регулятора выставляют часть фазы волны, где срабатывает силовой ключ.
Второй вариант
Данный способ сборки на симисторе своими руками почти аналогичен предыдущему. Схема базируется на дешевом симисторе BT136. Сборка предназначена для работы в пределах 100 Вт.
Как работает: через цепь DN1 (динист.) — C1 (конд.) — D1 (диод) ток течет на DN2 (симист.). Последний открывается и момент этого зависит от емкости C1, заряжаемого через R1 и 2 (резисторы). Получается требуемый алгоритм: модуляцией сопротивления R1 настраивается скорость заряда конденсатора.
Конструкция чрезвычайно простая, но отлично справляется с настройкой вольтажа нагревательных приборов с вольфрамовой нитью. Но есть минус: отсутствует обратная связь, поэтому применять самоделку для регулировки оборотов коллекторного электродвигателя нельзя.
Третий вариант РН на симисторе с иллюстрацией этапов, фото деталей
Нижеуказанная схема может обслужить нагрузку до 1 кВт. Потребуется конденсатор 0.1 мкФ×400 В и следующее:
Графически схема выглядит так:
Детали можно спаять между собой, но рассмотрим вариант с платой — ее вытравливают и лудят стандартными методами, макет ниже:
Припаиваем симистор, переменный резистор. Конденсатор в нашем случае на плате со стороны лужения, так как у пользователя он был со слишком короткими ножками.
Далее, динистор: у него нет полярности, вставляем как угодно. Затем установка всего остального: диода, резистора, светодиода, перемычки, винтового клеммника.
Конструкция помещается в любую коробочку, пример:
Самоделка в дополнительных настройках не нуждается. Можно применять не только для сети 220 В на стандартные приборы, но и для любого источника с переменным током от 20 до 500 В. Данный диапазон определен предельными характеристиками радиоэлементов.
Простой регулятор напряжения
Даже самая простая радиодеталь состоит из генератора, выпрямителя, аккумулятора, а также переключателя напряжения. Такие устройства обычно не содержат стабилизаторов. Сам же тиристорный регулятор тока состоит из таких элементов:
- диод – 4 шт.;
- транзистор – 1 шт;
- конденсатор – 2 шт.;
- резистор – 2 шт.
Чтобы избежать перегрева транзистора, к нему устанавливают систему охлаждения. Желательно, чтобы последняя имела большой запас мощности, которая позволит заряжать в дальнейшем аккумуляторы с невысокой емкостью.
Как работает такое устройство?
Описанные ниже характеристики будет соответствовать большинству схем.
- Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
- Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.
При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.
Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).
В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.
Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.
Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.
Тиристорный регулятор напряжения своими руками
Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.
Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.
Регулятор оборотов болгарки дает возможность качественно распилить пластик
Если болгарка не оснащена регулятором оборотов, можно ли установить его самостоятельно?
Большинство угловых шлифовальных машин (УШМ), в простонародье болгарок, имеют регулятор оборотов.
Регулятор оборотов расположен на корпусе УШМ
Рассмотрение различных регулировок нужно начать с анализа электрической схемы болгарки.
простейшее представление электросхемы шлифовальной машины
Более продвинутые модели автоматически поддерживают скорость вращения вне зависимости от нагрузки, но чаще встречаются инструменты с ручной регулировкой оборотов диска. Если на дрели или электрическом шуруповерте используется регулятор куркового типа, то на УШМ такой принцип регулирование невозможен. Во-первых – особенности инструмента предполагают другой хват при работе. Во-вторых – регулировка во время работы недопустима, поэтому значение оборотов выставляется при выключенном моторе.
Для чего вообще регулировать скорость вращения диска болгарки?
- При резке металла разной толщины, качество работы сильно зависит от скорости вращения диска.
Если резать твердый и толстый материал – необходимо поддерживать максимальную скорость вращения. При обработке тонкой жести или мягкого металла (например, алюминия) высокие обороты приведут к оплавлению кромки или быстрому замыливанию рабочей поверхности диска; - Резка и раскрой камня и кафеля на высокой скорости может быть опасной.
К тому же диск, который крутится с высокими оборотами, выбивает из материала мелкие куски, делая поверхность реза щербатой. Причем для разных видов камня выбирается разная скорость. Некоторые минералы как раз обрабатываются на высоких оборотах; - Шлифовальные работы и полировка в принципе невозможны без регулирования скорости вращения.
Неправильно выставив обороты, можно испортить поверхность, особенно – если это лакокрасочное покрытие на автомобиле или материал с низкой температурой плавления; - Использование дисков разного диаметра автоматически подразумевает обязательное наличие регулятора.
Меняя диск Ø115 мм на Ø230 мм, скорость вращения необходимо уменьшить практически вдвое. Да и удержать в руках болгарку с 230 мм диском, вращающимся на скорости 10000 об/мин практически нереально; - Полировка каменных и бетонных поверхностей в зависимости от типа используемых коронок производится на разных скоростях. Причем при уменьшении скорости вращения крутящий момент не должен снижаться;
- При использовании алмазных дисков необходимо уменьшать количество оборотов, так как от перегрева их поверхность быстро выходит из строя.
Разумеется, если ваша болгарка работает только в качестве резака для труб, уголка и профиля – регулятор оборотов не потребуется. А при универсальном и разностороннем применении УШМ он жизненно необходим.
Типовая схема регулятора оборотов
Вот так выглядит плата регулятора оборотов в сборе
Регулятор оборотов двигателя – это не просто переменный резистор, понижающий напряжение. Необходим электронный контроль величины силы тока, иначе с падением оборотов будет пропорционально снижаться мощность, а соответственно и крутящий момент. В конце концов, наступит критически малая величина напряжения, когда при малейшем сопротивлении диска электродвигатель просто не сможет повернуть вал.
Поэтому, даже самый простой регулятор необходимо рассчитать и выполнить в виде проработанной схемы.
Электрическая схема
А более продвинутые (и соответственно дорогие) модели оснащаются регуляторами на основе интегральной микросхемы.
Интегральная схема регулятора. (наиболее продвинутый вариант)
Если рассматривать электрическую схему болгарки в принципе, то она состоит из регулятора оборотов и модуля плавного пуска. Электроинструменты, оснащенные продвинутыми электронными системами, существенно дороже своих простых собратьев. Поэтому далеко не каждый домашний мастер в состоянии приобрести такую модель. А без этих электронных блоков останется лишь обмотка электромотора и клавиша включения.
Надежность современных электронных компонентов УШМ превосходит ресурс обмоток двигателя, поэтому не стоит бояться приобретения электроинструмента, оснащенного такими приспособлениями. Ограничителем может быть лишь цена изделия. Мало того, пользователи недорогих моделей без регулятора рано или поздно приходят к самостоятельной его установке. Блок можно приобрести в готовом виде или изготовить самостоятельно.
Изготовление регулятора оборотов своими руками
Попытки приспособить обычный диммер мдля регулировки яркости лампы ничего не даст. Во-первых, эти устройства рассчитаны на совершенно другую нагрузку. Во-вторых, принцип работы диммера не совместим с управлением обмоткой электромотора. Поэтому приходится монтировать отдельную схему, и придумывать, как ее разместить в корпусе инструмента.
ВАЖНО! Если вы не имеете навыков работы с электросхемами – лучше приобрести готовый фабричный регулятор, или УШМ с этой функцией.
Самоделный регулятор скорости
Простейший тиристорный регулятор скорости вращения легко можно сделать самостоятельно. Для этого понадобится пять радиоэлементов, которые продаются на любом радиорынке.
Электрическая схема тиристорного регулятор скорости для вашего инструмента
Компактность исполнения позволяют разместить схему в корпусе УШМ без ущерба эргономике и надежности. Однако такая схема не позволяет сохранять крутящий момент при падении оборотов. Вариант подойдет для снижения оборотов при резке тонкой жести, проведении полировальных работ, обработке мягких металлов.
Если ваша болгарка используется для обработки камня, или на нее можно установить диски размером более 180 мм, необходимо собрать более сложную схему, где в качестве модуля управления используется микросхема КР1182ПМ1, или ее зарубежный аналог.
Электросхема регулировки оборотов с применением микросхемы КР1182ПМ1
Такая схема контролирует силу тока при любых оборотах, и позволяет минимизировать потерю крутящего момента при их снижении. К тому же, эта схема бережнее относится к двигателю, продлевая его ресурс.
Вопрос, как сделать регулировку оборотов инструмента, возникает при стационарном его размещении. Например, при использовании болгарки в качестве циркулярной пилы. В таком случае, регулятором оснащается точка подключения (автомат или розетка), и регулировка оборотов происходит дистанционно.
Вне зависимости от способа исполнения, регулятор оборотов УШМ расширяет возможности инструмента и добавляет комфорта при его использовании.
About sposport
View all posts by sposport
Загрузка…Регулятор оборотов для болгарки своими руками
Хотя создание регулятора оборотов для болгарки мало, кому необходимо, все же встречаются модели, которые имеют сделанную ручную регулировку оборотов диска. Регулирование угловой шлифовальной машины значительно отличается от электрического шуруповерта или дрели, потому что:
- На протяжении работы используется абсолютно другой хват.
- Проводить регулировку в течение работы запрещено. Регулирование должно проводиться только тогда, когда аппарат выключен.
Необходимость регулировки скорости вращения диска
Существует несколько причин:
- Когда производится резка металла (в независимости от толщины материала), результат проводимой работы находится в зависимости от скорости вращения диска. Если производится резка металла большой толщины, то скорость должна быть наиболее максимальной. Если вы работаете с материалом, у которого толщина небольшая, то скорость необходимо снизить, так как при большой скорости происходит быстрое замыливание поверхности диска.
- Если производится резка кафеля на большой скорости, то это представляет определенную опасность. Также диск, крутясь с огромной скоростью, начинает отбивать маленькие кусочки материала, тем самым, делая его поверхность щербатой. Так как камень имеет разнообразные типы, используется для каждого вида своя определенная скорость. Для многих минералов применяются высокие обороты.
- Если проводится шлифовка или полировка, то регулировка оборотов болгарки просто необходима. Если обороты выставлены неправильно, то поверхность материала будет испорчена. Например, может быть испорчен материал, который имеет лакокрасочное покрытие.
- Если постоянно применяются диски, которые имеют различный диаметр, то регулятор оборотов для болгарки обязательно должен быть в наличии. Если вы меняете диск болгарки на другой, у которого диаметр больше, скорость оборотов необходимо снизить. Нельзя удержать в руках шлифовальную машину, у которой диск с огромным диаметром.
- Выбор скорости оборотов при полировке бетонного материала находится в зависимости от применения определенного вида коронок. При снижении скорости вращения момент кручения не должен уменьшаться.
- Если вы применяете алмазный диск, то число его оборотов необходимо снизить, иначе поверхность из-за перегрева начнет выходить из строя. Конечно, если вы используете угловую шлифовальную машину для резки труб, уголков или профилей, то наличие регулятора не нужно. Но если болгарка используется для разнообразных целей, то регулятор оборотов для УШМ просто необходим. Все эти причины показывают, что наличие регулятора болгарки обязательно.
Описание регулятора болгарки
Регулятор угловой шлифовальной машины – это реостат (переменный резистор), который уменьшает напряжение (все осуществляется регулирующим устройством). Нужен контроль силы тока, потому что при уменьшении количества оборотов будет снижение мощности строительного аппарата. Следовательно, будет уменьшаться крутящий момент. В итоге, станет маленькая величина напряжения, и при определенном сопротивлении у электрического двигателя не получится повернуть вал. Поэтому необходимо следовать определенной схеме: Схема угловой шлифовальной машины складывается из модуля плавного пуска и непосредственно регулятора оборотов.
Современные продвинутые модели имеют отличительную электронную систему, и не каждый человек сможет позволить себе приобрести его.
Самостоятельное создание регулятора
Как сделать регулятор своими самостоятельно? Стремление пристроить обыкновенное электронное устройство, предназначенное для изменения электрической мощности (диммер) заканчивается ничем. В первую очередь, диммер для болгарки рассчитан на иную нагрузку. Также диммер не имеет совмещения с управлением обмоткой электрического мотора. Поэтому нужно проводить монтаж отдельной схемы. Также необходимо придумать, где она будет располагаться внутри корпуса болгарки.
Важный момент: если вы вообще не имеете какого-либо опыта работы с электрическими схемами, лучше всего купить готовый фирменный регулятор для болгарки либо угловую шлифовальную машину с наличием данной функции.
Простой полупродниковой прибор (тиристорный регулятор) можно соорудить своими руками. Для данной процедуры будет необходимо 5 радиоэлементов. Радиоэлементы можно купить на радиорынке. Благодаря компактности можно спокойно провести размещение приготовленную схему в болгарке, не повредив эргономику и надежность. Однако сохранение крутящего момента не происходит при уменьшении оборотов на болгарку. Данный вариант лучше всего подойдет для обработки мягких металлов, а также жести, которая имеет маленькую толщину.
Если вы проводите обработку камня, то необходимо установить диск, который имеет размер 180 миллиметров. Далее нужно создать более усложненную схему регулятора. В данной схеме модулем управления будет являться микросхема КР1182ПМ1. Данная схема имеет контроль над силой тока при различных оборотах, а также делает потерю крутящего момента минимальной при уменьшении оборотов. При использовании такой схемы эксплуатация двигателя увеличивается.
Если угловая шлифовальная машина используется в качестве циркулярки, то нужно болгарку оснастить точкой подключения. Благодаря такой точки, осуществляется подключение, и регулировать обороты можно дистанционно. У вас получится отличный самодельный регулятор оборотов.
От того, как вы сделали регулятор, не зависит то, что это обязательный компонент угловой шлифовальной машины, который делает возможности работы шире и позволяет комфортно использовать данный строительный инструмент. Также после установки регулятора необходимо провести пробный запуска УШМ, чтобы проверить: не вырывается ли строительный инструмент из рук. Внешний регулятор оборотов для болгарки своими руками можно сделать.
Регулятор оборотов на щеточный двигатель. Самостоятельное изготовление регулятора оборотов электродвигателя. Короткозамкнутый и фазный роторы
Не каждая современная дрель или болгарка оснащена заводским регулятором оборотов, и чаще всего регулировка оборотов не предусмотрена вовсе. Тем не менее, как болгарки, так и дрели построены на базе коллекторных двигателей, что позволяет каждому их владельцу, маломальски умеющему обращаться с паяльником, изготовить собственный регулятор оборотов из доступных электронных компонентов, хоть из отечественных, хоть из импортных.
В данной статье мы рассмотрим схему и принцип работы простейшего регулятора оборотов двигателя электроинструмента, и единственное условие — двигатель должен быть коллекторным — с характерными ламелями на роторе и щетками (которые порой искрят).
Приведенная схема содержит минимум деталей, и подойдет для электроинструмента мощностью до 1,8 кВт и выше, для дрели или болгарки. Похожая схема используется для регулировки оборотов в автоматических стиральных машинах, в которых стоят коллекторные высокоскоростные двигатели, а также в диммерах для ламп накаливания. Подобные схемы, в принципе, позволят регулировать температуру нагрева жала паяльника, электрического обогревателя на базе ТЭНов и т. д.
Потребуются следующие радиоэлектронные компоненты:
Резистор постоянный R1 — 6,8 кОм, 5 Вт.
Переменный резистор R2 — 2,2 кОм, 2 Вт.
Резистор постоянный R3 — 51 Ом, 0,125 Вт.
Конденсатор пленочный C1 — 2 мкф 400 В.
Конденсатор пленочный C2 — 0,047 мкф 400 вольт.
Диоды VD1 и VD2 — на напряжение до 400 В, на ток до 1 А.
Тиристор VT1 — на необходимый ток, на обратное напряжение не менее 400 вольт.
В основе схемы — тиристор. Тиристор представляет собой полупроводниковый элемент с тремя выводами: анод, катод, и управляющий электрод. После подачи на управляющий электрод тиристора короткого импульса положительной полярности, тиристор превращается в диод, и начинает проводить ток до тех пор, пока в его цепи этот ток не прервется или не сменит направление.
После прекращения тока или при смене его направления, тиристор закроется и перестанет проводить ток, пока не будет подан следующий короткий импульс на управляющий электрод. Ну а поскольку напряжение в бытовой сети переменное синусоидальное, то каждый период сетевой синусоиды тиристор (в составе данной схемы) станет отрабатывать строго начиная с установленного момента (в установленной фазе), и чем меньше во время каждого периода тиристор будет открыт, тем ниже будут обороты электроинструмента, а чем, соответственно, дольше тиристор будет открыт, тем выше будут обороты.
Как видите, принцип прост. Но применительно к электроинструменту с коллекторным двигателем, схема работает хитрее, и об этом мы расскажем далее.
Итак, в сеть здесь включены параллельно: измерительная цепь управления и силовая цепь. Измерительная цепь состоит из постоянного и переменного резисторов R1 и R2, из конденсатора C1, и диода VD1. Для чего нужна эта цепь? Это делитель напряжения. Напряжение с делителя, и что важно, противо-ЭДС с ротора двигателя, складываются в противофазе, и формируют импульс для открывания тиристора. Когда нагрузка постоянна, то и время открытого состояния тиристора постоянно, следовательно обороты стабилизированы и постоянны.
Как только нагрузка на инструмент, и следовательно на двигатель, увеличивается, то величина противо-ЭДС уменьшается, поскольку обороты снижаются, значит сигнал на управляющий электрод тиристора возрастает, и открывание происходит с меньшей задержкой, то есть мощность подводимая к двигателю возрастает, увеличивая упавшие обороты. Так обороты сохраняются постоянными даже под нагрузкой.
В результате совместного действия сигналов от противо-ЭДС и с резистивного делителя, нагрузка не сильно влияет на обороты, а без регулятора это влияние было бы существенным. Таким образом при помощи данной схемы достижима устойчивая регулировка оборотов в каждом положительном полупериоде сетевой синусоиды. При средних и малых скоростях вращения этот эффект более выражен.
Однако, при повышении оборотов, то есть при повышении напряжения, снимаемого с переменного резистора R2, стабильность поддержания скорости постоянной снижается.
Лучше на этот случай предусмотреть шунтирующую кнопку SA1 параллельно тиристору. Функция диодов VD1 и VD2 — обеспечение однополупериодного режима работы регулятора, так как напряжения с делителя и с ротора сравниваются лишь в отсутствие тока через двигатель.
Конденсатор C1 расширяет зону регулирования на малых скоростях, а конденсатор C2 снижает чувствительность к помехам от искрения щеток. Тиристор нужен высокочувствительный, чтобы ток менее 100 мкА смог бы его открыть.
Каждый из нас дома имеет какой-то электроприбор, который работает в доме не один год. Но со временем мощность техники слабеет и не выполняет своих прямых предназначений. Именно тогда стоит обратить внимание на внутренности оборудования. В основном проблемы возникают с электродвигателем, который отвечает за функциональность техники. Тогда стоит обратить свое внимание на прибор, который регулирует обороты мощности двигателя без снижения их мощности.
Виды двигателей
Регулятор оборотов с поддержанием мощности — изобретение, которое вдохнет новую жизнь в электроприбор, и он будет работать как только что приобретенный товар . Но стоит помнить о том, что двигатели бывают разных форматов и у каждого своя предельная работа.
Двигатели разные по характеристикам. Это значит то, что та или иная техника работает на разных частотах оборота вала, запускающего механизм. Мотор может быть :
- однофазным,
- двухфазным,
- трехфазным.
В основном трехфазные электромоторы встречаются на заводах или крупных фабриках. В домашних условиях используются однофазные и двухфазные. Данного электричества хватает на работу бытовой техники.
Регулятор оборотов мощности
Принципы работы
Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.
С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее . Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.
Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.
Вращение вала
Двигатели делят на :
- асинхронные,
- коллекторные.
Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.
Коллекторный двигатель используется очень часто . Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.
Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.
Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.
Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм . Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.
Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера. Чтобы схема не сгорела, требуется специальный блокиратор, который будет служить удвоенным значением тока. Так данный механизм будет работать долго и в нужном объеме. Регулирующие приборы мощности обеспечат вашим электроприборам долгие годы службы без особых затрат.
При перегрузке (сверлении большого числа отверстий в бетоне например) у электродрели FIT часто выходит из строя регулятор скорости, совмещённый с кнопкой включения. Для его ремонта необходимо сначала аккуратно разобрать дрель, извлечь из неё регулятор и отключить от него провода, предварительно записав, какой провод к какому контакту подключен.
Разбирается корпус регулятора отгибанием боковин и выводом крышки из фиксаторов, без клея. Надо соблюдать осторожность и неторопливость — там находятся 2 пружинки, которые соскучились по свету и полётам))).
С механикой всё несложно — чистим контакты и промываем спиртом от грязи. Плату со схемой легко вынимаем, предварительно выдвинув из пазов медные квадратики зажимов-контактов. Единственный элемент схемы, который выходит из строя — симистор. Находим его и «обезвреживаем», выпаяв подходящие к нему проводники (хороним на месте).
От управляющего электрода делаем отвод тонким многожильным проводком (чтобы вместился под крышку) и выводим при сборке в существующее отверстие. Обратная сборка регулятора проблем не составляет (при наличии аккуратности и неторопливости!). От зажимов регулятора (не от фазного) делаем 2 доп. отвода гибким проводом, для подключения симистора. Он становится вынесенным элементом регулятора. (места в ручке, для его расположения, вполне достаточно).
Схема регулятора оборотов дрели
На рисунке ниже рассмотрена схема регулятора оборотов электродвигателя дрели, собранного в облике отдельного наружного блока и подходящего для всех дрелей мощностью до 1,8 кВт, также для других схожих устройств, где употребляется коллекторный движок переменного тока, допустим, в болгарках. Детали регулятора на схеме подобраны для типовой дрели мощностью около 270 Вт, 650 об/мин, напряжение 220В.
Тиристор типа КУ202Н с намерением его обычного остывания смонтирован на радиаторе. Чтоб задать подходящую частоту вращения электродвигателя шнур регулятора подсоединяют в сетевую розетку 220 В, а дрель включают уже туда. Потом, двигая ручку переменного сопротивления R задают требуемые обороты для старенькой дрели.
Представленная схема довольно ординарна для повторения даже начинающим радиолюбителем. Нужные для сборки составляющие и детали дешевы и просто доступны. Рекомендуется сборка конструкции в отдельном коробе с розеткой. Такое устройство можно использовать в роли переноски с типовым регулятором мощности
Читайте так же
Механизм работы этой радиолюбительской самоделки последующий, когда нагрузка маленькая, то ток течет небольшой, как только нагрузка растет, обороты плавненько увеличиваются.
ЧАСТОТНИК/
РЕГУЛЯТОР ОБОРОТОВ БЕЗ ПОТЕРИ МОЩНОСТИчастотник, с целью повышения и уменьшения оборотов , без потери мощности . ХОЧЕШЬ ТАКОЙ ЖЕ? ПОКУПАЙ ПРЯМО.
Регулятор оборотов для дрели, УШМ, электро рубанка и тд.Регулятор оборотов для дрели который мне обошелся чуть больше доллара.
Читайте так же
Микросборку LM317 требуется установить на радиатор. Диоды 1N4007 можно заменить на аналогичные рассчитанные на ток не ниже 1А. Печатная плата сделана на одностороннем стеклотекстолите. Сопротивление R5 мощностью не ниже 2Вт, или проволочное.
Источник питания на напряжение 12В должен иметь небольшой запас по току. Резистором R1 задаем необходимую частоту вращения на холостом ходу. Сопротивление R2 необходимо для установки чувствительности по отношению к нагрузке, им задается требуемый момент увеличения числа оборотов микродрели. Если увеличить емкость C4, то растет время задержки высоких оборотов.
Представленная ниже схема позволяет собрать очень простой, дешевый и полезный регулятор скорости вращения 12-вольтной микродрели для сверления отверстий в печатных платах в радиолюбительской практике.
Микросборка LM555 используется в роли широтно-импульсного модулятора. Питающее напряжение для ШИМ понижается и стабилизируется с помощью микросхемы LM7805). Прецизионный подстроечный резистор P1 на 50 КОм позволяет регулировать скорость вращения дрели. Полевой транзистор IRL530N применяется в роли выходного приводного элемента и может коммутировать ток до 27А. Кроме того он обладает быстрым временем переключения и малым сопротивлением. Диод 1N4007 нужен для защиты от ЭДС противодействия. В качестве альтернативы можно взять диод Шоттки MBR1645.
ШИМ (широтно-импульсная модуляция), используемая в этой конструкции, является эффективным методом изменения скорости и мощности для всех двигателей постоянного тока.
Читайте так же
Дрель интерскол ду 750эр смена кнопки У современных электронных ручных дрелей пусковая кнопка отвечает не только лишь за коммутацию электропитания соблюдая принцип «вкл-выкл» и «вперёд-назад», однако обеспечивает плавную регулировку мощности (скорости вращения патрона) зависимо от силы нажима на кнопку. Напротив у инструмен…
Полируем автомобиль с помощью дрели или болгарки (используя насадки) Видя ухоженный автомобиль, переливающийся блеском, прохожие одобрительно кивают, а владелец испытывает гордость не удовлетворение. В связи с этим некоторые автомобилисты тщательно следят за обликом своего железного «друга». Полировка кузова – та самая процедура, что пр…
Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.
Зачем нужен регулятор оборотов
Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.
Фото – мощный регулятор для асинхронного двигателяСамый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.
Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.
Фото – регулятор оборотов двигателя постоянного тока
Зачем нужен регулятор оборотов асинхронного электродвигателя:
- Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
- Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
- Не требуется дополнительного контроллера для плавного пуска;
- Значительно снижаются расходы на техническое обслуживание.
Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.
Фото – шим контроллер оборотов
Принцип работы регулятора оборотов
Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:
- Двигателя переменного тока;
- Главного контроллера привода;
- Привода и дополнительных деталей.
Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.
Фото – схема регулятора для коллекторного двигателя
В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.
Фото – синусоида нормальной работы электродвигателя
Как выбрать регулятор
Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:
- Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
- Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
- Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
- Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
- По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).
При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.
Фото – схема регулятора для бесколлекторных двигателей
В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.
Видео: регулятор оборотов электродвигателя с ШИро V2
Как сделать самодельный регулятор оборотов двигателя
Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.
Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.
Фото – схема регулятора оборотов своими руками
В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.
Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.
Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:
Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.
Схема регулируемого регулятора скорости сверлильного станка
Предлагаемая схема регулируемого регулятора скорости сверла поддерживает постоянную (регулируемую) скорость двигателя сверлильного станка независимо от нагрузки.
Одним из наиболее часто используемых электроинструментов является дрель. Несмотря на бесчисленные преимущества, у дрели есть один серьезный недостаток — постоянная высокая скорость для многих применений.
Даже при двухскоростных конфигурациях нижний предел составляет около 300-750 об / мин, что по-прежнему очень быстро для тонких работ, таких как сверление кирпичной кладки или использование фрез для обработки листового металла.
Наша версия регулятора скорости в дрели позволяет изменять скорость от 0 до 75% от полной скорости. Кроме того, он также позволяет работать с нормальной скоростью без отсоединения контроллера от дрели.
Даже при изменении нагрузки контроллер оснащен встроенной компенсацией для сохранения практически одинаковых скоростей.
Как это работает
Типичной характеристикой электродвигателя является то, что он вырабатывает обратное напряжение, противоположное источнику питания во время работы.
Это состояние называется обратной ЭДС. Противоположное напряжение пропорционально скорости электродвигателя. Контроллер скорости бурения SCR использовал этот эффект для обеспечения определенной компенсации зависимости скорости от нагрузки.
В этом контроллере используется кремниевый управляемый выпрямитель (SCR) для управления полуволновой мощностью двигателя сверла. Основы проводимости SCR:
- Анод (вывод A) имеет положительный заряд по отношению к катоду (вывод K).
- Когда на затворе (вывод G) возникает положительное напряжение не менее 0,6 В по отношению к катоду.
- На клемму затвора проходит ток около 10 мА.
Время, в которое SCR включается в каждом положительном полупериоде, можно эффективно регулировать, управляя уровнем формы волны напряжения на затворе. В заключение, мы можем полностью контролировать количество энергии, подаваемой на дрель.
Резисторы R1 и R2 и потенциометр RV1 становятся делителем напряжения, который подает полуволновое напряжение регулируемого значения на затвор тринистора.Если двигатель неподвижен, на катоде SCR будет 0 В, и он почти полностью включится. По мере увеличения скорости сверла на сверле возникает напряжение.
Этот дополнительный потенциал снижает эффективное напряжение затвор-катод. Таким образом, когда двигатель ускоряется, подаваемая мощность уменьшается до тех пор, пока двигатель не станет стабильным на скорости, регулируемой конфигурацией RV1.
Допустим, на сверло прикладывается нагрузка. Это замедлит скорость сверла и одновременно вызовет падение напряжения на сверле.Затем на двигатель подается больше мощности из-за автоматического увеличения времени срабатывания SCR.
Таким образом, скорость сверления сохраняется после установки независимо от нагрузки. Диод D2 уменьшает вдвое мощность, рассеиваемую в R1, R2 и RV1, путем ограничения тока через них только положительными полупериодами.
Диод D1 защищает затвор SCR от чрезмерного обратного напряжения.
SW1 легко закорачивает SCR в положении полной скорости. В результате RV1 не работает, и все сетевое питание подается на дрель.
Конструкция
Самое главное, важно знать, что цепь регулятора скорости сверла напрямую подключена к сети без разделительного трансформатора.
Поэтому во время сборки необходимо принять меры предосторожности, чтобы не произошло серьезных или смертельных травм.
Использование бирки или печатной платы не требуется, потому что используется лишь небольшое количество электронных компонентов. Необходимы только два соединения «в воздухе», и они должны быть надежно изолированы во избежание короткого замыкания.
В этом проекте используется SCR с креплением на шпильках. Этот компонент устанавливается с помощью прилагаемого к нему наконечника для пайки и припаивается к центральному выступу переключателя.
Нет необходимости в радиаторах для нагрузок до 3 А. Если у вас SCR в пластиковом корпусе, вы можете просверлить отверстие в проушине переключателя и закрепить SCR болтами прямо.
Тем не менее, рекомендуется поместить кусок алюминия размером 25 мм x 15 мм между SCR и переключателем, чтобы он работал как радиатор.
Очень важно не забыть выполнить заземление всех внешних компонентов, поскольку блок работает от 240 В переменного тока. Для корпуса мы использовали пластиковый отсек с металлической крышкой.
Кроме того, используется кабельный зажим, прикрепленный металлическим винтом через боковую часть пластикового корпуса.
Не забудьте подготовить заземление для этого винта, крышки и клеммы заземления выходной розетки.
Важно использовать только непрерывную проводку, поскольку кабели заземления проходят от одной точки заземления к другой без промежуточных звеньев.Можно припаять два заземляющих кабеля к одному заземляющему наконечнику, но никогда не подкручивайте два провода одним винтом.
Алюминиевая крышка коробки UB3 не является прочной для этого применения, особенно когда вырезано отверстие для выходного гнезда.
Следовательно, убедитесь, что изготовлена новая крышка из стали 18-го калибра или алюминия 16-го калибра.
В качестве дополнительной меры предосторожности рекомендуется нанести небольшое количество клея, лака или даже лака для ногтей на канавки винта, который будет закрепляться внутри устройства.Это гарантирует надежную установку.
Вы можете заметить, что на некоторых тиристорах ток срабатывания R1 и R2 недостаточен. Чтобы преодолеть это, просто добавьте дополнительный резистор 10 кОм параллельно каждому резистору.
Как использовать
Во-первых, подключите схему регулятора скорости сверла к электросети, а сверло — к контроллеру.
Затем выберите желаемую скорость — полную или регулируемую. Вы можете заметить, что нет переключателя ВКЛ или ВЫКЛ, потому что функция переключения обеспечивается самим переключателем дрели.
На полной скорости сеялка работает нормально, и регулировка скорости на контроллере не имеет никакого эффекта.
Если выбрана переменная скорость, система управления будет регулировать скорость от 0 до 75% от полной скорости. Возможно, что есть мертвые зоны на низкоскоростном и высокоскоростном концах управления.
Это очень нормально, и это происходит из-за свойств сверления и допусков компонентов в контроллере.
На очень низких скоростях вы можете заметить рывки сверла без нагрузки.Но в момент введения нагрузки толчок уменьшается и в конечном итоге исчезает.
Пока дрель работает на скорости ниже полной, охлаждающий эффект двигателя будет значительно снижен.
Это происходит из-за того, что охлаждающий вентилятор прикреплен к валу якоря и также медленнее вращается. Следовательно, дрель нагревается при использовании на малых оборотах, поэтому важно не использовать дрель в этом режиме в течение длительного периода.
ПЕРЕЧЕНЬ ДЕТАЛЕЙ
R1, R2 = резистор 10 кОм 1 Вт 5%
RV1 = потенциометр 2.5k Lin
D1, D2 = диоды 1N4004
SCR1 = SCR 2N4443 или BT151 (8A / 10A, 400V)
SW1 = распределительная коробка
3-жильный шлейф и вилка
Кабельный зажим
3-контактная розетка
Вы можете найти У SCR ток срабатывания превышает нормальное значение, что может препятствовать работе блоков. В таких случаях вы можете добавить тиристоры параллельно, вместе с двумя резисторами 10 кОм с дополнительным резистором 10 кОм, чтобы обеспечить достаточный ток для запуска затвора тиристора.
Использование симисторного управления фазой
Практически все регуляторы скорости сверления имеют несколько отрицательных аспектов.Например, недостаточная стабильность скорости, слишком большая шаткость на пониженных скоростях и большое рассеивание мощности на последовательном резисторе, используемом для определения тока двигателя.
Схема, описанная в этой статье, лишена этих недостатков и, кроме того, невероятно проста. Входное напряжение сети переменного тока выпрямляется D1 и понижается R1.
Ток, потребляемый T1, можно регулировать через P1, таким образом, также управляя напряжением постоянного тока, которое появляется на C2, то есть на базе T2.Т2 подключен как эмиттерный повторитель, и напряжение, развивающееся на катоде D3, примерно на 1,5 В ниже базового напряжения Т2.
Предположим, что двигатель переключается, но симистор отключен, обратная ЭДС. Созданный через двигатель, будет развиваться на выводе T1 симистора.
Пока это напряжение выше катодного напряжения D3, симистор будет оставаться выключенным, однако по мере замедления двигателя это напряжение будет падать, и симистор активируется.
В случае увеличения нагрузки на двигатель, в результате чего двигатель буровой установки замедляется, задняя часть e.м.ф. будет падать быстрее, и симистор сработает быстрее, в результате чего двигатель снова наберет скорость.
Поскольку симистор может быть активирован только на положительных полупериодах сигнала переменного тока, контроллер скорости сверления не будет постоянно регулировать скорость двигателя от нуля до скорости дросселирования, а для стандартной работы на полной скорости включен S1, который активирует trlac включен полностью.
Тем не менее, схема показывает очень хорошие характеристики управления скоростью в критически важном диапазоне пониженных скоростей.L1 и C1 доставляют радиочастоты. подавление помех, вызванных прерыванием фазы симистора.
L1 может быть доступным без рецепта RF. дроссель-подавитель индуктивностью в несколько микрогенри.
Номинальный ток L1 должен составлять от двух до четырех ампер по отношению к номинальному току двигателя буровой установки. Практически любой симистор на 600 В и 6 А будет очень хорошо работать в этой цепи.
Схема простого контроллера скорости сверления
Здесь мы узнаем, как построить простую схему контроллера скорости сверления 220 В, зависящую от обратной ЭДС, которая позволяет крутящему моменту сверлильного станка увеличиваться пропорционально увеличению нагрузки.
Это означает, что после того, как сверло нагружено, сила крутящего момента увеличивается по мере увеличения нагрузки на буровое долото.Это позволяет буровому станку справляться с жесткими стенами и бетоном и никогда не перестает продвигаться вперед во время операции сверления даже под существенная нагрузка.
Обзор
Эта простая схема будет привлекательной в основном потому, что позволяет регулировать скорость сверления независимо от нагрузки на сверло.
При планировании используется идея о том, что по мере увеличения тока нагрузки обратная ЭДС сверла падает, в результате чего ток увеличивается.
Из принципиальной схемы видно, что эта схема несложна, и то же самое относится и к ее функционированию.
Как работает схема
На протяжении положительных полупериодов сети C2 заряжается через R1 и D1, так что напряжение на этом конденсаторе идентично «напряжению стабилитрона» цепи на T1.
Цепь, сконфигурированная вокруг T1, представляет собой регулируемый стабилитрон, в котором напряжение стабилитрона определяется настройкой Pl.
Фактически напряжение между коллектором и эмиттером характеризуется соотношением резисторов R3 и R2 + P1.
Падение напряжения на R3 определенно складывается с напряжением база-эмиттер T1 (0,6 В), поэтому это означает, что напряжение стабилитрона может быть выражено как:
(P1 + R2 + R3) 0,6 / R3.
Двигатель на самом деле не подключен в нормальном положении в начале цепи, скорее, это происходит вскоре после SCR 1.
Таким образом, время срабатывания SCR 1 определяется разницей между напряжением стабилитрона и обратным током. ЭДС мотора.В случае, если двигатель будет сильно нагружен, SCR сработает раньше.
Просто потому, что используется SCR, схема может просто контролировать 180 ° цикла питания; поэтому с этой конкретной схемой невозможно изменить скорость сверления с 0 до 100%, однако этот тип контроллера используется исключительно в целях низкой скорости.
Недостатком этой простой схемы регулятора скорости сверла может быть то, что двигатель немного «заикается», когда он не находится под какой-либо нагрузкой, тем не менее, этот результат исчезает, как только появляется нагрузка на сверло.
Катушка индуктивности L1 и конденсатор C1 предназначены для фильтрации высокочастотных влияний, вызываемых прерыванием фазы. SCR необходимо установить на радиаторе, чтобы гарантировать эффективное охлаждение.
Другая конструкция
Вторая схема контроллера скорости бурения, описанная в этой статье, позволяет бесконечно изменять скорости от нуля до примерно 75% от полной скорости, а также представлена вместе с переключателем для включения нормальной работы на полной скорости без отключения бурового станка. контроллер.
Контроллер сконструирован с компенсацией для сохранения постоянной скорости независимо от изменений нагрузки.
КОНСТРУКЦИЯ
Следует отметить, что контроллер подключается прямо к линиям без использования разделительного трансформатора.
Следует проявлять надлежащую осторожность при использовании конструкции, чтобы исключить вероятность возникновения каких-либо вредных обстоятельств.
Используемый SCR представляет собой монтажную шпильку и устанавливается с помощью прилагаемого к нему наконечника для пайки, припаянного к центральному выступу переключателя.
Для нагрузок около 3 А другой теплоотвод не требуется. В случае использования пластиковой упаковки SCR, можно просверлить отверстие с выступом переключателя и SCR прикрутить к нему болтами.
Даже в этом случае важно поместить кусок алюминия (размером около 25 мм x 15 мм) между тиристором и переключателем, чтобы он работал как радиатор.
Не забывайте, что, учитывая, что блок работает при 120 В переменного тока, все внешние части должны быть заземлены. Мы использовали пластиковый ящик с металлической крышкой.Но, кроме того, мы использовали кабельный зажим, имеющий металлический винт со стенкой пластиковой коробки.
Этот винт необходимо заземлить в дополнение к крышке и клемме заземления выходной розетки. Заземляющий провод должен быть постоянным, то есть он будет проходить от одной точки заземления к другой, а не быть отдельными звеньями.
К одной клемме заземления можно припаять два провода заземления. Но ни в коем случае нельзя закреплять два провода одним винтом. Что включает в себя SCR, можно заметить, что ток срабатывания, обеспечиваемый R1 и R2, недостаточен.
В такой ситуации необходимо использовать дополнительный резистор 10 кОм параллельно с каждым резистором.
ИСПОЛЬЗОВАНИЕ КОНТРОЛЛЕРА
Подключите контроллер к стене и просверлите его в контроллер. При необходимости выберите полную скорость или переменную. Помните, что вы не можете найти какой-либо переключатель ВКЛ / ВЫКЛ, представленный на устройстве, и по этой причине используется обычный переключатель на сеялке.
Когда выбрана полная скорость, дрель будет работать в большинстве случаев, и регулировка скорости на контроллере не может иметь абсолютно никакого результата.На очень низких скоростях можно определить, что сеялка рывками работает без нагрузки.
При выборе переменной скорости система управления будет регулировать скорость в диапазоне от нуля до примерно 75% от полной скорости. Мертвая зона может быть как на низкоскоростной, так и на высокоскоростной концах управления.
Это действительно нормально и является результатом различного качества сверления и допусков компонентов в контроллере. С другой стороны, по мере увеличения нагрузки скорость будет плавнее.
При использовании дрели на скорости ниже полной, охлаждение двигателя, вероятно, будет существенно снижено (поскольку охлаждающий вентилятор находится на валу якоря и также работает медленнее).
Следовательно, сверло может нагреться при работе на низких скоростях, и необходимо исключить длительные периоды использования в этом режиме.
Как это работает
Универсальный двигатель во время работы создает напряжение, которое обычно противодействует питанию. Это напряжение, называемое обратной ЭДС, пропорционально скорости двигателя.
Контроллер скорости сверления SCR учитывает этот результат, чтобы реализовать определенную величину компенсации скорости в зависимости от нагрузки.В этом контроллере используется SCR (кремниевый выпрямитель) для управления полуволновой мощностью двигателя сверла.
SCR будет работать до тех пор, пока а) анод (клемма A) будет положительным, в зависимости от катода (клемма K), b) когда затвор (клемма G) достигнет как минимум 0,6 вольт положительного напряжения в зависимости от катода, и, c) когда клемма затвора около 10 мА.
Контролируя уровень формы волны напряжения на затворе, мы успешно управляем временем, в которое SCR активируется в каждом прямом полупериоде.Это означает, что мы эффективно контролируем мощность, подаваемую на дрель.
Резистор R1, R2 и потенциометр RV1 образуют делитель напряжения, который подает полуволновое напряжение регулируемой амплитуды на затвор SCR. Если двигатель неподвижен, катод SCR, вероятно, будет иметь нулевое напряжение, и SCR включится почти полностью.
По мере увеличения скорости сверла вдоль сверла генерируется напряжение, что снижает эффективное напряжение катода затвора. Следовательно, по мере увеличения скорости двигателя подаваемая мощность уменьшается до тех пор, пока двигатель не стабилизируется на скорости, зависящей от настройки RV1.
Если на сверло установить нагрузку, сверло обычно будет уменьшаться, но поскольку напряжение на сверле также падает, на двигатель подается больше мощности, поскольку время срабатывания SCR автоматически увеличивается.
По этой причине однажды установленная скорость поддерживается постоянной независимо от нагрузки. Диод D2 используется для уменьшения вдвое мощности, рассеиваемой в R1, R2 и RV1, ограничивая ток через них только положительными полупериодами.
Диод D1 защищает затвор SCR от чрезмерного обратного напряжения.В положении полной скорости SCR просто замыкается SW1, следовательно, RV1 теряет управление, и на буровую установку подается полная мощность.
Регулятор скорости SCR | Обучение управлению моторикой
Привод постоянного токаAmatrol с системой обучения управлению скоростью SCR (85-MT5F) дополняет систему электронного управления двигателем (85-MT5) для обучения управлению электродвигателями постоянного тока с регулируемой скоростью с использованием схем на основе кремниевого выпрямителя (SCR). SCR преобразуют переменное напряжение в постоянное, чтобы обеспечить эффективное регулирование скорости двигателей постоянного тока, и широко используются в промышленных приложениях, таких как краны и шпиндели станков.
Учебная система управления двигателем с регулируемой скоростью включает компоненты для тяжелых условий эксплуатации, такие как блок управления скоростью SCR, двигатель с шунтирующей обмоткой постоянного тока и блок предохранителей, чтобы дать учащимся практические навыки управления скоростью SCR, такие как подключение и работа двигателя с половиной SCR. -управление скоростью волны, измерение производительности полуволнового управления скоростью SCR и поиск неисправностей в цепи управления скоростью SCR. Эти практические навыки тщательно переплетаются с учебной программой мирового класса по контролю скорости SCR, чтобы учащиеся понимали как теоретические, так и практические знания, которые им понадобятся для достижения успеха.
Привод постоянного тока с регулировкой скорости SCR Повышение квалификации и устранение неисправностей
Тренировочная система с регулируемой скоростью вращения двигателяAmatrol состоит из компонентов, которые одновременно являются сверхмощными, чтобы выдерживать частое использование, и являются отраслевыми стандартами, чтобы учащиеся могли получить реальный опыт. Тренировочная система с регулируемой скоростью включает в себя шунтирующий двигатель постоянного тока ¼ HP, выдвижную стальную панель 11-го калибра с предварительно смонтированными проводами и блоком управления скоростью SCR, регулировку скорости, блок предохранителей и переключатель выпрямления полного / полуволнового режима. .Блок управления скоростью SCE обеспечивает регулируемый предел тока со светодиодным индикатором, компенсацию напряжения IR, обеспечивающую регулировку скорости на 1% во всем диапазоне скоростей 60: 1, настройки минимальной и максимальной скорости, а также регулируемое время линейного ускорения и замедления.
Amatrol использует сильные стороны учебной программы курса по управлению переменной скоростью и напрямую применяет ее для отработки практических навыков, чтобы учащиеся могли получить практические навыки. Например, учащиеся будут подключать и использовать двигатель постоянного тока с шунтовой обмоткой с полуволновым и двухполупериодным регулятором скорости SCR и измерять свои характеристики.Курс управления переменной скоростью также включает в себя поиск и устранение неисправностей, чтобы учащиеся могли устранить неполадки в цепи управления скоростью SCR.
Учебная программа мирового класса по управлению двигателями с регулируемой скоростью
Мультимедийный учебный курс по контролю скорости SCR (M17412)
Учебная программа по созданию приводов постоянного тока мирового классаAmatrol с системой управления скоростью SCR дает учащимся глубокие базовые знания о том, как работать, устанавливать, анализировать производительность и устранять неисправности SCR для различных приложений. Учащиеся изучат функции и применения SCR, полуволнового управления скоростью SCR и полноволнового управления скоростью SCR.Учебная программа курса по контролю скорости SCR представлена в интерактивном мультимедийном формате. Это мультимедиа сочетает в себе текст, аудио, 3D-графику и интерактивные взаимодействия, чтобы полностью вовлечь учащихся и поддержать все стили обучения.
Справочное руководство для учащихся
Образец Справочного руководства для учащихся по вариантам управления двигателем также включен в систему для вашей оценки. Справочное руководство для студентов, созданное на основе мультимедийной учебной программы системы, объединяет техническое содержание всей серии, содержащееся в целях обучения, и объединяет их в одну книгу в идеальном переплете.Справочные руководства для студентов дополняют этот курс, предоставляя краткий недорогой справочный инструмент, который учащиеся сочтут неоценимым после завершения обучения, что делает его идеальным выносом из курса.
Патент США на управление скоростью двигателя для электроинструмента (Патент № 3,988,656, выдан 26 октября 1976 г.)
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯНастоящее изобретение относится к схеме управления скоростью двигателя электроинструмента, в частности ручной электродрели с регулируемой скоростью сверления.Уже известны различные типы сверлильных станков, в которых фиксированная скорость сверления поддерживается независимо от нагрузки с помощью электронной регулирующей схемы. Во втором положении переключателя такие цепи переключают двигатель на полную рабочую скорость. С такими переключателями возможно внезапное изменение или изменение скорости вращения, что, возможно, приведет к внезапному изменению силы вращения на противоположное, когда пользователь совершенно не осознает и не готов к любому изменению, и, следовательно, машина может быть даже вырвана у него из рук. противовращающим моментом.Такая внезапная реакция сверлильного станка на изменение направления может привести к высокому риску повреждения или поломки механизма или даже травмы пользователя.
СУЩНОСТЬ ИЗОБРЕТЕНИЯЦелью изобретения является создание сверлильного станка, в котором устранены недостатки предшествующего уровня техники.
Другой целью изобретения является создание электрической дрели, в которой скорость сверления регулируется пользователем простым способом, не мешая работе.
Другой целью изобретения является создание схемы управления для электродрели, которая позволяет ступенчато регулировать скорость бурения от нуля до предварительно выбранной рабочей скорости с помощью регулирующего потенциометра, при этом скорость сверления регулируется давлением чувствительный переключатель. Таким образом, всякий раз, когда двигатель включается, для каждой выбранной рабочей скорости полная рабочая скорость может быть достигнута путем плавного увеличения скорости двигателя, так что внезапное полное воздействие момента встречного вращения можно избежать, когда сверло работает. сначала включился.
Изобретение предусматривает, что скорость бурения может регулироваться от нуля до заданной рабочей скорости с помощью реле давления. Заданная рабочая скорость устанавливается на регулирующем потенциометре. Таким образом, при включении двигателя возможно постепенное увеличение скорости без столкновения с большой силой противодействия вращению, характерной для устройств предшествующего уровня техники, когда двигатель запускается на своей полной рабочей скорости. Скорость бурения предпочтительно можно плавно регулировать с помощью реле давления, соединенного с подвижным скребком потенциометра.
Согласно настоящему изобретению напряжение на двигателе бурового станка регулируется электрической схемой, включающей тиристор и две катушки возбуждения. Тиристор включен последовательно с ротором двигателя в первичной цепи, который, в свою очередь, соединен со скребком управляющего потенциометра в цепи делителя напряжения. Целесообразно, если стеклоочиститель управляющего потенциометра соединен со вторым потенциометром, стеклоочиститель которого, в свою очередь, подключен к управляющему электроду тиристора.
Конструкция схемы особенно проста, если схема делителя напряжения представляет собой последовательное соединение диода с первым постоянным резистором, управляющим потенциометром и вторым постоянным резистором. Параллельно первому постоянному резистору и управляющему потенциометру находится конденсатор. Кроме того, параллельно первому постоянному резистору и управляющему потенциометру через ползун управляющего потенциометра ползунок или стеклоочиститель второго потенциометра затем подключается к тиристору, как указано выше.Точное регулирование скорости двигателя достигается, если ползун потенциометра через два диода соединен с управляющим электродом тиристора. Между обоими диодами соединен конденсатор с выходом или катодом тиристора.
Для работы на высоких скоростях регулирующий потенциометр перемещается в крайнее положение, тем самым замыкая тиристор. Таким образом, полное напряжение без изменения фазы будет проходить через двигатель. Благодаря расположению короткозамыкающего контакта на регулирующем потенциометре двигатель достигает максимальной рабочей скорости без предварительного выбора на регулирующем потенциометре, так что эксплуатационные ошибки в значительной степени предотвращаются.В то же время заранее определенное положение управляющего потенциометра легко использовать, так что обычно предусмотренный двухпозиционный переключатель для управления работой двигателя может быть исключен.
Используя импульсный или беспружинный переключатель давления, можно предпочтительно обеспечить переключатель с тремя контактами, которые могут быть соединены посредством перемычки. Мост работает с помощью реле давления, так что в первом или выключенном положении все три контакта отделены друг от друга, во втором положении первый и средний контакт соединены друг с другом, а в последнем положении все три контакта связаны друг с другом.Первый контакт электрически подключен к катушке возбуждения и, в свою очередь, к одному из полюсов источника напряжения; средний контакт соединен со схемой делителя напряжения, а концевой контакт соединен с переключателем для короткого замыкания тиристора. Реле давления можно просто соединить со скребком потенциометра в механической муфте, так что перемещение скребка в конечное положение будет соответствовать замыканию короткозамыкающего переключателя.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙНа единственном чертеже показана сильно упрощенная принципиальная схема цепи управления электродрели в соответствии с настоящим изобретением.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯНа единственном чертеже показаны полюса 1 и 2 источника напряжения (не показан), подключенного к катушкам возбуждения 3 и 4 соответственно, и, таким образом, к реле давления 5, которое подключается к первичной цепи 6 и цепи 7 потенциометра.Реле давления 5 содержит первый контакт 8, средний контакт 9 и концевой контакт 10, которые соединены между собой посредством токопроводящей перемычки 11. В первом положении реле давления 5 контакты 8, 9 и 10 находятся в положении отключены друг от друга; во втором положении первый контакт 8 и средний контакт 9 соединены друг с другом; а в третьем положении все три контакта 8, 9 и 10 соединены друг с другом. Реле давления 5 приводится в действие с помощью реле давления в обычной пистолетной рукоятке ручной электродрели.(не показано).
В первичной цепи 6 средний контакт 9 реле давления соединен через тиристор 12 со щеткой 13, которая, в свою очередь, контактирует с ротором 14 и, тем самым, с другой щеткой 15 рабочего двигателя дрели. Щетка 15, в свою очередь, подключена к обмотке возбуждения 4. В то же время третий контакт 10 реле давления 5 подключен к нормально разомкнутому переключателю 16, который, в свою очередь, подключен к выходу 17 тиристора 12, так что что в третьем положении реле давления 5 контакт 8 соединен с регулятором 10, переключатель 16 замкнут, тиристер 12 замкнут накоротко, и цепь замыкается от полюса 1 через катушку возбуждения 3, щетку 13 ротор 14, щетку 15 и катушку возбуждения 4 непосредственно к другому полюсу 2, так что двигатель приводится в действие с максимальной мощностью.
Регулировка скорости вращения контролируется потенциометром 7, который соединен с управляющим электродом 18 тиристора 12. Регулировка фазового угла тиристора 12 осуществляется за счет выравнивания противоэлектродвижущей силы ротора 14. Потенциометр Схема 7 содержит диод 19, соединенный последовательно с первым постоянным резистором 20, переменным резистором 21 и вторым постоянным резистором 22, подключенным между катушкой возбуждения 4 и средним контактом 9. Между первым постоянным резистором 20 и потенциометром 21 конденсатор 23 подключен параллельно.Между дворником или выводом 24 потенциометра 21 и диодом 19 подключен другой потенциометр 25, вывод 26 которого через два диода 27 и 28 соединен с управляющим электродом 18 тиристора 12. Между двумя диодами 27 и 28 конденсатор 29 подключен к выводу 17 тиристора 12.
Управляющий потенциометр 21 механически связан с переключателем 16, так что в одном конечном положении стеклоочистителя 24 переключатель 16 разомкнут, а в другом конечном положении стеклоочистителя 24 потенциометра 21 переключатель 16 замкнут, и тиристор 12 замкнут накоротко.Точно так же стеклоочиститель 26 потенциометра 25 механически связан с перемычкой 11 реле давления 5, так что третье положение реле давления 5 соответствует конечному положению стеклоочистителя 26 потенциометра 25.
При перемещении перемычки 11 реле давления 5 контакты 8 и 9 будут соединены друг с другом, так что ток может протекать как через цепь потенциометра 7, так и через первичную цепь 6. Напряжение зажигания для управляющего электрода 18 поэтому тиристор 12 будет известным образом уравновешивать опорное напряжение от схемы 7 потенциометра с противоэлектродвижущей силой от ротора 14.При увеличении давления на реле давления 5 потенциометр 25 будет увеличивать опорное напряжение в соответствии с положением перемычки 11, регулируемое до конечного положения полного диапазона напряжения потенциометра 25, и, таким образом, наконец, достигая полного напряжения на конечное положение. Из этого следует, что увеличение скорости вращения ротора 14 является постепенным и не резким, поскольку реле давления 5 постепенно увеличивает напряжение через потенциометр 25. Грязесъемник 26 потенциометра 25 регулируется для каждой точки управляющего потенциометра. 21, который можно выбрать.Потенциометр 21 управления особенно чувствителен и может быть отрегулирован на низкие рабочие скорости и может управляться положением или давлением на реле 5 давления, так что скорость вращения регулируется от нуля до желаемой рабочей скорости.
При замкнутом переключателе 16 вращение вала будет происходить в соответствии с положением спускового механизма реле давления 5 с медленным увеличением скорости вращения. В крайнем положении переключателя 5, когда все три контакта с 8 по 10 соединены друг с другом, тиристор 12 закорачивается и выполняется прямое соединение с двигателем, так что нет резких изменений скорости вращения и, следовательно, внезапных и неизбежных могут возникнуть реактивные вращательные силы.
Следует понимать, что каждый из элементов, описанных выше, или два или более вместе, также могут найти полезное применение в других типах схем управления для электродрелей, отличных от типов, описанных выше.
Хотя изобретение было проиллюстрировано и описано как воплощенное в управлении скоростью электродрели, оно не предназначено для ограничения показанными деталями, поскольку различные модификации и структурные изменения могут быть выполнены без какого-либо отклонения от сущности настоящего изобретения. .
Без дальнейшего анализа вышеизложенное настолько полно раскрывает суть настоящего изобретения, что другие могут, применяя текущие знания, легко адаптировать его для различных приложений, не упуская особенностей, которые, с точки зрения предшествующего уровня техники, справедливо составляют существенные характеристики общего или конкретные аспекты этого изобретения и, следовательно, такие адаптации должны и предназначены для понимания в пределах значения и диапазона эквивалентности следующей формулы изобретения.
Выпрямитель с кремниевым управлением — обзор
Выпрямитель с кремниевым управлением
SCR — это трехконтактный тиристор, который действует как кремниевый выпрямительный диод, проводник которого регулируется входным током. Схематическое обозначение SCR показано на рис. 12.21. Этот символ похож на диод с катодом и анодом. Обратите внимание, что третий элемент SCR известен как затвор. SCR будет проводить ток между катодом и анодом, но только в том случае, если к затвору будет приложен надлежащий управляющий ток.Затвор должен быть положительным по отношению к катоду, чтобы тиристор проводил ток. При проведении SCR действует как замкнутый переключатель. Падение напряжения на катоде и аноде будет примерно 0,7–1,8 В, в зависимости от размера тринистора и величины тока, протекающего через него. Когда катод и анод смещены в обратном направлении, ток через устройство не течет.
Рисунок 12.21. Схематическое обозначение SCR.
Тиристоры, как и реле, обычно используются для управления большим током меньшим током.На рис. 12.22 показано, как SCR используется в качестве переключателя для подачи питания постоянного тока на лампочку. Нагрузкой также может быть двигатель или нагревательный элемент. Напряжение постоянного тока подключается так, что катод и анод SCR имеют прямое смещение, но ток не будет течь через устройство, пока ток не будет подан на затвор. Это делается с помощью переключателя S 1 . При разомкнутом переключателе ток в затворе не течет. Однако при замыкании переключателя на затвор через резистор R 1 подается положительное напряжение.Это вызывает включение SCR. Когда он проводит, он действует как переключатель с низким сопротивлением, и лампочка загорается. В этот момент переключатель S 1 может быть разомкнут. Нет необходимости поддерживать ток в затворе, чтобы устройство продолжало проводить. Ток затвора должен быть только кратковременным, поскольку он требуется только для включения устройства. Устройство остается включенным, как импульсное реле с фиксацией.
Рисунок 12.22. Схема, показывающая, как SCR включается и выключается.
Элемент затвора используется только для включения SCR.Удаление тока затвора не выключит устройство. Чтобы тиристор перестал проводить ток, цепь должна быть разорвана. Это можно сделать с помощью мгновенного контакта, кнопки с размыкающим контактом, включенного последовательно со схемой, как S 2 на рис. 12.22. Нажатие этой кнопки разорвет цепь, остановит ток в тиристоре, и лампочка погаснет. Чтобы снова включить лампу, необходимо снова нажать кнопку S 1 , чтобы на мгновение подать ток затвора.
Другой способ остановить проводимость — на мгновение замкнуть SCR, как показано на рис.12.15. Когда переключатель S 3 на мгновение замыкается, ток будет течь через него и лампочку, минуя тиристор. Ток в тиристоре упадет до нуля. Когда выключатель S 3 размыкается, цепь отключается.
Хотя SCR иногда используются для управления мощностью постоянного тока, в большинстве приложений они используются для управления переменным током. На рис. 12.23A показан SCR, используемый для подачи переменного тока на лампочку. Если переключатель S 1 замкнут, на устройство будет подаваться ток затвора. Однако устройство будет проводить только тогда, когда анод будет положительным по отношению к катоду.Это, конечно, происходит, когда приложенное переменное напряжение имеет правильную полярность. Поскольку SCR работает как выпрямительный диод, ток будет проходить через устройство только на положительных полупериодах синусоидальной волны. Ток через лампочку будет пульсирующим постоянным током, как показано на рис. 12.23B. Яркость лампы будет зависеть от средней силы протекающего тока.
Рисунок 12.23. Использование SCR для управления питанием нагрузки с помощью переменного тока. SCR исправляет переменный ток.
Среднее количество тока, протекающего через лампочку или другую нагрузку, можно контролировать с помощью элемента затвора.Для регулировки времени включения тиристора используются различные электронные схемы. Путем включения SCR в соответствующее время в положительном полупериоде можно контролировать продолжительность протекания тока. Чем дольше может протекать ток, тем выше средний ток в нагрузке. Изменяя контрольную точку, можно изменять яркость лампочки.
uniquegoods Электронный регулятор напряжения высокой мощности SCR мощностью 10000 Вт AC 110–230 В Контроллер скорости двигателя Модуль терморегуляции затемнения с вентилятором —
Параметр:
● Рабочее напряжение: 110–230 В переменного тока.
● Максимальная мощность: 10000 Вт (резистивная нагрузка).
● Длительная рабочая мощность: 7000 Вт.
● Регулировка напряжения: регулируется от 0 В переменного тока до напряжения, близкого к входному.
● Размер: 4,37 × 3,03 × 1,45 дюйма / 111 × 77 × 37 мм.
● Вес: 9,87 унций / 280 г.
Характеристики:
● Схема триггера уникальна, управляющее напряжение точное, нет гистерезиса, резистивная нагрузка отключена до 0, и после запуска она будет отрегулирована с 10 В, отрегулируйте напряжение питания ближайший к входу.
● SCR увеличивает двойную защиту варисторов и RC демпферную цепь.
● Модернизированный вентилятор с переключателем, интеллектуальным управлением, хорошим эффектом рассеивания тепла, длительным сроком службы.
● Высокотемпературный пожар FR4 Печатная плата.
● Стандартный высококачественный изысканный алюминиевый корпус более безопасен и практичен.
● Полностью медный терминал сверхмощного тока 75A.
Приложение:
● Используя новый двусторонний сверхмощный тиристор, резистивную нагрузку можно регулировать между 0 — входное напряжение для использования электрическими приборами.
● Например: электрическая печь, водонагреватель, затемнение освещения, большой щеточный регулятор скорости двигателя и т. Д. Таким образом достигается эффект диммирования, регулирования температуры и регулирования напряжения.
● Может поставлять мощность менее 10 000 Вт (резистивная нагрузка) крупных электроприборов из-за высокой мощности, поэтому достаточно для использования обычных бытовых приборов или небольших заводов.
Меры предосторожности:
● Нагрузка не должна превышать указанную максимальную мощность.Обратите внимание на температуру перед первым использованием. Если температура высокая (более 80 ℃), пожалуйста, улучшите радиатор. В противном случае модуль и прибор сгорят.
● При подключении к индуктивной или емкостной нагрузке мощность должна оставлять запас в две трети (2/3).
В пакет включено:
1 × AC 110 В-220 В 10000 Вт Регулятор напряжения SCR
Регулятор скорости фазы SCR / Диммер
Этот регулятор фазы SCR работает так же, как обычный диммер TRIAC, но имеет множество преимуществ, включая повышенную допустимую нагрузку по току, надежность и отсутствие «защелкивания» при минимальном напряжении.”Дополнительная симметричная схема запуска, состоящая из двух PUT (программируемых однопереходных транзисторов), позволяет запускать два антипараллельных тиристора (SCR). Схема представляет собой двухконтактное силовое устройство, которое просто вставляется между источником питания переменного тока и нагрузкой. Помимо управления интенсивностью освещения лампами накаливания, он полезен для управления скоростью универсальных (коллекторных щеточных) двигателей переменного тока.
SCR
Спецификация
Файл ведомости материалов
Идеальное пусковое устройство
DIAC — это двунаправленное (двустороннее) устройство запуска 28 В, которое используется практически во всех недорогих элементах управления фазой.Напряжение триггера несколько высокое для фазового управления 115 В переменного тока. Несколько лет назад существовало аналогичное устройство срабатывания с низким напряжением (от 6 до 8 В), называемое диодом Шокли. К сожалению, они так и не прижились, и сегодня они УСТАРЕЛИ.
Программируемый однопереходный транзистор (PUT) 2N6027 может выполнять аналогичную функцию, но чувствителен к полярности, поэтому не поддается управлению TRIAC. Однако, если две такие схемы триггера PUT используются для антипараллельных тиристоров, некоторые интересные вещи становятся очевидными.Наиболее важной является возможность управлять обеими цепями триггера с помощью одного потенциометра, так что оба полупериода управляются одинаково. Для достижения наилучшего баланса стабилитроны и конденсаторы должны быть согласованы. И стабилитроны, и конденсаторы указаны с допуском в 5%, но я выбрал мой с уровнем выше 1% с цифровым мультиметром. Купите несколько дополнительных компонентов, чтобы получить хорошее совпадение.
Операция PUT проста. Его пороговое напряжение программируется, чтобы он мог срабатывать при низких напряжениях.В этой схеме он устанавливается через стабилитроны на 12 В. Когда анодное напряжение PUT превышает напряжение затвора на одно падение на переходе, PUT срабатывает и сбрасывает конденсатор синхронизации в схему затвора SCR. Он сбрасывается при изменении напряжения в сети переменного тока.
Я сделал схему мигания генератора релаксации PUT, с которой вы, возможно, захотите поэкспериментировать: https://www.electroschematics.com/6904/programmable-unijunction-transistor-put-flasher-circuit/
Защелка
Типичный диммер TRIAC, управляемый DIAC, имеет тенденцию «срабатывать» при минимальном напряжении, когда регулировка медленно увеличивается.После включения при желании напряжение может быть уменьшено. Явление «защелкивания» вызвано запаздывающим фазовым соотношением сигнала напряжения переменного тока, который появляется на временном конденсаторе до того, как будет достигнут порог DIAC. После первоначального срабатывания отсчет времени начинается при пересечении нулевого значения линейного напряжения.
Схема синхронизации в этом элементе управления полностью устраняет эту проблему, сбрасывая напряжение конденсатора в каждом полупериоде с помощью обратных диодов на двух конденсаторах синхронизации.
Преимущества SCR перед TRIAC
В термическом отношении есть множество преимуществ.Разделение выходного тока пополам значительно снижает ток устройства и обеспечивает гораздо более низкое тепловое сопротивление окружающей среде. Кроме того, SCR рассчитаны на максимальное значение Tj 125 °, тогда как TRIAC может быть ограничено только 110 ° C. Затем, конечно, доступны SCR с текущими номиналами до сотен ампер — что более чем в десять раз больше, чем у самых больших TRIAC. SCR просто более прочные.
Единственный его недостаток очевиден: просто требуется больше оборудования и схем.
Демпфер
R1 и C3 образуют демпфер, который подключается через силовые устройства.Он выполняет две важные функции:
Во-первых, он обеспечивает цепь для поглощения реактивной энергии, когда один из тиристоров восстанавливается (прекращает проводить ток). Как вы, возможно, знаете, выпрямитель проводит ток в обратном направлении в течение короткого периода времени (например, 5 мкс), когда он становится смещенным в обратном направлении. Поток этого тока внезапно прекращается, и любая индуктивность последовательной цепи вызывает генерацию переходного напряжения (всплеска). Демпфер — это место для прохождения этого тока, поэтому он не может вырабатывать высокое напряжение.
Во-вторых, он обеспечивает резистивную нагрузку для высокочастотного линейного шума и переходных процессов. Такой шум или переходные процессы могут потенциально вызвать включение SCR на полупериод. Одним из распространенных источников переходных процессов является просто выключатель питания, когда он замыкается.
Пленочные резисторыплохо справляются с переходными процессами напряжения, поэтому я выбрал резистор из керамической композиции. Конденсаторы из полиэстера имеют низкую надежность при 230 В переменного тока, поэтому я выбрал полипропиленовый конденсатор, рассчитанный на переменный ток. В своей схеме я использовал устройство Quencharc, которое содержит как резистор, так и конденсатор — оно рассчитано на 125 В переменного тока.
Осциллографы
Напряжение нагрузки здесь легко увидеть, поскольку оно увеличивается по фазе. Базовая линия довольно нечеткая из-за используемой маломощной нагрузки (лампа 7,5 Вт) — демпферное реактивное сопротивление вызывает значительное падение напряжения на лампе.
Ток затвора показывает пиковый ток около 200 мА и постоянную времени около 32 мкСм — по существу 47 Ом * 0,68 мкФ. Всплеск на переднем фронте вызван индуктивностью используемого шунтирующего резистора 1 Ом. Это может легко управлять гораздо большим SCR — первый, который я сделал, использовал тиристорный удвоитель на 90 А.Эмпирическое правило минимальной длительности импульса тока затвора составляет 5 мкс, при котором ток затвора превышает Igt (пороговое значение тока затвора) — это дает достаточно времени, чтобы ток нагрузки нарастал до тока удержания тиристора.
Напряжение затвора имеет другой вид, чем выход программируемого одноперехода по двум причинам: во-первых, затвор представляет собой нелинейное сопротивление, которое имеет тенденцию действовать как 2 или 3 последовательных диода.