Транзистор обозначение на схеме: ГОСТ 2.730-73 Единая система конструкторской документации (ЕСКД). Обозначения условные графические в схемах. Приборы полупроводниковые (с Изменениями N 1-4), ГОСТ от 16 августа 1973 года №2.730-73

Обозначение транзисторов на принципиальных схемах. Маркировка транзисторов. Классификация транзисторов.

Различают транзисторы биполярные и полевые. Биполярный транзистор — трёхэлектродный полупроводниковый прибор. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы, n (negative) — электронный тип примесной проводимости, p (positive) — дырочный. В биполярном транзисторе основными носителями являются и электроны, и дырки. Схематическое устройство транзистора показано на рисунке 6.
Электрод, подключённый к центральному слою, называют базой, элек-троды, подключённые к внешним слоям, называют коллектором и эмитте-ром. На простейшей схеме различия между коллектором и эмиттером не видны. Главное отличие коллектора — большая площадь p-n перехода. Для работы транзистора абсолютно необходима малая толщина базы.

Рис. 6


Рис. 7
Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).
Полевые транзисторы имеют большое входное сопротивление. Подразделяются на полевые транзисторы 1) с управляющим p-n переходом (рис. 7а) и 2) с изолированным затвором (рис. 7б).
Полевые транзисторы с изолированным затвором в свою очередь подразделяются на транзисторы 1) со встроенным каналом и 2) с индуцированным каналом.
Транзисторы, как правило, имеют три вывода. Вывод, от которого в канал приходят основные носители заряда, называется истоком. Вывод, к которому носители заряда приходят из канала, называется стоком. Вывод, на который подается управляющее напряжение относительно истока или стока, называется затвором. Полевыми транзисторы называют потому, что управление током в выходной цепи транзистора осуществляется электрическим полем во входной цепи. Канальными транзисторы называют потому, что ток в выходной цепи транзистора протекает через его канал. Униполярными транзисторы называют потому, что в работе транзистора принимают носители одной полярности. В условных обозначениях полевых транзисторов на принципиальных схемах стрелка направлена к каналу n-типа, или от канала p-типа. Индуцированный (наведенный электрическим полем) канал, обозначается пунктиром (рис. 7в).


Рис. 8 Цветовая маркировка транзисторов

Рис. 9. Условное графическое обозначение биполярного транзистора струк-туры n-p-n

Рис. 10.Условное графическое обозначение биполярного транзистора структуры p-n-p

Рис. 11. Условное графическое обозначение полевого транзистора с p-n-переходом и каналом n-типа

Рис.12. Условное графическое обозначение полевого транзистора с p-n-переходом и каналом p-типа

Рис.13. Условное графическое обозначение полевого транзистора со встро-енным p-каналом обедненного типа.

Рис. 14. Условное графическое обозначение полевого транзистора со встро-енным n-каналом обогащенного типа.

Рис. 15. Условное графическое обозначение полевого транзистора с индуцированным p-каналом обогащенного типа.

Рис. 16 — Условное графическое обозначение полевого транзистора с индуцированным n-каналом обогащенного типа.

Рис. 17. Обозначение транзистора с барьером Шотки (транзистор Шотки).

Рис. 18. Обозначение многоэмиттерного транзистора.
Транзистор с барьером Шотки и многоэмиттерный транзистор встречаются лишь в микроэлектронике.

Рис. 19. Условное графическое обозначение фототранзистора

Содержание

Узнай стоимость своей работы

Бесплатная оценка заказа!

схема, принцип работы,​ чем отличаются биполярные и полевые [Амперка / Вики]

Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

  • TO-92 — компактный, для небольших нагрузок

  • TO-220AB — массивный, хорошо рассеивающий тепло, для больших нагрузок

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

  • Коллектор (collector) — на него подаётся высокое напряжение, которым хочется управлять

  • База (base) — через неё подаётся небольшой ток, чтобы разблокировать большой; база заземляется, чтобы заблокировать его

  • Эмиттер (emitter) — через него проходит ток с коллектора и базы, когда транзистор «открыт»

Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

  • Сток (drain) — на него подаётся высокое напряжение, которым хочется управлять

  • Затвор (gate) — на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.

  • Исток (source) — через него проходит ток со стока, когда транзистор «открыт»

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора

hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Транзистор | Электронные печеньки

Транзистор

Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.

Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:

Биполярный транзистор

Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:

  • Коллектор (англ. collector) — подаётся высокое напряжение, которым транзистор управляет

  • База (англ. base) — подаётся или отключается ток для открытия или закрытия транзистора
  • Эмиттер (англ. emitter) — «выпускной» вывод транзистоа. Через него вытекает ток от коллектора и базы.

Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).

Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.

Весёлые картинки:

Работа биполярного транзистора

NPN и PNP биполярные транзисторы

Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.

От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:

Обозначение NPN (слева) и PNP (справа) транзисторов на схеме

NPN транзисторы более распространены в электронике, потому что являются более эффективными.

Полевый транзистор

Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название —  полевой.

Полевые транзисторы имеют как минимум 3 вывода:

  • Сток (англ. drain) — на него подаётся высокое напряжение, которым хочется управлять

  • Затвор (англ. gate) — на него подаётся напряжение для управления транзистором

  • Исток (англ. source) — через него проходит ток со стока, когда транзистор «открыт»

Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.

N канальные и P канальные полевые транзисторы

Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме

Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.

Транзистор Дарлингтона

Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.

Схема составного транзистора дарлингтона

Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:

Подключение мощного мотора с помощью транзистора

На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).

ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.

При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.

Поделиться ссылкой:

Похожее

Что такое транзистор, виды транзисторов и их обозначение

Транзисторы — полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы.

Их основа — пластинка монокристаллического полупроводника (чаще всего кремния или германия), в которой с помощью особых технологических приемов созданы, как минимум, три области с разной электропроводностью: эмиттер, база и коллектор.

Электропроводность эмиттера и коллектора всегда одинаковая (р или п), базы — противоположная (п или р). Иными словами, биполярный транзистор (далее просто транзистор) содержит два р-п перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).

На схемах транзисторы обозначают, как показано на рис. 1,а. Здесь короткая черточка с линией-выводом от середины символизирует базу, две наклонные линии, проведенные к ней под углом 60°, — эмиттер и коллектор.

вид транзисторов обозначение транзисторов

 Рис. 1. Внешний вид транзисторов, обозначение транзисторов на принципиальных схемах.

Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (рис. 1,а), то это означает, эмиттер имеет электропроводность типа р, а база — типа п; если же стрелка направлена в противоположную сторону (рис. 1,6), электропроводность эмиттера и базы — обратная (соответственно пир).

Поскольку, как уже отмечалось, электропроводность коллектора та же, что и эмиттера, стрелку на символе коллектора не изображают. Знать электропроводность эмиттера, базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы.

Транзистор, база которого имеет проводимость типа п, обозначают формулой p-n-p, а транзистор с базой, имеющей электропроводность типа P, — формулой n-p-n. В первом случае на базу и коллектор следует подавать отрицательное (по отношению к эмиттеру) напряжение, во втором — положительное.

Для наглядности условное обозначение транзистора обычно помещают в кружок, символизирующий его корпус. Корпус нередко изготовляют из металла и соединяют с одним из выводов транзистора. На схемах это показывают точкой в месте пересечения лиши-вывода с символом корпуса (у транзистора, изображенного на рис. 1,в, с корпусом соединен вывод коллектора).

Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (рис. 1,г). С целью повышения информативности схем рядом с позиционным обозначением транзистора обычно указывают его тип.

Линии-выводы, идущие от символов эмиттера и коллектора, проводят в одном из двух направлений: перпендикулярно или параллельно линии-выводу базы (рис. 1,д). Излом этой линии допускается лишь на некотором расстоянии от символа корпуса (рис. 1,е).

Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а кружок-корпус заменяют овалом (рис. 1,ж).

В некоторых случаях ГОСТ 2.730—73 допускает изображать транзисторы и без символа корпуса, например при изображении бескорпуоных транзисторов ИЛ|Ц когда на схеме необходимо показать транзисторы, входящие в так называемые транзисторные сборки или матрицы (их выпускают в тех же корпусах, что и интегральные микросхемы).

Транзисторные сборки

 Рис. 2. Транзисторные сборки.

Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельных приборов, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (в этом случае на поле схемы помещают такую, например, запись: VT1—VT4 К1НТ251), либо берут код аналоговых микросхем DA и указывают принадлежность транзисторов к матрице в позиционном обозначении (рис. 2,а).

У выводов таких транзисторов, как правило, приводят условные номера, присвоенные выводам корпуса, в котором выполнена сборка. Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 1,6 показаны транзисторы структуры n-p-n с тремя и четырьмя эмиттерами).

Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (рис. 3,а). При повороте условного обозначения положение этого знака должно оставаться неизменным.

Лавинный транзистор

 Рис. 3. Лавинный транзистор.

Иначе построено обозначение так называемого однопереходного транзистора. У него один р-п переход, но два вывода базы. Символ эмиттера в обозначении этого транзистора проводят к середине символа базы (рис. 3,6). Об электропроводности базы судят по символу эмиттера (все сказанное ранее о транзисторах с двумя р-п переходами полностью применимо и к однрпереход-ному транзистору).

На обозначение однопереходного транзистора похоже условное обозначение довольно большой группы транзисторов с р-п переходом, получивших название полевых. Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью n-или p-типа.

Сопротивлением канала управляет третий электрод — затвор, соединенный с его средней частью р-п переходом. Канал полевого транзистора изображают так же, как и базу биполярного транзистора, но помещают в средней части кружка-корпуса , символы истока и стока присоединяют к нему с одной стороны, затвора — с другой.

Чтобы не вводить каких-либо знаков для различения символов истока и стока, затвор изображают на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора.

В условном обозначении полевого транзистора с изолированным затворам (его изображают в виде черточки, параллельной символу канала, с выводом на продолже

Устройство и маркировка биполярного транзистора

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми приборами и с этой статьи начнем разбираться с транзистором. В этой части мы познакомимся с устройством и маркировкой биполярных транзисторов.

Биполярные транзисторы - внешний вид

Полупроводниковые транзисторы бывают двух видов: биполярные и полевые.
В отличие от полевых транзисторов биполярные получили наиболее широкое применение в радиоэлектронике, а чтобы эти транзисторы как-то отличать друг от друга, биполярные принято называть просто — транзисторами.

1. Устройство и обозначение биполярного транзистора.

Схематично биполярный транзистор можно представить в виде пластины полупроводника с чередующимися областями разной электропроводности, которые образуют два p-n перехода. Причем обе крайние области обладают электропроводностью одного типа, а средняя область электропроводностью другого типа, и где каждая из областей имеет свой контактный вывод.

Схематичное изображение биполярного транзистора

Если в крайних областях полупроводника преобладает дырочная электропроводность, а в средней области электронная, то такой полупроводниковый прибор называют транзистором структуры p-n-p.

А если в крайних областях преобладает электронная электропроводность, а в средней дырочная, то такой транзистор имеет структуру n-p-n.

Структуры биполярных транзисторов

А теперь возьмем схематичную часть транзистора и прикроем любую крайнюю область, например, область коллектора, и посмотрим на результат: у нас остались открытыми область базы и эмиттера, то есть получился полупроводник с одним p-n переходом или обычный полупроводниковый диод. О диодах можно почитать здесь.

Получаем из транзистора диод

Если же мы прикроем область эмиттера, то останутся открытыми области базы и коллектора — и также получается диод.

Отсюда возникает вывод, что биполярный транзистор можно представить в виде двух диодов с одной общей областью, включенных навстречу друг другу. При этом общая (средняя) область называется базой, а примыкающие к базе области коллектором и эмиттером. Это и есть три электрода транзистора.

Транзистор в виде двух диодов

Примыкающие к базе области делают неодинаковыми: одну из областей изготавливают так, чтобы из нее наиболее эффективно происходил ввод (инжекция) носителей заряда в базу, а другую область делают таким-образом, чтобы в нее эффективно осуществлялся вывод (экстракция) носителей заряда из базы.

Отсюда получается:

область транзистора, назначением которой является ввод (инжекция) носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным.

область транзистора, назначением которой является вывод (экстракция) носителей из базы, называется коллектором, и соответствующий p-n переход коллекторным.

То есть получается, что эмиттер вводит электрические заряды в базу, а коллектор их забирает.

Различие в обозначениях транзисторов разных структур на принципиальных схемах заключается лишь в направлении стрелки эмиттера: в p-n-p транзисторах она обращена в сторону базы, а в n-p-n транзисторах – от базы.

2. Технология изготовления биполярных транзисторов.

Технология изготовления транзисторов ни чем не отличается от технологии изготовления диодов. Еще в начальный период развития транзисторной техники биполярные транзисторы делали только из германия методом вплавления примесей, и такие транзисторы называют сплавными.

 Германиевые биполярные транзисторы

Берется кристалл германия и в него вплавляются кусочки индия.
Атомы индия диффузируют (проникают) в тело кристалла германия, образуя в нем две области p-типа – коллектор и эмиттер. Между этими областями остается очень тонкая (несколько микрон) прослойка полупроводника n-типа, которую именуют базой. А чтобы защитить кристалл от влияния света и механического воздействия его помещают в металлостеклянный, металлокерамический или пластмассовый корпус.

На картинке ниже показано схематическое устройство и конструкция сплавного транзистора, собранного на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу диска – ее наружный проволочный вывод.

Устройство сплавного германиевого транзистора средней мощности

Внутренние выводы коллектора и эмиттера приварены к проводникам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Металлический колпак защищает прибор от влияния света и механических повреждений. Так устроены наиболее распространенные маломощные низкочастотные германиевые транзисторы из серии МП37 — МП42.

Германиевые транзисторы средней мощности серии МП37 - МП42

В обозначении буква «М» говорит, что корпус транзистора холодносварной, буква «П» — это первая буква слова «плоскостной», а цифры означают порядковый заводской номер транзистора. Как правило, после заводского номера ставят буквы А, Б, В, Г и т.д., указывающие на разновидность транзистора в данной серии, например, МП42Б.

С появлением новых технологий научились обрабатывать кристаллы кремния, и уже на его основе были созданы кремниевые транзисторы, получившие наиболее широкое применение в радиотехнике и на сегодняшний день практически полностью вытеснившие германиевые приборы.

Кремниевые транзисторы малой и средней мощности

Кремниевые транзисторы могут работать при более высоких температурах (до 125ºС), имеют меньшие обратные токи коллектора и эмиттера, а также более высокие пробивные напряжения.

Основным методом изготовления современных транзисторов является планарная технология, а транзисторы, выполненные по этой технологии, называют планарными. У таких транзисторов p-n переходы эмиттер-база и коллектор-база находятся в одной плоскости. Суть метода заключается в диффузии (вплавлении) в пластину исходного кремния примеси, которая может находиться в газообразной, жидкой или твердой фазе.

Как правило, коллектором транзистора, изготовленного по такой технологии, служит пластина исходного кремния, на поверхность которой вплавляют близко друг от друга два шарика примесных элементов. В процессе нагрева до строго определенной температуры происходит диффузия примесных элементов в пластину кремния.

Устройство диффузионно-сплавного транзистора

При этом один шарик образует в пластине тонкую базовую область, а другой эмиттерную. В результате в пластине исходного кремния образуются два p-n перехода, образующие транзистор структуры p-n-p. По такой технологии изготавливают наиболее распространенные кремниевые транзисторы.

Также для изготовления транзисторных структур широко используются комбинированные методы: сплавление и диффузия или сочетание различных вариантов диффузии (двусторонняя, двойная односторонняя). Возможный пример такого транзистора: базовая область может быть диффузионная, а коллектор и эмиттер – сплавные.

Использование той или иной технологии при создании полупроводниковых приборов диктуется различными соображениями, связанными с техническими и экономическими показателями, а также их надежностью.

3. Маркировка биполярных транзисторов.

На сегодняшний день маркировка транзисторов, согласно которой их различают и выпускают на производствах, состоит из четырех элементов.
Например: ГТ109А, ГТ328, 1Т310В, КТ203Б, КТ817А, 2Т903В.

Первый элемент — буква Г, К, А или цифра 1, 2, 3 – характеризует полупроводниковый материал и температурные условия работы транзистора.

1. Буква Г или цифра 1 присваивается германиевым транзисторам;
2. Буква К или цифра 2 присваивается кремниевым транзисторам;
3. Буква А или цифра 3 присваивается транзисторам, полупроводниковым материалом которых служит арсенид галлия.

Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах: германий – выше 60ºС, а кремний – выше 85ºС.

Второй элемент – буква Т от начального слова «транзистор».

Третий элемент – трехзначное число от 101 до 999 – указывает порядковый заводской номер разработки и назначение транзистора. Эти параметры даны в справочнике по транзисторам.

Четвертый элемент – буква от А до К – указывает разновидность транзисторов данной серии.

Маркировка транзисторов

Однако до сих пор еще можно встретить транзисторы, на которых стоит более ранняя система обозначения, например, П27, П213, П401, П416, МП39 и т.д. Такие транзисторы выпускались еще в 60 — 70-х годах до введения современной маркировки полупроводниковых приборов. Пусть эти транзисторы устарели, но они все еще пользуются популярностью и применяются в радиолюбительских схемах.

В рамках этой части статьи мы рассмотрели лишь общие методы изготовления транзисторных структур, чтобы начинающему радиолюбителю было легче понять внутреннее устройство транзистора.

На этом мы закончим, а в следующей части проведем несколько опытов и на их основе сделаем практические выводы о работе биполярного транзистора.
Удачи!

Литература:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

ТРАНЗИСТОРЫ

   В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42. 

Транзистор в разрезе

Транзистор в разрезе

   На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность: 

Внешний вид советских транзисторов

Внешний вид советских транзисторов

   Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

Структура биполярных транзисторов

   Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

Транзистор как два диода

   Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

Золото в транзисторах СССР

   Приведу ещё несколько фотографий распространённых транзисторов:


Малой мощности


Средней мощности


Большой мощности


В металлическом корпусе

   На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

Фото SMD транзистор Сравнение размеров SMD транзистора

Фото SMD транзистор

   Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема с общим эмиттером

Схема с общим эмиттером

   Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

Схема с общим коллектором

   И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

Схема с общей базой

   Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм. 

Пример усилителя по схеме с общим эмиттером

Пример усилителя по схеме с общим эмиттером

   Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистор в ключевом режиме

Схема транзистора в ключевом режиме

   Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

Схематическое изображение фототранзисторов

   А так выглядит один из фототранзисторов:

Фототранзистор фото

Фототранзистор — фотография

Полевые транзисторы

   Как ясно из названия, такие транзисторы управляются не током, а полем. Электрическим полем. В следствии чего они имеют высокое входное сопротивление и не нагружают предидущий каскад. На этом рисунке изображено строение полевого транзистора:

Строение полевого транзистора

Строение полевого транзистора

   Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

Схематическое изображение полевого транзистора

   На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа. 

Изображение на схемах полевых транзисторов с изолированным затвором

Изображение на схемах полевых транзисторов с изолированным затвором

   Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) — это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

Схематическое изображение мощного полевого транзистора

   Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

Фото SMD полевой транзистор

   Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:


С общим истоком


С общим стоком


С общим затвором 

   Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

Однопереходные транзисторы

   Существуют так называемые Однопереходные транзисторы, второе, менее распространённое название — Двухбазовый диод. Ниже приведены схематическое изображение и фото однопереходных транзисторов.

Схематическое изображение однопереходных транзисторов

Схематическое изображение однопереходных транзисторов

   Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи — AKV.

   Форум по радиоэлементам

   Обсудить статью ТРАНЗИСТОРЫ


Транзистор [База знаний]

Транзистор. Определение, обозначение на схемах, принцип работы, основные характеристики

Теория

КОМПОНЕНТЫ
ARDUINO
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Транзистор — один из самых распространенных полупроводниковых элементов самого широкого применения. Существуют различные виды транзисторов, но как правило данный электронный компонент имеет три вывода и, как и диод, основывается на явлении p-n перехода. Отсюда происходит его второе название – полупроводниковый триод.

Главным свойством транзистора является управление током, протекающим через него (ток эмиттерколлектор у биполярных и ток истоксток у полевых транзисторов), с помощью третьего вывода (база у биполярных и затвор у полевых транзисторов). Иными словами транзисторы зачастую используют как выключатель и/или регулятор силы тока и напряжения.


Биполярный транзистор

Транзисторы данного типа состоят из трех слоев полупроводников с чередующимся типом проводимости:
  • Эмиттер (emitter)
  • База (base) – на схемах изображается между К. и Э. под прямым углом к несущей черте
  • Коллектор (collector) – на схемах обозначен стрелкой.

 

Таким образом, у биполярных транзисторов имеется два p-n перехода: эмиттер-база и база-коллектор. Наделение полупроводников определенным типом проводимости происходит с помощью легирования — добавления в них специальных примесей. Каждый слой легируется в разной степени.
Различают два типа биполярных транзиторов:
  • p-n-p, где эмиттер – полупроводник p-типа, база – n-типа, коллектор – p-типа
  • n-p-n, где эмиттер – полупроводник n-типа, база – p-типа, коллектор – n-типа.

 

Их схематичное устройство представлено представлено на иллюстрации ниже.

Также на иллюстрации обозначено направление движения тока в биполярных транзисторах обоих типов и типичное обозначение напряжений, имеющих место между его выводами.

 

В основе работы биполярных транзисторов лежит следующий процесс, который рассмотрим на примере транзистора со структурой npn в нормальном активном режиме. В этом режиме переход эметтер-база смещён в прямом направлении, иначе говоря, открыт, а переход база-коллектор смещён в обратном направлении или закрыт. При переходе носителей заряда (электронов) из эмиттера через открытый p-n переход эмиттер-база, часть их рекомбинирует с носителями заряда (дырками) в базе. Однако база делается очень тонкой и слабо легированной (по сравнению с эмиттером), из-за чего большая часть электронов, перешедших (инжектированных) в базу из эмиттера, так сказать, «не находит себе в базе места» и, как следствие, диффундирует в коллектор. Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы и переносит их в коллекторный слой. Таким образом, ток коллектора практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы. В случае с биполярными транзисторами структуры pnp процесс будет тем же, изменится лишь полярность и направление токов.

 


Полевой транзистор (униполярный)

Принцип действия полевых транзисторов основан на управлении электрическим сопротивлением токопроводящего канала поперечным электрическим полем, создаваемым приложенным к затвору напряжением.

 

Полевые транзисторы имеют следующие выводы:
  • Исток (source) — область, из которой носители заряда уходят в канал
  • Затвор (gate) – электрод, на который подается управляющее напряжение
  • Сток (drain) – область, в которую носители заряда входят.
Проектирование логического элемента И с использованием транзисторов

Как многие из нас знают, интегральная схема или интегральная схема — это комбинация множества небольших цепей в небольшом корпусе, которые вместе выполняют общую задачу. Как операционный усилитель или 555 таймер ИС построена путем комбинации множества транзисторов, триггеров, логических вентилей и других комбинационных цифровых схем. Точно так же триггер может быть построен с использованием комбинации логических вентилей, а сам логический вентиль может быть построен с использованием нескольких транзисторов.

Logic Gates — это основы многих цифровых электронных схем. От базовых триггеров до микроконтроллеров логические элементы формируют основной принцип хранения и обработки битов. Они устанавливают связь между каждым входом и выходом системы с использованием логики Arthmetic. Существует много разных типов логических вентилей, и у каждого из них своя логика, которая используется для разных целей. Но основное внимание в этой статье будет уделено И Гейт , потому что позже мы будем строить логический элемент И, используя схему BJT транзистора .Волнует правильно? Давайте начнем.

AND Logic Gate

Логический вентиль AND представляет собой логический вентиль в форме D с двумя входами и одним выходом, где D-образная форма между входом и выходом является логической схемой. Соотношение между входными и выходными значениями может быть объяснено с помощью таблицы AND Gate Truth , показанной ниже.

Symbol and Truth Table of And Gate

Вывод уравнений можно легко объяснить с помощью логического уравнения AND Gate , которое равно Q = A x B или Q = AB .Следовательно, для логического элемента И выход ВЫСОКИЙ , только если оба входа ВЫСОКИЙ .

Транзистор

Транзистор — это полупроводниковое устройство с тремя клеммами, которые могут быть подключены к внешней цепи. Устройство может использоваться как переключатель, а также как усилитель для изменения значений или управления прохождением электрического сигнала.

Для построения логического элемента И с использованием транзистора мы будем использовать транзисторы BJT, которые могут быть далее классифицированы на два типа: PNP и NPN Биполярные транзисторы .Символ цепи для каждого из них можно увидеть ниже.

PNP and NPN BJT Transistors

Эта статья объяснит вам, как построить схему И ИЛИ с использованием транзистора. Логика логического элемента И уже объяснена выше, и для построения логического элемента И с использованием транзистора мы будем следовать той же таблице истинности, показанной выше.

Схема и необходимые компоненты

Список компонентов, необходимых для построения логического элемента И с использованием NPN-транзистора , приведен ниже:

  1. Два NPN-транзистора.(Вы также можете использовать PNP-транзистор, если имеется)
  2. Два резистора 10 кОм и один резистор 4-5 кОм.
  3. Один светодиод (светоизлучающий диод) для проверки выходного сигнала.
  4. Макет.
  5. A + 5V Блок питания.
  6. Две кнопки.
  7. Соединительные провода.

Схема представляет собой входы A и B для логического элемента И и выхода Q, который также имеет питание + 5 В на коллекторе первого транзистора, который подключен последовательно ко второму транзистору, а светодиод подключен к эмиттеру. клемма второго транзистора.Входы A и B подключены к базовой клемме Транзистора 1 и Транзистора 2 соответственно, а выход Q переходит на светодиод положительной клеммы. На приведенной ниже схеме представлена ​​объясненная выше схема для построения логического элемента И с использованием NPN-транзистора.

Транзисторы, используемые в этом руководстве, представляют собой BC547 NPN Транзистор и были добавлены со всеми вышеупомянутыми компонентами в схеме, как показано ниже.

And Gate Circuit Diagram using Transistors

Если у вас нет нажимных кнопок, вы также можете использовать провода в качестве переключателя, добавляя или удаляя их при необходимости (вместо нажатия кнопки).То же самое можно увидеть на видео, где я бы использовал провода в качестве переключателя, подключенного к базовой клемме для обоих транзисторов.

Такая же схема при сборке с использованием вышеупомянутых аппаратных компонентов, схема будет выглядеть примерно так, как показано на рисунке ниже.

Circuit of AND Gate Using Transistors

Работа And Gate с использованием транзистора

Здесь мы будем использовать транзистор в качестве переключателя, и поэтому, когда напряжение подается через клемму коллектора NPN-транзистора, напряжение достигает эмиттерного перехода, только когда базовый переход имеет напряжение питания от 0 В до напряжения коллектора.

Working of AND Gate using Transistors

Аналогичным образом, приведенная выше схема заставила бы светиться светодиод, то есть выходной сигнал равен 1 (высокий), только когда оба входа равен 1 (высокому), т.е. когда есть напряжение питания на базовой клемме обоих транзисторов. Это означает, что будет прямой ток от VCC (источник питания + 5 В) до светодиода и далее на землю. Остальное во всех случаях, выходной сигнал будет 0 (Низкий), а светодиод будет выключен. Все это можно объяснить более подробно, поняв каждый случай один за другим.

Случай 1: Когда оба входа нулевые — A = 0 и B = 0 .

Когда оба входа A и B равны 0, вам не нужно нажимать какие-либо кнопки в этом случае. Если вы не используете нажимные кнопки, отсоедините провода, подключенные к ним, кнопки и клемму базы обоих транзисторов. Итак, мы получили оба входа A & B как 0, и теперь нам нужно проверить выход, который также должен быть 0 согласно таблице истинности логического элемента AND.

Теперь, когда напряжение подается через клемму коллектора транзистора 1, эмиттер не получает никаких входных данных, поскольку значение базовой клеммы равно 0. Аналогично, эмиттер транзистора 1, который подключен к коллектору транзистора 2, подает питание. ток или напряжение отсутствуют, а также значение базовой клеммы транзистора 2 равно 0. Таким образом, эмиттер транзистора 2 и выводит значение 0, и в результате светодиод будет выключен.

Случай 2: Когда входы — A = 0 и B = 1 .

Во втором случае, когда входы A = 0 и B = 1, схема имеет первый вход как 0 (низкий), а второй вход как 1 (высокий) к базе транзисторов 1 и 2 соответственно. Теперь, когда на коллектор первого транзистора подается питание 5 В, тогда фазовое смещение транзистора не изменяется, так как у базовой клеммы 0 вход. При этом значение 0 передается на эмиттер, а эмиттер первого транзистора соединяется с коллектором второго транзистора последовательно, поэтому значение 0 попадает в коллектор второго транзистора.

Теперь второй транзистор имеет высокое значение в базе, поэтому он позволил бы тому же значению, полученному в коллекторе, перейти на эмиттер. Но так как значение равно 0 на выводе коллектора второго транзистора, поэтому эмиттер также будет равен 0, а светодиод, подключенный к эмиттеру, не будет светиться.

Случай 3: Когда входы — A = 1 и B = 0 .

Здесь вход равен 1 (высокий) для первого транзисторного основания и низкий для второго транзисторного основания.Таким образом, путь тока начнется с источника питания 5 В к коллектору второго транзистора, проходящего через коллектор и эмиттер первого транзистора, поскольку значение базовой клеммы является высоким для первого транзистора.

Но во втором транзисторе значение базовой клеммы равно 0, и поэтому ток не проходит от коллектора к эмиттеру второго транзистора, и в результате светодиод все равно будет только выключен.

Случай 4: Когда оба входа один — A = 1 и B = 1 .

В последнем случае и здесь оба входа должны быть высокими, которые подключены к базовым клеммам обоих транзисторов. Это означает, что всякий раз, когда ток или напряжение проходит через коллектор обоих транзисторов, база достигает своего насыщения, и транзистор проводит.

Практически объясняя, когда на клемму коллектора транзистора 1 подается питание + 5 В, а также клемма базы насыщается, тогда клемма эмиттера будет получать высокий выходной сигнал, поскольку транзистор смещен в прямом направлении.Этот высокий выходной сигнал на эмиттере поступает непосредственно в коллектор 2 -го и -го транзистора через последовательное соединение. Теперь, аналогично на втором транзисторе, вход на коллекторе высокий, и в этом случае базовый вывод также высокий, что означает, что второй транзистор также находится в насыщенном состоянии, и высокий вход будет проходить от коллектора к эмиттеру. Эта высокая мощность на эмиттере идет на светодиод, который включает светодиод.

Следовательно, все четыре случая имеют те же входы и выходы, что и фактический логический элемент AND.Таким образом, мы построили логический вентиль AND с использованием транзистора . Надеюсь, вы поняли учебник и получили удовольствие от изучения чего-то нового. Полную работу установки можно найти в видео ниже. В нашем следующем уроке мы также узнаем, как построить вентиль ИЛИ с использованием транзистора и вентиль НЕ с использованием транзистора . Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже или используйте наши форумы для других технических вопросов.

,
Что такое NPN транзистор? — Определение, Строительство и Работа

Определение: Транзистор, в котором один материал p-типа размещен между двумя материалами n-типа, известен как NPN-транзистор . NPN-транзистор усиливает слабый сигнал , поступающий в базу, и генерирует сильные сигналы усиления на конце коллектора. В NPN-транзисторе направление движения электрона направлено от эмиттера к области коллектора , из-за которой ток составляет транзистор.Транзисторы такого типа в основном используются в схеме, потому что их основными носителями заряда являются электроны, которые имеют высокую подвижность по сравнению с дырками.

Строительство NPN Транзистор

NPN-транзистор имеет два диода, подключенных друг к другу. Диод на левой стороне называется диодом на основе эмиттера, а диоды на левой стороне называются диодом на коллекторе. Эти имена даны согласно названию терминалов.

npn-transistor Транзистор NPN имеет три клеммы, а именно эмиттер, коллектор и базу.Средняя часть NPN-транзистора слегка легирована, и это является наиболее важным фактором работы транзистора. Излучатель умеренно легирован, а коллектор сильно легирован.

Принципиальная схема

NPN Транзистор

Принципиальная схема транзистора NPN показана на рисунке ниже. Коллектор и базовая цепь подключены в обратном смещении, а эмиттер и базовая схема подключены в прямом смещении. Коллектор всегда подключен к положительному источнику питания, а база находится в отрицательном питании для управления состояниями ВКЛ / ВЫКЛ транзистора.

npn-circuit

Работа NPN Транзистора

Принципиальная схема транзистора NPN показана на рисунке ниже. Прямое смещение применяется через соединение эмиттер-база, а обратное смещение применяется через соединение коллектор-база. Напряжение прямого смещения V EB мало по сравнению с напряжением обратного смещения V CB .

what-is-transistor

Эмиттер NPN-транзистора сильно легирован. Когда прямое смещение приложено к излучателю, большинство носителей заряда движутся к основанию.Это вызывает ток эмиттера I E . Электроны входят в материал P-типа и соединяются с отверстиями.

База транзистора NPN слегка легирована. Из-за чего только несколько электронов объединяются, а оставшиеся составляют базовый ток I B . Этот базовый ток поступает в область коллектора. Обратный потенциал смещения области коллектора прикладывает высокую силу притяжения к электронам, достигающим соединения коллектора. Таким образом привлекают или собирают электроны на коллекторе.

Весь ток эмиттера вводится в базу. Таким образом, можно сказать, что ток эмиттера является суммой коллектора или базового тока.

,
Что такое PNP-транзистор? — Определение, Символ, Строительство и Работа

Определение: Транзистор, в котором один материал n-типа легирован двумя материалами p-типа, такой тип транзистора известен как транзистор PNP. Это устройство с управлением по току. Небольшое количество базового тока контролировало ток эмиттера и коллектора. Транзистор PNP имеет два кристаллических диода, соединенных друг с другом. Левая сторона диода известна как диод на основе эмиттера, а правая сторона диода называется диодом на коллекторе.

Отверстие является основным носителем транзисторов PNP, которые составляют ток в нем. Ток внутри транзистора формируется из-за изменения положения отверстий, а в выводах транзистора — из-за потока электронов. Транзистор PNP включается, когда через базу протекает небольшой ток. Направление тока в PNP-транзисторе от эмиттера к коллектору.

Буква транзистора PNP указывает на напряжение, требуемое эмиттером, коллектором и базой транзистора.База транзистора PNP всегда была отрицательной по отношению к эмиттеру и коллектору. В PNP-транзисторе электроны взяты с базовой клеммы. Ток, который входит в базу, усиливается на концах коллектора.

Символ PNP Транзистор

Символ PNP-транзистора показан на рисунке ниже. Стрелка внутрь показывает, что направление тока в PNP-транзисторе от эмиттера к коллектору.

pnp-transistor-symbol

Строительство ПНП Транзистор

Конструкция PNP-транзистора показана на рисунке ниже.Соединение эмиттер-база соединено в прямом смещении, а соединение коллектор-база соединено в обратном смещении. Эмиттер, который подключен в прямом смещении, притягивает электроны к батарее и, следовательно, представляет собой ток, протекающий от эмиттера к коллектору.

Block-diagram-pnp-transistor

База транзистора всегда остается положительной по отношению к коллектору, так что отверстие от соединения коллектора не может войти в базу. И основание-излучатель удерживается вперед, благодаря чему отверстия из области излучателя входят в основание, а затем в область коллектора, пересекая область истощения.

Работа PNP Транзистора

Соединение эмиттер-база соединено в прямом смещении, из-за чего эмиттер проталкивает отверстия в базовой области. Эти отверстия составляют ток эмиттера. Когда эти электроны перемещаются в полупроводниковый материал или основу N-типа, они объединяются с электронами. База транзистора тонкая и очень легкая. Следовательно, только несколько дырок, соединенных с электронами и остальными, перемещаются в направлении слоя пространственного заряда коллектора.Отсюда развивается базовый ток.

working-pnp-transistor

Область основания коллектора соединена в обратном смещении. Отверстия, которые накапливаются вокруг области истощения при воздействии отрицательной полярности, собираются или притягиваются коллектором. Это развивает ток коллектора. Полный ток эмиттера протекает через ток коллектора I C .

,

режимов работы BJT

BJT операция режимы

Транзистор может работать в трех режимах:

  • Режим отключения
  • Насыщенность режим
  • Активный режим

В Для того чтобы эксплуатировать транзистор в одном из этих регионов, мы имеем для подачи постоянного напряжения на транзистор npn или pnp.На основе полярность приложенного постоянного напряжения, Транзистор работает в любой из этих областей.

Применение напряжение постоянного тока на транзисторе является ничем иным, как смещение транзистор.

Режим отсечки

В режим отсечки, оба перехода транзистора (эмиттер на базу и коллектор на базу) обратные предвзятым.Другими словами, если мы примем два п-п соединения как два п-н диоды, оба диода смещены в обратном направлении режим отсечки. Мы знаем, что в состоянии обратного смещения тока нет протекает через устройство. Следовательно, ток не течет через транзистор. Поэтому транзистор выключен состояние и действует как открытый выключатель.

Режим отсечки транзистора используется в режиме переключения для выключения приложения.

Насыщенность режим

В режим насыщения, оба перехода транзистора (излучатель на базу и коллектор на базу) вперед предвзятым. Другими словами, если мы примем два p-n-перехода как два диода p-n перехода, оба диода смещены вперед в режиме насыщения. Мы знаем, что в состоянии прямого смещения, ток течет через устройство.Следовательно, электрический ток протекает через транзистор.

В насыщение режим, бесплатно электроны (носители заряда) течет от эмиттера к базе а также от коллектора к базе. В результате огромный ток будет течь к базе транзистора.

Следовательно, транзистор в режиме насыщения будет включен и действует как замкнутый выключатель.

насыщение Режим транзистора используется в режиме переключения для включить приложение.

от Приведенное выше обсуждение, мы можем сказать, что с помощью транзистор в области насыщения и отсечки, мы можем использовать транзистор в качестве переключателя ВКЛ / ВЫКЛ.

Активный режим

В активный режим, один переход (эмиттер к базе) вперед смещен и другой переход (коллектор к базе) является обратным предвзятым.Другими словами, если мы примем два p-n-переходов как два p-n переходные диоды, один диод будет смещен вперед и другой диод будет обратным смещением.

активный режим работы используется для усиления ток.

от Из приведенного выше обсуждения можно сказать, что транзистор работает как переключатель ВКЛ / ВЫКЛ в режимах насыщения и отсечки, тогда как он работает как усилитель тока в активном режиме.

facebook icon icon icon


,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *