Подключение электретного микрофона к усилителю: Как подключить к усилителю электретный микрофон

Содержание

Советский электретный микрофон МКЭ-3. Подключение его к компьютеру: grodenski — LiveJournal

Нашелся в запасах советский электретный микрофон МКЭ-3. Их применяли в  некоторых магнитофонах для записи звуков на кассету. Из корпуса выходит 3 провода:синий — плюс питания (он же общий), белый — выход сигнала, красный — минус питания.

МКЭ-3 сбоку маркировка МКЭ-3 схема микрофона МКЭ-3

Внутри корпуса установлена микросхема усилитель-истоковый повторитель К513УЕ1А. Выполнена она на полевом транзистора с резистором в цепь истока, диодом между затвором и подложкой. Предназначена она для согласования высокого выходного сопротивления электретного микрофона с низким входным сопротивлением усилителя.

схема К513УЕ1А

В современных реалиях МКЭ-3 можно применять для записи звуков на компьютер или ноутбук. Качество записи будет более высоким, чем если использовать микрофон встроенный в гарнитуру.

Но подключить его не так просто из-за особенностей конструкции. На просторах Сети найдена вот такая схема с дополнительным источником питания. 

схема подключения МКЭ-3 из Интернета

Собрал ее и микрофон заработал. Но уровень сигнала с моего экземпляра получился очень слабым и его оказалось недостаточно для работы со звуковой картой.

собранная схема (батарейки не вставлены)

Поэтому решил применить схему предварительного усилителя на транзисторе КТ3102. Питается она от звуковой карты, а микрофон — от батареек.

схема предварительного усилителя на КТ3102

Звук получается относительно неплохого качества. Получше, чем у китайских капсюлей. Но до студийного ему еще далеко.

Собранная схема с предварительным усилителем (батарейки не вставлены) предварительный усилитель на транзисторе КТ3102

Спасибо за внимание!

Подключение микрофона мкэ 3. Виды микрофонов

Практически все гарнитуры, которые предназначены для работы с ПК, имеют настолько «жалкие» характеристики, что попытайся вы использовать микрофон от такой гарнитуры для звукозаписи или того же караоке, ничего кроме разочарования не получите. Причина здесь одна – все подобные микрофоны предназначены для передачи речи и имеют очень узкий частотный диапазон. Это не только удешевляет саму конструкцию, но и способствует разборчивости речи, что является главным требованием гарнитуры.

Попытки же подключить обычный динамический или электретный микрофон обычно заканчиваются провалом – уровня с такого микрофона явно недостаточно для «раскачки» звуковой карты. Дополнительно сказывается незнание входной схемы звуковых карт и неправильное подключение динамического микрофона завршает дело. Собирать микрофонный усилитель и подключить «по уму»? Было бы неплохо, но гораздо проще использовать микрофон МЭК-3, который одно время широко использовался в носимой аппаратуре и до сих пор достаточно распространен. Но подключать «по уму», конечно, придется.

Микрофон этот электретный, обладает достаточно высокими характеристиками (частотный диапазон, к примеру, лежит в интервале 50 – 15 000 Гц) и, самое главное, в него встроен истоковый повторитель, собранный на полевом транзисторе, который не только согласует высокое сопротивление микрофона с усилителем, но и имеет более чем достаточный для любой звуковой карты уровень выходного сигнала. Единственный, пожалуй, недостаток – микрофону требуется питание. Но ток потребления его настолько мал, что двух пальчиковых батареек, соединенных последовательно, хватит на многие месяцы непрерывной работы. Взглянем на внутреннюю схему микрофона, которая расположена в алюминиевом стакане, и подумаем, как его подключить к компьютеру:

Серым цветом обозначен алюминиевый стакан, который является экраном и соединен с общим проводом схемы. Как я уже говорил, такой микрофон требует внешнего питания, причем минус 3-5 В нужно подать на резистор (красный провод), а плюс – на синий. С белого будем снимать полезный сигнал.

А теперь взглянем на схему микрофонного входа компьютера:

Оказывается сигнал должен подаваться только на самый кончик разъема, обозначенный зеленым, а на красный сама звуковая карта подает +5 В через резистор. Сделано это для питания предварительных усилителей гарнитур, если они используются. Мы этим напряжением не будем пользоваться по двум причинам: во-первых, нам нужна другая полярность, а если просто «перевернуть» провода, то микрофон будет сильно «фонить». Во-вторых, блок питания ПК импульсный и помеха на этих пяти вольтах будет приличная. Использование же гальванических элементов в плане помех идеально – чистая «постоянка» без малейших пульсаций. Итак, полная схема подключения нашего микрофона к компьютеру будет выглядеть следующим образом:


Развязывающий конденсатор, номинал которого может лежать в пределах 0.1 …1 мкФ, — керамический.

AUDIO техникаМикрофон с узкой. диаграммой направленностиМикрофон с узкой диаграммой направленности может найти применение при записи и усилений речи в условиях больших помех, a также дня записи звуке удаленных источников, например пения птиц. Направленность микрофона существенно повышает отношение сигнал/шум на входе усилителя НЧ.Схематически устройство такого показано на рис.1. Основная его пустяковина — электромагнитный капсюль (3), размещенный в цилиндрическом футляре (1). Капсюль с обеих сторон залит эпоксидной смолой. Сторона капсюли, обращенная к открытому отверстию футляра, имеет «чувствительное окно» небольших размеров, обеспечивающее звуковым колебаниям доступ к мембране. С помощью трех растяжек капсюль подвешен на проволочном кольце (4), которое расположено в тыльной стороне футляра. Для уменьшения отражения от стенок внутренность футляра покрыта слоем фетра или войлока (2) толщиной приблизительно 12 мм.Рис.1. Схематически устройство

микрофона .Микрофон включают на вход предварительного усилителя, одна из возможных схем которого приведена на рис.2. Снижение собственных шумов первого каскада достигается выбором малошумящего транзистора T1 и использованием его при малом токе коллектора. Второй каскад, собранный на транзисторе Т2 по схеме с общим коллектором, позволяет согласовать выход устройства с усилителем мощности. «Practical wireless», 1969, N 7.Рис.2. предварительного усилителя.Примечание редакции. В качестве микрофонного капсюля можно использовать капсюль ДЭМШ. Для первого каскада…

Для схемы «Индикация подключения электроприборов к сети 220 В»

Устройство индикации позволяет контролировать при уходе из дома: выключены ли из сети электрорадиоприборы? Если в сети осталась включенной какая-либо нагрузка мощностью > 8 Вт, то светят оба светодиода HL1 и HL2 (см.рисунок). …

Для схемы «Оригинальная схема модуляции генератора ВЧ»

Для схемы «ЭЛЕКТРОННОЕ «УХО»»

РадиошпионЭЛЕКТРОННОЕ «УХО»C. Сыч225876, Брестская обл., Кобринский р-н, п.Ореховский, ул.Ленина, 17 — 1.Предлагаемая предназначена для прослушивания разговоров в помещениях на небольшом расстоянии. Чувствительности хватает для уверенного восприятия слабого звука (шепот, тихий разговор) на расстоянии 3…4 м от микрофона. Дальность действия устройства — приблизительно 50 м (при длине антенны передатчика 30…50 см). Схему передатчика желательно уменьшить до минимальных размеров (чтобы его не было видно). При использовании устройств ва на небольших расстояниях (до 15 м) питание можно снизить до 1,5…3 В. Питать передатчик желательно от малогабаритных элементов. Ток потребления устройства составляет 3…4 мА.=ЭЛЕКТРОННОЕ УХОРабочая частота передатчика — 66… Схемы дроздова трансивера 74 МГц. Катушка LI — содержит 6 витков провода ПЭВ-2 0,5 мм и намотана на каркасе диаметром 4 мм с шагом намотки 1…1,5 мм. Частота генератора на VT2 изменяется сдвиганием (раздвиганием) витков катушки L1.РАДИОЛЮБИТЕЛЬ 1/98, с.24Поскольку я получил много писем с вопросами по моей статье «Электронное «ухо», привожу дополнительные сведения о настройке и доработках схемы и чертеж печатной платы (РИС.1). =ЭЛЕКТРОННОЕ УХОСначала о настройке. Номиналы конденсаторов С1 и С2 следует подбирать в пределах 4,7…33 мкФ до получения наилучшего качества сигнала и максимальных чувствительности и девиации частоты. Резисторы R1 и R2 следует подбирать в пределах 330…420 кОм и 4,7…9,1 кОм соответственно для получения наилучшего качества. Транзистор VT1 следует избирать с наибольшим коэффициентом усиления по току. Вместо С4 после настройки можно включить постоянный конденса…

Для схемы «Радиомикрофон, с улучшенными характеристиками»

РадиошпионРадиомикрофон, с улучшенными характеристикамиШатун Александр Николаевич, 312040, Харьковская обл., г. Дергачи, тел.(8-263)3-21-18В разной литературе приводится множество описаний простых радиомикрофонов с ЧМ, но, на мой взгляд, они не отличаются разнообразием. Все это, по сути, это одно и тоже, в разных интерпритациях. Предлагаю схемный вариант некварцованого микрофона, который по сравнению с другими имеет более высокую стабильность частоты при изменении напряжения питания и расстройке антенны. Кроме того, микрофон имеет высокое качество сигнала, отсутствует также перемодуляция при громком разговоре вблизи микрофона, хотя чувствительность от высокая. При напряжении питания 3 вольта, мощности передатчика довольно для приема на расстоянии до 300 метров. хорошо работает и при напряжении 1,5 вольта. Дальность действия и расход питания при этом уменьшаются. приведена на Рис.1. Все каскады имеют непосредственную связь по постоянному току. Сигнал с электретного подается через С2, который с резистором R2 образовывает цепь частотной коррекции. На транзисторе VT1 собран модулирующий каскад, который одновременно является стабилизатором рабочей точки для VT2,VT3, что позволяет выровнять резкое изменение мощности при изменении напряжения питания и уменьшить уход частоты. Задающий генератор собран на VT2 по схеме емкостной трехточки. Колебательный контур задающего генератора для улучшения электрических характеристик имеет два резонанса, последовательный L1,C5 и выше по частоте паралельный L1, C5, C4, C6. Возбуждение происходит на частоте паралельного резон…

Для схемы «МОДЕМ ДЛЯ ПАКЕТА»

Узлы радиолюбительской техникиМОДЕМ ДЛЯ ПАКЕТАВ моей предыдущей статье была опубликована пакетного модема для работы в УКВ диапазоне со скоростью 1200 Бод. Несколько позднее была успешно опробована и для работы в днапазоне KB со скоростью 300 Бод. что позволило разработать универсальный модем 1200/300 Бод. отличающийся простотой и надежностью. Принципиальная модема показана на рисунке. По сравнению с [I]. она не претерпела существенных изменений за исключением двух моментов:добавились узлы коммутации частоты опорного генератора 4.43МГц /2.215 МГц и индикации режимов работы модема РТТ и DCD. предоставляющие дополнительные удобства в работе. Экономичный стабилизатор напряжения схема Переключение режимов KB и УКВ (скорости 300/1200 Бод) производится переключателем SA1. Разъем X1 используется для на СОМ порт компьютера, разъем Х2 — для KB трансивера.разъем ХЗ — для УКВ радиостанции. В дополнение хотел бы уточнить данные на принципиальной схеме : номинал резисторов R2 и R14-2.2к0м. Литература 1. Тетерюк В. Модем для пакета //Радиолюби-тель.- 1997. N

10. С.37.В.ТЕТЕРЮК (YL2GL), LV-5402, Латвия. г.Даугавпилс. ул.Вальню, 31-25….

усилителю Схема подключения переговорного устройства электроника пу 02 3.Перед надеванием трубочки катушки защищают от повреждения — наклеивают вдоль сердечника полоску скотча поверх катушек.Крепится звукосниматель суперклеем, но не сразу на поверхность гитары! Вдруг вы когда-нибудь решите сменить или просто снять звукосниматель? Поэтому сначала следует на поверхность гитары в местах приклеивания звукоснимателя наклеить скотч.Следует отметить, что при приближении звукоснимателя к концу струн уровень сигнала на его выходе меньше, звук имеет металлический характер, а при расстоянии 2…5 см до конца струн звук более мелодичный и «басистый», с большей амплитудой на выходе.Уровень сигнала звукоснимателя примерно соответствует уровню сигнала динамического микрофона.2. Потребуется шесть головок от магнитофона, причем головки должны быть одинаковые. Удаляем с них лепестки, предназначенные для точного протяжения ленты, как показано на рис.4.

Для схемы «Звукосниматели для акустической гитары»

Предлагаю два способа изготовления звукоснимателя для шестиструнной акустической гитары.1. Берем пять магнитов из набора для сборки дверей шкафа. Освобождаем их от ненужных «деталей» и склеиваем в один длительный цельный кусок суперклеем (рис. 1). Затем с каждой стороны склеиваем полоской скотча. Магнитный сердечник звукоснимателя готов. Теперь наматываем катушки, в каждой по 50 витков (проволокой диаметром 0,1 мм или тоньше), с таким расстоянием между ними, чтобы, будучи под струнами, каждая соответственно была ближе к своей. Всего шесть катушечек, по числу струн (рис. 2).Звукосниматель готов, но его надобно «оформить» так, чтобы он соответствовал внешнему виду гитары. Для этого помещаем его в резиновую трубку (из-под резиновой водяной грелки) с продольной (одной) прорезью. Для подсоединения к усилителю звукоснимателя приклеивается (все тем же суперклеем) гнездышко от наушников (от какого-либо плеера и т.д.), к которому приклеиваем выводы от звукоснимателя..Общий вид уже готового звукоснимателя приведен на рис. Схеми простих самодельних трансиверов 3.Перед надеванием трубочки катушки защищают от повреждения — наклеивают вдоль сердечника полоску скотча поверх катушек.Крепится звукосниматель суперклеем, но не сразу на поверхность гитары! Вдруг вы когда-нибудь решите заместить или просто снять звукосниматель? Поэтому сначала следует на поверхность гитары в местах приклеивания звукоснимателя наклеить скотч.Следует отметить, что при приближении звукоснимателя к концу струн уровень сигнала на его выходе меньше, звук имеет металлический характер, а при расстоянии 2…5 см до конца струн звук более мелодичный и «басистый», с большей амплитудой на выходе.Уровень сигнала звукоснимателя примерно соответствует уровню сигнала динамического микрофона.2. Потребуется шесть головок от магнитофона, причем головки должны быть одинаковые. Удаляем с них лепестки, предназначенные для точного протяжения ленты, как показано на рис.4.

Для схемы «МИКРОПЕРЕДАТЧИКИ УКВ-ЧМ ДИАПАЗОНА»

РадиошпионМИКРОПЕРЕДАТЧИКИ УКВ-ЧМ ДИАПАЗОНА Микромощные радиопередатчики, выходная мощность которых составляет от долей до единиц милливатт, могут использоваться для организации радиосвязи и передачи данных на расстояние в пределах нескольких метров. Описываемые ниже устройства работают в диапазоне частот 66…74 МГц и при необходимости могут быть перестроены для работы в другом частотном диапазоне. Во всех конструкциях использованы высокоэффективные малогабаритные электретные микрофоны типа МКЭ-332, содержащие встроенный предусилитель на полевом транзисторе. На рис.1 дана схема радиомикрофона, в базовую цепь смещения которого включен в качестве управляемого резистора электретный микрофон.В качестве антенны использован отрезок гибкого многожильного провода длиной 20…40 см. Потребляемый устройством ток — приблизительно 1 мА. Устройство, представленное на рис.2, представляет собой телефонный радиоадаптер параллельного типа и предназначено для трансляции звуковых сигналов по высокочастотному каналу. Экономичный стабилизатор напряжения схема Устройство может питаться непосредственно от телефонной линии 60 В, потребляя при этом ток до 2 мА; при снятии телефонной трубки (снижении напряжения питания) радиомикрофон отключается. В схеме использовано каскодное включение транзисторов, при котором для сигналов низкой частоты нагрузкой в коллекторной цепи транзистора VT2 является высокочастотный генератор, выполненный на транзисторе VT1. В свою очередь, для токов высокой частоты в эмиттерной цепи транзистора VT1 использован каскад усиления на транзисторе VT2. При питании устройства от телефонной линии подключать антенну не обязательно, поскольку сама телефонная линия играет роль довольно протяженной антенны. Прием высокочастотных сигналов возможен на портативный ЧМ-приемник вдоль теле…

Для схемы «Микропередатчики»

РадиошпионМикропередатчикиОчень простая телефонного передатчика.L1=6 витков провода ПЭВ 0,3-0,4 на оправке 2,6-3,0 мм виток к витку.Т1= кт3102, кт315 (А-В)Д1-Д4= КД510А, КД521ВС1=22Н, С2=33ПФ, С3=33ПФR1=33КМикропередатчики по нетрадиционным схемам.К одой из редко используемых схем относится индуктивная трёхточка.Этот передатчик имеет более узкий диапазон питающих напряжений при одном номинале резистора R3.Резистор R2 необходим для снижения влияния ёмкости на задающий контур.Катушка L1 имеет 6 витков ПЭВ 0,45-0,7 на оправке 3,4-4,0 мм. Отвод эмиттера T1 произведен от 3,5-4,5 витка от общего. Ток потребления 8-10 мА.Т1= кт3102, кт315 (А-В)R1=4,7К, R2=4,7К, R3=82К*С1=33ПФ, С2=4,7МКФ, С3=22Н, С4=33ПФМикрофон можно подобрать любой (маленький). …

Микрофоны классифицируются по особенности преобразования акустических колебаний в электрические, и подразделяются на электродинамические, электромагнитные, электростатические (конденсаторные и электретные), угольные и пьезоэлектрические.

Виды микрофонов

Микрофоны характеризуются следующими параметрами:

    Чувствительность микрофона — это отношение напряжения на выходе микрофона к влияющему на него звуковому давлению при заданной частоте (как правило, 1000 Гц), выраженное в милливольтах на паскаль (мВ/Па). Чем больше это значение, тем выше чувствительность микрофона.

    Номинальный диапазон рабочих частот — диапазон частот, в котором микрофон воспринимает акустические колебания и в котором нормируются его параметры.

    Уровень собственного шума микрофона — выраженное в децибелах отношение эффективного значения напряжения, обусловленного флуктуациями давления в окружающей среде и тепловыми шумами различных сопротивлений в электрической части микрофона, к напряжению, развиваемому микрофоном на нагрузке при давлении 1 Па при воздействии на микрофон полезного сигнала с эффективным давлением 0,1 Па.

    Неровность частотной характеристики — разность между максимальным и минимальным уровнем чувствительности микрофона в номинальном диапазоне частот.

Рис 1. Схема включения конденсаторного микрофона.

На рис. 1 приведена схема, разъясняющая принцип работы конденсаторного микрофона. Выполненные из электропроводного материала мембрана (1) и электрод (2) разъединены изолирующим кольцом (3) и представляют собой конденсатор.

Крепко натянутая мембрана под влиянием звукового давления производит колебательные движения относительно неподвижного электрода. Конденсатор включен в электрическую цепь последовательно с источником напряжения постоянного тока GB и активным нагрузочным сопротивлением R.

При колебаниях мембраны ёмкость конденсатора меняется с частотой воздействующего на мембрану звукового давления. В электрической цепи возникает переменный ток такой же частоты и на нагрузочном сопротивлении появляется переменное напряжение, являющееся выходным сигналом микрофона.

Электретные микрофоны по принципу работы являются теми же конденсаторными, но постоянное напряжение в них обеспечивается зарядом электрета, тонким слоем нанесённого на мембрану и сберегающим этот заряд продолжительное время (свыше 30 лет).

Так как электростатические микрофоны имеют высокое выходное сопротивление, то для его уменьшения, как правило, в корпус микрофона встраивают истоковый повторитель на полевом n-каналыюм транзисторе с р-п переходом.

Это позволяет уменьшить выходное сопротивление до значения не более 3 + 4 кОм и снизить потери сигнала при подключении к входу . На рис. 2 приведена внутренняя схема электретного микрофона с тремя выводами МКЭ-3.

Рис. 2 Внутренняя схема электретного микрофона МКЭ-3.

У электретных микрофонов с двумя выводами выход микрофона исполнен по схеме усилителя с открытым стоком.

Рис. 3. Внутренняя схема электретного микрофона МКЭ-389-1.

Рис. 4. Схема подключения электретных микрофонов с двумя выводами.

На рис. 3 приведена внутренняя схема электретного микрофона с двумя выводами

МКЭ-389-1. Схема подключения такого микрофона приведена на рис. 4. По этой схеме можно подключать практически все электретные микрофоны с двумя выводами, и отечественные и импортные.

В таблице приведены их технические характеристики.

Наименование
марка
Чувстви-
тельность
мВПа
Диапазон
частот
Гц
Уровень
шума
дБ
Напр.
пит.
В
Потреб.
ток
мА
Неравно-
мерность
ЧХ
дБ
М1-А2 «СОСНА»515150700028-1,20,0072
М1-Б2 «СОСНА»1020
М4-В «СОСНА»>20
М7 «СОСНА»>526
МЭК-1А6203004000302,34,70,22
МЭК-1В
МКЭ-3420501500030-4,512
МКЭ-846203003400301,34,5
МКЭ-377-1А61215015000332,360,35
МКЭ-377-1Б1020
МКЭ-377-1В1836
МКЭ-378А61230180002,360,35
МКЭ-378Б1020
МКЭ-389-16123004000262
МКЭ-332А3550125003029
МКЭ-332Б612
МКЭ-332В1224
МКЭ-332Г2448
МКЭ-333А3550125003029
МКЭ-333Б612
МКЭ-333В1224
МКЭ-333Г2448

Ток потребления микрофона МЭК-1 не более 0,2 мА, МКЭ-377-1 и МКЭ-378 не более 0,35 мА. Потребляемый ток микрофонов М1-А2, М1-Б2 и М-7 не более 70 мкА.

Отличие микрофона МКЭ-332 от МКЭ-333 в том, что МКЭ-332 односторонне направленный, а МКЭ-333 ненаправленный.

Микрофоны (электродинамические, электромагнитные, электретные, угольные) — основные параметры, маркировка и включение в электронных схемах.

В радиоэлектронике находит широкое применение микрофон — устройство, преобразующее звуковые колебания в электрические. Под микрофоном обычно понимают электрический прибор, служащий для обнаружения и усиления слабых звуков.

Основные параметры микрофонов

Качество работы микрофона характеризуется несколькими стандартными техническими параметрами: чувствительностью, номинальным диапазоном частот, частотной характеристикой, направленностью, динамическим диапазоном, модулем полного электрического сопротивления, номинальным сопротивлением нагрузки и др.

Маркировка

Марка микрофона обычно наносится на его корпусе и состоит из букв и цифр. Буквы указывают тип микрофона:

МД……………катушечный (или «динамический»),

МДМ…………динамический малогабаритный,

ММ………….миниатюрный электродинамический,

MЛ……………ленточный,

МК……………конденсаторный,

МКЭ…………электретный,

МПЭ…………пьезоэлектрический.

Цифры обозначают порядковый номер разработки. После цифр стоят буквы А, Т и Б, обозначающие, что микрофон изготовлен в экспортном исполнении — А, Т — тропическом, а Б — предназначен для бытовой радиоэлектронной аппаратуры (РЭА). Маркировка микрофона ММ-5 отражает его конструктивные особенности и состоит из шести символов:

первый и второй……………ММ — микрофон миниатюрный;

третий…………………………..5 — пятое конструктивное исполнение;

четвертый и пятый………..две цифры, обозначающие типоразмер;

шестой………………………….буква, которая характеризует форму акустического входа (О — круглое отверстие, С — патрубок, Б — комбинированное).

В практике радиолюбителей используется несколько основных типов микрофонов: угольные, электродинамические, электромагнитные, конденсаторные, электретные и пьезоэлектрические.

Электродинамические микрофоны

(название микрофонов этого типа считается устаревшим и сейчас эти микрофоны называют катушечными)

Микрофоны этого типа очень часто используют любители звукозаписи, благодаря их сравнительно высокой чувствительности и практической нечувствительности к атмосферному влиянию, в частности, действию ветра. Они также не боятся толчков, просты в использовании и обладают способностью выдерживать без повреждений большие уровни сигналов. Положительные качества этих микрофонов преобладают над их недостатком: средним качеством записи звука.

В настоящее время для радиолюбителей большой интерес представляют выпускаемые отечественной промышленностью малогабаритные динамические микрофоны, которые используются для звукозаписи, звукопередачи, звукоусиления и различных систем связи. Изготавливаются микрофоны четырех групп сложности — 0, 1, 2 и 3. Микрофоны малогабаритные групп сложности 0, 1 и 2 используются для звукопередачи, звукозаписи и звукоусиления музыки и речи, а группы 3 — для звукопередачи, звукозаписи и звукоусиления речи.

Условное обозначение микрофона состоит из трех букв и цифр. Например, МДМ-1, микрофон динамический малогабаритный первого конструктивного исполнения.

Особый интерес представляют электродинамические миниатюрные микрофоны серии ММ-5, которые можно впаивать прямо в плату усилителя или использовать в качестве встроенного элемента радиоэлектронной аппаратуры. Микрофоны относятся к четвертому поколению компонентов, которые разработаны для РЭА на транзисторах и интегральных микросхемах. Микрофон ММ-5 выпускается одного типа в двух вариантах: высокоомном (600 Ом) и низкоомном (300 Ом), а также тридцати восьми типоразмеров, которые отличаются только сопротивлением обмотки постоянному току, расположением акустического входа и его вида. Основные электроакустические параметры и технические характеристики микрофонов серии ММ-5 приведены в табл. 3.2.

Таблица 3.2

Тип микрофона

Вариант исполнения

низкоомный

высокоомный

Модуль полного электрического сопротивления обмотки, Ом

Чувствительность на частоте 1000 Гц, мкВ/Па,

не менее (сопротивление нагрузки)

Средняя чувствительность в диапазоне

500…5000 Гц, мкВ/Па, не менее (сопротивление нагрузки)

1200 (3000 Ом)

чувствительности в номинальном диапазоне частот, дБ, не более

Масса, г, не более

Срок службы, год, не менее

Размеры, мм

Рис. 3.6. Принципиальная схема включения на входе УЗЧ громкоговорителя в качестве м икрофона

При отсутствии динамического микрофона радиолюбители часто используют вместо него обычный электродинамический громкоговоритель (рис. 3.6).

Электромагнитные микрофоны

Для усилителей низкой частоты, собранных на транзисторах и имеющих низкое входное сопротивление, обычно используют электромагнитные микрофоны. Электромагнитным микрофонам свойственна обратимость, то есть они могут использоваться и как телефоны. Широкое распространение имеют так называемый дифференциальный микрофон типа ДЭМШ-1 и его модификация ДЭМШ-1А. Неплохие результаты получаются при использовании вместо электромагнитных микрофонов ДЭМШ-1 и ДЭМ-4М обычных электромагнитных наушников от головных телефонов ТОН-1, ТОН-2, ТА-56 и др. (рис. 3.7…3.9).


Рис. 3.7. Принципиальная схема включения на входе УЗЧ электромагнитного наушника в качестве микрофона


Рис. 3.8. Принципиальная схема включения электромагнитного микрофона на входе УЗЧ на транзисторах


Рис. 3.9. Принципиальная схема включения электромагнитного микрофона на входе УЗЧ на операционном усилителе.

Электретные микрофоны

В последнее время в бытовых магнитофонах используются электретные конденсаторные микрофоны. Электретные микрофоны имеют самый.широкий диапазон частот: 30…20000 Гц. Микрофоны этого типа дают электрический сигнал в два раза больший нежели обычные угольные.

Промышленность выпускает электретные микрофоны МКЭ-82 и МКЭ-01 по размерам аналогичные угольным МК-59 и им подобным, которые можно устанавливать в обычные телефонные трубки вместо угольных без всякой переделки телефонного аппарата. Этот тип микрофонов значительно дешевле обычных конденсаторных микрофонов, и поэтому более доступны радиолюбителям. Отечественная промышленность выпускает широкий ассортимент электретных микрофонов, среди них МКЭ-2 односторонней направленности для катушечных магнитофонов 1 класса и для встраивания в радиоэлектронную аппаратуру — МКЭ-3, МКЭ-332 и МКЭ-333. Для радиолюбителей наибольший интерес представляет конденсаторный электретный микрофон МКЭ-3, который имеет микроминиатюрное исполнение. Микрофон применяется в качестве встраиваемого устройства в отечественные магнитофоны, магниторадиолы и магнитолы, такие как, «Сигма-ВЭФ-260», «Томь-303», «Романтик-306» и др.

Микрофон МКЭ-3 изготовляется в пластмассовом корпусе с фланцем для крепления на лицевой панели радиоустройства с внутренней стороны. Микрофон является ненаправленным и имеет диаграмму круга. Микрофон не допускает ударов и сильной тряски. В табл. 3.3 приведены основные технические параметры некоторых марок миниатюрных конденсаторных электретных микрофонов. На рис. 3.10 приведена схема включения распространенного в радиолюбительских конструкциях электретного микрофона типа МКЭ-3.

Таблица 3.3

Тип микрофона

Номинальный диапазон рабочих частот, Гц

Чувствительность по свободному полю на

частоте 1000 Гц, мкВ/Па

не более 3

не менее 3

не менее 3

Неравномерность частотной характеристики

чувствительности в диапазоне 50… 16000 Гц,

дБ, не менее

Модуль полного электрического сопротивления на 1000 Гц,

Ом, не более

Уровень эквивалентного звукового давления,

обусловленного собственными шумами микрофона,

дБ, не более

Средний перепад уровней чувствительности

«фронт — тыл», дБ

не, менее 12

не более 3

Условия эксплуатации: температура, ’С

относительная влажность воздуха, не более

95±3 % при 25″С

95±3% при 25″С

93% при 25″С

Напряжения питания, В

Габаритные размеры (диаметр х длина), мм


Рис. 3.10. Принципиальная схема включения микрофона типа МКЭ-3 на входе транзисторного УЗЧ

Угольные микрофоны

Невзирая на то что угольные микрофоны постепенно вытесняются микрофонами других типов, но благодаря простоте конструкции и достаточно высокой чувствительности они все еще находят свое место в различных устройствах связи. Наибольшее распространение имеют угольные микрофоны, так называемые телефонные капсюли, в частности, МК-Ю, МК-16, МК-59 и др. Наиболее простая схема включения угольного микрофона приведена на рис. З.П. В этой схеме трансформатор должен быть повышающим и для угольного микрофона с сопротивлением R = 300…400 Ом его можно намотать на Ш-образном железном сердечнике с сечением 1…1,5 см2. Первичная обмотка (I) содержит 200 витков провода ПЭВ-1 диаметром 0,2 мм, а вторичная (II) — 400 витков ПЭВ-1 диаметром 0,08…0,1 мм. Угольные микрофоны в зависимости от их динамического сопротивления делят на 3 группы:

1………низкоомные (около 50 Ом) с током питания до 80 мА;

2………среднеомные (70… 150 Ом) с током питания не более 50 мА;

3………высокоомные (150…300 Ом) с током питания не более 25 мА.

Из этого следует, что в цепи угольного микрофона необходимо устанавливать ток, соответствующий типу микрофона. В противном случае при большом токе угольный порошок начнет спекаться и микрофон испортится. При этом появляются нелинейные искажения. При очень малом токе резко снижается чувствительность микрофона. Угольные капсюли могут работать и при пониженном токе источника питания, в частности, в усилителях на лампах и транзисторах. Снижение чувствительности при пониженном питании микрофона компенсируется простым повышением коэффициента усиления усилителя звуковой частоты. В этом случае улучшается частотная характеристика, значительно снижается уровень шумов, повышается стабильность и надежность работы.


Рис. 3.11. Принципиальная схема включения угольного микрофона с использованием трансформатора

Вариант включения угольного микрофона в усилительный каскад на транзисторе дано на рис 3.12. Вариант включения угольного микрофона в сочетании с транзистором на входе лампового усилителя звуковой частоты по схеме рис. 3.13 позволяет получить большое усиление по напряжению.


Рис. 3.12. Принципиальная схема включения угольного микрофона на входе транзисторного УЗЧ


Рис. 3.13. Принципиальная схема включения угольного микрофона на входе гибридного УЗЧ, собранного на транзисторе и электронной лампе

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

3.8. МИКРОФОНЫ

Микрофоны классифицируются по признаку преобразования акустических колебаний в электрические и подразделяются на электродинамические, электромагнитные, электростатические (конденсаторные и электретные), угольные и пьезоэлектрические.

Микрофоны характеризуются следующими параметрами:

Чувствительность микрофона — это отношение напряжения на выходе микрофона к воздействующему на него звуковому давлению при заданной частоте (как правило 1000 Гц), выраженное в милливольтах на паскаль (мВ/Па). Чем больше это значение, тем выше чувствительность микрофона.

Номинальный диапазон рабочих частот — диапазон частот, в котором микрофон воспринимает акустические колебания и в котором нормируются его параметры.

Неравномерность частотной характеристики — разность между максимальным и минимальным уровнем чувствительности микрофона в номинальном диапазоне частот.

Модуль полного электрического сопротивления — нормированное значение выходного или внутреннего электрического сопротивления на частоте 1 кГц.

Характеристика направленности — зависимость чувствительности микрофона (в свободном поле на определённой частоте) от угла между осью микрофона и направлением на источник звука.

Уровень собственного шума микрофона — выраженное в децибелах отношение эффективного значения напряжения, обусловленного флуктуациями давления в окружающей среде и тепловыми шумами различных сопротивлений в электрической части микрофона, к напряжению, развиваемому микрофоном на нагрузке при давлении 1 Па при воздействии на микрофон полезного сигнала с эффективным давлением 0,1 Па.

В телефонных аппаратах, в основном, применяются электродинамические, электретные и угольные микрофоны. Но, как правило, в 95% кнопочных ТА применяются электретные микрофоны, которые имеют повышенные электроакустические и технические характеристики:

Широкий частотный диапазон;

Малую неравномерность частотной характеристики;

Низкие нелинейные и переходные искажения;

Высокую чувствительность;

Низкий уровень собственных шумов. На рис. 3.61 приведена схема, объясняющая принцип работы конденсаторного микрофона. Выполненные из электропроводного материала мембрана (1) и электрод (2) разделены изолирующим кольцом (3) и представляют собой конденсатор. Жёстко натянутая мембрана под воздействием звукового давления совершает колебательные движения относительно неподвижного электрода. Конденсатор включен в электрическую цепь последовательно с источником напряжения постоянного тока GB и активным нагрузочным сопротивлением R. При колебаниях мембраны ёмкость конденсатора меняется с частотой воздействующего на мембрану звукового давления. В электрической цепи появляется переменный ток той же частоты и на нагрузочном сопротивлении возникает переменное напряжение, являющееся выходным сигналом микрофона.

Электретные микрофоны по принципу работы являются теми же конденсаторными, но постоянное напряжение в них обеспечивается зарядом электрета, тонким слоем нанесённого на мембрану и сохраняющим этот заряд продолжительное время (свыше 30 лет).

Поскольку электростатические микрофоны обладают высоким выходным сопротивлением, то для его уменьшения, как правило, в корпус микрофона встраивают истоковый повторитель на полевом n-канальном транзисторе с р-n переходом. Это позволяет снизить выходное сопротивление до величины не более 3+4 кОм и уменьшить потери сигнала при подключении к входу усилителя сигнала микрофона.

На риc 3.62 приведена внутренняя схема электретного микрофона с тремя выводами МКЭ-3.

У электретных микрофонов с двумя выводами выход микрофона выполнен по схеме усилителя с открытым стоком.

На рис. 3.64 приведена внутренняя схема электретного микрофона с двумя выводами МКЭ-389-1. Схема подключения такого микрофона приведена на рис. 3.63. По этой схеме можно подключать практически все электретные микрофоны с двумя выводами, и отечественные и импортные.

На рис. 3.67 приведены размеры и назначение выводов электретных микрофонов. В табл. 3.15 приведены их технические характеристики.

Табл. 3.15. Технические характеристики электретных микрофонов.

Микрофон

Уровень собственного шума,дБ, не более

Напряжение питания, В

М1-А2 «Сосна» М1-Б2 «Сосна» М7 «Сосна»

5-15 10 — 20 > 5

150 — 7000 150 — 7000 150 — 7000

1,2 ±0,12 -1,2 ± 0,12 -1,2 ±0,12

МЭК-1А МЭК-1В

300 -4000 300 -4000

2,3 -4,7 2,3 -4,7

МКЭ-377-1А МКЭ-377-1Б МКЭ-377-1В

6-12 10 — 20 18-36

150 — 15000 150 — 15000 150 -15000

2,3 -6,0 2,3 — 6,0 2,3 — 6,0

МКЭ-378А МКЭ-378В

30 -18000 30 — 18000

2,3 -6,0 2,3 — 6,0

Микрофон

Чувствительность, мВ/Па, не менее

Номинальный диапазон рабочих частот, Гц

Уровень собственного шума, дБ, не более

Напряжение литания,

МКЭ-332А

50 — 12500

2,0 — 9,0

МКЭ-332Б

50 — 12500

2,0 — 9,0

МКЭ-332В

50 — 12500

2,0 — 9,0

МКЭ-332Г

50 — 12500

2,0 — 9,0

МКЭ-ЗЗЗА

50 — 12500

2,0 — 9,0

МКЭ-ЗЗЗБ

50 — 12500

2,0 — 9,0

МКЭ-ЗЗЗВ

50 — 12500

2,0 — 9,0

МКЭ-ЗЗЗГ

50 — 12500

2,0 — 9,0

Ток потребления микрофона МЭК-1 не более 0,2 мА, МКЭ-377-1 и МКЭ-378 не более 0,35 мА. Потребляемый ток микрофонов М1-А2, М1-Б2 и М-7 не более 70 мкА.

Отличие микрофона МКЭ-332 от МКЭ-333 в том, что МКЭ-332 односторонненаправленный, а МКЭ-333 ненаправленный.

Коэффициент гармоник на частоте 1000 Гц при звуковом давлении 3 Па для микрофонов МКЭ-377-1 и МКЭ-389-1 не более 4 %, МКЭ-378 не более 1 %.

Неравномерность частотной характеристики чувствительности в номинальном диапазоне частот для микрофона МКЭ-3 не более 12 дБ, а для М1-А2, М1-Б2, МЭК-1 и МКЭ-389-1 не более ±2 дБ.

Как подключить микрофон к компьютеру?


Вариант схемы усилителя для динамического микрофона

Схема отличается своей супер-простотой и мега-повторяемостью, в схеме два резистора (R1, 2), два конденсатора (C2, 3), штекер 3,5 (J1), один электретный микрофон и транзистор. Конденсатор С3 работает в качестве фильтра микрофона. Емкостью С2 на пренебрегать, то есть не надо ставить ни больше, ни меньше от номинала, указанного в схеме, иначе это повлечет за собой кучу помех. Транзистор Т1 ставим отечественный кт3102. Для уменьшения размеров устройства, использовал SMD транзистор с маркировкой «1Ks». Если ты вообще незнаешь как паять – вперед на форум.

При замене Т1 особых изменений в качестве не последовало. Все остальные детали тоже в SMD корпусах, в том числе и конденсатор С3. Вся плата получилась довольно-таки маленькая, правда можно сделать ее еще меньше, используя технологию изготовления печатных плат ЛУТ. Но обошелся и простым полумиллиметровым перманентным маркером. Вытравил плату в хлорном железе за 5 минут. Получилась вот такая плата усилителя микрофона, которая крепится к штекеру 3,5.

Все это неплохо помещается внутрь кожуха от штекера. Если тоже будете так делать, то советую делать плату как можно меньше, так как у меня она деформировала кожух и поменяла его форму. Плату желательно промыть растворителем или ацетоном. В итоге получилось такое полезное устройство, с хорошей чувствительностью:

Прежде чем подключать микрофон к компьютеру, проверь все контакты и есть ли на входе микрофона питание +5v (а оно должно быть), во избежание комментариев типа: «Я собрал точно как в схеме а оно не работает!». Это можно сделать так: подключаешь новый штекер к разъему микрофона и меряешь напряжение вольтметром между массой (большим отводом) и двумя короткими отводами для пайки. Постарайся на всякий случай не закоротить между собой выводы штекера, когда будешь измерять напряжение. Что тогда будет, не знаю и проверять не хочу. У меня микрофонный усилитель работает уже 3 месяца, качеством и чувствительностью полностью доволен. Собирайте и отписывайтесь на форуме о своих результатах, вопросах, и, может быть даже о доработках корпуса, схемы и методах их изготовления. С вами был BFG5000, удачи!

Обсудить статью УСИЛИТЕЛЬ ЭЛЕКТРЕТНОГО МИКРОФОНА

Источник

Предварительный микрофонный усилитель на микросхеме 4558

Операционный усилитель 4558 выпускается фирмой ROHM. Он характеризуется как маломощный и малошумящий усилитель. Применяется данная микросхема в усилителе микрофона, звуковых усилителях, активных фильтрах, генераторах управляемых напряжением. Микросхема 4558 имеет внутреннюю фазовую компенсацию, увеличенный порог входного напряжения, большой коэффициент усиления и малый уровень шума. Также у данного операционного усилителя имеется защита от короткого замыкания.

Микросхема 4558- характеристики

(140,5 KiB, скачано: 3 609)


предусилитель микрофона на 4558

Это хороший вариант для постройки микрофонного предусилителя на микросхеме. Схема предусилителя для микрофона отличается высоким качеством усиления, простотой и не требует большой обвязки. Этот микрофонный усилитель для динамического микрофона также хорошо работает и с электретными микрофонами.

При безошибочной сборке, схема не требует настройки и начинает работать сразу. Наибольший ток потребления – 9 мА, а в состоянии покоя потребляемый ток в районе 3 мА.

Электретные микрофоны: что это такое и как подключить?

Электретные микрофоны стали одними из самых первых – они были созданы в 1928 году и по сей день остаются важнейшими электретными приборами. Однако если в прошлом использовались восковые термоэлектреты, то в наши дни технологии существенно продвинулись вперед.

Остановимся подробнее на особенностях таких микрофонов и их отличительных характеристиках.

Адаптер для штекера

И тут мы видим проблему: на выходе штекер 1/4″ Mono Plug, а нам нужен 3.5mm Stereo Plug. Бежим покупать адаптер:

1/4″ Mono Female/Jack to 3.5mm Stereo Male/Plug. Втыкаем через этот переходник микрофон в компьютер и обнаруживаем, что звук с него очень тихий в сравнении с электретным микрофоном. Потому что просто катушка на магните, без усилителя — это очень тихо. Немного усилить сигнал можно самой звуковой картой, поставив галочку «усиление» в программных настройках звука и сдвинув ползунки уровней вправо на 100%. Но всё получается тише электретного и это не удобно: при смене микрофона на электретный снова нужно двигать уровни.

Что это такое?

Электретные микрофоны считаются одним из подвидов конденсаторных устройств. Визуально они напоминают небольшой конденсатор и отвечают всем современным требованиям к мембранным устройствам. Обычно изготавливаются из поляризованной пленки с нанесенным на нее тончайшим слоем металла. Такое покрытие представляет собой одну из граней конденсатора, вторая при этом выглядит как твердая плотная пластина: звуковое давление действует на колышущуюся диафрагму и тем самым вызывает изменение характеристик емкости самого конденсатора.

Устройство электронного слоя предусматривает статичное покрытие, оно выполняется из самых качественных материалов с высокими акустическими и механическими характеристиками.

Как и любое другое устройство, электретный микрофон имеет свои достоинства и недостатки.

К преимуществам такой техники относят ряд факторов:

Как и многие другие установки конденсаторного типа, электретная техника характеризуется повышенной чувствительностью и продолжительной стабильностью. Такие изделия отличаются высокой стойкостью к повреждениям, ударам и воздействию воды.

Впрочем, не обошлось и без недочетов. Минусами моделей стали некоторые их особенности:

Электретный микрофон довольно часто становится элементом общей системы визуального и звукового мониторинга.

За счет компактных размеров и высокой гидростойкости их можно установить почти везде. В комбинации с миниатюрными камерами они оптимально подходят для того, чтобы вести наблюдение за проблемными и труднодоступными местами.

Самодельная подставка для микрофона

Но это ещё не всё, надо эту бандуру на что-то поставить, чтоб не держать в руках. Напрягаемся дальше:

Крепёж из ПВХ из Леруа Мерлена, для крепления труб 40 мм. В дырке (она уже была) нарезаем резьбу 1/4″ под винт фотоштатива (можно использовать сам этот винт, нагрев его). Чёрная прокладка — кусок коврика для комп.мыши (здесь это нужно для уменьшения внутреннего диаметра крепежа и для гашения вибрации). Ставим на штатив:

Устройство и характеристики

Электретные конденсаторные устройства в последние годы все чаще устанавливаются в бытовых микрофонах. Они имеют довольно широкий диапазон воспроизводимых частот – от 3 до 20000 Гц. Микрофоны такого вида дают выраженный электрический сигнал, параметры которого в 2 раза больше, чем у традиционного угольного устройства.

Современная радиопромышленность предлагает пользователям электретные микрофоны нескольких видов.

МКЭ-82 и МКЭ-01 – по своим габаритам они идентичны угольным моделям.

МК-59 и их аналоги – их допускается устанавливать в самый обычный телефонный аппарат без его переделки. Электретные разновидности микрофонов намного дешевле, чем стандартные конденсаторные, потому радиолюбители отдают предпочтение именно им. Российские производители также наладили выпуск большого ассортимента электретных микрофонов, среди которых максимальное распространение получила модель МКЭ-2. Это устройство односторонней направленности, предназначенное для использования в катушечных магнитофонах первой категории.

Отдельные модели пригодны для монтажа в любую радиоэлектронную технику — МКЭ-3, а также МКЭ-332 и МКЭ-333.

Такие микрофоны обычно изготавливаются в пластиковом корпусе. Для фиксации на лицевой панели предусмотрен фланец, подобные устройства не допускают сильной тряски и силовых ударов.

Пользователи часто задаются вопросом о том, какой микрофон (электретный либо же традиционный конденсаторный) предпочтительнее. Выбор оптимальной модели зависит от каждой конкретной ситуации с учетом особенностей будущего использования оборудования и финансовых ограничений покупателя. Электретный микрофон намного дешевле конденсаторных емкостных, в то же время по качеству вторые значительно выигрывают.

Если говорить о принципе действия, то в обоих микрофонах он одинаков, то есть внутри заряженного конденсатора при малейших колебаниях одной либо нескольких обкладок возникает напряжение. Единственное различие заключается в том, что в стандартном конденсаторном микрофоне необходимая зарядка поддерживается при помощи непрерывного поляризующегося напряжения, которое подается в устройство.

В электретном устройстве предусмотрен слой специального вещества, которое представляет собой некий аналог постояннодействующего магнита. Оно создаёт поле без какой-либо наружной подпитки – таким образом напряжение, которое подается на электретный микрофон, предназначается не для того, чтобы зарядить конденсатор, а для поддержки питания усилителя на едином транзисторе.

В большинстве случаев электретные модели представляют собой компактные дешевые установки со средними электрозвуковыми характеристиками.

В то время как классические конденсаторные относятся к категории дорогостоящего профессионального оборудования с завышенными эксплуатационными параметрами и фильтром нижних частот. Их даже зачастую применяют при проведении акустических измерений. Параметры чувствительности конденсаторного оборудования гораздо ниже, нежели электретного, потому им непременно нужен дополнительный звукоусилитель со сложным механизмом подачи напряжения.

Если вы планируете использовать микрофон в профессиональной сфере, допустим, для записи песни или звучания музыкальных инструментов, то предпочтение лучше отдавать классическим емкостным изделиям. В то время как для любительского применения в кругу друзей и близких будет вполне достаточно электретных установок вместо динамических – они идеально работают в качестве конференц-микрофона и компьютерного микрофона, при этом могут быть поверхностными либо галстучными.

Принцип работы

Для того чтобы понять, что представляет собой устройство и механизм работы электретного микрофона, сперва нужно узнать, что представляет собой электрет.

Электрет – это особый материал, который обладает свойством долгое время находиться в поляризованном состоянии.

Электретный микрофон включает несколько конденсаторов, у них определённая часть плоскости выполняется из плёнки с электродом, эту плёнку натягивают на кольцо, после чего она подвергается действию заряженных частиц. Электрические частицы проникают внутрь плёнки на незначительную глубину – как следствие, в зоне возле него формируется заряд, который может работать довольно долгое время.

Пленка покрывается тонким слоем металла. Кстати, именно он используется как электрод.

На незначительном удалении размещается ещё один электрод, который представляет собой миниатюрный металлический цилиндр, плоской частью он поворачивается к пленке. Полиэтиленовый мембранный материал создает определенные звуковые колебания, которые дальше передаются на электроды – и в результате образуется ток. Его сила ничтожно мала, поскольку выходное сопротивление имеет повышенное значение. В связи с этим и передача акустического сигнала осуществляется с трудом. Для того чтобы слабый по силе ток и повышенное сопротивление были согласованы друг с другом, в устройство монтируется специальный каскад, он имеет форму униполярного транзистора и располагается в небольшом капсюле в корпусе микрофона.

Самодельный усилитель-переходник

Поэтому делаем усилитель, по схеме:

Усилитель выполнен в виде проходного адаптера: слева гнездо 3.5 мм, справа такой же штекер и они соединены припаянной к их земле-экранам толстой медной проволокой (на Фото 9, 10 она в синей изоляционной термоусадочной трубке), что даёт прочное «шасси», а далее уже навесным образом спаиваем 4 детальки. Правильно всё это делать внутри микрофона, под металлическим экранированием микрофона, но тут и в микрофоне экранирования всё равно нет [Разборка и переделка 2-х-баксового динамического микрофона], да и хотелось сделать универсальный усилитель-переходник для разных микрофонов.

Правила подключения

Так как электретные микрофоны отличаются довольно высоким выходным сопротивлением, то их без каких-либо проблем можно будет подводить к ресиверам, а также усилителям с входящим повышенным сопротивлением. Чтобы проверить усилитель на работоспособность, нужно просто подключить к нему мультиметр, а затем посмотреть на получившееся значение. Если в результате всех измерений рабочий параметр оборудования будет соответствовать 2-3 единицам, то усилитель смело можно использовать с электретной техникой. В конструкцию почти всех моделей электретных микрофонов обычно входит предусилитель, которые называют «преобразователь сопротивления» либо «согласователь импеданса». Его подключают к импортному трансиверу и мини-радиолампам, имеющим входное сопротивление около 1 Ом со значительным выходным сопротивлением.

Именно поэтому даже невзирая на отсутствие постоянной необходимости в поддержании поляризующего напряжения, подобные микрофоны в любом случае нуждаются во внешнем источнике электрического питания.

В целом схема включения выглядит следующим образом.

Для поддержания нормальной работы устройства важно подать на него питание с соблюдением полярности. Для трехвходного устройства типично соединение минуса с корпусом, в этом случае питание производится через плюсовой вход. Затем через разделяющий конденсатор, откуда и производится параллельное подключение ко входу усилителя мощности.

Двухвыходная модель питается через ограничительный резистор, также на положительный вход. Тут же снимается и выходной сигнал. Далее принцип тот же – сигнал идет на разделительный конденсатор, а затем на усилитель мощности.

Как подключить электретный микрофон, смотрите далее.

Источник

Подключение электретного микрофона к трансиверам KENWOOD

Так уж сложилось, компания KENWOOD (в отличие от ICOM), соблюдая давнюю традицию, комплектует свои коротковолновые трансиверы динамическими микрофонами. Вследствие чего и микрофонный вход, прежде всего, рассчитан на их подключение. Переход на электретный микрофон требует проведения небольшой модернизации, и для этого понадобится источник постоянного напряжения, а сама доработка повлечет за собой добавление нескольких элементов. Хорошо еще, что KENWOOD предусмотрел наличие низковольтного источника постоянного напряжения, т.н. фантомное питание, и вывел его на 5-й контакт микрофонного разъема (круглого, 8-ми контактного).

Кто-то скажет — «тоже мне проблема…». Однако, довольно часто натыкаюсь на эфирные разговоры по этой тематике, и вопрос — «А как подключить?» до сих пор актуален. Кто-то где-то что- то читал, с кем-то говорил, что-то кому-то рассказывал, и разговоры про «ЭТО» ведутся постоянно.

Мне же хочется акцентироваться на следующем. Подключить- то, как вы понимаете, совсем не сложно, существуют несколько вариантов. Воспользуемся самой простой и типовой схемой подключения. Она достаточно хорошо известна, и содержит всего несколько деталей. И тем не менее…

Многие из тех с кем довелось разговаривать, сетовали — мол, источник +8В, который «сидит» на 5-ом контакте микрофонного разъема в трансиверах KENWOOD давно выгорел, и они не могут воспользоваться таким способом.

Действительно, этот источник очень слабенький, в пользовательской инструкции про него написано, что его нагрузочная способность не более ЮмА. Ко всему прочему он без защиты — малейшее замыкание и … спасибо за компанию. Сам долгое время избегал включения электретного микрофона таким способом. До сих пор, чаще всего, пользуюсь внешним питанием, причем … батарейным. Но это не значит, что следует отказываться от подобного способа подключения.

Как-то понадобилось подключить тайваньскую телефонную гарнитуру к TS-570. Не долго думая, на махонькой платочке спаял схемку на SMD элементах, — заняла она очень мало места. А чтобы исключить короткого замыкания шины +8В, включил последовательно крохотный светодиодик, из тех, что ярко светятся при слабом прямом токе, что-нибудь около 1мА. Попробуйте замкнуть микрофонный вход пинцетом, и он сразу же засветится.

Разнообразие электретных микрофонов огромно, но недорогие модели мультимедийных гарнитур содержат, как правило, низковольтные микрофоны с питанием 1,5. 5В. Профессиональные запитываются от источника фантомного питания напряжении +48В.

В данном случае выбор ограничительного резистора большого принципиального значения не имеет. Я пользуюсь таким правилом: выбираю резистор, отталкиваясь от питающего напряжения. На каждый вольт питания от 7500м до 1кОм. При напряжении питания 8В суммарный резистор будет в пределах 6,2…7,5кОм (с учетом падения напряжения на светодиоде).

Выходное напряжение (пиковое) некоторых электретных микрофонов даже на относительно низкоомной нагрузке может достигать нескольких вольт, особенно, при близком расположении к говорящему. Поставив маленький переменный резистор, можно подобрать необходимый уровень. А, если он совмещен с выкючателем, еще лучше. Включить его желательно именно так, как указано на схеме, после конденсатора постоянной емкости, а не до него. Смысл в том, что к микрофонному входу трансивера подключается катушка динамического микрофона, замыкая постоянную составляющую на экран (AGND). В своем большинстве микрофонный разъем дешевых телефонных гарнитур (мультимедийных) разных производителей — миниджек (3,5″). И существует вполне определенный способ их распайки. В свою очередь распайка ответного разъема может делаться «под себя». Я именно на это и напоролся при первом же включении своей гарнитуры. Распаяв, ответный разъем под самодельный микрофон, все, как и полагается, работало. Собственно, даже и не предполагал, что когда-нибудь увижу свечение ограничительного светодиода. Ан, нет, воткнул гарнитуру- загорелся светодиод. Я, мягко говоря, аж «прибалдел». Оказалось, что заводская распайка данной гарнитуры сделана таким образом, на который я и не рассчитывал. Светящийся светодиод подсказал мне, что микрофонный вход сел «на землю» и рассчитывать на сигнал нечего — предстоит разбираться в чем дело!. Оказалось, что средний контакт разъема этой гарнитуры замкнулся с экраном соединительного провода, а у меня в ответном разъеме он был запараллелен с центральным контактом (по всей видимости, заводской брак). Пришлось привести в соответствие — все восстановилось и заработало. Казалось бы, ничего особенного, а повозиться пришлось. И еще. Вы подключили неизвестный микрофон. Распайка разъема правильная, а светодиод горит. Значит этот микрофон или неисправный (КЗ), или динамический, катушка которого и замкнула цепь фантомного питания на «землю» (по постоянному току она имеет незначительное сопротивление).

Нормальный микрофон из ☭ МКЭ-3

Имеем: советский микрофон МКЭ-3 диаметром 12 мм с тремя проводками снаружи; непонятно как и к чему его подключать.

Фото 1. Микрофон МКЭ-3 1991 года, производитель «Октава»

Любопытно, что на микрофоне выбита цена 15 руб, т. е. этот экземпляр произведён в тот редкий период времени, когда цены на товары уже устремились вверх (интересно, а сколько он стоил ранее?), но производители всё ещё продолжали писать розничные цены на товарах.

Что внутри

Фото 2. МКЭ-3 в разборке

Резистор 7.5 КΩ. Фигня с позолоченными контактами и маркировкой АА0 (волшебным образом расшифровывается как К513УЕ1А) в современном мире называется JFET (junction gate field-effect transistor) полевым транзистором, а в советские времена это называли «микросхема» (потому, что там внутри ещё есть  диод от истока к затвору и резистор) и другое ещё название — «истоковый усилитель-повторитель».

Питание у этого микрофона кошмарное:

Фото 3. Устройство МКЭ-3

К чему это можно подключить сейчас — неведомо. Но большая мембрана как бы намекает, что у этого микрофона есть потенциал… в плане повышенной чувствительности.

Переделка

Резко начинаем думать, как переделать этот микрофон на современный лад. Вот схема «электрическая принципиальная» МКЭ-3 и современного электретных микрофонов:

Схема 1. Микрофон курильщика (слева), микрофон нормального человека (справа)

Тут видно, что для переделки нужно удалить резистор и поменять исток и сток транзистора местами:

Фото 4. Перекоммутация подключения транзистора, резистор выбросить

Если так сделать (как на Фото 4), то микрофон действительно начинает работать при простом подключении в микрофонный вход компьютера, но гораздо тише любого современного. Наверное, потому что его 9-ю вольтами питать надо, а тут всего 2.1-2.5В; плюс внутри транзистора возможно мешающие делу диод и резистор есть. Звук будто старый (советский) телевизор бухтит. Т. е. даже мужской голос делает бухтяще-бубнящим, будто ящик резонирует.

Поэтому, выкидываем все внутренние детали и ставим нормальный современный N-JFET (n-канальный, junction) полевой транзистор, в даташите которого написано «for audio frequency applications», «for microphone amplifiers» и «low noise». Вот, например, попался некий 2SK301 [даташит]:

Фото 5. Установка одного JFET полевого транзистора 2SK301 вместо всего того, что было

Лёгким движением паяльника пристыковываем… готово:

Фото 6. Сборка модернизированного микрофона

Звук записи отличный, идентичен натуральному почти полностью совпадает с исходным (только немного на басах гулко, но это типично для всех электретных микрофонов), очень громко-чувствительно (в сравнении с более мелкими современными капсюлями, см. ниже). Но выявились две проблемы:

  1. На уровне собственного шума (при записи тишины) слышно лёгкое журчание.
  2. Сопротивление микрофона (точнее транзистора на выходе исток-сток) оказалось 500 Ом, из-за чего он не работает при подключении в разъём гарнитуры смартфона (начинаются глюки), это потому что микрофон в гарнитуре должен иметь сопротивление порядка 1 кОм (не менее 800 Ом).

В общем, возникла идея поставить другой транзистор, вытащив его из более мелкого (1-см-метрового) и плохого по звуку. В первом раскуроченном капсюле оказался 2SK596:

Фото 7. Другой транзистор: 2SK596

Имеем: звук на записи хоть и громче, чем того маленького-современного-китайского, в котором был это полевой транзистор но точь-в-точь такой же на слух по качеству, что был и в мелком микрофоне. Т. е. хреновый (повышенная высокачастотность: цыканье, сипение). Вскрываем другой микрофон, с другим «звучанием» (звук на записи с него глуховат и тиховат), там 2SK596S:

Фото 8. Другой транзистор: 2SK596S

Припаиваем и опять: звук точь-в-точь такой же, что и у микрофона, из которого этот транзистор вытащен, только с капсюля МКЭ-3 он получается громче (за счёт большей площади мембраны).

Мораль: качество звукозаписи с электретного микрофона катастрофически зависит от транзистора.

Надо искать нормальный JFET. Вроде 2SK170 в Сети считается лучшим. Будем искать. (На Али их не покупайте, там у всех продавцов фейки этого транзистора — читайте отзывы под лотами).

Тестирование-сравнение микрофонов

Вообще, для сравнительного тестирования (субъективного, на слух) микрофонов я сделал такую штуку:

Фото 9. Массовое тестирование электретных микрофонов

Т. е. для простоты смены микрофонов припаиваем к ним простые разъёмы и приклеиваем номера. Потом для каждого микрофона проигрываем один и тот же кусок какой-нибудь музыкальной композиции (с басами, голосом, всякими высокочастотными инструментами одновременно) через двухполосные динамики или наушники; записываем в порядке номеров. Потом прослушиваем и сравниваем, пишем рецензии.

В частности выяснилось, что все микрофоны на Фото 9 «звучат» по разному. № 1, 2, 3 примерно вдвое тише, чем № 5, 6, 7 (и это понятно: они мельче, мембрана по площади как раз примерно вдвое меньше). Все они (электретные, включая МКЭ-3 с любым транзистором) гудят, бу́хают, как бы воют на низких частотах (басах). У всех уровень шума (при записи тишины) вдвое выше, чем у простейшего динамического за 2 бакса.

Основные результаты и выводы:

  1. Электретные конденсаторные микрофоны — самые плохие по качеству звуко-восприятия (хуже конденсаторных, динамических). В частности тихие (в смысле слабочувствительные), шумные (в тишине). Нет бы просто не «слышали» низких частот, а то ведь пишут их достаточно громко, но в сильно искажённом виде.
  2. Чем больше диаметр такого микрофона, тем «громче»-чувствительнее он. Очевидно, по причине большести площади мембраны.
  3. Качество звукопередачи на 99% зависит от полевого транзистора внутри капсюля. (В отличие от динамического микрофона, у которого электронная часть влияет только на громкость-чувствительность микрофона в зависимости от коэффициента усиления транзистора или усилителя).

Электретный микрофон — это… Что такое Электретный микрофон?

Слева электретный капсюль (конденсатор) микрофона МКЭ-3, справа — весь микрофон (содержит капсюль и буферный усилитель) Электретные микрофоны («капсюли»).

Электре́тный микрофо́н — разновидность конденсаторного микрофона.

Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени.

Принцип действия гомоэлектретного микрофона

Тонкая плёнка из гомоэлектрета помещается в зазор конденсаторного микрофона (то есть конденсатора, у которого одна из обкладок (мембрана) имеет возможность перемещаться под действием внешнего акустического сигнала) либо наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, вследствие смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

Принцип действия гетероэлектретного микрофона

В таком микрофоне сама гетероэлектретная плёнка служит мембраной. При её деформации на её поверхностях возникают разноимённые заряды, которые можно зарегистрировать, расположив электроды непосредственно на поверхности плёнки (на поверхность напыляют тонкий слой металла (алюминий, золото, серебро и т. п.).

Особенности подключения

Типичная схема предусилителя на встроенном полевом транзисторе. Внешнее напряжение питания подаётся на U+; отделённая конденсатором переменная составляющая сигнала снимается с «Output»; резистор устанавливает режим работы транзистора и выходной импеданс.

В отличие от динамических микрофонов, имеющих низкое электрическое сопротивление катушки (~50 Ом ÷ 1 кОм), электретный микрофон имеет чрезвычайно высокий импеданс (имеющий емкостный характер, порядка десятков пФ), что вынуждает подключать их к усилителям с высоким входным сопротивлением. В конструкцию практически всех электретных микрофонов входит предусилитель («преобразователь сопротивления», «согласователь импеданса») на полевых транзисторах, реже на миниатюрных радиолампах с входным сопротивлением порядка 1 ГОм и выходным сопротивлением в сотни Ом, находящийся в непосредственной близости от капсюля. Поэтому, несмотря на отсутствие необходимости в поляризующем напряжении, такие микрофоны требуют внешнего источника электропитания.

Ссылки

Микрофонный усилитель со встроенным микрофоном и трехполосным эквалайзером

Микрофонный предусилитель для электретного микрофона со встроенным микрофоном, трхполосным регулятором тембра и питанием от li-ion аккумулятора для записи закадрового голоса и стримов

В этой статье я расскажу о второй версии предусилителя для электретного микрофона. С первым вариантом на операционном усилителе NE5532 вы можете ознакомиться в этой статье

Была поставлена задача сделать очень простое и экономичное устройство с питанием от встроенного Li-Ion аккумулятора, с возможностью подзарядки от USB компьютера, телефонной зарядки или повербанка. Я предпочитаю микрофонные предусилители с батарейным питанием, так как они обеспечивают полное отсутствие помех по цепям питания. Тем не менее этот усилитель может фактически питаться от USB, то есть он может работать во время зарядки его встроенного аккумулятора.

Усилитель оборудован трехполосным регулятором тембра по низким (100Гц), средним (1000Гц) и высоким (10кГц) частотам. Возможно это не так актуально для записи закадрового голоса на видео (собственно для этого и делался усилитель), так как тембр микрофона всегда можно «подкрутить» программным эквалайзером в монтажке, но это может быть актуально при использовании усилителя для стримы и прямых трансляций. В этом случае при использовании разных микрофонов можно будет оперативно подстроить тембр голоса «железными» регуляторами усилителя.

Кроме того, уже после того как я собрал усилитель, появилась мысль оборудовать его встроенным микрофоном. Я просверлил в крышке корпуса усилителя отверстие диаметром 6мм и установил туда электретный микрофонный капсюль. Это превратило усилитель в универсальное устройство, фактически в микрофон с усилителем, регулятором тембра и с автономным питанием. Что касается внешних микрофонов, то усилитель может работать с любым «компьютерным» микрофоном или микрофоном — петличкой. Я использую его с самодельным микрофоном на основе капсюля Panasonic WM-61a.

Питается устройство от небольшого Li-Ion аккумулятора ёмкостью 550mAh, от которого схема потребляет чуть больше одного миллиампера. Время автономной работы составляет примерно 500 часов (около 20 дней). Это довольно много. Мне еще ни разу не удалось полностью «посадить» батарею. Просто иногда подключаю в USB и подзаряжаю. Вы можете использовать аккумулятор меньшей емкости и соответственно более дешевый. Ставить аккумулятор большей емкости думаю нецелесообразно, так как он будет работать почти «вхолостую».

Принципиальная схема

Принципиальная схема усилителя приедена на рисунке ниже. Чтобы увеличить схему кликните на ней мышкой. Схема откроется в новом окне браузера:

Усилитель собран всего на трех транзисторах типа BC547 или BC549. Микрофонный контакты гнезда «миниджек» соединяются со входом усилителя к точкам Mic+ и Mic- таким образом, чтобы сигнальный (плюсовой) вывод микрофонного капсюля соединялся с гнездом Mic+, а минусовой вывод капсюля (он же «земля») — к контакту Mic-. Гнездо служит для подключения внешнего микрофона. Если вы хотите использовать еще и внутренний встроенный микрофонный капсюль, устанавливаемый на верхней крышке корпуса усилителя, то минус его нужно соединить с контактом платы Mic-, а плюс нужно соединить с дополнительным выводом гнезда Миниджек. Нужно использовать гнездо миниджек с автоматическим разрывом контактов при включении в него штеккера. Тогда внутренний микрофон будет автоматически отключаться при подключении внешнего микрофона. Если у вас нет такого гнезда, придется установить переключатель, чтобы избежать параллельного соединения двух микрофонов.
В качестве встроенного микрофона я рекомендую использовать капсюль WM-61 или их китайский клон (тоже хорошо работают).

Заказать капсбли WM-61 на Али

Напряжение питания на капсюль подается через резистор R1. Вы можете попробовать подобрать сопротивление этого резистора в пределах 1…10 кОм для достижения оптимального режима работы капсюля, что определяется по максимуму его сигнала. Это целесообразно делать для того внешнего микрофона с которым вы планируете работать чаще всего или для встроенного капсюля.

На транзисторах Q1 и Q2 собран усилительный каскад с непосредственной связью между двумя транзисторами. Усиление каскада (ручка «Gain») регулируется потенциометром R2, Этот потенциометр плавно уменьшает коэффициент отрицательной обратной связи по по переменному току, замыкая часть переменного напряжения на коллекторе Q1 на землю.

С выхода эмиттерного повторителя на транзисторе Q2 сигнал поступает на трехполосный регулятор тембра, собранный на транзисторе Q3. Регулирующая схема на потенциометрах R9, R12, R15 включена в цепь отрицательной обратной связи усилительного каскада на транзисторе Q3.

Работа трехполосного регулятора тембра — симуляция в Proteus (видео)

С выхода регуляторна тембра (коллектор Q3) через конденсатор С13 сигнал поступает на регулятор выходного уровня R21 и через еще один разделительный конденсатор C17 поступает на выходной разъем типа мини-джек. Конденсатор C17 нужен для того, чтобы предотвратить попадание постоянного напряжения из микрофонного входа компьютерной звуковой карты на движок потенциометра R21. Это напряжение присутствует на входах звуковых карт и служит для питания электретных микрофонов. Если не устанавливать конденсатор С17 то напряжение смещения, подаваемое со звуковой кары вызовет неприятные шумы, трески и шорохи при регулировании выходного сигнала потенциометром R21.

Контроллер заряда литий ионного аккумулятора собран на распространенной микросхеме LTC4054. Во время заряда аккумулятора светится светодиод LED2. Светодиод гаснет когда батарея полностью заряжена.

Печатная плата разведена в программе DipTrace. Плата односторонняя, с перемычками со стороны установки деталей. Потенциометры я применил старые советские СП4Б (можно использовать современные), так как у меня оказалось их много, когда-то выпаял из советского микшерного пульта). Потенциометры устанавливаются на печатную плату и плата закрепляется на передней стенке корпуса именно на этих потенциометрах. Однако можно просто установить потенциометры на панели усилителя и соединить их с печатной платой кусочками проводов. Это особого значения не имеет.

Видео об изготовлении и испытании этого усилителя

Скачать архив с 3D моделями для печати корпуса и проектом печатной платы для программы DipTrace

Подключение динамического микрофона к компьютеру

Подключение динамического микрофона к компьютеру.

Микрофонный вход звуковых карт предназначен для подключения электретных(разновидность конденсаторных) микрофонов. Конденсаторный микрофон имеет встроенный усилитель и поэтому на выходе достаточно сильный сигнал. 

Рис.1 Схема конденсаторного микрофона.

В большинстве случаев электретные микрофоны имеют худшие характеристики чем динамические. Имеет смысл при необходимости  качественной звукозаписи  использовать более качественный (в сравнении с тем что устанавливается, например, в гарнитурах)  динамический микрофон, который мог остаться со времен СССР, например от магнитофона, или микрофон шел от комплекта DVD с караоке. На фото нескольких примеров динамических микрофонов.

Рис.2 Динамический микрофон от DVD плеера с караоке.

Рис.3 Динамический микрофон Октава МД-47. Год выпуска 1972. Замечательный звук.

Рис.4 Динамический микрофон. Капсюль ДЭМШ-1А.

Рис.5 Стильная ретро гарнитура с динамическим микрофоном.

Подключив к микрофонному входу звуковой карты динамический микрофон, не возможно получить нормальный уровень сигнала, по крайней мере, если не кричать в этот микрофон. Необходимо усиление.

В отличие от динамических микрофонов, все конденсаторные микрофоны требуют питания усилителя. Для работы встроенного в конденсаторный микрофон усилителя на средний контакт подается питание примерно 3 вольта — Vbias(на рис.8 — +V). Схема усилителя для динамического микрофона аналогична встроенному усилителю конденсаторного микрофона.

Рис.7 Схема усилителя для динамического микрофона.

Рис.8 Штекер микрофона.

Номиналы деталей варьируются очень широко.

Транзистор V1 n-p-n типа. Например С945, КТ315Б, КТ3102. Резистор R1 в пределах 47..100кОм, желательно поставить подстроечный, и вывести транзистор в оптимальный режим, а затем измерить сопротивление построечного резистора и поставить постоянный близкого номинала. Хотя работать схема будет сразу с любым транзистором и резистором с номиналом в этих пределах. Конденсаторы С1,С2 от 10 мкф и до 100 мкф, оптимально 47 мкф на 10 В. Резистор R2 1..4,7кОм

Схему желательно разместить в самом корпусе микрофона, как можно ближе к капсюлю, чтобы избежать усиления шумов,  которые могут проникнуть в кабель. Если же микрофон должен использоваться по прежнему назначению или нужна возможность подключать разные динамические микрофоны, то схему можно смонтировать в отдельном экранированном корпусе с гнездом для подключения микрофонов и кабелем для подключения к звуковой карте.

  Обратно

© 2010 Александр Джулай
Схема усилителя электретного микрофона

| Контактная информация Finder

Результаты листинга Схема электретного микрофонного усилителя

Малошумный, однополярный, электретный микрофонный усилитель

2 часа назад Egr.msu.edu Показать подробности