Учимся читать электросхемы: Учимся читать электрические схемы

Содержание

Учимся читать электрические схемы

Каждая электрическая схема состоит из множества элементов, которые, в свою очередь, также включают в свою конструкцию различные детали. Наиболее ярким примером служат бытовые приборы. Даже обычный утюг состоит из нагревательного элемента, температурного регулятора, контрольной лампочки, предохранителя, провода и штепсельной вилки. Другие электроприборы имеют еще более сложную конструкцию, дополненную различными реле, автоматическими выключателями, электродвигателями, трансформаторами и многими другими деталями.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Как читать электрические схемы – графические, буквенные и цифровые обозначения
  • Как читать электросхемы
  • Электрические схемы автомобиля: как читать их новичку
  • Как читать электросхемы автомобилей
  • Как читать электрические схемы? Разбор простой схемы
  • Как читать автомобильные электрические схемы
  • Как читать монтажные схемы и делать по ним монтаж
  • Как научиться читать электрические схемы автомобиля
  • Как читать принципиальные схемы?
  • Как читать электрические схемы. Виды электрических схем

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Монтажные схемы и маркировка электрических цепей

Как читать электрические схемы – графические, буквенные и цифровые обозначения


Здравствуйте любители авторемонта своими руками. Сегодня я хочу поделится с вами простым способом, как читать электрические схемы автомобиля. На самом деле чтение электросхем автомобиля не такое уж и сложное занятие. Но, как всегда повторюсь если у вас нет желания то лучше не лезьте в электросхемы автомобилей.

Вообще то в интернете хватает и статей и даже видеообзоров о том, как читать электрические схемы автомобиля. Поэтому особого смысла повторятся я не вижу если только, конечно не попытаться объяснить, как это сделать самым простым способом. И так, чтобы принципиальная электрическая схема автомобиля была вам понятна, или как говорят прочитана, необходимо просто представить самую простую электрическую схему, например:.

Так вот, что вы будете делать если в этой схеме перегорел предохранитель?

Ну конечно по условию задачи вы не будете знать, что предохранитель перегорел. Так вот сейчас мы и попытаемся узнать, как научиться читать электрические схемы автомобиля. Правильный ответ будет такой — если у вас не имеется ни каких приборов, инструментов и приспособлений, проще говоря инструмент автоэлектрика, и у вас при этом нет даже минимального опыта в ремонте подобных вещей, то вы ни когда не обнаружите причину неисправности, ну если только случайно.

А на самом деле приборы для этого необходимы самые простые, например самая обычная контролька. Теперь давайте добавим в нашу схему реле, мы же хотим понять, как читать схему электрооборудования автомобиля, так вот и сделаем самую простую схему, как в настоящем автомобиле. Теперь нам понадобиться проверить электрические цепи для того, чтобы определить участок схемы, который вышел из строя.

Как вы видите кнопка включена но из за того, что предохранитель перегорел, ток на лампочку больше не идет хотя контакты реле замкнуты.

На примере выше видно, что лампочка горит в первом случаи и не горит во втором, потому что предохранитель не исправлен. Иными словами один контакт контрольки ставите жестко на минусовую клемму или корпус автомобиля, что одно и тоже, а вот вторым концом надо проверить предохранитель с обоих сторон.

Если он целый то напряжение будет с обоих сторон, а если нет то только с одной. Все, что нарисовано на схемах это и есть идущие в жгутах автомобиля проводки. И идут они именно так, как нарисовано на этих схемах, ну по крайней мере, так должно быть. Вот вам и ответ, как читать электрические схемы автомобиля, а заодно, как выявлять неисправности. Электрические схемы автомобилей практически во всех автомобилях одинаковые.

Ну конечно небольшие отличия будут, некоторые производители автомобилей используют больше защиты электрики автомобиля, какие то меньше, суть от этого не меняется.

Хотелось бы немного остановится на том, какой инструмент автоэлектрика вам понадобиться для изучения электросхемы автомобилей. Вот такой вот не хитрый набор инструментов для автоэлектрика будет вам очень полезен. И все же самый главный инструмент автоэлектрика — это контролька. C уважением автор блога: Doctor Shmi.

Ваш e-mail не будет опубликован. Предыдущая запись. Следующая запись. Оставить комментарий Отменить ответ Ваш e-mail не будет опубликован.


Как читать электросхемы

Здравствуйте, уважаемые читатели сайта sesaga. Любое радиотехническое или электротехническое устройство состоит из определенного количества различных электро- и радиоэлементов радиодеталей. Возьмем, к примеру, самый обычный утюг: в нем есть регулятор температуры, лампочка, нагревательный элемент, предохранитель, провода и штепсельная вилка. Утюг представляет собой электротехническое устройство, собранное из специального набора радиоэлементов, обладающих определенными электрическими свойствами, где работа утюга основана на взаимодействии этих элементов между собой. Для осуществления взаимодействия радиоэлементы радиодетали соединяются друг с другом электрически, а в некоторых случаях их размещают на небольшом расстоянии друг от друга и взаимодействие происходит путем образованной между ними индуктивной или емкостной связи. Самый простой способ разобраться в устройстве утюга — это сделать его точную фотографию или рисунок.

Новички, которые пытаются самостоятельно собрать какие-то электронные схемы и приборы, сталкиваются с самым первым в своей новой.

Электрические схемы автомобиля: как читать их новичку

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек — это залог правильно собранного электронного прибора. А, значит, основная задача сборщика — это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями. Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО. Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:. То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме.

Как читать электросхемы автомобилей

При изучении электроники возникает вопрос, как читать электрические схемы. Естественным желанием начинающего электронщика или радиолюбителя является спаять какое-то интересное электронное устройство. Однако на начальном пути достаточных теоретических знаний и практических навыков как всегда не хватает. Поэтому устройство собирают вслепую.

Здравствуйте любители авторемонта своими руками. Сегодня я хочу поделится с вами простым способом, как читать электрические схемы автомобиля.

Как читать электрические схемы? Разбор простой схемы

Каждый начинающий электрик задаётся вопросом — как читать электрические схемы? Постараемся вкратце изложить материал, чтобы дать правильное направление в этой, казалось бы, не лёгкой теме. Прежде чем начать изучение основ построения электрических схем, необходимо выучить основные графические обозначения. На основе часто используемых обозначений нужно составить шпаргалку, которой будет удобно пользоваться при чтении схем. Шпаргалка должна содержать обозначения с расшифровками самых часто используемых элементов в электрических схемах. Для удобства использования обозначения должны быть распределены по тематике.

Как читать автомобильные электрические схемы

Модераторы: Breeze , Soarer. Запомнить меня. Забыли пароль? Список форумов Профессиональные морские форумы Машинное отделение Судовая электромеханика, электроника. Тунгус 09 июл , Господа электромехи и не только , есть у кого какие ссылки на буквари по «электрички» , что бы научиться читать электрические схемы? Заранее спасибо за помощь! Тунгус титулярный советник.

Как читать электросхемы. Научиться понимать электрические схемы. Обозначения реле, контактов, заземления, диода, конденсатора.

Как читать монтажные схемы и делать по ним монтаж

Всем привет. В этой записи речь пойдет об условных обозначениях на электронных схемах на данный автомобиль. Код электрической цепи. Спецификация изоляции провода.

Как научиться читать электрические схемы автомобиля

ВИДЕО ПО ТЕМЕ: Реверсивная схема пускателя

Умение читать электросхемы — это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта Сам Электрик условные обозначения в электрических схемах, как графические, так и буквенные. Принципиальная электрическая схема показывает все элементы, детали и сети, входящие в состав чертежа, электрические и механические связи. Раскрывает полную функциональность системы.

Когда при выезде на рыбалку вдруг под вечер не загораются фары на личном авто, некоторые водители хватаются за голову. Они не умеют читать электрические схемы автомобиля и поломка такого рода сразу становится неразрешимой проблемой.

Как читать принципиальные схемы?

Электрические принципиальные схемы. Основным назначением принципиальных электрических схем является отражение с достаточной полнотой и наглядностью взаимной связи отдельных приборов, средств автоматизации и вспомогательной аппаратуры, входящих в состав функциональных узлов систем автоматизации, с учетом последовательности их работы и принципа действия. Принципиальные электрические схемы служат для изучения принципа действия системы автоматизации, они необходимы при производстве пуско-наладочных работ и в эксплуатации электрооборудования. Принципиальные электрические схемы являются основанием для разработки других документов проекта: монтажных схем и таблиц щитов и пультов, схем соединения внешних проводок, схем подключения и др. При разработке систем автоматизации технологических процессов обычно выполняют принципиальные электрические схемы самостоятельных элементов, установок или участков автоматизируемой системы, например схему управления задвижкой, схему автоматического и дистанционного управления насосом, схему сигнализации уровня в резервуаре и т. Принципиальные электрические схемы составляют на основании схем автоматизации, исходя из заданных алгоритмов функционирования отдельных узлов контроля, сигнализации, автоматического регулирования и управления и общих технических требований, предъявляемых к автоматизируемому объекту. На принципиальных электрических схемах в условном виде изображают приборы, аппараты, линии связи между отдельными элементами, блоками и модулями этих устройств.

Как читать электрические схемы. Виды электрических схем

Каждая электрическая схема состоит из множества элементов, которые, в свою очередь, также включают в свою конструкцию различные детали. Наиболее ярким примером служат бытовые приборы. Даже обычный утюг состоит из нагревательного элемента, температурного регулятора, контрольной лампочки, предохранителя, провода и штепсельной вилки.


как научиться читать, какие виды бывают

Обозначения в схемах

Он обеспечивает полное раскрытие работы электрооборудования. Принципы чтения схем важны для тех, кто занимается электромонтажом, ремонтом бытовой техники, подключением электрических устройств.

Иногда такие ситуации возникают при разрыве соединений.

Для отображения выводов изоляции применяются однолинейные и многолинейные схемы, число линий в которых определяется числом выводов.

Обозначения в электрических схемах

Любая схема выполняется в виде графического изображения или чертежа, на котором вместе с оборудованием отображаются все связующие звенья электрической цепи. Плавкие предохранители, резисторы, конденсаторы. На рисунках видно, что каждому элементу или прибору соответствует свой условный значок.

Подключается первичной стороной входом к сети переменного тока с напряжением Вольт. По схеме на выключатель и люстру идут по 3 провода. Давайте перейдем еще более сложным схемам и познакомимся с другими элементами электрических цепей. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Наличие такой схемы существенно облегчало процесс ремонта. Правило 5. Обычно на весь процесс уходит не более месяцев, зато после этого вы сможете легко починить практически любую технику и проводку в своём доме без обращения к мастеру. Простые диоды с р-п-переходом показываются в виде треугольника и перекрестной линией электроцепи.

Линии связи должны состоять из горизонтальных и вертикальных отрезков и иметь наименьшее количество изломов и взаимных пересечений. Наиболее ярким примером служат бытовые приборы. В люстре один провод стал общим.
Как читать электрические схемы. Урок №6

Номиналы радиодеталей

Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.

К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.

Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.

Например, на этой схеме есть два резистора.


По умолчанию сопротивление без приставки пишется только числом. У R2 сопротивление равно 220 Ом. А у R3 после числа есть буква. Сопротивление этого резистора читается как 2,2 кОм (2 200 Ом).

Рассмотрим на схеме два конденсатора.

В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.

Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.

Особенности чтения схем

В принципиальных схемах проводники (или дорожки) обозначаются линиями.

Так обозначаются проводники, которые пересекаются, но они не имеют общего соединения и электрически друг с другом не связаны.

А вот так они выглядят, если между ними есть соединение. Черная точка — это узел в схеме. Узел — это соединение нескольких проводников или деталей вместе. Они электрически друг с другом связаны.

Общая точка

Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?


Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:


Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.

Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.

В двуполярном питании общая точка — это средний контакт между плюсом и минусом.

Заземление

Примером заземления может послужить фильтр в компьютерных блоках питания.


С конденсаторного фильтра помехи идут на корпус блока питания. Это и есть заземление. А с блока питания они должны уходить в розетку, если у вас есть заземление, иначе сам корпус блока питания может быть под напряжением. Токи там не большие, они не опасны для жизни. Это делается с целью уменьшения импульсных помех в блоке питания и безопасности.

Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.

А вообще, на схемах есть разные заземления. Например, в цифровой технике разделяют аналоговую землю и цифровую. чтобы не нарушать режимы работы схемы. Импульсные помехи могут повлиять на аналоговую часть схемы.

Принципиальная электрическая схема.

На принципиальной схеме сохраняется последовательность и строение структурной схемы, но вместо общих функциональных блоков показывается полный состав элементов устройства (прибора), изображенных в виде условных графических обозначений. Каждая деталь изображена с тем числом выводов, которые имеются у реальных деталей, а соединения между выводами показаны таким образом, чтобы можно было детально проследить все цепи и соединения, и легко понять происходящие процессы и принцип работы прибора.

Для удобства чтения рядом с условным изображением детали указывают ее буквенно-цифровое обозначение, определяющее сведения о детали: функциональное назначение, место расположения и маркировку в схеме. Буквенно-цифровые обозначения указываются в сокращенной форме и состоят из определенного числа букв латинского алфавита и арабских цифр, записанных последовательно, в одну строку и без пробелов.

Буквенное обозначение берется из названия детали и указывается одной или двумя первыми буквами, например, R – резистор, С – конденсатор, VD – диод, VT – транзистор, SA – выключатель, ХР – двухполюсная вилка, EL – лампа осветительная и т.д.

Цифровое обозначение указывает порядковый номер однотипных деталей в схеме, например, R1, R2, R3 и т.д., либо VD10, VD11 и т.д.

Нарисуем принципиальную электрическую схему настольной лампы, а для удобства чтения схемы, на первом этапе, ее основные элементы выделим прямоугольниками зеленого цвета.

Глядя на схему можно сказать, что для питания настольной лампы используется переменное напряжение электрической сети 220 В, которое через штепсельную вилку XР1 и выключатель SA1 подается на лампочку EL1. Что все элементы рассчитаны на рабочее переменное напряжение 220 В, и что работа лампы осуществляется положением контакта выключателя SA1: при замыкании контакта лампочка EL1 загорается, при размыкании — гаснет.

Из схемы видно, что верхний вывод вилки XР1 соединен с левым по схеме выводом контакта выключателя SA1, правый вывод контакта выключателя соединен с верхним выводом лампочки EL1, а нижний вывод лампочки соединен с нижним выводом вилки XР1. Контакт выключателя SA1 показан в разомкнутом состоянии, что соответствует его начальному положению и отключенному состоянию настольной лампы. Электрическая связь между выводами элементов изображена отрезками горизонтальных и вертикальных линий.

И в то же время принципиальная схема нам не дает полного представления о настольной лампе, так как на ней не указаны сведения о конструкции лампы и размерах деталей. Дело в том, что при изучении принципа работы нет необходимости знать, как, например, выполнена лампочка (размер и форма колбы, тип и размер цоколя, сопротивление спирали и т. д.), какую конструкцию имеет выключатель или вилка

Если бы все эти сведения указывались на схеме, они бы только отвлекали внимание на ненужные подробности, не имеющие принципиального значения

Но все же для расширения функциональности на принципиальных схемах указывают некоторую часть конструктивных данных элементов (мощность, тип, способ соединения), потому как в ряде случаев именно она оказывается главным и единственным документом, на который ориентируются при изготовлении, налаживании, обслуживании и ремонте аппаратуры.

Если же сравнивать структурную и принципиальную схемы, то общим для них является порядок расположения элементов и путь прохождения сигнала (в нашем случае электрического тока), который идет слева направо, т.е. в направлении привычном для обычного чтения. Однако на монтажных платах, шасси или панелях реальных устройств элементы могут располагаться иначе, подчиняясь правилам, направленным на сведение к минимуму паразитных связей между отдельными элементами, узлами, блоками. Поэтому расположение элементов внутри реального устройства может не соответствовать принципиальной схеме.

Рассмотренные структурная и принципиальная схемы предназначены в основном для изучения принципа работы, и в зависимости от вида дают наглядное представление о функциональной или элементной структуре. Чтобы иметь представление о конструктивном исполнении настольной лампы, примерном расположении элементов и способах соединения между ними служит схема соединений или монтажная схема.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.

Точка, где  соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Описание работы

Если электросхема построена правильно, то и работать она будет исправно. Работает все так. От источника питания идет заряд, который попадает под клеммник в проводник и электромагнитную катушку реле. Через катушку электроток устремляется к контактам. Как только ток попадает в контакты, начинает работать вся сеть, включается диод. Благодаря электродвижущей силе поддерживается первоначальный электроток, и он достигает наибольших значений.

Обратите внимание! Стоит указать, что без электродвижущей самоиндукции поддержание тока в контуре невозможно, поскольку при большом значении амплитуды, радиоэлементы начинают плохо работать. Благодаря этому импульсу, пробиваются полупроводниковые переходы, и выводится аппарат из функционирования

Сегодня диоды уже встраиваются в реле. Это позволяет работать электросхеме правильно.

В целом, в дополнение к теме, как научиться читать электрические принципиальные схемы, стоит отметить, что читать их необходимо с опорой на обучающий материал, в котором указывается информация о том, что значат те или иные условные обозначения. Только после получения полной информации, можно приступать к работе, если производятся соответствующие действия в электропроводке.

Вам это будет интересно Как вычислить сопротивление проводника

Как читать электрические схемы реально

Давайте вернемся к простейшей схеме, состоящей из батареи гальванических элементов GB1, резистора R1 и светодиода VD1.

Как мы видим – цепь замкнута. Поэтому в ней протекает электрический ток I, который имеет одинаковое значение, поскольку все элементы соединены последовательно. Направление электрического тока I от положительной клеммы GB1 через резистор R1, светодиод VD1 к отрицательной клемме.

Назначение всех элементов вполне понятно. Конечной целью является свечение светодиода. Однако, чтобы он не перегрелся и не вышел из строя резистор ограничивает величину тока.

Величина напряжения, согласно второму закона Кирхгофа, на всех элементах может отличаться и зависит от сопротивления резистора R1 и светодиод VD1.

Если измерить вольтметром напряжение на R1 и VD1, а затем полученные значения сложить, то их сумма будет равна напряжению на GB1: V1 = V2 + V3.

Соберем по данному чертежу реальное устройство.

Как читать электрические схемы с минимальным набором радиодеталей мы разобрались. Теперь можем перейти к более сложному варианту.

Добавляем радиодетали

Рассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB1, напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K1.1 электромагнитного реле K1, резистора R1 и светодиода VD1. Далее по чертежу находится кнопка SB1.

Третья параллельная ветвь состоит из электромагнитного реле K1, шунтированного в обратном направлении диодом VD2.

В четвертой ветви имеются нормально разомкнутые контакты K1.2 и бузер BA1.

Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB1 – это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.

Следующий элемент– это электромагнитное реле K1. Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.

Все контакты, которые соответствуют реле K1, обозначаются K1.1, K1.2 и т. д. Первая цифра означает принадлежность их соответствующему реле.

Бузер

Следующий элемент, ранее не знакомый нам, — это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.

Пассивный бузер – для переменного тока.

Активный бузер – для постоянного тока.

Активный бузер имеет полярность, поэтому следует ее придерживаться.

Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.

В исходном состоянии контакты K1.1 находятся в замкнутом положении. Поэтому ток протекает по цепи от GB1 через K1.1, R1, VD1 и возвращается снова к GB1.

При нажатии кнопки SB1 ее контакты замыкаются, и создается путь для протекания тока через катушку K1. Когда реле получило питание ее нормально замкнутые контакты K1.1 размыкаются, а нормально замкнутые контакты K1.2 замыкаются. В результате гаснет светодиод VD1 и раздается звук бузера BA1.

Теперь вернемся к параметрам электромагнитного реле K1. В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS‑4078‑DC5V. Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB1 = 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.

Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.

Диод VD2 серии 1N4148 предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB1. Но если ее размыкает транзистор или тиристор, то VD2 нужно обязательно устанавливать.

Описание работы

Если электросхема построена правильно, то и работать она будет исправно. Работает все так. От источника питания идет заряд, который попадает под клеммник в проводник и электромагнитную катушку реле. Через катушку электроток устремляется к контактам. Как только ток попадает в контакты, начинает работать вся сеть, включается диод. Благодаря электродвижущей силе поддерживается первоначальный электроток, и он достигает наибольших значений.

Обратите внимание! Стоит указать, что без электродвижущей самоиндукции поддержание тока в контуре невозможно, поскольку при большом значении амплитуды, радиоэлементы начинают плохо работать. Благодаря этому импульсу, пробиваются полупроводниковые переходы, и выводится аппарат из функционирования. Сегодня диоды уже встраиваются в реле

Это позволяет работать электросхеме правильно

Сегодня диоды уже встраиваются в реле. Это позволяет работать электросхеме правильно.

В целом, в дополнение к теме, как научиться читать электрические принципиальные схемы, стоит отметить, что читать их необходимо с опорой на обучающий материал, в котором указывается информация о том, что значат те или иные условные обозначения. Только после получения полной информации, можно приступать к работе, если производятся соответствующие действия в электропроводке.

Слаботочный преобразователь напряжения на 440В

Слаботочный преобразователь напряжения для питания газоразрядного счетчика Гейгера-Мюллера может быть собран по схеме на рис. 12. Преобразователь представляет собой транзисторный блокинг-генератор с дополнительной повышающей обмоткой. Импульсы с этой обмотки заряжают конденсатор C3 через выпрямительные диоды VD2, VD3 до напряжения 440 В.

Конденсатор C3 должен быть либо слюдяным, либо керамическим, на рабочее напряжение не ниже 500 В. Длительность импульсов блокинг-генератора примерно 10 мкс. Частота следования импульсов (десятки Гц) зависит от постоянной времени цепи R1, С2.

Рис. 12. Схема слаботочного преобразователя напряжения для питания газоразрядного счетчика Гейгера-Мюллера.

Магнитопровод трансформатора Т1 изготавливают из двух склеенных вместе ферритовых колец К16x10x4,5 3000НМ и изолируют его слоем лакоткани, тефлона или фторопласта.

В начале наматывают внавал обмотку III — 420 витков провода ПЭВ-2 0,07, заполняя магнитопровод равномерно. Поверх обмотки III накладывают слой изоляции. Обмотки I (8 витков) и II (3 витка) наматывают любым проводом поверх этого слоя, их также следует возможно равномернее распределить по кольцу.

Следует обратить внимание на правильную фазировку обмоток, она должна быть выполнена до первого включения. При сопротивлении нагрузки порядка единиц МОм преобразователь потребляет ток 0,4… 1,0 мА

Что такое электрическая схема

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.

Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО.

Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:

Как видите, очень похоже на оригинал. А вот так обозначается динамик:

То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.

Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.

Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:

Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.

Что обозначают буквы и цифры

Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента. Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.

Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.

Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит

И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает). Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.

И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.

Обозначение линий связи на электрических схемах

Индикатором определяем и находим фазу, соединяем ее с выключателем, не прерывая ноль.

Это были огромные листы бумаги формата А2 или даже А1, на которых указывались абсолютно все составляющие телевизора. Об одном из таких я рассказывал в статье про переменные резисторы.

Соединяем ее параллельно к любой лампе.

Давайте рассмотрим популярную среди новичков схему — симметричный мультивибратор. То, что блок питания состоит из трансформатора, выпрямителя и сглаживающего фильтра на конденсаторе. За счет этого изображение становится проще, позволяя лучше понять принцип действия всего оборудования.

Электросхемы? — разберется даже школьник!

Перечисленные задачи довольно сложны, и рассмотрение многих из них выходит за рамки данной статьи. Зарубежные детали можно представить широким ассортиментом.

В правильно составленных схемах очередность подачи питающих напряжений, а также восстановление их после нарушений не должны приводить к каким-либо оперативным переключениям; к оценить последствия нарушения изоляции поочередно в каждой точке схемы. Чтобы не указывать эти повторяющиеся резисторы на схеме их просто заменили жирными точками.

Такой вот маркетинговый ход! Всего 8 штук. То, что блок питания состоит из трансформатора, выпрямителя и сглаживающего фильтра на конденсаторе.

Поэтому и на схеме они обозначаются по-разному: Транзистор Как видите, транзистор по своему изображению на него-то и не похож. Имеются практически на всех электрических схемах.
КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть

Пример автоматизации процессов на основе мк Arduino

Простейшим примером автоматизации процесса может стать теплица на ардуино. Чтобы создать любую систему, стоит чётко расчертить задачи, которые та должна выполнять. На примере теплицы, это будет:

  1. Создание специального климата.
  2. Своевременное включение и выключение освещения.
  3. Своевременный полив растений и удержание влажности воздуха на одном уровне.


Один из проектов по созданию теплицы с использованием Ардуино Исходя из этих задач, можно сразу подметить, что вам потребуется купить к основной плате:

  1. Датчик температуры. Он будет следить за тем, чтобы воздух не нагревался и не охлаждался, находясь в прописанных программой пределах. В случае изменения температуры плата будет включать кондиционер или электронные батареи.
  2. Датчик освещённости. Конечно, можно ограничиться программным решением и прикупить дорогостоящие лампы с имитацией дневного света. Но если вы хотите создать полноценную теплицу, то куда удобнее будет установить автоматический потолок, который будет контролироваться Ардуино.
  3. Датчик влажности. Здесь всё так же, как и с температурой, по прописанному сценарию, плата будет включать опрыскиватели и увлажнители воздуха, при необходимости.

Когда вы приобретёте все необходимые модули, останется лишь их запрограммировать. Ведь без кода, это всего лишь железяки, ни на что не способные.

Учимся читать схемы фриволите | Страна Мастеров



Наталья-NK

 1 из 7 →

Тип работы

Не определен

Событие

Не определено

Техника

Фриволите

Материал

Нитки

Поделиться:

Ко мне обратились помочь новичку прочитать схему, что за чем и почему. Вроде плести научились, а вот понять с чего начать никак. Вот я и решила создать эту новую темку.

Читать будем простейшую схемку.

Автор Дарина Никонова.

Оригинал тут http://www.darina.tv/marlen

Рассмотрев схему мы видим, что в ней присутствуют главные элементы фриволите, это кольца и дуги. Точками обозначены места соединения элементов между собой, а именно соединительное пико (о пико будет отдельный МК).

Обычно в схемах проставляются порядковые номера плетения элементов, в этой схеме их нет. Чтобы найти порядковый номер, достаточно, взять ручку или карандаш (можно даже не пишущий), и попробовать без отрыва от листа прорисовать схему. Вот что у меня получилось 

Таким образом можно пронумеровать простейшие схемы, но есть и такие, особенно это касается АНКАРСА которые в ходе работы переворачивают. Поэтому для начинающих советую начинать со схем, в которых есть порядок плетения элементов.

После того как мы пронумеровали элементы, нам надо создать опись этой схемы получается что элемент 1 это кольцо, элементы 2 и 3 тоже являются кольцами, т. е. у нас классический трилистник, элемент 4 это дуга, которая соединяет трилистники между собой. Делаем вывод, что плетется эта схема 2 челноками, либо челнок и нить от клубка. Далее элементы повторяются и имеют одну и ту же опись, т.е. кольца 1, 5, 9 и.т.д будут плестись одинаково, также и 2, 6, 10, также и 3,7, 11, и дуги все будут одинаковые.

Делаем опись (я делаю это так), сначало пишу сокращение элемента (к — кольцо, д — дуга), потом порядковые номера, если элементы повторяются пишу несколько, потом роспись где цифры обозначают количество двойных узлов а буква п -пико, если в схеме присутствуют не только соединительные пико, но и декоративные над соединительными ставлю точку.

к 1, 5, 9 — 9 п 6 п 3

к 2, 6, 10 — 3п 24 п 3

к 3, 7, 11 — 3 п 6 п 9

д 4 — 21

Каждый автор схем имеет свои принципы обозначения и оформления схем, поэтому если Вы плетете по чужой схеме обязательно найдите информацию о сокращениях, так как можно просто испортить работу. 

В Интернете сейчас можно найти очень много от сканированных книг с красивыми схемами, которые выпускаются за рубежом — на английском, японском, испанском, итальянском и др. языках. Японцы и французы, как правило, выпускают книги с прицелом на любую аудиторию, приводя схемы в виде диаграмм с цифровым обозначением количества узлов… А вот если схема дана в виде текстового описания да еще на малознакомом (или совсем незнакомом) языке… Тут порой возникают сложности. Надеюсь, данный словарик немного облегчит расшифровку. Английскую часть составляла Елена Коваль (плюс мои дополнения), литовская часть — Нина Прокопович, все  нашла в сети, если узнали свои комментарии большое Вам спасибо, пишите, добавлю авторство.

Дополнения приветствуются 🙂
АНГЛИЙСКИЙ:
ds — double stitch — двойной узел
first half stitch — прямой узел (в старых книгах еще встречается название plain stitch)
second half stitch — обратный узел (purl stitch)
r — ring — кольцо
ch — chain — дуга
p (ps — множественное число) — picot — пико
l p — long picot — длинное пико
sm p — small picot — короткое пико
close — закрыть
scallop — дуга уже готовая, например, от предыдущего ряда (или группа элементов, образующих форму дуги, арки)

sl st — slip stitch — нитка, проходящая под работой к следующей точке плетения
josephine knot —
узел «жозефина», кольцо/полукольцо, сформированное только из первых 
(прямых) половинок двойного узла, таких узлов может быть от 4 до 12
join — соединение
continuous thread — нитка между челноком и клубком (или челноком и предыдущим рядом — зависит от контекста) не перерезается
reverse — перевернуть работу
turn — перевернуть работу
tie — связать (нитки)

bet — between — между
например:
2 ds 5 ps 1 ds bet = 2 двойных узла, затем 5 пико, между которыми делается 1 узел
(2п1п1п1п1п1)

set (sts = sets) — victorian set — node stitch
— не нашла пока русского аналога. Сначала 
указывается, количество прямых, затем обратных узлов. Количество 

прямых и обратных узлов всегда одинаково, обычно от 3 до 6.
например:
set 4-4 = 4 прямых узла, затем 4 обратных
set 5-5 = 5 прямых, 5 обратных
в результате получается «змейка» или «вилюшка» с лицевой стороны и гладкая дуга с изнанки
http://mirfrivolite.narod.ru/images/Victorian_set.jpeg («сеточка» возле тканевой серединки)

shuttle — челнок
row — ряд (во многих книгах самый первый центральный элемент за ряд не считают!)
ball — клубок
thread — нить
bead — бисер, бусина
hook (crochet hook) — вязальный крючок
coronation cord — выпускавшийся до войны шнур, сейчас вместо него используют сутаж
http://mirfrivolite.narod.ru/images/coronation_cord.jpg

loop — «петля», дуга, свернутая в кольцо
mock ring — «фальшивое» кольцо… практически то же, что и Loop

split ring — комбинированное кольцо
roll tatting — обвивание нити

block tating — плетение «блоков», «квадратов» из дуг

pearl tatting — «жемчужное» плетение

twist tatting – спиральное плетение, выполняется ТОЛЬКО прямыми или ТОЛЬКО обратными узлами, в результате дуга закручивается в спираль
http://lh5. ggpht.com/_8t451Jps_Qw/S…maranty0007.jpg

cluny – насновка
http://www.sandbenders.demon.co.uk/…dGreenCluny.jpg

lock stitch
— первая половина узла плетется как обычно, вторая половина узла — 
как если бы делали нижнюю половинку комбинированного кольца (то есть в 
итоге 2-я половинка выплетается тем челноком, что у вас в правой руке)

dimple ring — кольцо в форме сердечка

НЕМЕЦКИЙ:
Occhi, Schiffchenarbeit, Frivolitдtenarbeit — фриволите
Schiffchen — челнок
Schlingschiffchen — второй челнок
Faden — нить
Knot — узел
Hдlfte-Knot — полуузел
linker Knot — левый полуузел
rechter Knot — правый полуузел
Doppeltknot — двойной узел
Josefinenknot — пико Жозефины
Ring — кольцо
Bogen — дуга
Цse, Pikot — пико
zwischen — между
schliessen — zusammenziehen — закрыть
abschneiden — отрезать
beenden — завершить, закончить
anschliessen — соединять
wenig Gewinde lassen — оставить ножку
ьberspringen — пропустить
vorhergehend — предыдущий
wiederholen — повторить
Arbeit wenden — перевернуть работу
anschurzen — связать

ИТАЛЬЯНСКИЙ:
Chiacchierino — фриволите
navetta — челнок
anello — кольцо
arca — дуга
pippiolini — пико
Punto / nodo — двойной узел
Mezzo nodo — половина узла
Nodo Guiseppina — узел «Жозефина»
Voltare il lavoro — перевернуть работу
attaccare — соединить
chuidere — закрыть
filo — нить

ФРАНЦУЗСКИЙ:
Frivolite — фриволите
navette — челнок
Anneau / boucle — кольцо
Arceau / chaine — цепь
Picot — пико
Noeud double — двойной узел
Demi noeud / noeud simple — половина узла
Noeud endroit — первая половина узла
Noeud envers — вторая половина узла
Picot Josephine — узел «Жозефина»
raccordez — соединить
fermez — закрыть
fil — нить

ГОЛЛАНДСКИЙ:
Frivolite — фриволите
spoel — челнок
ring — кольцо
boog — дуга
Pikot / lusje — пико
Dubbele knoop — двойной узел
Halve knoop — половина узла
Eerste helft — первая половина узла
Tweede helft — вторая половина узла
Halve boog — узел «Жозефина»
Kern werk — перевернуть работу
verbinden — соединить
sluiten — закрыть
draad — нить

ИСПАНСКИЙ
Frivolite — фриволите
lanzadera — челнок
anillo — кольцо
arco — дуга
baguilla — пико
Punto / nudo doble — двойной узел
Nudo derecho — вторая половина узла
Nudo izquierdo — узел «Жозефина»
Vuelta a la labor — перевернуть работу
enganchar — соединить
cerrar — закрыть
hilo — нить

ЛИТОВСКИЙ: (dank’ al Lia Nina :))
фриволите — frivolite или так: pranczikas nrimas audykle
челнок — eivut
кольцо — iedelis
цепь — lankelis
пико — akut
двойной узел — dvigubas mazgas
половина узла — pusinis mazgas
первая половина узла — pirma mazgo dalis
вторая половина узла — antra mazgo dalis
узел Жозефины — ozefinos mazgas
перевернуть работу — apversti nrin
соединить — sujungti
закрыть — suriti
нить — silas

ФИНСКИЙ:
Ympura — кольцо
Kaari — дуга
pitka nyppyla — длинное пико
yhdistaminen nyppyla — обычное пико

как научиться читать, какие виды бывают

Как научиться читать электрическую схему

Любая радиоаппаратура включает в себя отдельные радиодетали, которые спаяны между собой при помощи определенного способа. Все эти элементы отражаются на электрической схеме условными графическими значениями. Чтобы научиться читать документ, необходимо понимать условное обозначение всех проводниковых элементов электроцепи. Каждая деталь имеет свое графическое обозначение и включает в себя условную конструкцию с характерными особенностями.

Проще всего работать с таким элементом как электронный конденсатор с резисторами, динамиками и другим электрооборудованием с автоматизацией. Как правило, их легко узнать без всякой таблицы с условными обозначениями. Учиться на них проще. Сложнее осуществлять работу с полупроводниками, а именно транзисторами, симисторами и микросхемами. К примеру, каждый биполярный транзистор имеет в себе три вывода, а именно, базу, коллектор и эмиттер. По этой причине необходимы условные изображения и уточняющая информация в виде латинских букв. Изучение их может занять много дней, как и обучение их опознания.

Обратите внимание! Кроме букв на каждой схеме есть цифры. Они говорят о нумерации и технических характеристиках. Стоит указать, что самостоятельно научиться читать документ невозможно, и поэтому нужны уроки и обучающие пособия.

Основные правила

В ответ на вопрос, как читать электросхемы, стоит уточнить, что это нужно делать слева направо, от начала до самого конца. В этом заключается основное правило. Следующее правило заключается в расчленении единого чертежа на небольшие картинки или простые цепи. Она состоит из источника электротока, приемника тока, прямого привода, обратного провода и одного контакта аппарата. Поэтому, начиная изучать документ, нужно разбить его на части. Далее обязательно нужно принимать во внимание все детали, с замечаниями, экспликациями, пояснениями и спецификациями. Если в чертеже находятся ссылки, то нужно изучить и их.

Обратите внимание! Чертежи, которые отражают момент работу электропитания, электрозащиты, управления и сигнализации, должны быть изучены на количество источников питания, взаимодействие, согласованность совместной работы, оценку последствий вероятных неисправностей, нарушение проводной изоляции, проверку схемы с отсутствием ложных цепей, оценку надежности электрического питания, режим работы оборудования и проверку выполнения мер, которые обеспечивают безопасное проведение работ.

Условные обозначения

Согласно нормативным документам, есть стандартные графические условные обозначения в однолинейных и двухлинейных схемах. Далее представлена таблица с подобными символами под названием электрические схемы для начинающих условные обозначения. Стоит указать, что в чертежах используются также цифры и буквы. Подобная маркировка регулируется с помощью нормативных документов, а именно гостов.

Электроника на практике

ПЭ – это раздел электроники, на практике показывающий основные закономерности электричества. Именно в практической части изучается каждый элемент цепи отдельно и применяется на деле в совокупности с другими. С этим названием вышла и книга, в которой можно найти много интересных статей по электротехнике, сформулированных на общедоступном языке.

Материал включает в себя фотографии и опыты, к которым даны полные инструкции. Прочитав его, можно спокойно разбираться во всех электронных и радиотехнических терминах, овладеть пайкой и получить навыки дл чтения простых схем.

Важно! Прошло второе переиздание книги, в котором были отредактированы небольшие ошибки и опечатки, учтены пожелания читателей. Второе издание стало стоящим и полезным учебником для начинающих радиолюбителей.

Как составлять схему

Составление электрической схемы должно производиться опытным электриком с учетом существующих гостов, поясняющих и уточняющих работу тех или иных проводников. Бывают согласно госту электрические схемы структурными, функциональными, принципиальными, монтажными, общими и объединенными. Сделать любую из приведенного перечня можно, выстраивая простейшие элементы друг с другом.

Описание работы

Если электросхема построена правильно, то и работать она будет исправно. Работает все так. От источника питания идет заряд, который попадает под клеммник в проводник и электромагнитную катушку реле. Через катушку электроток устремляется к контактам. Как только ток попадает в контакты, начинает работать вся сеть, включается диод. Благодаря электродвижущей силе поддерживается первоначальный электроток, и он достигает наибольших значений.

Обратите внимание! Стоит указать, что без электродвижущей самоиндукции поддержание тока в контуре невозможно, поскольку при большом значении амплитуды, радиоэлементы начинают плохо работать. Благодаря этому импульсу, пробиваются полупроводниковые переходы, и выводится аппарат из функционирования. Сегодня диоды уже встраиваются в реле. Это позволяет работать электросхеме правильно.

В целом, в дополнение к теме, как научиться читать электрические принципиальные схемы, стоит отметить, что читать их необходимо с опорой на обучающий материал, в котором указывается информация о том, что значат те или иные условные обозначения. Только после получения полной информации, можно приступать к работе, если производятся соответствующие действия в электропроводке.

Начало изучения радиотехники начинающими

Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку. Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму. Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать. Постепенное погружение подразумевает:

  • Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
  • Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
  • Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.

Правила чтения электрических схем и чертежей

Основными техническими документами для электромонтера и электромонтажника являются чертежи и электрические схемы. Чертеж включает размеры, форму, материал и состав электроустановки. По нему не всегда можно понять функциональную связь между элементами. В ней помогает разобраться электрическая схема, которую необходимо иметь при пользовании чертежами электроустановок.

Чтобы читать электрические схемы, необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Разбираем принцип работы простой схемы

Итак, идем дальше. С нагрузкой, работой и мощностью мы вроде как разобрались в прошлой статье. Ну а теперь, дорогие мои криворукие друзья, в этой статье мы будем читать схемы и анализировать их, используя прошлые статьи.

От балды я нарисовал схемку. Ее функция – управление 40 Ваттной лампой с помощью 5 Вольт. Давайте же рассмотрим ее подробнее.

На микроконтроллеры эта схема вряд ли подойдет, так как ножка МК не потащит ток, который жрет реле.

Ищем источники питания

Первый вопрос, которым мы должны себе задать: “Чем питается схема и откуда она берет питание? Сколько источников питания имеет? Как вы здесь видите, схема имеет два разных источника питания с напряжением +5 Вольт и +24 Вольта.

Разбираемся с каждым радиоэлементом в схеме

Вспоминаем предназначение каждого радиоэлемента, который встречается в схеме. Пытаемся понять, для чего разработчик его здесь нарисовал.

Сюда мы загоняем или цепляем либо источник питания, либо другой кусок схемы. В нашем случае, на верхний клеммничек мы загоняем +5 Вольт, а нижний, следовательно, ноль. То же самое и +24 Вольта. На верхний клеммник мы загоняем +24 Вольта, а нижний также ноль.

Заземление на корпус.

В принципе называть этот значок землей вроде как бы можно, но не желательно. В схемах так обозначается потенциал в ноль Вольт. От него отсчитываются и измеряются все напряжения в схеме.

Далее видим ключ S, который находится в разомкнутом положении.

Как он действует на электрический ток? Когда он в разомкнутом положении, то ток через него не протекает. Когда он в замкнутом положении, то электрический ток беспрепятственно начинает через него течь.

Он пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока. Для чего он нужен в схеме, объясню ниже.

Катушка электромагнитного реле.

Если на нее подать электрический ток, то она создаст магнитное поле. А раз попахивает магнитом, то к катушке устремятся разного рода железки. На железке находятся контакты ключа 1-2, и они замкнутся между собой. Более подробно про принцип работы электромагнитного реле можно почитать в этой статье.

Подаем на нее напряжение – лампочка горит. Все элементарно и просто.

В основном схемы читаются слева-направо, если, конечно, разработчик хоть немного знает правила оформления схем. Функционируют схемы тоже слева-направо. То есть слева мы загоняем какой-либо сигнал, а справа его снимаем.

Прогнозируем направление электрического тока

Пока ключ S у нас выключен, схема находится в нерабочем состоянии:

Но что случится, если мы замкнем ключ S? Вспоминаем главное правило электрического тока: ток течет от бОльшего потенциала к меньшему, или в народе, от плюса к минусу. Следовательно, после замыкания ключа, наша схема будет выглядеть уже вот так:

Через катушку побежит электрический ток, она притянет за собой контакты 1-2, которые в свою очередь замкнутся и вызовут электрический ток в цепи +24 Вольта. В результате загорится лампочка. Если вы в курсе, что такое диод, то наверняка поймете, что через него электрический ток протекать не будет, так как он пропускает только в одном направлении, а сейчас направление тока для него противоположное.

Итак, для чего нужен диод в этой схеме?

Не стоит забывать свойство индуктивности, которое гласит: при размыкании ключа в катушке образуется ЭДС самоиндукции, которое поддерживает первоначальный ток и может достигать очень больших значений. При чем здесь вообще индуктивность? В схеме значка катушки индуктивности нигде не встречается… но есть катушка реле, которая как раз и представляет из себя индуктивность. Что будет, если мы резко откинем ключик S в исходное положение? Магнитное поле катушки сразу же преобразуется в ЭДС самоиндукции, которая устремится поддержать электрический ток в цепи. И чтобы куда-то девать этот возникший электрический ток, у нас как раз в схеме стоит диод ;-). То есть при выключении картина будет такая:

Какие еще есть книги для изучения электроники

Помимо двух материалов, которые были рассмотрены в этой статье, есть также множество других. Они, возможно, более придутся по душе читателю. Среди них:

  • Борисов В. Г. «Юный радиолюбитель».
  • Ревич Ю. В. « Занимательная электроника».
  • Хоровиц П., Хилл У. «Искусство схемотехники в трех томах».

Таким образом, практическая электроника не сложна даже для начинающих. Подготовив себя теорией из книг и реализовав все примеры на практике, можно стать настоящим электронщиком.

Чтение принципиальных схем — Всё о электрике

Учимся читать электросхемы

Многие люди, только начиная свое знакомство с электрикой, задаются вопросом, как читать электрические схемы, какие существуют правила чтения, какие есть условные обозначения и как работает электрическая схема? Об этом и другом далее.

Как научиться читать электрическую схему

Любая радиоаппаратура включает в себя отдельные радиодетали, которые спаяны между собой при помощи определенного способа. Все эти элементы отражаются на электрической схеме условными графическими значениями. Чтобы научиться читать документ, необходимо понимать условное обозначение всех проводниковых элементов электроцепи. Каждая деталь имеет свое графическое обозначение и включает в себя условную конструкцию с характерными особенностями.

Проще всего работать с таким элементом как электронный конденсатор с резисторами, динамиками и другим электрооборудованием с автоматизацией. Как правило, их легко узнать без всякой таблицы с условными обозначениями. Учиться на них проще. Сложнее осуществлять работу с полупроводниками, а именно транзисторами, симисторами и микросхемами. К примеру, каждый биполярный транзистор имеет в себе три вывода, а именно, базу, коллектор и эмиттер. По этой причине необходимы условные изображения и уточняющая информация в виде латинских букв. Изучение их может занять много дней, как и обучение их опознания.

Обратите внимание! Кроме букв на каждой схеме есть цифры. Они говорят о нумерации и технических характеристиках. Стоит указать, что самостоятельно научиться читать документ невозможно, и поэтому нужны уроки и обучающие пособия.

Основные правила

В ответ на вопрос, как читать электросхемы, стоит уточнить, что это нужно делать слева направо, от начала до самого конца. В этом заключается основное правило. Следующее правило заключается в расчленении единого чертежа на небольшие картинки или простые цепи. Она состоит из источника электротока, приемника тока, прямого привода, обратного провода и одного контакта аппарата. Поэтому, начиная изучать документ, нужно разбить его на части. Далее обязательно нужно принимать во внимание все детали, с замечаниями, экспликациями, пояснениями и спецификациями. Если в чертеже находятся ссылки, то нужно изучить и их.

Обратите внимание! Чертежи, которые отражают момент работу электропитания, электрозащиты, управления и сигнализации, должны быть изучены на количество источников питания, взаимодействие, согласованность совместной работы, оценку последствий вероятных неисправностей, нарушение проводной изоляции, проверку схемы с отсутствием ложных цепей, оценку надежности электрического питания, режим работы оборудования и проверку выполнения мер, которые обеспечивают безопасное проведение работ.

Условные обозначения

Согласно нормативным документам, есть стандартные графические условные обозначения в однолинейных и двухлинейных схемах. Далее представлена таблица с подобными символами под названием электрические схемы для начинающих условные обозначения. Стоит указать, что в чертежах используются также цифры и буквы. Подобная маркировка регулируется с помощью нормативных документов, а именно гостов.

Как составлять схему

Составление электрической схемы должно производиться опытным электриком с учетом существующих гостов, поясняющих и уточняющих работу тех или иных проводников. Бывают согласно госту электрические схемы структурными, функциональными, принципиальными, монтажными, общими и объединенными. Сделать любую из приведенного перечня можно, выстраивая простейшие элементы друг с другом.

Описание работы

Если электросхема построена правильно, то и работать она будет исправно. Работает все так. От источника питания идет заряд, который попадает под клеммник в проводник и электромагнитную катушку реле. Через катушку электроток устремляется к контактам. Как только ток попадает в контакты, начинает работать вся сеть, включается диод. Благодаря электродвижущей силе поддерживается первоначальный электроток, и он достигает наибольших значений.

Обратите внимание! Стоит указать, что без электродвижущей самоиндукции поддержание тока в контуре невозможно, поскольку при большом значении амплитуды, радиоэлементы начинают плохо работать. Благодаря этому импульсу, пробиваются полупроводниковые переходы, и выводится аппарат из функционирования. Сегодня диоды уже встраиваются в реле. Это позволяет работать электросхеме правильно.

В целом, в дополнение к теме, как научиться читать электрические принципиальные схемы, стоит отметить, что читать их необходимо с опорой на обучающий материал, в котором указывается информация о том, что значат те или иные условные обозначения. Только после получения полной информации, можно приступать к работе, если производятся соответствующие действия в электропроводке.

Правила чтения электрических схем и чертежей

Основными техническими документами для электромонтера и электромонтажника являются чертежи и электрические схемы. Чертеж включает размеры, форму, материал и состав электроустановки. По нему не всегда можно понять функциональную связь между элементами. В ней помогает разобраться электрическая схема, которую необходимо иметь при пользовании чертежами электроустановок.

Чтобы читать электрические схемы, необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Расчленение схем на простые цепи

Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых – определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно “лишние” условия, и оценить их последствия.

Для решения этих вопросов пользуются несколькими приемами.

Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.

Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, например в цепях трансформаторов тока, контактов нет.

При чтении схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.

Реальность схемных решений

Наладчики хорошо знают, что не всегда могут быть осуществлены на деле схемные решения, хотя они не содержат явных ошибок. Иными словами, проектные электрические схемы не всегда реальны.

Поэтому одна из задач чтения электрических схем состоит в том, чтобы проверить, могут ли быть выполнены заданные условия.

Нереальность схемных решений обычно имеет в основном следующие причины:

не хватает энергии для срабатывания аппарата,

в схему проникает “лишняя” энергия, вызывающая непредвиденное срабатывание пли препятствующая своевременному отпусканию электрического аппарата,

не хватает времени для совершения заданных действий,

аппаратом задана уставка, которая не может быть достигнута,

совместно применены аппараты, резко отличающиеся по свойствам,

не учтены коммутационная способность, уровень изоляции аппаратов и проводки, не погашены коммутационные перенапряжения,

не учтены условия, в которых электроустановка будет эксплуатироваться,

при проектировании электроустановки за основу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, например, в результате кратковременного перерыва питания.

Порядок чтения электрических схем и чертежей

Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.

Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.

Если она не отражена па чертежах, то ее выясняют и записывают.

На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.

Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.

При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:

1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,

2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,

3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,

4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,

5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,

5) проверяют схему па отсутствие ложных цепей,

6) оценивают надежность электропитания и режим работы оборудования,

7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).

Как читать электрические схемы? Разбор простой схемы

Как читать схемы? В этой статье мы как будем разбирать простую схему и опишем досконально ее работу.

Разбираем принцип работы простой схемы

Итак, идем дальше. С нагрузкой, работой и мощностью мы вроде как разобрались в прошлой статье. Ну а теперь, дорогие мои криворукие друзья, в этой статье мы будем читать схемы и анализировать их, используя прошлые статьи.

От балды я нарисовал схемку. Ее функция – управление 40 Ваттной лампой с помощью 5 Вольт. Давайте же рассмотрим ее подробнее.

На микроконтроллеры эта схема вряд ли подойдет, так как ножка МК не потащит ток, который жрет реле.

Ищем источники питания

Первый вопрос, которым мы должны себе задать: “Чем питается схема и откуда она берет питание? Сколько источников питания имеет? Как вы здесь видите, схема имеет два разных источника питания с напряжением +5 Вольт и +24 Вольта.

Разбираемся с каждым радиоэлементом в схеме

Вспоминаем предназначение каждого радиоэлемента, который встречается в схеме. Пытаемся понять, для чего разработчик его здесь нарисовал.

Сюда мы загоняем или цепляем либо источник питания, либо другой кусок схемы. В нашем случае, на верхний клеммничек мы загоняем +5 Вольт, а нижний, следовательно, ноль. То же самое и +24 Вольта. На верхний клеммник мы загоняем +24 Вольта, а нижний также ноль.

Заземление на корпус.

В принципе называть этот значок землей вроде как бы можно, но не желательно. В схемах так обозначается потенциал в ноль Вольт. От него отсчитываются и измеряются все напряжения в схеме.

Далее видим ключ S, который находится в разомкнутом положении.

Как он действует на электрический ток? Когда он в разомкнутом положении, то ток через него не протекает. Когда он в замкнутом положении, то электрический ток беспрепятственно начинает через него течь.

Он пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока. Для чего он нужен в схеме, объясню ниже.

Катушка электромагнитного реле.

Если на нее подать электрический ток, то она создаст магнитное поле. А раз попахивает магнитом, то к катушке устремятся разного рода железки. На железке находятся контакты ключа 1-2, и они замкнутся между собой. Более подробно про принцип работы электромагнитного реле можно почитать в этой статье.

Подаем на нее напряжение – лампочка горит. Все элементарно и просто.

В основном схемы читаются слева-направо, если, конечно, разработчик хоть немного знает правила оформления схем. Функционируют схемы тоже слева-направо. То есть слева мы загоняем какой-либо сигнал, а справа его снимаем.

Прогнозируем направление электрического тока

Пока ключ S у нас выключен, схема находится в нерабочем состоянии:

Но что случится, если мы замкнем ключ S? Вспоминаем главное правило электрического тока: ток течет от бОльшего потенциала к меньшему, или в народе, от плюса к минусу. Следовательно, после замыкания ключа, наша схема будет выглядеть уже вот так:

Через катушку побежит электрический ток, она притянет за собой контакты 1-2, которые в свою очередь замкнутся и вызовут электрический ток в цепи +24 Вольта. В результате загорится лампочка. Если вы в курсе, что такое диод, то наверняка поймете, что через него электрический ток протекать не будет, так как он пропускает только в одном направлении, а сейчас направление тока для него противоположное.

Итак, для чего нужен диод в этой схеме?

Не стоит забывать свойство индуктивности, которое гласит: при размыкании ключа в катушке образуется ЭДС самоиндукции, которое поддерживает первоначальный ток и может достигать очень больших значений. При чем здесь вообще индуктивность? В схеме значка катушки индуктивности нигде не встречается… но есть катушка реле, которая как раз и представляет из себя индуктивность. Что будет, если мы резко откинем ключик S в исходное положение? Магнитное поле катушки сразу же преобразуется в ЭДС самоиндукции, которая устремится поддержать электрический ток в цепи. И чтобы куда-то девать этот возникший электрический ток, у нас как раз в схеме стоит диод ;-). То есть при выключении картина будет такая:

Получается замкнутый контур катушка реле —-> диод, в котором происходит затухание ЭДС самоиндукции и преобразование ее в тепло на диоде.

А теперь давайте предположим, что у нас в схеме нет диода. При размыкании ключа картина была бы такой:

Между контактами ключа проскочила бы маленькая искра (выделил синим кружочком), так как ЭДС самоиндукции всеми силами пытается поддержать ток в контуре. Эта искорка негативно сказывается на контактах ключа, так как на них остается нагар, который со временем их изнашивает. Но еще не это самое страшное. Так как ЭДС самоиндукции бывает очень большой по амплитуде, то это также негативно сказывается на радиоэлементах, которые могут идти ДО катушки реле.

Этот импульс может с легкостью пробить P-N переходы полупроводников и навредить им вплоть до полного отказа функционирования. В настоящее время диоды уже встроены в самом реле, но еще не во всех экземплярах. Так что не забывайте звонить катушку реле на предмет встроенного диода.

Думаю, теперь всем понятно, как должна работать схема. В этой схеме мы рассмотрели, как ведет себя напряжение. Но электрической ток – это ведь не только напряжение. Если вы не забыли, электрический ток характеризуется такими параметрами, как направленность, напряжение и сила тока. Также не забываем про такие понятия, как мощность, выделяемая на нагрузке, и сопротивление нагрузки. Да-да, это все надо учитывать.

Вычисляем силу тока и мощность

При рассмотрении схем, нам не надо с точностью до копейки вычислять силу тока, мощность и тд. Достаточно приблизительно понять, какая примерно сила тока будет в этой цепи, какая мощность будет выделяться на этом радиоэлементе и тд.

Итак, давайте пробежимся по силе тока в каждой ветви схемы уже при включении ключа S.

Первым делом рассмотрим диод. Так как на катод диода в данном случае идет плюс, следовательно, он будет заперт. То есть в данный момент через него сила тока будет какие-то микроамперы. Можно сказать, почти ничего. То есть он никак не влияет на включенную схему. Но как я уже писал выше, он нужен для того, чтобы гасить скачок ЭДС самоиндукции при выключении схемы.

Катушка реле. Уже интереснее. Катушка реле – это соленоид. Что такое соленоид? Это провод, намотанный на цилиндрический каркас. А у нас провод обладает каким-то сопротивлением, следовательно, можно сказать в данном случае катушка реле – это резистор. Следовательно, сила тока в цепи катушки будет зависеть от того, какой толщиной провода она намотана и из чего сделан провод. Для того, чтобы не мерять каждый раз, есть табличка, которую я спер у своего кореша-конкурента со статьи электромагнитное реле:

Так как катушка реле у нас на 5 Вольт, то получается, что ток через катушку будет около 72 миллиампер, а потребляемая мощность составит 360 милливатт. О чем вообще говорят нам эти цифры? Да о том, что источник питания на 5 Вольт должен как минимум выдавать в нагрузку более 360 милливатт. Ну вот и разобрались с катушкой реле, и заодно с источником питания на 5 Вольт.

Далее, контакты реле 1-2. Какая сила тока будет проходить через них? Лампа у нас 40 Ватт. Следовательно: P=IU, I=P/U=40/24=1,67 Ампер. В принципе нормальная сила тока. Если бы получили какую-либо аномальную силу тока, например, более 100 Ампер, то стоило бы насторожиться. Также не забываем и про питание 24 Вольта, чтобы этот источник питания мог не напрягаясь выдать мощность более, чем 40 Ватт.

Резюме

Схемы читаются слева-направо (бывают редкие исключения).

Определяем, где у схемы питание.

Вспоминаем значение каждого радиоэлемента.

Смотрим направление электрического тока в схеме.

Смотрим, что должно произойти в схеме, если на нее подано питание.

Вычисляем приблизительно силу тока в цепях и мощность, выделяемую на радиоэлементах, для того, чтобы удостовериться, что схема реально будет работать и в ней нет аномальных параметров.

При большом желании можно прогнать схему через симулятор, например через современный Every Circuit, и глянуть различные интересующие нас параметры.

{SOURCE}

Как читать схемы проводов — Запчасти Для Бытовых Приборов

Это не мусор, это ваша электрическая схема!

Поначалу электрические схемы могут показаться пугающими, но при базовом понимании используемых символов и языка они становятся столь же ценными и простыми в использовании, как и любой другой инструмент в вашем наборе инструментов. Электрические схемы — важная часть точного поиска неисправностей и ремонта прибора!

Элементы схемы | Последовательная цепь | Параллельная цепь | Символы | Электрические компоненты | Цвета проводов

Элементы схемы

1.

Источник питания

Схема должна иметь источник питания, такой как электричество, подаваемое от настенной розетки, батареи или генератора.



2. Дирижеры.

Проводники обычно представляют собой медную или алюминиевую проволоку, а в некоторых случаях это может быть даже каркас, на котором устанавливаются компоненты.

3. загрузка

Нагрузка — это компоненты, которые выполняют всю работу, такие как двигатель стиральной машины, нагревательный элемент или лампочка.

4. Контроль

Органы управления — это устройства, контролирующие подачу электроэнергии к нагрузкам. Орган управления обычно представляет собой своего рода выключатель, которым управляет пользователь прибора или управляет сам прибор.

Типы цепей

Последовательная цепь

В Текущий который течет в последовательной цепи, будет проходить через каждый компонент в цепи. Если какой-либо компонент в цепи «разомкнут» или «перегорел», ток не сможет протекать через эту цепь.

Параллельная цепь

В параллельной схеме два или более компонента соединены параллельно; у них одинаковое потенциальное напряжение на концах и одинаковая полярность. Одно и то же напряжение применяется ко всем компонентам схемы, включенным параллельно. В параллельной цепи мощность может течь по «разомкнутому» контакту и продолжать подавать питание на другие компоненты в цепи (изображение справа).

Схемы подключения похожи на дорожные карты, показывающие направление тока. Как и в случае с дорожной картой, вам нужно будет знать несколько основных символов, чтобы понять, куда вы собираетесь.
Ниже представлена ​​электрическая схема / схема стиральной машины с прямым приводом. Щелкните выделенные основные компоненты, чтобы получить более полное описание того, что они собой представляют и как работают.

Контакт:

Провода подключены, и через это соединение может проходить электричество.

Нет связи:

Во многих случаях электрические схемы устройства могут быть сложными. Этот символ означает, что провода не подключены и электричество не может течь напрямую.
через этот момент

Заземление или заземление:

Эта связь очень важна. Обычно это делается с помощью оголенного провода, присоединенного к шкафу устройства, который, в свою очередь, подключается к земле на служебной панели вашего дома через «заземленную» вилку. Это соединение служит для защиты от поражения электрическим током в случае короткого замыкания.

Электрические компоненты :

Все электрические цепи должны иметь нагрузку. Нагрузки имеют разные формы и назначения. В электрической сушилке или плите используется резистор называется нагревательный элемент для создания тепла. А катушка используется для автоматического открытия и закрытия клапанов с помощью магнитного поля. Холодильник
использует вентилятор моторы циркулировать воздух.

Список описаний компонентов и условных обозначений на диаграммах можно найти на странице « электрические компоненты ‘ страница.

Цвета проводов

На схемах проводов используются цветовые коды проводов для определения цвета проводов, используемых для подключения различных электрические компоненты в пределах схема . Некоторые цвета проводов зависят от использования проводов, например черный, белый, красный и зеленый, в то время как другие используются для подключения компонентов и изменения функции от одной цепи к другой. Большинство схем проводов имеют легенду или ключ, как и дорожная карта, объясняющая цветовые коды проводов или любую другую специальную информацию, необходимую для чтения схемы. Ниже приведен список цветовых кодов, обычно используемых в схемах проводов для обозначения цвета проводов и их назначения.

Цвет провода Функция провода
WH = белый Нейтральный провод, несущий ток на нуле Напряжение
BK = черный Токопроводящий ток при полном напряжении
RD = красный Токопроводящий ток при полном напряжении
WH / BL = белый с черными отметинами Токопроводящий ток при полном напряжении
GR = зеленый Путь заземления
G-Y = зеленый с желтыми отметками Путь заземления
Голая медь Путь заземления
YL = желтый Многофункциональный
BU = синий Многофункциональный
GR = серый Многофункциональный
YL / BR = желтый с коричневыми отметинами Многофункциональный
другие (используйте схему) Многофункциональный

Хочу больше?


КАК ЧИТАТЬ:
• СИМВОЛЫ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ
• КОДЫ ТЕРМИНАЛА
• ЭЛЕКТРИЧЕСКИЕ СХЕМЫ


КАК ЧИТАТЬ:
• ТАЙМЕРНЫЕ ДИАГРАММЫ
• ЭЛЕКТРИЧЕСКИЕ СХЕМЫ

Как читать электрические схемы?

Вы когда-нибудь спрашивали себя, как инженеры по автоматизации могли пройти через электрические панели?

Есть много проводов, идущих вверх и вниз, как они могут знать каждый путь для каждого провода, не прилагая никаких усилий.

Содержание

  • Назначение электрических схем
  • Как читать электрические схемы?
    • Легенда Страница
    • Направление чертежа
    • Пунктирная линия
    • Соединение электропроводки
    • Распределительные клеммы
    • Расчет размеров кабелей и данные электропроводки
  • Лучшие программы для рисования электропроводки

Сегодня мы обсудим очень важную тему. ознакомьтесь с различными электрическими схемами, и это поможет вам не зацикливаться на какой-либо электрической панели.

Рисунок 1

Назначение схем электрических соединений

Прежде всего, вы должны спросить себя: «Почему я должен это делать?» и ответ остается за количество автоматизации, которое у вас есть.

На большинстве заводов вам нужно управлять не одним или двумя двигателями, а множеством двигателей, датчиков и цепей управления, которые нужно искать.

Таким образом, невозможно иметь все эти провода только в уме, нам нужны некоторые Глобальные стандарты для рисования этих типов электрических панелей в хорошем виде, который позволяет любому человеку просто понять это.

Это именно то, что может сделать электросхема, это не зависит от вашего языка или вашего региона, это (своего рода) унифицированный метод описания и представления электропроводки любой панели.

Примечание

Между некоторыми электрическими схемами есть небольшие различия, которые зависят от некоторых факторов, таких как устройства, компания, программное обеспечение, а также регион, но в целом, если вы можете понять электрические схемы, вы сможете иметь дело с любым стандартом.

Просто сначала нужно немного времени, чтобы ознакомиться с любой схемой подключения.

Как читать электрические схемы?

Ниже мы обсудили, как читать базовую электрическую схему.

Страница легенды

Первое, о чем вам следует позаботиться, это страница «Легенда», эта страница прилагается к каждой электрической схеме и описывает каждый символ во всей проводке, как мы видим на рис. (2). Рисунок 2

Как мы уже говорили ранее, вы можете найти некоторые различия между создателями схем подключения, поэтому эта страница создана специально для каждого подключения, чтобы облегчить понимание и выполнение подключения.

Направление чертежа

Обычное направление рисования схемы соединений: ВВЕРХ к ВНИЗ и от ВЛЕВО к ВПРАВО.

Обратите внимание, что вы можете увидеть, что некоторые схемы соединений нарисованы с другими направлениями, но общие направления остаются такими же, как мы говорили ранее.

Как видно на следующем рисунке, сплошные линии обозначают провода между устройствами в панели управления.

Пунктирная линия на рис. (4) (и на всех схемах) означает, что эта часть чертежа находится вне панели, что означает, что эта часть (двигатель) находится не в панели, а в поле.

Рисунок 4

То же самое для кнопок Старт-Стоп, показанных на Рис. (5). .

Итак, вы можете найти несколько общих проводов во всех документах по проводке.

Эти провода соединены вместе в документах по электропроводке по номерам, которые относятся к расположению входа и выхода проводки.

Как вы можете видеть на рис. (6), документы по разводке разделены на 10 секций, каждая секция имеет свой номер от 0 до 9. проводов, как мы видим на Рис.0003

Итак, если мы перейдем к странице № 55, раздел 8, как показано на рис. (8), мы обнаружим, что V3 происходит со страницы № 55, раздел 2, «где находится провод на рис. (7)». и он продолжает свой путь к странице № 55 секции 8, как мы видим на рис. (9). .

Каждая группа этих клемм помечена (X1, X2, X3, ……), и каждый блок клемм может иметь от 10 до 70 клемм. Рисунок 10

Как мы видим на рисунке (10), кнопки пуска-останова, которые в полевых условиях связаны с панелью управления через клеммную колодку X2 на клемме № (52, 53, 54).

Размеры кабелей и данные по проводке

На некоторых электрических схемах (не на всех) вы также можете увидеть размеры силовых кабелей, как показано на рисунке (11) размер кабеля, подключенного к двигателю 6 мм 2 .Рисунок 11

Лучшие программы для рисования электропроводки

Если вы заинтересованы в разработке схем электрических соединений, вот несколько программ для рисования, которые могут вам помочь:

  • AutoCAD Electrical
  • ETAP
  • Smart Draw
  • EPLAN Electric

Если вам понравилась эта статья, подпишитесь на нее. на наш канал YouTube для видеоуроков по ПЛК и SCADA.

Вы также можете подписаться на нас в Facebook и Twitter, чтобы получать ежедневные обновления.

Читать дальше:

  • Advanced Process Control
  • Контроллер коэффициента мощности (PFC)
  • Система управления зданием
  • Устранение неполадок оборудования ПЛК
  • Условные обозначения контрольно-измерительных приборов

Будьте первым, кто получит эксклюзивный контент прямо на вашу электронную почту.

Обещаем не спамить. Вы можете отписаться в любое время.

Недействительный адрес электронной почты

Как читать схему подключения HVAC

Гэри МакКриди — специалист по HVAC, создатель hvacknowitall.com и подкаста HVAC Know It All


Как читать монтажную схему ОВКВ

Когда я начинал торговлю ОВКВ, электрические схемы ОВКВ казались мне другим языком, потому что так оно и было. Мало того, что они были другой формой связи, но у каждого производителя оборудования HVAC был свой способ их использования. Иногда это сбивало с толку, поскольку исполнение каждого производителя было похоже на другой диалект или акцент одного и того же языка.

Я надеюсь, что эта аналогия пришлась вам по душе, потому что именно так я себя чувствовал, и если вы сейчас изучаете электрические схемы, я был там и чувствовал ваше разочарование.

Если мы разберем это на самом базовом уровне, электрические схемы состоят из изображений, которые рассказывают историю; эта история включает в себя такие вещи, как порядок работы, относящийся к потоку энергии, изображения таких частей, как вентиляторы, реле и компрессоры, источник питания и все соединительные части и проводка для их завершения. Они также содержат легенды, позволяющие легко идентифицировать детали на чертеже.

Если вы понимаете электрические схемы ОВКВ и хорошо их понимаете, вы сможете вывести поиск и устранение неисправностей на новый уровень.

 

Это мой первый выпуск подкаста, и он был посвящен электронике; простите меня, поскольку я изучал веревки подкаста.

 

Основные части

Обратим внимание на основные части базовой электрической схемы.

  • Блок питания
  • Переключатели
  • Нагрузки  

 

Источник питания

Источник питания — это источник питания, питающий цепь; нагрузки в цепи рассчитаны на определенное напряжение, силу тока и т. д. Информация будет указана на паспортной табличке нагрузки. Например, если нагрузка рассчитана на 208 В переменного тока, то источник питания, обслуживающий эту нагрузку, должен соответствовать этим ограничениям или находиться в их пределах.

Если номинал источника ниже или выше указанного на паспортной табличке, нагрузка не будет работать должным образом или это может привести к повреждению или выходу из строя самой нагрузки. Подсказка: нагрузка похожа на двигатель или компрессор, но мы коснемся этого позже. Источником питания могут быть батареи, трансформатор или главная электрическая панель в доме или здании.

 

Переключатели

Переключатели — это простые устройства, которые открываются и закрываются в результате действия, которое может быть таким же простым, как ручное открытие или закрытие переключателя, или может быть немного сложнее, например переключение в автоматизированном процессе. Переключатели можно использовать для разрыва электрической цепи или подачи питания через них. Переключатели также рассчитаны на максимальное напряжение питания, которое не должно превышаться при подаче питания.

 Открытый переключатель — это переключатель, который не позволяет энергии течь с одной стороны на другую, закрытый переключатель позволяет той же самой энергии течь через него. Вы можете услышать термин «контакты», когда опытные профессионалы обсуждают переключатели. Это просто означает, что части переключателя вступают в контакт или размыкают контакт, замыкая или размыкая цепь.

 

Примеры переключателей 
  • Реле высокого/низкого давления
  • Контакты реле/контактора
  • Реле потока
  • Реле давления

Примером изменения положения переключателя в автоматизированном процессе может быть следующее: если насос котла должен запуститься и создать поток через систему, встроенный переключатель потока распознает это и изменит положение переключателя с открытого на закрытое из-за расхода воды. проходящий мимо.

 

Нагрузки

Нагрузки обычно располагаются в конце контура; после того, как питание подается от источника питания через встроенный переключатель или переключатели, нагрузка или нагрузки включаются и начинают работать. Нагрузками являются такие вещи, как двигатели, компрессоры, контакторы или катушки реле и лампочки. Нагрузки выполняют работу и потребляют силу тока.

 

Эта базовая схема подключения включает все три основные части: источник питания, выключатель и нагрузку.

 

Обучение чтению электрических схем

Нам необходимо понимать электрические схемы, основные компоненты и их различия. Я помню, как подмастерьем снимал панели с систем ОВКВ, кондиционеров или системы теплового насоса, клал палец на источник питания и следил за диаграммой, пока не наткнулся на компонент, обычно выключатель или нагрузку.

Затем я просматривал легенду диаграммы, чтобы объяснить, на чем остановился мой палец. Затем я следовал схеме до конца. Я иногда звонил в службу технической поддержки, если у меня были проблемы с пониманием функциональности компонента, прежде чем двигаться дальше. Повторение этой схемы процесса за схемой определенно было моим ключом к успеху в понимании электрических чертежей и интерпретации их значения.

 

Посмотрите это обучающее видео о том, как читать электрические схемы и принципиальные схемы, и подпишитесь на канал.

Gary McCreadie

Подпишитесь на HVAC. Сэкономьте 8 % на покупках в TruTech Tools с кодом knowitall (за исключением продуктов Fluke и Flir)

Сэкономьте 8 % на eMotors Direct с кодом HVACKNOWITALL

 

Электрические схемы — как их читать?

Электрические схемы — как их читать?

2022-03-29

Почему сложно выучить электронику?

Многие считают электронику очень сложной проблемой. Однако важно не забывать, что при изучении любого предмета мы сталкиваемся со всевозможными трудностями, и каждому инженеру-электронщику приходилось в какой-то момент преодолевать их, прежде чем создавать полнофункциональные схемы. Многие причины усложняют задачу начинающим электронщикам, но перечислим некоторые из них:

  • Электрические цепи состоят из компонентов с различными функциями, роль, которую они играют, зависит от значения других компонентов и их расположения по отношению друг к другу.
    • Дизайнер записывает свою идею в виде диаграммы. Для этого он использует ряд электронных символов. Чтобы использовать электрические схемы , нам необходимо их распознать и понять.
    • Электроника занимается обработкой электричества, чего нельзя увидеть. Ток и напряжение должны быть обнаружены и измерены. Для этого требуется не только правильное оборудование, но и навыки его использования.
    • При просмотре собранной электрической схемы , когда мы хотим найти отдельные электронные компоненты , у нас часто возникает проблема, поскольку они могут быть похожи друг на друга, выполняя совершенно разные функции в общей системе. . Прогрессивная миниатюризация усугубляет эту проблему.

Схемы электрические и их виды.

Чтобы понять, что такое электрическая схема, можно воспользоваться аналогией с географическими картами. Электрический ток — это поток электронов, который во многих случаях ведет себя подобно воде, потому что это поток молекул. Схема электронной схемы напоминает карту, на которой отмечены электрические соединения. Умение пользоваться картой заключается в нахождении характерных точек на поле и размещении карты таким образом, чтобы расположение символов на карте отражало расположение объектов в поле. Действуем аналогично электрической схеме . На первом этапе нужно найти характеристику электронных компонентов в схеме, затем их нужно найти в устройстве. Иногда схемы разбиты на несколько листов, чтобы можно было без проблем переходить с одного листа на другой . Один и тот же сигнал одинаково называется на схемах смежных систем. Существует три типа электрических схем. Блок-схема — функциональные блоки в виде черных ящиков. Таким образом дизайнер записывает модули диаграммы. Схематическая диаграмма — использует символы для представления компонентов и соединений между ними. Схема подключения — это эскиз печатной платы с установленными на ней компонентами. Это очень удобно при сборке системы или поиске в ней определенных элементов.

Почему существует три типа электрических схем?

Одно и то же устройство можно сделать несколькими способами. Блоки питания бывают линейные и импульсные. Его схема стабилизации напряжения может быть реализована с использованием транзисторов , стабилитрона или интегральной схемы. Каждая реализация имеет преимущества и недостатки. На блок-схеме проектировщик рисует, какие функции должна выполнять схема, и делит большую задачу на более мелкие, которые легче выполнить. Дизайнер описывает блоки и иногда сигналы, посылаемые между ними. Зная, какая схема вам нужна, и сигналы на входах и выходах, можно построить принципиальную схему. Позже конструктор собирает схему; исходя из этого нарисована электрическая схема (схема соединений), представляющая собой графическое представление электрической цепи. Блок-схема также используется, чтобы выяснить, как работает устройство и работает ли оно неправильно; путем проведения анализа поиск можно сузить до определенного блока.

Как определить роль электронного компонента? Схемные обозначения

Конструктор обычно не изобретает всю схему с нуля, а использует известные конфигурации. Вместо этого разработчику необходимо знать свойства подключенных компонентов; таким образом, можно выбрать типы и значения компонентов, чтобы они выполняли определенные задачи. Установщику или наладчику не приходится гадать, какова функция схемы, ведь схема обычно сопровождается описанием использованных решений, а элементов 9.0043 обозначен символами . Таким образом, достаточно выделить на схеме группу компонентов с одинаковым описанием. Однако обычно приходится находить несколько элементов, потому что может быть более одного элемента одного типа или значения как в схеме, так и на схеме. Удивительно, но чем больше элементов в группе, тем меньше вероятность неправильного размещения. Затем, следуя путям в схеме и линиям на схеме, можно идентифицировать остальные компоненты. Однако при работе на схеме нужно помнить, что появление 9Символы 0043, используемые в электрических схемах в Польше, определяются в соответствии с польскими стандартами. Один и тот же элемент может иметь несколько иное обозначение на схеме производства США. В Интернете доступна поисковая система стандартов, действующих в Польше – вы можете узнать, какие стандарты действуют в настоящее время. Электрические схемы можно рисовать вручную или с помощью компьютера. Программное обеспечение для автоматизированного проектирования (CAD — Computer-Aided Design) позволяет вносить исправления в существующие схемы без необходимости их перерисовки. Более мощные программы имеют множество дополнительных опций, в том числе возможность моделирования работы схемы, помощи в проектировании печатных плат или автоматического проведения инвентаризации компонентов.

Простые электрические схемы для начинающих — как научиться их рисовать? Как их читать?

Существуют две доминирующие школы обучения чтению и рисованию схем. Одна теория состоит в том, что лучше сначала научиться читать диаграммы , а затем рисовать их, а другая состоит в том, что лучше делать и то, и другое одновременно. Оба метода обучения имеют свои преимущества. Однако начинать необходимо с изучения символов основных компонентов. В Интернете есть много сайтов, где они подробно описаны. Как только мы познакомимся с электронными компонентами, их символами и их основными функциями, мы сможем проанализировать как можно больше диаграмм. Затем вы можете продолжить рисовать свои собственные простые электрические схемы для начинающих . Рисование, чтение и, наконец, создание диаграмм — все эти навыки быстро осваиваются. Схемы включают в себя механические компоненты, такие как переключатели и реле. Они не являются сердцем схемы, но они проводят входные и выходные сигналы и обеспечивают питание схем, поэтому они необходимы для работы всей схемы. На схеме показано символа , представляющих активные компоненты, такие как транзисторы, операционные усилители, диоды и переключатели. Активные устройства — это электронные компоненты, которым для выполнения предназначенной функции требуется напряжение или ток. Активным устройствам обычно требуется источник питания с определенным напряжением, током и полярностью для правильной работы. Наконец, каждая электронная схема также включает в себя пассивные компоненты , такие как резисторы, конденсаторы, катушки и трансформаторы. Эти компоненты не зависят от внешнего источника энергии, напряжения или полярности. Как правило, они обладают электрическими свойствами, которые зависят от их физических характеристик, таких как материал, из которого они сделаны, их размеры и структура. Всем электронным схемам для работы требуется питание, поэтому на схеме должен быть указан источник питания. Схемы, схемы которых на первый взгляд кажутся громоздкими, состоят из множества блоков, соединенных в правильном логическом порядке. Каждый блок представляет собой простую схему. Такую сложную схему необходимо разделить на более мелкие части и поэтапно анализировать. Когда учишься читать электрические схемы , самый важный и трудный шаг — начать работу. Со временем, по мере приобретения практики, задача будет становиться все легче и легче, и мы сможем заниматься все более и более масштабными проектами.

Вас интересует электроника? Посетите Tech Master Event

Если вы делаете свои первые шаги в мире электроники и создаете свои первые схемы, Tech Master Event — это услуга, которую вы искали. Вы можете размещать собственные проекты и искать вдохновение в работах других пользователей платформы.

Tech Master Event также является местом проведения множества соревнований для молодых инженеров-электронщиков со всего мира.

 

[Посетить мероприятие Tech Master](https://techmasterevent.com «» target=»_blank» «» target=»_blank»){.cs-btn-primary}

Поделитесь этой статьей

Развитие навыков: чтение принципиальных схем

Технологии

4

Схемы электрических цепей, также известные как схемы, представляют собой линейные чертежи, которые показывают, как компоненты схемы соединены друг с другом. Они служат картой или планом для сборки электронных проектов, и их легко читать — гораздо проще, чем понять, как на самом деле работают описываемые ими схемы. Это важный момент: Вы можете читать и успешно строить по принципиальной схеме, не разбираясь в схеме. *

Схемы бесчисленного множества легко собираемых электронных устройств также легко доступны. Ты слышал это? Это звук свободы.

Принципиальные схемы состоят из двух частей: символов, которые представляют компоненты в схеме, и линий, которые представляют соединения между ними. Вот и все. Начнем с соединений, так как это проще.

Соединения

Принципиальные схемы изображают идеальный мир, в котором провода и другие проводники не мешают друг другу и не имеют собственного сопротивления. Если линия проходит между компонентами, это означает, что они соединены, и точка, и больше ничего вам не говорит. Соединение может быть проводом, медным проводом, штепсельным соединением, металлическим шасси или чем-то еще, через что электричество будет проходить без особого сопротивления. Беспорядочные детали, такие как спецификации и прокладка проводов или кабелей, если они важны для проекта, должны быть в другом месте в его документации. Длина линии также не имеет ничего общего с реальным расстоянием соединения в реальной жизни. Схемы нарисованы (в идеале) ясными и простыми, с расположением компонентов и соединений на странице, чтобы свести к минимуму беспорядок, а не представлять, как они могут быть размещены на печатной плате.

Линии обозначают соединения, но пересечение двух линий не обязательно означает 4-стороннее совместное соединение. Схемы различают несвязанные пути, которые нарисованы линиями, пересекающими друг друга, и соединения, где пересечения линий обозначают общее соединение. Самый распространенный способ сделать это различие состоит в том, чтобы поставить точки над пересечениями линий, которые обозначают соединения, что означает, что все пересечения линий без точек не соединены. Другой метод состоит в том, чтобы предположить, что прямые пересекающиеся линии действительно соединяются, но рисуют небольшие «скачки» на пересечениях проводов, где нет соединения.

Как следствие, трехстороннее пересечение всегда означает трехстороннее соединение, даже без точки. Некоторые люди следуют правилу рисования точек с 3-сторонними соединениями, а другие не видят необходимости, потому что нет причин рисовать соединение в никуда.
В дополнение к линиям, используемым для обозначения соединений между компонентами, на схемах используются специальные символы для обозначения соединений с различными типами питания и заземления . Символ питания или заземления может появляться на схеме в нескольких местах, но это всегда означает подключение к одному и тому же месту или проводящему объекту. Силовые соединения также часто изображаются без каких-либо символов, а только с меткой, указывающей тип напряжения, например. V+, 5 В, 5 В постоянного тока, 12 В, 120 В переменного тока, плюс (+) подразумевается для напряжения постоянного тока без знака.

Компоненты

Каждый компонент схемы представлен символом , указывающим общий тип компонента , и меткой , которая указывает (или непосредственно перечисляет) его конкретные характеристики. В статье Википедии «Электронный символ» показаны некоторые из наиболее распространенных символов, и «Что такое электрический?! имеет более полную коллекцию с возможностью поиска.

Официальные схемы обозначают каждый компонент обозначением деталей , которое представляет собой код, состоящий из одной или двух букв, идентифицирующих тип компонента (например, R для резистора, C для конденсатора), за которым следует уникальный номер этого типа в цепь (например, резисторы R1, R2 и т. д.). Список деталей, прилагаемый к схеме, связывает обозначение каждой детали с техническими характеристиками компонента (например, R1: 120 кОм, 1/4 Вт).

(Схема из «The Biggest Little Chip» Чарльза Платта, MAKE, том 10, стр. 65)

В менее формальных схемах люди обходятся без обозначений деталей и перечисляют и просто маркируют символ детали на самом чертеже. с любыми необходимыми характеристиками.

(Схема для «DSLR Time-Lapse Trigger» Chris Thompson, MAKE vol. 15, p. 156) означает 220k™), а в значениях конденсатора используется буква «u» вместо нижнего регистра Mu (µ) для обозначения микро (10 мкФ означает 10 мкФ / 10 микрофарад).

(Если вы не совсем понимаете, что такое омы и микрофарады, не беспокойтесь – вы все равно можете строить рабочие цепи по схеме. Но пока полезно изучить гидравлическую аналогию и помнить, что электричество намного, намного быстрее, чем вода.)

Каждый символ компонента имеет некоторое количество точек соединения , к которым можно провести линии. Соответствуют проводам (или другим клеммам) физического компонента. Для резисторов, керамических конденсаторов и некоторых других простых компонентов не имеет значения, как подключать выводы. Но у большинства компонентов выводы имеют заданную ориентацию или выполняют разные функции.

Каждый компонент имеет спецификацию , опубликованную его производителем, в которой связывает физические клеммы компонента с их функциями, как указано точками соединения на схематическом символе .

Интегральные схемы (ИС), также известные как микросхемы, содержат электронные компоненты в виде небольших однородных блоков с некоторым количеством соединительных клемм, расположенных по бокам, либо металлическими ножками, либо (с некоторыми компонентами для поверхностного монтажа) металлическими контактами внизу. На принципиальных схемах микросхемы представлены в виде прямоугольников с выходящими линиями, обозначающими ножки микросхемы. На некоторых рисунках символ прямоугольника повторяет физическую компоновку корпуса, при этом ножки пронумерованы против часовой стрелки от контакта 1, слева от выемки вверху. Но чтобы уменьшить пересечения линий и общий спагетти-фактор, некоторые схемы меняют местами ножки микросхем и размещают их со всех сторон прямоугольника, помечая их номером контакта .

Микросхемы физически являются отдельными компонентами, но функционально некоторые микросхемы содержат несколько независимых компонентов, размещенных в одном корпусе. В таких случаях микросхема может быть изображена либо физически, либо функционально, с использованием отдельных символов для функциональных компонентов, содержащихся в микросхеме, помеченных так, чтобы было ясно, что они находятся на одной и той же микросхеме. например 4093, который содержит четыре независимых логических вентиля И-НЕ, можно нарисовать и пометить следующим образом:

(Схема из Nandhopper 1-Bit Noise Synth on Instructables, by Kyle McDonald)

Обратите внимание, что на функциональном чертеже отсутствуют питание и земля. соединения с чипом. Если на принципиальной схеме микросхема представлена ​​с использованием ее функциональных компонентов , вам необходимо не забыть подключить ее питание и заземление , даже если на схеме они не показаны. Здесь, опять же, таблица данных — ваш лучший друг, и, как правило, ИС требуют даже большего изучения спецификаций, чем дискретные компоненты, чтобы убедиться, что все эти одинаково выглядящие ноги подключены правильно.

Вот и все!

Схемы — это просто карты, показывающие, как соединять отдельные компоненты. Самый простой способ превратить большинство схем в рабочую схему — использовать компоненты со стандартным шагом контактов 0,1 дюйма и соединить их вместе на макетной плате без пайки с помощью перемычек. Затем вы можете проверить соединения и иным образом отладить и ознакомиться со схемой с помощью мультиметра, прежде чем рассматривать возможность ее пайки.

Обзор основных моментов:

Вы можете читать принципиальную схему и успешно строить ее, не понимая схемы.

  • Принципиальные схемы состоят из двух элементов: символов, обозначающих компоненты, и линий, обозначающих соединения.
  • Если линия проходит между компонентами, это означает, что они соединены, точка, и больше ничего вам не говорит.
  • Схемы различают несвязанные пути, которые нарисованы линиями, пересекающими друг друга, и соединения, где пересечения линий обозначают общее соединение.
  • На схемах используются специальные символы для обозначения различных типов питания и заземления.
  • Каждый компонент схемы представлен символом и меткой.
  • Каждый символ компонента имеет определенное количество точек соединения. Они соответствуют выводам (или другим клеммам) физического компонента.
  • Техническое описание компонента связывает его физические клеммы с их функциями, как указано их символом.
  • На некоторых схемах ножки микросхем меняются местами и размещаются со всех сторон прямоугольника, помечая их номером контакта.
  • Чип может быть изображен как физически, так и функционально, с использованием отдельных символов для функциональных компонентов, содержащихся в чипе.
  • Если схема представляет микросхему с использованием ее функциональных компонентов, не забудьте подключить ее питание и заземление.

*Конечно, понимание схемы помогает, если вы хотите изменить ее или если на схеме есть ошибки, что не является чем-то необычным. Отредактированные источники, такие как MAKE, повышают ценность, создавая проекты перед их публикацией, обеспечивая правильность схем и другой документации.

Как читать электрические схемы автомобилей

У электрических схем и дорожных карт много общего. Дорожные карты иллюстрируют, как добраться из пункта «А» в пункт «Б». Однако вместо того, чтобы соединять межштатные автомагистрали, автомагистрали и дороги, электрическая схема показывает основные электрические системы, подсистемы и отдельные цепи, все взаимосвязано.

Еще одна общая черта — это уровни детализации. Например, если вы посмотрите на карту дорог Калифорнии, вы не сможете найти адрес в Лос-Анджелесе. Вы можете найти город или поселок, но не найдете конкретный адрес. Чтобы найти точное местоположение конкретного дома или здания, вам понадобится подробная карта улиц или доступ в Интернет и использование Google Maps или функции GPS на смартфоне.

То же самое (в меньшей степени) относится к электрическим схемам. Электросхемы автомобилей, выпущенных до 1970-х годов, обычно содержались на одной или двух страницах в руководстве по обслуживанию. К 1980-м годам сложность автомобильной бортовой электроники изменилась, и в большинстве руководств по эксплуатации транспортных средств было несколько страниц схем электрических соединений, показывающих всю электрическую систему автомобиля. В 1990-х печатные руководства по обслуживанию начали исчезать, и теперь руководства и электрические схемы можно найти на цифровых носителях или в Интернете.

Есть один аспект электрических схем, который, к сожалению, остался неизменным. Им не хватает указаний относительно того, как на самом деле их читать. Подобно карте, электрические схемы будут иметь легенду, в которой прописаны символы и соглашения об именах, но не будет инструкций «как это сделать».

В то время как онлайн-руководства по обслуживанию автомобилей написаны с расчетом на «профессиональных» техников, каждый техник должен был научиться читать и интерпретировать электрические схемы в какой-то момент своей карьеры. Дизайн и компоновка схем подключения не подходят для технических специалистов среднего или начального уровня, поскольку они начинают с простых для понимания схем, которые постепенно становятся все более трудными для чтения и понимания. В этой статье будет использован другой подход, и мы начнем с простых схем и схем подключения, а затем перейдем к более сложным схемам.

Этот пошаговый процесс не только делает обучение чтению электрических схем менее болезненным, но и способствует лучшему пониманию того, как работают электрические цепи. Чтобы стать более опытным в чем-либо, включая чтение электрических схем, требуется практика, и для этой цели также включены некоторые сложные вопросы.

3 предмета

Упрощенная схема подключения аккумулятора, лампочки и проводов проста для понимания. Однако, если бы эта же схема была более сложной и включала бы несколько реле, несколько источников питания и компьютер, управляющий всей схемой, получившуюся электрическую схему было бы гораздо сложнее читать. Краткий обзор основных электрических цепей облегчит понимание того, как они изображены на электрической схеме.

Каждая электрическая цепь в автомобиле должна иметь 3 элемента для работы:

  1. Источник питания
  2. Загрузочное устройство
  3. Заземление

Система зарядки и аккумулятор функционируют как источники питания и проходят по всему автомобилю с помощью многочисленных проводов. Нагрузочные устройства — это просто все, что выполняет электрическую работу, и может включать в себя освещение, стартер, бортовые компьютеры, реле, электрические стеклоподъемники, вход без ключа и многие другие компоненты. Возврат заземления завершает электрический путь от положительной клеммы аккумулятора к нагрузочному устройству и обратно к отрицательной клемме аккумулятора. Если какая-либо из трех вещей отсутствует, схема не будет работать, а схемы соединений предоставляют «карту», ​​помогающую определить, какая из трех вещей отсутствует.

В дополнение к трем вещам необходимо контролировать нагрузочные устройства. Некоторые нагрузочные устройства включаются или выключаются путем управления их источником питания, в то время как другие управляются путем включения или выключения заземления. Наиболее распространенным сценарием является использование электронного блока управления автомобиля или ECU для заземления реле, которое, в свою очередь, управляет нагрузочными устройствами. Процесс выяснения того, как управляется нагрузочное устройство, а также его источники питания и заземления, можно определить с помощью схемы подключения. Чтобы изучить логический процесс чтения сложных электрических схем, мы начнем с простой схемы противотуманных фар.

На рис. 1 показана простая электрическая схема, показывающая цепь противотуманных фар. Цепь состоит из аккумулятора, предохранителя на 20 А (используется для защиты цепи), выключателя (расположенного на приборной панели) и двух противотуманных фар. Отражения от земли показаны символом земли в виде вертикальной линии с тремя горизонтальными линиями. Не на всех схемах показаны провода заземления, и предполагается, что символы заземления обозначают провода, подключенные к отрицательной клемме аккумуляторной батареи. Эта диаграмма необычна тем, что наличие 12 В показано на схеме как в состоянии «ВКЛ», так и «ВЫКЛ».

Красные линии указывают на наличие 12 В, а черные линии представляют собой заземление цепи, которая подключается к отрицательной клемме аккумулятора. В части схемы «ВЫКЛ» показано, что 12 В подается от аккумулятора, через предохранитель и к открытому выключателю приборной панели. Нижняя часть схемы показывает закрытый переключатель приборной панели, подключение аккумулятора к фарам и их включение. Это также иллюстрирует один из аспектов закона Киршоффа, согласно которому нагрузочное устройство (устройства) будет использовать всю мощность (12 В) в цепи, поскольку напряжение на отрицательной клемме аккумулятора и на стороне заземления противотуманных фар близко к 0,0 В. .

К сожалению, настоящие электрические схемы не обеспечивают ни одного из этих преимуществ, а схемы автомобилей последних моделей могут не изолировать цепи в такой степени — более вероятно, что они будут частью общей системы освещения. Цвет, если он вообще используется на электрической схеме, предназначен для идентификации отдельных цветов проводов, а не для обозначения силовой и заземляющей сторон цепи. Кроме того, электрические схемы по умолчанию всегда показывают устройство нагрузки в состоянии «ВЫКЛЮЧЕНО», и техническим специалистам приходится представлять себе наличие питания по всей цепи при включенной и работающей нагрузке.

Существует неотъемлемая проблема конструкции цепи противотуманных фар, как показано на рис. 1. Эти конкретные противотуманные фары требуют большой силы тока (8 А каждая или всего 16 А) от аккумулятора для работы, и эта высокая электрическая нагрузка должна проходить через все провода и приборная панель переключаются, чтобы добраться до огней. Провода, и особенно выключатель, должны быть прочными, чтобы выдерживать большой ток. Простым решением является добавление реле на 12 В, как показано на рис. 2 .

Реле заменяет силовой выключатель и обеспечивает высокоамперную связь между противотуманными фарами и аккумулятором. Выключатель приборной панели по-прежнему является частью общей цепи, но теперь он должен переключать только управляющую катушку реле с малой силой тока (0,3 А) вместо противотуманных фар с большой силой тока. Переключатель на приборной панели и провода, соединяющие его с цепью, могут быть меньше, поскольку реле подключает аккумулятор к фарам, а не к переключателю.

Катушка управления внутри реле представляет собой электромагнит, и когда контакт 4 реле соединен с массой переключателем на приборной панели, катушка находится под напряжением и притягивает сильнодействующие контакты реле, соединяющие клеммы 1 и 2. , На этой схеме показана цепь в положении «ВЫКЛ.», и она более типична для реальной схемы проводки, поскольку техник должен визуализировать, где в цепи присутствует питание, когда горит свет.

Хотя на рис. 2 показана базовая схема использования реле для управления высокоамперной цепью, она имеет отношение к современной электронике, используемой в современных автомобилях. Многие автомобильные схемы управляются PCM (модулем управления питанием) автомобиля, который не может напрямую управлять сильноточными нагрузками. Использование нескольких реле решает эту проблему, так как PCM должен только включать и выключать реле с низким током.

Схема подключения, изображенная на Рис. 3 , показывает, как добавление второго реле в цепь противотуманных фар улучшает ее функциональность. Реле №1 подает питание на реле №2, то же реле, что и на предыдущей схеме. Реле № 1 управляется выключателем зажигания и позволяет включать противотуманные фары только тогда, когда ключ зажигания находится в положении «аксессуар» или «работа». Если ключ зажигания находится в положении «заперто», «выключено» или полностью вынут из замка зажигания, на реле № 2 не подается питание. Это предотвращает непреднамеренное включение противотуманных фар, даже если переключатель на приборной панели остается включенным. Эта схема более типична для схем подключения, которые можно найти в руководстве по обслуживанию. Провода идентифицируются по их цвету, но нет цвета, указывающего, где присутствует питание; схема показана в выключенном состоянии, а клеммы реле обозначены номерами.

Самый эффективный способ научиться читать электрические схемы и пользоваться ими — это практиковаться. Имея это в виду, следующие три практических вопроса проверят ваши знания и способность читать и интерпретировать электрические схемы. Мы вместе рассмотрим первые два вопроса и предоставим вам ответ на третий.

Вопросы по электрической схеме

Вопрос 1:

Этот вопрос относится к рисунку 3. Когда ключ зажигания находится в положении «Acc» и приборная панель выключена, какие номера клемм на реле № 1 и № 2 будут иметь 12 В ? Рисунок 3 типичен для схем подключения, которые можно найти в руководстве по обслуживанию. Реле и переключатели показаны в их «разомкнутом» положении, и цвет не используется для обозначения того, где присутствует питание или заземление.

При чтении любой электрической схемы начните с того места, где находится известный источник питания (12 В), обычно с положительной клеммы аккумуляторной батареи. Реле №1, клемма 3, напрямую подключено к аккумулятору через предохранитель на 20А. Клемма 1 идет к замку зажигания, а в положении «Accy» тоже будет 12В (КРАСНЫЙ провод к замку зажигания и ОРН провод между замком и реле). Клемма 2 является постоянным заземлением управляющей катушки реле. Реле включено, а клеммы 3 соединены с 4 через сильноамперные контакты.

Клеммы реле № 2 с напряжением 12 В — 1 (КРАСНЫЙ/БЕЛЫЙ) и 3 (КОРИЧ.), которые получают питание от клеммы 4 реле № 1. Клеммы 1 и 2 подключены через низкоамперную катушку реле, поэтому на клемму 2 подается питание, поскольку выключатель на приборной панели разомкнут. Если бы переключатель на приборной панели был замкнут, на клемме 2 было бы 0 В, поскольку она подключена к земле, а реле было бы «включено». На клемму 4 не подается питание, потому что реле выключено.

Вопрос 2:

Проследите путь, который обеспечивает питание и заземление для каждого охлаждающего вентилятора в высокоскоростном режиме. В вопросе 2 используется более сложная схема соединений, чем в первом вопросе. На рис. 4 представлена ​​типичная автомобильная электрическая схема, на которой показана цепь вентилятора охлаждения радиатора.

Два предохранителя (40 и 10 А) питают цепь и напрямую подключены к аккумулятору автомобиля (постоянно горячий). Есть три реле, которые подключают питание к охлаждающим вентиляторам и контролируют низкую и высокую скорость.

Реле управляются модулем управления питанием автомобиля или PCM. Схема также содержит примечания относительно маркировки компонентов, их физического расположения и информации о том, какие другие схемы соединений являются частью общей схемы. Катушки управления реле выглядят немного иначе, чем те, что показаны на рис. 3. Показан резистор (прерывистая линия), который используется для предотвращения попадания скачков напряжения на блок управления двигателем при работе реле. В остальном реле работают так же, как на рис. 3  9.0573 (ПРИМЕЧАНИЕ. Эта цепь работает от 12 В. Однако при работающем двигателе рабочее напряжение составляет 14 В или зарядное напряжение, обеспечиваемое генератором. ).

Три реле вентилятора охлаждения определяют пути питания и заземления к вентиляторам охлаждения. Чтобы оба вентилятора системы охлаждения работали в режиме высокой скорости, блок PCM заземляет обе клеммы 42 и 33 (управление реле низкой и высокой скорости вентилятора системы охлаждения). При заземлении клеммы 33 блока управления двигателем провод DK BLU становится заземлением для управляющей катушки реле вентилятора охлаждения № 3 на клемме B4. Это включает реле, потому что на клемму C6 все время подается питание от предохранителя на 10 А.

КРАСНЫЙ провод на клемме C4 реле подключен к предохранителю вентилятора охлаждения на 40 А, а при включенном реле подключается к клемме B6 внутри реле. Провод WHT от реле (клемма B6) подключен к правому вентилятору охлаждения и обеспечивает питание. Правый вентилятор охлаждения имеет постоянную массу на ЧЕР проводе. При напряжении 14 В (двигатель работает) на проводе WHT и заземлении на проводе BLK правый вентилятор охлаждения работает на высокой скорости.

Левый вентилятор охлаждения получает питание от предохранителя 40А на КРАСНОМ проводе реле №1 вентилятора охлаждения (клемма B3). Управление реле низкоскоростного вентилятора системы охлаждения (42) компьютера PCM заземляется с помощью блока PCM, обеспечивающего заземление провода клеммы B1 (DK GRN) на реле № 1 вентилятора системы охлаждения. На этом же реле клемма С3 получает питание от предохранителя 10А на проводе ОРН.

При наличии питания на C3 и заземления на B1 реле срабатывает и соединяет клеммы реле B3 с C1, обеспечивая питание левого вентилятора охлаждения на синем проводе. СЕРЫЙ провод от левого вентилятора охлаждения представляет собой массу, но только тогда, когда реле вентилятора охлаждения № 2 включается заземлением управления высокоскоростным реле PCM на клемме C10 реле на проводе DK BLU. Реле №2 соединяет СЕРЫЙ провод левого вентилятора охлаждения с ЧЕРНЫМ проводом (номер клеммы не указан). ЧЕРНЫЙ провод обеспечивает заземление левого вентилятора охлаждения и работает на высокой скорости.

Мы рассмотрели ответы и анализ вопросов 1 и 2. Ответ на вопрос 3 зависит от вас.

Вопрос 3:

Проследите путь, по которому подается питание на каждый вентилятор охлаждения в низкоскоростном режиме. Определите цвета проводов, реле и клеммы реле, на которые подается питание во время работы вентилятора. Проследите путь заземления для реле и охлаждающих вентиляторов — определите цвета проводов и клеммы реле, используемые на стороне заземления цепи.

Ответ на вопрос 3

Для понимания работы низкоскоростного вентилятора поможет краткий обзор теории электротехники. В параллельной схеме (наиболее распространенный тип, используемый в автомобилях) все нагрузочные устройства работают от сетевого напряжения. Например, когда вентиляторы охлаждения работают в скоростном режиме, на каждый подается 14В от предохранителя 40А.

Последовательная схема работает иначе. При последовательном подключении двух нагрузочных устройств доступное напряжение распределяется между ними. В низкоскоростном режиме вентиляторы охлаждения соединены последовательно, и каждый вентилятор работает от 7 В — половины системного напряжения 14 В.

Во время работы вентилятора на низкой скорости управление реле низкой скорости PCM заземляется, включая реле №1 вентилятора охлаждения. С заземлением на клемме реле B1 (провод DK GRN) и питанием на C3 управляющая катушка реле соединяет высокоамперные контакты (клеммы B3 и C1). Это подключает питание (14 В) от предохранителя 40 А (КРАСНЫЙ провод) к ГОЛУБОМУ проводу, идущему к левому вентилятору охлаждения.

СЕРЫЙ провод от левого вентилятора охлаждения идет на клемму С8 реле №2. Реле вентилятора охлаждения № 2 не срабатывает от PCM в режиме низкой скорости, а от C8 до B9релейное соединение нормально замкнуто. Провод WHT на реле вентилятора охлаждения № 2 (B9) идет к правому вентилятору охлаждения, обеспечивая 7 В (половина 14 В) для питания вентилятора. Реле вентилятора охлаждения №3 не работает при работе вентилятора на низкой скорости.

ЧЕР провод от правого вентилятора обеспечивает заземление для обоих вентиляторов. Поскольку вентиляторы подключены последовательно, они делят системное напряжение (14 В) поровну между собой, и оба работают от 7 В, заставляя их работать на низкой скорости.

Электрические схемы — Как читать электрические схемы? — #0 Введение, Схема подключения — Блог, посвященный промышленной автоматизации

Знание

Автор: AutomationTop Team Опубликовано

Я помню, как на последнем курсе колледжа я начал искать работу по специальности. Я нашел объявление о компании, которая, помимо прочего, занимается восстановлением машин для переработки мусора. Искали человека – «разнорабочего», самоучку, автоматчика, электрика, называйте как хотите, а в общем умеющего починить простую машинку. Поэтому я звоню им. Я узнаю, в чем заключается работа, хвастаюсь перед будущим начальником, какой я фантастический человек, и в конце разговора слышу примерно следующее:

«Ну, приходи завтра и попробуй починить одну машину. Вы получите схему и все необходимые инструменты».

Гениально! Мое первое собеседование на работу! Через какое-то время до меня дошло, что я все-таки не разбираюсь в электрических схемах. Ну, я предполагаю, что в университете что-то было. Может какая схема проводки или отдельные символы между классами подошли. Но мои познания в этом вопросе были очень скудны. В общем никакой паники, просто спросим у гугла как читать схему и на следующий день работа будет моей! Когда к моему разочарованию оказывается, что информации по этому вопросу мало. К сожалению, так и сегодня.

Поэтому, дорогие мои, я решил приложить все усилия для разработки курса под названием:

«Чтение схем электрических цепей и схем КИПиА»

Чтение электрических схем непросто для людей, не имевших дела с электротехническим и приборостроительным оборудованием. Изучение одних только названий символов мало что даст, если вы не знакомы с устройством. При разработке курса я постараюсь проиллюстрировать и объяснить как можно больше. Мы начнем с самых простых вопросов, таких как разъем, клемма и соединения. Сначала я возьму простые электрические схемы. Ради людей, которые, как и я, мало знали о схематическом чтении в начале своей карьеры, я начну курс с основ. Я попытаюсь описать это так, как мне хотелось бы найти до моей первой работы.

Загрузить электрическую схему

Для курса вам понадобится образец схемы. В сети нашел схему электрики и КИПиА
и автоматики канализационной насосной станции. Думаю хватит для начала.

СКАЧАТЬ ЭЛЕКТРИЧЕСКУЮ СХЕМУ

Документация также включает описание и чертежи.

Электрические схемы – объект для курса чтения схем – канализационная насосная станция

За основу мы возьмем электрическую схему объекта, которым является канализационная насосная станция. Это простая система управления с точки зрения автоматизации. В технической документации (ТТР) в пунктах 12.4 и 12.5 вы найдете описание работы данного системного объекта в ручном и автоматическом режиме.

Измерение сточных вод

Измерение сточных вод в насосной камере осуществляется установкой трех поплавковых автоматических выключателей MAC-3 на соответствующих уровнях (цифровое измерение, статус 0 или 1) и гидростатического зонда (аналоговое измерение) . Гидростатическое измерение совместно с контроллером реализует алгоритм управления насосами, кроме того, определяет уровни срабатывания сигнализации и диапазоны, в которых работа насосов запрещена. В качестве альтернативы ненадежности системы была введена параллельная работа насосов в системе автоматики, управляемой от поплавков, с полной защитой от сухого хода и сигнализацией максимального уровня.
На преобразователе ОС-11 видна индикация уровня сточных вод.

Статус сигнализации по измерениям уровня можно увидеть на двери и он выглядит следующим образом:

  • мин. уровень красный – камера насосной станции пуста
  • макс. уровень красный – макс. уровень превысил

Внешняя визуальная сигнализация немедленно включается, когда макс. уровень или мин. уровень достигнут. Визуальная индикация будет оставаться активной до тех пор, пока не исчезнут все сигналы тревоги.

Ручное управление

В ручном режиме пользователь решает, когда и какой насос следует включить. Все защиты, обсуждаемые в автоматическом режиме, активны, за исключением измерения уровня. Когда насосы переключаются на ручное откачивание, они работают до тех пор, пока не будет достигнут минимальный уровень. В целях технического обслуживания или ремонта, а также когда необходимо полностью опорожнить камеру для сточных вод, пользователь может полностью откачать сточные воды, нажав кнопку РЕМОНТНАЯ РАБОТА НАСОСА, и сразу же насос продолжит качать до тех пор, пока кнопка не будет отпущена. Насосные станции нельзя оставлять включенными в ручном режиме, так как не реализована защита управления работой от уровня сточных вод, что может привести к необратимому повреждению насоса.

Автоматизированная работа

Система управления двумя насосами реализована через систему автоматизации. Автоматическое управление отвечает за поддержание постоянного уровня в камере насосной станции и устранение нарушений и аварийных ситуаций в соответствии с установленными коммутационными возможностями. Во всей системе реализован алгоритм включения и выключения насосов с соблюдением следующих правил:

  • чередование работы насосов
  • включение соответствующего количества насосов в зависимости от достигнутого уровня сточных вод

В систему автоматики поступают сигналы, влияющие на правильную работу насосной станции:

  • измерение уровня
  • состояние защиты насоса
  • Состояние автоматических выключателей насосов, допущенных к автоматической работе
  • мониторинг состояния электросети

Любой аварийный сигнал немедленно анализируется системой автоматического управления, которая принимает решение о работе насосов в соответствии с указаниями программы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *