Какие модели усилителей TDA наиболее популярны. Каковы основные характеристики усилителей TDA. Как правильно выбрать и применить усилитель TDA. Какие преимущества и недостатки есть у усилителей на микросхемах TDA.
Обзор популярных микросхем серии TDA для усилителей звука
Микросхемы серии TDA широко применяются в качестве усилителей мощности звука благодаря простоте применения, хорошим характеристикам и доступной цене. Рассмотрим наиболее популярные модели:
TDA2003
TDA2003 — это монофонический усилитель мощностью 10 Вт. Основные характеристики:
- Напряжение питания: 8-18 В
- Максимальный ток потребления: 3,5 А
- Выходная мощность: 10 Вт (при КНИ 10%, нагрузке 2 Ом)
- КНИ: 0,15% (при мощности 4,5 Вт на нагрузке 4 Ом)
- Ток покоя: менее 50 мА
TDA2003 отличается простотой применения и хорошим соотношением цена/качество, поэтому часто используется в бюджетных устройствах.
TDA2030
TDA2030 — усилитель мощностью 14 Вт класса Hi-Fi. Ключевые параметры:

- Напряжение питания: ±6…±18 В
- Выходная мощность: 14 Вт (при КНИ 0,5%, нагрузке 4 Ом)
- КНИ: 0,5% (при мощности 12 Вт на нагрузке 4 Ом)
- Полоса пропускания: 10-140000 Гц
- Ток покоя: 40-60 мА
TDA2030 обеспечивает высокое качество звучания при умеренной мощности, что делает ее популярной в Hi-Fi аппаратуре среднего класса.
Высокомощные усилители TDA для профессионального применения
Для построения мощных усилителей звука используются специализированные микросхемы TDA большой мощности:
TDA7293
TDA7293 — монофонический усилитель мощностью до 100 Вт. Основные характеристики:
- Напряжение питания: ±12…±50 В
- Максимальный потребляемый ток: 10 А
- Выходная мощность: 140 Вт (при КНИ 10%, нагрузке 8 Ом)
- КНИ: 0,1% (при мощности 5-50 Вт)
TDA7293 применяется в мощных Hi-Fi усилителях и профессиональной звуковой аппаратуре благодаря высокой мощности и низким искажениям.
TDA7294
TDA7294 — еще одна популярная микросхема для мощных усилителей звука:
- Напряжение питания: ±12…±40 В
- Максимальный потребляемый ток: 10 А
- Выходная мощность: 100 Вт (при КНИ 10%, нагрузке 8 Ом)
- КНИ: 0,1% (при мощности до 50 Вт)
TDA7294 обеспечивает отличное качество звучания при высокой выходной мощности, что позволяет применять ее в Hi-End аудиотехнике.

Преимущества и недостатки усилителей на микросхемах TDA
Рассмотрим основные плюсы и минусы применения усилителей на базе микросхем TDA:
Преимущества:
- Простота схемотехники — минимум внешних компонентов
- Низкая стоимость готового усилителя
- Хорошие характеристики при правильном применении
- Широкий выбор микросхем под разные задачи
Недостатки:
- Ограниченная максимальная мощность (до 100-140 Вт)
- Требуется качественный радиатор охлаждения
- Чувствительность к качеству источника питания
- Возможность самовозбуждения при неправильном монтаже
При грамотном проектировании усилителя и качественном монтаже недостатки можно свести к минимуму.
Как выбрать подходящий усилитель TDA для своего проекта
При выборе конкретной модели микросхемы TDA следует учитывать следующие факторы:
- Требуемая выходная мощность усилителя
- Напряжение питания в вашем устройстве
- Сопротивление подключаемой акустической системы
- Необходимый уровень качества звучания (Hi-Fi или обычный)
- Количество каналов усиления (моно, стерео, квадро)
Исходя из этих параметров, можно подобрать оптимальную микросхему TDA для вашего проекта. Важно также учитывать рекомендации производителя по применению конкретной модели.

Рекомендации по применению усилителей TDA
Для получения максимального качества звучания усилителя на базе TDA необходимо соблюдать следующие правила:
- Использовать качественный стабилизированный источник питания
- Обеспечить эффективный теплоотвод от микросхемы
- Применять короткие соединения с минимальными паразитными связями
- Использовать качественные комплектующие (конденсаторы, резисторы)
- Правильно выбирать номиналы внешних компонентов схемы
При соблюдении этих рекомендаций можно добиться от усилителя TDA очень хороших параметров, сравнимых с более дорогими решениями на дискретных компонентах.
Схемотехника типового усилителя на TDA7294
Рассмотрим типовую схему включения популярной микросхемы TDA7294:
Основные элементы схемы:
- Входной фильтр R1C1 для защиты от ВЧ помех
- Разделительный конденсатор C2 на входе
- Цепь обратной связи на резисторах R3 и R4
- Конденсатор C3 для стабилизации по постоянному току
- Выходной LC-фильтр для защиты от самовозбуждения
При правильно выбранных номиналах такая схема обеспечивает отличные параметры усилителя — низкие искажения, широкую полосу и высокую выходную мощность.

![]()
| Моно усилитель 6(10) Вт Напряжение питания — 6…24 B Максимальный потребляемый ток — 3 A Выходная мощность (Un =14,4 В,.КНИ=10%): |
![]()
| Моно усилитель 2(6) Вт Напряжение питания — 3,6…20 B Максимальный потребляемый ток — 3 A Выходная мощность (RL=4 Ом, КНИ=10%): |
![]()
| Моно усилитель 4 Вт Напряжение питания — 10…40 B Максимальный потребляемый ток — 1,5 A Выходная мощность (КНИ=10%) — 4,2 ВтКНИ (Р=2,5 Вт, RL=8 Ом) — 0,15 % |
![]() TDA1015 datasheet | Моно усилитель 1(4) Вт Напряжение питания — 3,6…18 В Максимальный потребляемый ток — 2,5 А Выходная мощность (RL=4 Ом, КНИ=10%): |
![]()
| Моно усилитель 12 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 4 А Выходная мощность (Un =14,4 В, КНИ=10%): |
![]()
| Моно\стерео усилитель 24 Вт, 2х12 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 4 А Выходная мощность (Un=14,4B RL=4 Oм): |
![]()
| Моно усилитель 50 Вт Напряжение питания — ±10…±30 В Максимальный потребляемый ток — 6,4 А Выходная мощность: |
![]() TDA1515 datasheet | Моно\стерео усилитель 24 Вт, 2х12 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 4 А Выходная мощность (Un =14,4 В, КНИ=0,5%): Выходная мощность (Un=14,4 В, КНИ=10%):
|
![]()
| Моно\стерео усилитель 24 Вт, 2х12 Вт Максимальный потребляемый ток — 4 А Выходная мощность (Un =14,4 В, КНИ=0,5%): Выходная мощность (Un =14,4 В, КНИ=10%):
|
![]()
| Стерео усилитель 2х6 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 2,5 А Выходная мощность (Un=14,4B RL=4 Oм): |
![]()
| Моно\стерео усилитель 24 Вт, 2х12 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 4 А Выходная мощность (Un =14,4 В, КНИ=0,5%): Выходная мощность (Un =14,4 В, КНИ=10%):
|
![]() TDA1519 datasheet | Стерео усилитель 2х6 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 4 А Выходная мощность (Uп=14,4 В, КНИ=0,5%): Выходная мощность (Un =14,4 В, КНИ=10%): Ток покоя — 80 мА |
![]()
| Стерео усилитель 2х22 Вт Напряжение питания -6…18 В Выходная мощность (Un =14,4 В, RL=4 Ом): |
![]()
| Стерео усилитель 2х22 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 4 А Выходная мощность (Un =14,4 В, RL=4 Ом): |
![]()
| Стерео усилитель 2х22 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 4 А Выходная мощность (Uп=4,4 В, RL=4 Ом): Ток покоя — 160 мА |
![]()
| Квадро\стерео усилитель 4х11 Вт\ 2х22 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 4 А Выходная мощность (Uп =14,4 В, RL=4 Ом):
|
![]()
| Стерео усилитель 2х10 Вт Напряжение питания — 8…18 В Максимальный потребляемый ток — 3,5 А Выходная мощность (Un=14,4 В, КНИ=10%): Ток покоя — <120 мА |
![]()
Готовое устройство | Моно\стерео усилитель 20 Вт\ 2х10 Вт Напряжение питания — 8…18 В Максимальный потребляемый ток — 3,5 А Выходная мощность (Uп =14,4 В, КНИ=10%):RL=4 Ом — 20 Вт Ток покоя — <160 мА
|
![]()
| Моно усилитель 12 Вт Напряжение питания — ±6…±15 В Максимальный потребляемый ток — 3 А Выходная мощность (Еп=±12В,КНИ=10%): Полоса пропускания (по уровню -3 дБ) — 20…100000 ГцТок потребления: |
![]()
| Стерео усилитель 2х6 Вт Напряжение питания — +6…+26 В Ток покоя (Eп=+18 В) — 50…90 мА Выходная мощность (КНИ=0,5 %): Максимальный ток потребления — 3 А |
![]()
| Моно усилитель 12 Вт Напряжение питания — +10…+28 В Ток покоя (Еп=+18 В) — 65…115 мА Выходная мощность (Еп=+18В, КНИ= 10%): Максимальный ток потребления — 3 А |
![]()
| Стерео усилитель 2х10 Вт Напряжение питания — +8…+28 В Ток покоя (Еп=+18 В) — 60…120 мА Выходная мощность (Еп=+24 В, КНИ=1 %): Выходная мощность (Еп=+18 В, КНИ=1 %): Полоса пропускания (по уровню -3 дБ) — 20…80000Гц Максимальный ток потребления — 3,5 А |
![]()
| Hi-Fi моно усилитель 14 Вт Напряжение питания — ±6…±18 В Ток покоя (Еп=±14 В) — 40…60 мА Выходная мощность (Еп=±14 В, КНИ = 0,5 %): Полоса пропускания (по уровню -3 дБ) — 10…140000 ГцТок потребления: |
![]()
| Hi-Fi моно усилитель 25 Вт Напряжение питания — ±2,5…±20 В Ток покоя (Еп=±4,5…±14 В) — мА 30…100 мА Выходная мощность (Еп=±16 В, КНИ = 0,5 %): Максимальный ток потребления — 4 А |
![]()
| Hi-Fi моно усилитель 32 Вт Напряжение питания — ±4,5…±25 В Ток покоя (Еп=±4,5…±25 В) — 30…90 мА Выходная мощность (Еп=±18, RL = 4 Ом, КНИ = 0,5 %) — 24…28 ВтКНИ (Еп=±18В, P=24Bт, RL=4 Ом) — 0,03…0,5 % Полоса пропускания (по уровню -3 дБ) — 20…80000 Гц Максимальный ток потребления — 5 А |
![]()
| Hi-Fi моно усилитель 40 Вт Напряжение питания — ±18…±25 В Выходная мощность: |
![]()
| Hi-Fi моно усилитель 60 Вт Напряжение питания — ±6…±25 В Ток покоя (En = ±22 В) — 70 мА Выходная мощность (Еп = ±22 В, КНИ = 10%): Выходная мощность (En = 22 В, КНИ = 1%): |
![]()
| Моно усилитель 5 Вт Напряжение питания — 6…35 В Ток покоя (Еп=18 В) — 25 мА Максимальный ток потребления — 1,5 А Выходная мощность (КНИ=10%): при Еп=18 В, RL=8 Ом — 4 Вт КНИ (при Рвых=2 Вт) — 1 % Полоса пропускания — >15 кГц |
![]()
| Hi-Fi моно усилитель 6 Вт Напряжение питания — 15…42 ВКНИ: Максимальный ток потребления — 2,2 А |
![]()
| Hi-Fi моно усилитель 6 Вт Напряжение питания — 15…42 В Максимальный ток потребления — 2,2 А Ток покоя (Еп=24 В) — 35 мАКНИ: Полоса пропускания (по уровню -3 дБ) — 30…20000 Гц |
![]()
| Hi-Fi стерео усилитель 2х6 Вт Напряжение питания — ±7,5…21 В Максимальный потребляемый ток — 2,2 А Ток покоя (Еп=7,5…21 В) — 18…70 мА Выходная мощность (Еп=±12 В, RL=8 Ом): Полоса пропускания (по уровню-3 дБ и Рвых=4 Вт) — 20…20000 Гц |
![]()
| Стерео усилитель 2х1,7 Вт Напряжение питания — 3…15 В Максимальный потребляемый ток — 1,5 А Ток покоя (Еп=6 В) — 12 мА Выходная мощность (КНИ=10%, RL=4 Ом): |
![]()
| Моно усилитель 1 Вт Напряжение питания — 9…18 В Максимальный потребляемый ток — 1,5 А Ток покоя 100 мА Выходная мощность: |
![]()
| Стерео усилитель 2х1 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 1,5 А Ток покоя 100 мА Выходная мощность:
|
![]()
| Стерео усилитель 2х2 Вт Напряжение питания — 3…15 В Максимальный потребляемый ток — 1,5 А Ток покоя (Еп=6 В) — 12 мА Выходная мощность (КНИ=10%, RL=4 Oм) КНИ (Еп=9 В, RL=8 Ом, Рвых=0,5 Вт) — 0,2 % |
![]()
| Моно усилитель 1,6 Вт Напряжение питания — 1,8…16 В Максимальный потребляемый ток — 1,0 А Ток покоя (Еп=6 В) — 9 мА Выходная мощность (КНИ=10%): КНИ (Еп=6 В, RL=8 Ом, Рвых=0.2 Вт) — 0,3 % |
![]()
| Моно усилитель 1,6 Вт Напряжение питания — 1,8…24 В Максимальный потребляемый ток — 1,0 А Ток покоя (Еп=12 В) — 10 мА Выходная мощность (КНИ=10%): КНИ (Еп=12В, RL=8 Oм, Рвых=0,5 Вт) — 1,0 % |
![]()
| Моно усилитель 20 Вт Максимальное напряжение питания — 18 В Максимальный потребляемый ток — 4,5 А Ток покоя (Еп=14,4 В) — 120 мА Выходная мощность (Еп=14,4 В, КНИ=10%): КНИ: (Еп=14,4 В, RL=8 Ом, Рвых=12Вт) — 0,05 % Полоса пропускания по уровню -3 дБ (RL=4 Ом, Рвых=15 Вт) — 30…25000 Гц |
![]()
| Моно усилитель 20 Вт Максимальное напряжение питания — 18 В Максимальный потребляемый ток — 4,5 А Ток покоя (Еп=14,4 В) — 80 мА Выходная мощность (Еп=14,4 В, КНИ=10%): КНИ: Полоса пропускания по уровню -3 дБ (RL=4 Ом, Рвых=15 Вт) — 30…25000 Гц |
![]()
| Квадро\стерео усилитель 4х11 Вт\2х22 Вт Напряжение питания — 6…18 B Максимальный потребляемый ток — 4 А Выходная мощность (Uп =14,4 В. RL=4 Ом):
|
![]()
| Стерео усилитель 2х22 Вт Напряжение питания — 6…18 В Максимальный потребляемый ток — 4 А Выходная мощность (Uп =14,4 В, RL=4 Ом): — КНИ=0,5% — 17 Вт Ток покоя, мА 80 |
![]()
| Стерео усилитель 2х22 Вт Напряжение питания -6…18 В Максимальный потребляемый ток -4 А Выходная мощность: (Uп=14.4 В, RL=4 Ом): |
![]()
| Квадро\стерео усилитель 4х11 Вт\ 2х22 Вт Напряжение питания — 6..18 В Максимальный потребляемый ток — 4 А Выходная мощность (Uп=14 В, RL=4 Ом):
|
![]()
| Стерео усилитель 2х23 Вт Напряжение питания — 6…18 В Максимальный потребляемы ток — 4 А Выходная мощность (Uп=14В, RL=4 Ом): — КНИ=0.5% — 18 Вт Ток покоя — 150 мА |
![]()
| Моно усилитель 4 Вт Напряжение питания — 4…20 В Максимальный потребляемы ток — 2 А Выходная мощность (RL=4 Ом, КНИ=10%): КНИ (Uп=9 В, P<1,2 Вт, RL=4 Ом) — 0,3 % Ток покоя — 8…18 мА |
![]()
| Моно усилитель 5 Вт Напряжение питания — 4…30 В Максимальный потребляемы ток — 2,5 А Выходная мощность (КНИ=10%) КНИ (Uп=14 В, P<3,0 Вт, RL=4 Ом) — 0,1 % Ток покоя — <35 мА |
![]()
| Моно усилитель 10 Вт Напряжение питания — 8…30 В Максимальный потребляемы ток — 3 А Выходная мощность (КНИ=10%): КНИ (Uп=24 В, P<10,0 Вт, RL=4 Ом) — 0,2 % Ток покоя — <35 мА |
![]()
Готовое устройство | Моно усилитель 10 Вт Напряжение питания — 8…18 В Максимальный потребляемый ток — 3,5 А Выходная мощность (Uп=14В, КНИ=10%): КНИ (Uп=14,4 В, P<4,5 Вт, RL=4 Ом) — 0,15 % Ток покоя — <50 мА |
![]()
| Моно усилитель 100 Вт Напряжение питания — ±12…50 В Максимальный потребляемы ток — 10 А Выходная мощность : КНИ (PO = 5W; f = 1kHz PO = 0.1 to 50W; f = 20Hz to 15kHz) — 0,1 % |
![]()
| Моно усилитель 100 Вт Напряжение питания — ±12…40 В Максимальный потребляемы ток — 10 А Выходная мощность : КНИ (VS = ±27V, RL = 4Ω: PO = 5W; f = 1kHz PO = 0.1 to 50W; f = 20Hz to 20kHz) — 0,1 % |
Усилитель НЧ на TDA7294 | AUDIO-CXEM.RU
Микросхема TDA7294, представляющая интегральный усилитель низкой частоты, который очень популярен среди электронщиков, как начинающих, так и профессионалов. В сети полно разных отзывов о данной микросхеме. Решил и я собрать усилитель на ней. Схему я взял из даташита.
Питается данная “микруха” двухполярным питанием. Для новичков поясню, что не достаточно иметь “плюс” и “минус”.
Нужен источник с плюсовым выводом, минусовым выводом и общим. Например, относительно общего провода должно быть плюс 30 Вольт, а в другом плече минус 30 Вольт.
Усилитель на TDA7294 достаточно мощный. Максимальная паспортная мощность 100 Вт, но это с нелинейными искажениями в 10% и при максимальном напряжении (в зависимости от сопротивления нагрузки). Надежно снимать можно 70Вт. Таким образом, на свой день рождения я прослушивал две параллельно соединенные колонки “Радиотехника S30” на одном канале TDA 7294. Весь вечер и половину ночи, колонки звучали, иногда вводя их в перегруз. Но усилитель спокойно выдержал, хоть и порой перегревался (из-за плохого охлаждения).
Основные характеристики TDA7294
Подаваемое напряжение +-10В…+-40В
Пиковый выходной ток до 10А
Рабочая температура кристалла до 150 градусов Цельсия
Выходная мощность при d=0.5%:
При +-35В и R=8Ом 70Вт
При +-31В и R=6Ом 70Вт
При +-27В и R=4Ом 70Вт
При d=10% и повышенном напряжении (смотрите даташит) можно добиться и 100Вт, но это будут грязные 100Вт.
Если вам нужны более подробные характеристики, то следует прочесть даташит на ТДА7294.
Схема усилителя на ТДА7294
Приведенная схема взята из паспорта, все номиналы сохранены. При правильном монтаже и правильно выбранных номиналов элементов, усилитель запускается с первого раза и не требует никаких настроек.
Элементы усилителя
Номиналы всех элементов указаны на схеме. Мощность резисторов 0,25 Вт.
Саму “микруху” следует установить на радиатор. Если радиатор соприкасается с другими металлическими элементами корпуса, либо радиатором является сам корпус, то необходимо установить диэлектрическую прокладку между радиатором и корпусом TDA7294.
Прокладка может быть силиконовая или слюдяная.
Площадь радиатора должна составлять не менее 500 кв.см., чем больше, тем лучше.
Изначально я собирал два канала усилителя, так как источник питания позволял, но я не правильно подобрал корпус и оба канала просто не влезли в корпус по габаритам. Пытался я уменьшить печатную плату, но ничего не вышло.
После полной сборки усилителя я понял, что корпуса не достаточно для охлаждения и одного канала усилителя. Корпус у меня являлся радиатором. Короче говоря, раскатал губу на два канала.
При прослушивании моего устройства на полную громкость, кристалл начинал перегреваться, но я убавлял уровень громкости и продолжал тестировать. В итоге, до полуночи слушал я музыку на умеренной громкости, периодически вгоняя усилитель в перегрев. Усилитель на ТДА7294 оказался очень даже надежным.
Режим STAND—BY TDA7294
Если на 9 ногу подать 3,5В и более, то микросхема выходит из спящего режима, если подать менее 1,5В, то войдет в спящий режим.
Для того, чтобы устройство вывести из спящего режима, нужно 9 ногу через резистор 22 кОм подключить к плюсовому выводу (источника двухполярного питания).
А если 9 ногу через тот же резистор подключить к выводу GND (источника двухполярного питания), то устройство войдет в спящий режим.
Печатная плата, находящаяся под статьей, разведена так, что 9 нога через резистор 22 кОм соединена дорожкой с плюсовым выводом источника питания. Следовательно, при включении источника питания, усилитель сразу же начинает работать не в спящем режиме.
Режим MUTE TDA7294
Если на 10 ногу TDA7294 подать 3,5В и более, то устройство выйдет из режима приглушения. Если же подать менее 1,5В, то устройство войдет в режим приглушения.
Практически это делается так: через резистор 10 кОм 10 ногу микросхемы подключаем к плюсу двухполярного источника питания. Усилитель “запоет”, то есть не будет приглушен. На печатной плате, которая прикреплена к статье, так сделано с помощью дорожки. При подаче питания на усилитель, он сразу начинает петь, без всяких перемычек и тумблеров.
Если через резистор 10 кОм 10 ногу ТДА7294 соединить с выводом GND источника питания, то наш “усилок” войдет в режим приглушения.
Источник питания.
Источником напряжения для устройства послужил собранный мной ИИП, который себя показал очень даже хорошо. При прослушивании одного канала ключи теплые. Так же теплые и диоды Шоттки, хоть и не установлены на них радиаторы. ИИП без защит и софтстарта.
Схему данного ИИП многие критикуют, но она очень проста в сборке. Работает она надежно без плавного включения. Эта схема очень подходит начинающим электронщикам из-за своей простаты.
Корпус.
Корпус был куплен.
Я только выпилил и высверлил отверстия под разъемы, переменный резистор, светодиод.
Сначала вычерчивал с обратной стороны тонким шилом по линейке. Потом высверливал рядом с линией отверстия, далее надфилем протачивал уже оконечный результат. Получилось довольно таки не плохо.
Печатная плата усилителя на TDA7294 СКАЧАТЬ
Даташит на TDA7294 СКАЧАТЬ
Похожие статьи
Hi-Fi усилитель на микросхеме TDA7294
Самая новая и самая лучшая схема с детальным описанием и выбором компонентов находится здесь: Hi-Fi усилитель на микросхеме TDA7294.
И это реально! Усилитель, несмотря на относительную простоту, обеспечивает довольно высокие параметры. Вообще-то, по правде говоря, у “микросхемных” усилителей есть ряд ограничений, поэтому усилители на “рассыпухе” могут обеспечить более высокие показатели. В защиту микросхемы (а иначе почему я и сам ее использую, и другим рекомендую?) можно сказать:
- схема очень простая
- и очень дешевая
- и практически не нуждается в наладке
- и собрать ее можно за один вечер
- а качество превосходит многие усилители 70-х … 80-х годов, и вполне достаточно для большинства применений (да и современные системы до 300 долларов могут ей уступить)
- таким образом, усилитель подойдет и начинающему, и опытному радиолюбителю (мне, например, как-то понадобился многоканальный усилитель проверить одну идейку. Угадайте, как я поступил?).
В любом случае, плохо сделаный и неправильно настроенный усилитель на “рассыпухе” будет звучать хуже микросхемного. А наша задача – сделать очень хороший усилитель. Надо отметить, что звучание усилителя очень хорошее (если его правильно сделать и правильно питать), есть информация, что какая-то фирма выпускала Hi-End усилители на микросхеме TDA7294! И наш усилитель ничуть не хуже!!!
Основные параметры
Я специально проведу замеры параметров микросхемы и опубликую отдельно (Работа усилителя на микросхеме TDA7294 на “трудную” нагрузку). Здесь же скажу, что микросхема устойчиво работала на активную нагрузку 2…24 ома, на активное сопротивление 4 ома плюс либо емкость ~15 мкФ, либо индуктивность ~1,5 мГн. Причем на емкостной и индуктивной нагрузках (не таких сильных, как описано выше) искажения оставались малыми. Нужно отметить, что величина искажений сильно зависит от источника питания, особенно на емкостной нагрузке.
Параметр | Значение | Условия измерения |
---|---|---|
Рвых.макс, Вт (долговременная синусоидальная) | 36 | Напряжение питания +- 22В, Rн = 4 Ома |
Диапазон частот по уровню -3 дБ | 9 Гц – 50 кГц | Rн = 8 Ом, Uвых = 4 В |
Кг, % (программой RMAA 5.5) | 0,008 | Rн = 8 Ом, Рвых = 16 Вт, f = 1 кГц |
Чувствительность, В | 0,5 | Рвых.макс = 50 Вт, Rн = 4 Ом, Uип = +-27 В |
Схема
Схема этого усилителя – это практически повторение схемы включения, предлагаемой производителем. И это неслучайно – уж кто лучше знает, как ее включать. И наверняка не будет никаких неожиданностей из-за нестандартного включения или режима работы. Вот она, схема:
Признаюсь сразу – никаких 80-ти ватт (и тем более 100 Вт) от нее не получишь. Реально 40-60, но зато это будут честные долговременные ваты. В кратковременном импульсе можно получить гораздо больше, но это уже будет РМРО мощность, кстати, тоже честная (80-120 Вт). В “китайских” ватах это будет несколько тысяч, если кого интересует. Тысяч пять. Тут все сильно зависит от источника питания, и позже, я напишу, как увеличить мощность, при этом улучшив еще и качество звучания. Следите за рекламой!
Описание схемы
Входная цепочка R1C1 представляет собой фильтр нижних частот (ФНЧ), обрезающий все выше 90 кГц. Без него нельзя – ХХI век – это в первую очередь век высокочастотных помех. Частота среза этого фильтра довольно высока. Но это специально – я ведь не знаю, к чему будет подключаться этот усилитель. Если на входе будет стоять регулятор громкости, то в самый раз – его сопротивление добавится к R1, и частота среза снизится (оптимальное значение сопротивления регулятора громкости ~10 кОм, больше – лучше, но нарушится закон регулирования).
Далее цепочка R2C2 выполняет прямо противоположную функцию – не пропускает на вход частоты ниже 7 Гц. Если для вас это слишком низко, емкость С2 можно уменьшить. Если сильно увлечься снижением емкости, можно остаться совсем без низких. Для полного звукового диапазона С2 должно быть не менее 0,33 мкф. И помните, что у конденсаторов разброс емкостей довольно большой, поэтому если написано 0,47 мкф, то запросто может оказаться, что там 0,3! И еще. На нижней границе диапазона выходная мощность снижается в 2 раза, поэтому ее лучше выбирать пониже:
С2[мкФ] = 1000 / ( 6,28 * Fmin[Гц] * R2[кОм])
Резистор R2 задает входное сопротивление усилителя. Его величина несколько больше, чем по даташиту, но это и лучше – слишком низкое входное сопротивление может “не понравиться” источнику сигнала. Учтите, что если перед усилителем включен регулятор громкости, то его сопротивление должно быть раза в 4 меньше, чем R2, иначе изменится закон регулирования громкости (величина громкости от угла поворота регулятора). Оптимальное значение R2 лежит в диапазоне 33…68 кОм (большее сопротивление снизит помехоустойчивость).
Схема включения усилителя – неинвертирующая. Резисторы R3 и R4 создают цепь отрицательной обратной связи (ООС). Коэффициент усиления равен:
Ку = R4 / R3 + 1 = 28,5 раза = 29 дБ
Это почти равно оптимальному значению 30 дБ. Менять коэффициент усиления можно, изменяя резистор R3. Учтите, что делать Ку меньше 20 нельзя – микросхема может самовозбуждаться. Больше 60 его также делать не стОит – глубина ООС уменьшится, а искажения возрастут. При значениях сопротивлений, указанных на схеме, при входном напряжении 0,5 вольт выходная мощность на нагрузке 4 ома равна 50 Вт. Если чувствительности усилителя не хватает, то лучше использовать предварительный усилитель.
Значения сопротивлений несколько больше, чем рекомендовано производителем. Это во-первых, увеличивает входное сопротивление, что приятно для источника сигнала (для получения максимального баланса по постоянному току нужно чтобы R4 было равно R2). Во-вторых, улучшает условия работы электролитического конденсатора С3. И в-третьих, усиливает благотворное влияние С4. Об этом поподробнее. Конденсатор С3 последовательно с R3 создает 100%-ю ООС по постоянному току (так как сопротивление постоянному току у него бесконечность, и Ку получается равным единице). Чтобы влияние С3 на усиление низких частот было минимально, его емкость должна быть довольно большой. Частота, на которой влияние С3 становится заметной равна:
f [Гц] = 1000 / (6,28 * R3 [кОм] * С3 [мкФ] ) = 1,3 Гц
Эта частота и должна быть очень низкая. Дело в том, что С3 – электролитический полярный, а на него подается переменное напряжение и ток, что для него очень плохо. Поэтому чем меньше значение этого напряжения, тем меньше искажения, вносимые С3. С этой же целью его максимально допустимое напряжение выбирается довольно большим (50В), хотя напряжение на нем не превышает 100 милливольт. Очень важно, чтобы частота среза цепи R3С3 была намного ниже, чем входной цепи R2С2. Ведь когда проявляется влияние С3 из-за роста его сопротивления, то и напряжеине на нем увеличивается (выходное напряжение услителя перераспределяется между R4, R3 и С3 пропорционально их сопротивлениям). Если же на этих частотах выходное напряжение падает (из-за падения входного напряжения), то и напряжение на С3 не растет. В принципе, в качестве С3 можно использовать неполярный конденсатор, но я не могу однозначно сказать, улучшится от этого звук, или ухудшится: неполярный конденсатор это “два в одном” полярных, включенных встречно.
Конденсатор С4 шунтирует С3 на высоких частотах: у электролитов есть еще один недостаток (на самом деле недостатков много, это расплата за высокую удельную емкость) – они плохо работают на частотах выше 5-7 кГц (дорогие лучше, например Black Gate, ценой 7-12 евро за штуку неплохо работает и на 20 кГц). Пленочный конденсатор С4 “берет высокие частоты на себя”, тем самым снижая искажения, вносимые на них конденсатором С3. Чем больше емкость С4 – тем лучше. А его максимальное рабочее напряжение может быть сравнительно небольшим.
Цепь С7R9 увеличивает устойчивость усилителя. В принципе усилитель очень устойчив, и без нее можно обойтись, но мне попадались экземпляры микросхем, которые без этой цепи работали хуже. Конденсатор С7 должен быть рассчитан на напряжение не ниже, чем напряжение питания.
Конденсаторы С8 и С9 осуществляют так называемую вольтодобавку. Через них часть выходного напряжения поступает обратно в предоконечный каскад и складывается в напряжением питания. В результате напряжение питания внутри микросхемы оказывается выше, чем напряжение источника питания. Это нужно потому, что выходные транзисторы обеспечивают выходное напряжение вольт на 5 меньше, чем напряжение на их входах. Таким образом, чтобы получить на выходе 25 вольт, нужно подать на затворы транзисторов напряжение 30 вольт, а где его взять? Вот и берем его с выхода. Без цепи вольтодобавки выходное напряжение микросхемы было бы вольт на 10 меньше, чем напряжение питания, а с этой цепью всего на 2-4. Пленочный конденсатор С9 берет работу на себя на высоких частотах, где С8 работает хуже. Оба конденсатора должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.
Резисторы R5-R8, конденсаторы С5, С6 и диод D1 управляют режимами Mute и StdBy при включении и выключении питания (см. Режимы Mute и StandBy в микросхеме TDA7294). Они обеспечивают правильную последовательность включения/выключения этих режимов. Правда все отлично работает и при “неправильной” их последовательности , так что такое управление нужно больше для собственного удовольствия.
Конденсаторы С10-С13 фильтруют питание. Их использование обязательно – даже с самым наилучшим источником питания сопротивления и индуктивности соединительных проводов могут повлиять на работу усилителя. При наличии этих конденсаторов никакие провода не страшны (в разумных пределах)! Уменьшать емкости не стОит. Минимум 470 мкФ для электролитов и 1 мкФ для пленочных. При установке на плату необходимо, чтобы выводы были максимально короткими и хорошо пропаяны – не жалейте припоя. Все эти конденсаторы должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.
И, наконец, резистор R10. Он служит для разделения входной и выходной земли. “На пальцах” его назначение можно объяснить так. С выхода усилителя через нагрузку на землю протекает большой ток. Может так случиться, что этот ток, протекая по “земляному” проводнику, протечет и через тот участок, по которому течет входной ток (от источника сигнала, через вход усилителя, и далее обратно к источнику по “земле”). Если бы сопротивление проводников было нулевым, то и ничего страшного. Но сопротивление хоть и маленькое, но не нулевое, поэтому на сопротивлении “земляного” провода будет появляться напряжение (закон Ома: U=I*R), которое сложится со входным. Таким образом выходной сигнал усилителя попадет на вход, причем эта обратная связь ничего хорошего не принесет, только всякую гадость. Сопротивление резистора R10 хоть и мало (оптимальное значение 1…5 Ом), но намного больше, чем сопротивление земляного проводника, и через него (резистор) во входную цепь попадет в сотни раз меньший ток, чем без него.
В принципе, при хорошей разводке платы (а она у меня хорошая) этого не произойдет, но с другой стороны, что-то подобное может случиться в “макромасштабе” по цепи источник_сигнала-усилитель-нагрузка. Резистор поможет и в этом случае. Впрочем, его можно вполне заменить перемычкой – он использован исходя из принципа “лучше перебдеть, чем недобдеть”.
Микросхема TDA7293 практически такая же, как и 7294 (она подробно описана здесь). Но не совсем. В отличии от 7295 и 7296, которые являются следствием разбраковки 7294, 73-я микросхема сделана несколько по-другому. То ли это следующая, более совершенная модификация; то ли 7294 – это упрощенная версия 73-й… Это знают только производители, но тщательно скрывают.
Во всяком случае, судя по даташиту, некоторые параметры 7293 несколько лучше, чем у 7294. Пусть и мелочь, а приятно. Например, чуть выше напряжения питания:
Сопротивление нагрузки, Ом | Максимальное напряжение питания, В |
---|---|
4 | 29 |
6 | 33 |
8 | 37 |
Кроме того, микросхема имеет несколько другую внутреннюю структуру – в нее добавлены блоки, отсутствующие в TDA7294. Причем, что очень приятно, сохранена полная совместимость по выводам с микросхемой TDA7294, что обеспечивает их взаимозаменяемость (вместо 7294 всегда и везде можно применять 7293; а вот вместо 7293 можно применять 7294 только там, где не используются ее отличительные особенности):
- Отключение звука при превышении температуры без отключения микросхемы (переход в режим Mute).
- Clip Detector, сигнализирующий об ограничении (клиппинге) сигнала.
- Буферный усилитель для вольтодобавки.
- Цепи для “параллельного” включения двух (или больше) микросхем.
Подробнее об этих вещах:
1. Если TDA7294 просто отключается, когда ее температура превышает 145 градусов, то в 7293 отключение производится в два этапа: сначала при температуре 150 градусов микросхема переходит в режим Mute, т.е. только лишь отключает звук, чтобы остыть. Если же нагрев продолжается, то при температуре 160 градусов происходит отключение всей микросхемы (я так полагаю, что это режим SdtBy). То есть, управление более гибкое, и максимальная рабочая температура выше на 5 градусов.
2. Процесс ограничения сигнала (клиппинг) вызывает изменение напряжения на выводе 5 микросхемы, причем эта цепь достаточно чувствительна, чтобы сигнализировать вовремя, когда перегрузка еще не велика. Про работу этой цепи я напишу отдельно.
3. Работа цепи вольтодобавки объясняется в описании усилителя на TDA7294. Ее недостаток в том, что напряжение для подпитки микросхемы отбирается прямо с выхода усилителя. Т.е. к выходу помимо нагрузки подключается еще дополнительный шибко нелинейный потребитель, отбирающий выходной ток. Пусть этот ток имеет небольшую величину, но если требуется получать коэффициент гармоник порядка 0,005%, то этот ток должен составлять 0,001% от выходного. А это не так. В 7293 между выходом усилителя и цепью вольтодобавки включен буферный усилитель. При этом ток, отбираемый от выхода снижается во много раз, как и влияние цепи вольтодобавки на качество звучания (т.е. происходит как бы разделение труда – для нагрузки свой усилитель, для вольтодобавки – свой).
4. Для увеличения выходного тока, микросхемы можно соединить “параллельно”. Причем если использовать обычное настоящее параллельное соединение, то получится плохо: из-за того, что микросхемы хоть чуть-чуть отличаются друг от друга, они и работать будут по-разному, неизбежные при этом фазовые (и еще какие-нибудь) сдвиги ухудшат и звучание, и режим работы микросхем. Здесь же правильнее говорить не “параллельная работа”, и даже не “совместная”. В английском варианте это называется “master-slave” – “ведущий-ведомый” (правильный перевод “хозяин-раб”, но в советские времена такие слова употреблять было нельзя, и называли “мастер-помошник”). Одна из микросхем при этом работет как обычно (ведущая), а у второй (ведомой) отключаются почти все ее потроха, за исключением мощного выходного каскада. Сам выходной каскад подключается параллельно выходному каскаду ведущей микросхемы. Т.е. грубо говоря, просто запараллеливаются выходные транзисторы, которые дополнительно “берутся” из второй микросхемы. Через каждую микросхему при этом протекает половина выходного тока, и, следовательно, общий ток нагрузки (и выходная мощность) может быть в 2 раза больше (или в 3…), чем у одной микросхемы. Это хорошо при работе на низкоомную (или сильно реактивную) нагрузку, и об этом я напишу отдельно.
А так схема усилителя отличается от схемы на TDA7294 только тем, что конденсаторы С8С9 подключены не к выходу (вывод 14), а к специальному выводу 12 BootLoad (который у 7294 не используется):
Источник питания
Усилитель питается двухполярным напряжением (т.е. это два одинаковых источника, соединенных последовательно, а их общая точка подключена к земле).
Минимальное напряжение питания по даташиту +- 10 вольт. Я лично пробовал питать от +-14 вольт – микросхема работает, но стОит ли так делать? Ведь выходная мощность получается мизерной! Максимальное напряжение питания зависит от сопротивления нагрузки (это напряжение каждого плеча источника):
Сопротивление нагрузки, Ом | Максимальное напряжение питания, В |
---|---|
4 | 27 |
6 | 31 |
8 | 35 |
Эта зависимость вызвана допустимым нагревом микросхемы. Если микросхема установлена на маленьком радиаторе, напряжение питания лучше снизить. Максимальная выходная мощность, получаемая от усилителя приблизительно описывается формулой:
где единицы: В, Ом, Вт (я отдельно исследую этот вопрос и опишу), а Uип – напряжения одного плеча источника питания в режиме молчания.
Мощность блока питания должна быть ватт на 20 больше, чем выходная мощность. Диоды выпрямителя рассчитаны на ток не менее 10 Ампер. Емкость конденсаторов фильтра не менее 10 000 мкФ на плечо (можно и меньше, но максимальная мощность снизится а искажения возрастут).
Нужно помнить, что напряжение выпрямителя на холостом ходу в 1,4 раза выше, чем напряжение на втоичной обмотке трансформатора, поэтому не спалите микросхему! Простая, но довольно точная программа для расчета блока питания. И не забывайте, что для стереоусилителя нужен вдвое более мощный блок питания (при расчете по поредлагаемой программе все учитывается автоматически).
Обязательно должен быть предохранитель как минимум в первичной обмотке трансформатора! Помните, что высокое напряжение опасно для жизни, а короткое замыкание может привести к пожару! |
---|
В цепь “земли” предохранитель включать нельзя! |
---|
От импульсного источника схема тоже работает, но тут высокие требования предъявляются к самому источнику – малые пульсации, возможность отдавать ток до 10 ампер без проблем, сильных “просадок” и срывов генерации. Помните, что высокочастотные пульсации подавляются микросхемой гораздо хуже, поэтому уровень искажений может повысится в 10-100 раз, хотя “на вид” там все в порядке. Хороший импульсный источник, пригодный для Hi-Fi аудио – это сложное и недешевое устройство, поэтому изготовить “старомодный” аналоговый блок питания будет зачастую проще и дешевле.
Конструкция и детали
Весь набор документации (печатная плата в формате Sprint-Layout 4.0, схема в формате pdf, расположение деталей на плате в формате gif) упакованный в архив zip ~ 120 кбайт.
Печатная плата односторонняя и имеет размеры 65х70 мм:
Не пугайтесь внешнего вида, это делал начинающий радиолюбитель под моим руководством. Для первого раза получилось очень даже неплохо. Кстати, как видите сборка хорошего усилителя под силу даже начинающему! (На фото показана плата с микросхемой 7293, отличающаяся только расположением конденсаторов С8, С9).
Плата разведена с учетом всех требований, предъявляемых к разводке высококачественных усилителей. Вход разведен максимально далеко от выхода, и заключен в “экран” из разделенной земли – входной и выходной. Дорожки питания, обеспечивают максимальную эффективность фильтрующих конденсаторов (при этом длинна выводов конденсаторов С10 и С12 должна быть минимальна). В своей экспериментальной плате я установил клемники для подключения входа, выхода и питания – место под них предусмотрено (может несколько мешать конденсатор С10), но для стационарных конструкций лучше все эти провода припаять – так надежнее.
Широкие дорожки кроме низкого сопротивления обладают еще тем преимуществом, что труднее отслаиваются при перегреве. Да и при изготовлении “лазерно-утюжным” методом если где и не “пропечатается” квадрат 1 мм х 1 мм, то не страшно – все равно проводник не оборвется. Кроме того, широкий проводник лучше держит тяжелые детали (а тонкий может просто отклеиться от платы).
Дорожки рекомендуется облудить – и сопротивление меньше, и коррозия.
На плате всего одна перемычка. Она лежит под выводами микросхемы, поэтому ее нужно монтировать первой, а под выводами оставить достаточно места, чтобы не замкнуло.
Резисторы все, кроме R9 мощностью 0,12 Вт, Конденсаторы С9, С10, С12 К73-17 63В, С4 я использовал К10-47в 6,8 мкФ 25В (в кладовке завалялся… С такой емкостью даже без конденсатора С3 частота среза по цепи ООС получается 20 Гц – там, где не нужно глубоких басов, одного такого конденсатора вполне достаточно). Однако я рекомендую все конденсаторы использовать типа К73-17. Использование дорогих “аудиофильских” я считаю неоправданным экономически, а дешевые “керамические” дадут худший звук (это по идее, в принципе – пожалуйста, только помните, что некоторые из них выдерживают напряжение не более 16 вольт и в качестве С7 их использовать нельзя). Электролиты подойдут любые современные. На плате нанесена полярность подключения всех электролитических конденсаторов и диода. Диод – любой маломощный выпрямительный, выдерживающий обратное напряжение не менее 50 вольт, например 1N4001-1N4007. Высокочастотные диоды лучше не использовать.
В углах платы предусмотрено место для отверстий крепежных винтов М3 – можно крепить плату только за корпус микросхемы, но все же надежнее еще и прихватить винтами.
Микросхему обязательно установить на радиатор площадью не менее 350 см2. Лучше больше. В принципе в нее встроена тепловая защита, но судьбу лучше не искушать. Даже если предполагается активное охлаждение, все равно радиатор должен быть достаточно массивным: при импульсном тепловыделении, что характерно для музыки, тепло более эффективно отбирается теплоемкостью радиатора (т.е. большая холодная железка), нежели рассеиванием в окружающую среду.
Металлический корпус микросхемы соединен с “минусом” питания. Отсюда возникают два способа установки ее на радиатор:
- Через изолирующую прокладку, при этом радиатор может быть электрически соединен с корпусом.
- Напрямую, при этом радиатор обязательно электрически изолирован от корпуса.
Первый вариант рекомендуется, если вы собираетесь ронять в корпус металлические предметы (скрепки, монеты, отвертки), чтобы не было замыкания. При этом прокладка должна быть по возможности тоньше, а радиатор – больше.
Второй вариант (мой любимый) обеспечивает лучшее охлаждение, но требует аккуратности, например не демонтировать микросхему при включенном питании.
В обоих случаях нужно использовать теплопроводящую пасту, причем в 1-м варианте она должна быть нанесена и между корпусом микросхемы и прокладкой, и между прокладкой и радиатором.
Налаживание усилителя
Общение в интернете показывает, что 90% всех проблем с аппаратурой составляет ее “неналаженность”. То есть, спаяв очередную схему, и не сумев ее наладить, радиолюбитель ставит на ней крест, и вовсеуслышанье объявляет схему плохой. Поэтому наладка – самый важный (и зачастую самый сложный) этап создания электронного устройства.
Правильно собранный усилитель в налаживании не нуждается. Но, поскольку никто не гарантирует, что все детали абсолютно исправны, при первом включении нужно соблюдать осторожность.
Первое включение проводится без нагрузки и с отключенным источником входного сигнала (лучше вообще закоротить вход перемычкой). Хорошо бы в цепь питания (и в “плюс” и в “минус” между источником питвния и самим усилителем) включить предохранители порядка 1А. Кратковременно (~0,5 сек.) подаем напряжение питания и убеждаемся, что ток, потребляемый от источника небольшой – предохранители не сгорают. Удобно, если в источнике есть светодиодные индикаторы – при отключении от сети, светодиоды продолжают гореть не менее 20 секунд: конденсаторы фильтра долго разряжаются маленьким током покоя микросхемы.
Если потребляемый микросхемой ток большой (больше 300 мА), то причин может быть много: КЗ в монтаже; плохой контакт в “земляном” проводе от источника; перепутаны “плюс” и “минус”; выводы микросхемы касаются перемычки; неисправна микросхема; неправильно впаяны конденсаторы С11, С13; неисправны конденсаторы С10-С13.
Убедившись, что с током покоя все ОК, смело включаем питание и измеряем постоянное напряжение на выходе. Его величина не должна превышать +-0,05 В. Большое напряжение говорит о проблемах с С3 (реже с С4), или с микросхемой. Бывали случаи, когда “межземельный” резистор либо был плохо пропаян, либо вместо 3 Ом имел сопротивление 3 кОм. При этом на выходе была постоянка 10…20 вольт. Подключив к выходу вольтметр переменного тока, убеждаемся, что переменное напряжение на выходе равно нулю (это лучше всего делать с замкнутым входом, или просто с неподключенным входным кабелем, иначе на выходе будут помехи). Наличие на выходе переменного напряжения говорит о проблемах с микросхемой, или цепями С7R9, С3R3R4, R10. К сожалению, зачастую обычные тестеры не могут измерить высокочастотное напряжение, которое появляется при самовозбуждении (до 100 кГц), поэтому лучше всего здесь использовать осциллограф.
Если и тут все в порядке, подключаем нагрузку, еще раз проверяем на отсутствие возбуждения уже с нагрузкой, и все – можно слушать!
Но лучше все же провести еще один тест. Дело в том, что самым, на мой взгляд, мерзким видом возбуждения усилителя, является “звон” – когда возбуждение появляется только при наличии сигнала, причем при его определенной амплитуде. Потому что его трудно обнаружить без осциллографа и звукового генератора (да и устранить непросто), а звук портится коллосально из-за огромных интермодуляционных искажений. Причем на слух это обычно воспринимается как “тяжелый” звук, т.е. без всяких дополнительных призвуков (т.к. частота очень высокая), поэтому слушатель и не знает, что у него усилитель возбуждается. Просто послушает, и решит, что микросхема “плохая”, и “не звучит”.При правильной сборке усилителя и нормальном источнике питания такого быть не должно.
Однако иногда бывает, и цепь С7R9 как раз и борется с такими вещами. НО! В нормальной микросхеме все ОК и при отсутствии С7R9. Мне попадались экземпляры микросхемы со звоном, в них проблема решалась введением цепи С7R9 (поэтому я ее и использую, хоть в даташите ее и нет). Если подобная гадость имеет место даже при наличии С7R9, то можно попробовать ее устранить, “поигравшись” с сопротивлением (его можно уменьшить до 3 Ом), но я бы не советовал использовать такую микросхему – это какой-то брак, и кто его знает, что в ней еще вылезет.
Проблема в том, что “звон” можно увидеть только на осциллографе, при подаче на усилитель сигнала со звукового генератора (на реальной музыке его можно и не заметить) – а это оборудование есть далеко не у всех радиолюбителей. (Хотя, если хотите эти делом хорошо заниматься, постарайтесь такие приборы заметь, хотя бы где-то ими пользоваться). Но если желаете качественного звука – постарайтесь провериться на приборах – “звон” – коварнейшая вещь, и способен повредить качеству звучания тысячей способов.
Заметно лучшим качеством обладает Инвертирующий Hi-Fi усилитель на микросхеме TDA7294 / TDA7293.
10.12.2005
Total Page Visits: 743 — Today Page Visits: 8
Hi-Fi усилитель на микросхеме TDA7294 / TDA7293
Hi-Fi усилитель на микросхеме TDA7294 (TDA7293) имеет хорошие параметры и великолепное звучание. Этот усилитель легко сделать самому. Можно купить печатную плату усилителя, а можно печатную плату сделать самостоятельно – получится не хуже.
Hi-Fi усилитель TDA7294Можно даже сказать, что это Hi-End усилитель на микросхеме TDA7294, потому что в Hi-End существуют усилители на таких же или подобных микросхемах (например Gain Card), но этот усилитель значительно лучше. Фактически из микросхемы выжато все, на что она способна. А эта микросхема очень неплохая и усилитель на TDA7294 звучит намного лучше, чем все усилители производства СССР, и не хуже, чем многие европейские, американские и японские усилители производства не только XX, но и XXI века.
Работает с колонками сопротивлением 4…16 ом. В принципе может работать с нагрузкой сопротивлением от 2 ом, но при напряжении питания 24…26 вольт и с хорошим охлаждением.
Вот отзыв из Дании о звучании усилителя:
First impression on your TDA7293 is a much more detailed and open way of playing music.
This is compared against a traditional PCB for 2 x TDA without your improvements.
——————————————————————————–
Первое впечатление на вашем TDA7293 – более детальный и открытый способ воспроизведения музыки.
Это сравнивается с традиционной печатной платой для 2-х TDA без ваших улучшений.
К усилителю можно подключить клип-детектор (clip-detector). Он показывает даже небольшую перегрузку усилителя, при которой начинает снижаться качество звучания.
Микросхема TDA7293 немного лучше, чем микросхема TDA7294, поэтому рекомендую использовать именно ее.
Об усилителе
Этот усилитель сделан не по типовой схеме из даташита (datasheet), которая всегда является максимально простой и максимально дешевой. В основе этого усилителя лежат многочисленные исследования, некоторые из них вы можете найти на моем сайте. Hi-Fi усилитель на TDA7294 использует инвертирующее включение микросхемы (инвертирующий усилитель имеет небольшие преимущества перед неинвертирующим) и используется много лет. За это время изготовлено несколько сотен экземпляров усилителя, и я получил множество отзывов о высоком качестве его звучания. Также эта схема скопирована на разных сайтах и обсуждается на многих интернет-форумах. Но кто может рассказать об этой схеме лучше, чем ее автор?
В этой статье вы найдете всю необходимую информацию, чтобы не только самостоятельно собрать усилитель своими руками, но и сделать его таким, как вам нужно.
Важно! Здесь не дается никаких рекомендаций по использованию «правильных проводов», «волшебных конденсаторов» и прочих выдумок и маркетинговой ерунды. На самом деле большинство аудиофильских мифов бессмысленно. А некоторые из них являются реально вредными. Я расскажу, как сделать технически правильный усилитель, который будет хорошо работать. Ведь то, что плохо работает, хорошо звучать не может.
Я не буду приводить все параметры усилителя, а только самые главные:
- Реально достижимая максимальная выходная мощность – 20…80 Вт. Она зависит от сопротивления нагрузки и напряжения питания.
- Коэффициент усиления усилителя – 23 раза (27 дБ). Такой коэффициент усиления достаточен для того, чтобы можно было работать без предусилителя – в подавляющем большинстве случаев нет необходимости дополнительно усиливать входной сигнал. При работе от обычной звуковой карты, величины входного сигнала достаточно, чтобы получить максимальную выходную мощность до 70 Вт на нагрузке 8 ом и более 100 Вт на нагрузке 4 ома. Реальная мощность будет меньше, так как выходная мощность будет ограничиваться возможностями самой микросхемы и блока питания. Поэтому можно поставить регулятор громкости на вход усилителя и обойтись без предусилителя.
- Рабочий диапазон частот – 20 Гц … 50 кГц. Вы можете отрегулировать его самостоятельно.
- Коэффициент нелинейных искажений Кг (коэффициент гармоник, THD) – 0,003…0,02%.
Коэффициент гармоник – это один из главных параметров, характеризующий качество звучания, поэтому в рекламных целях его стараются сделать наиболее красивым. Для этого прибегают к различным ухищрениям: измеряют на частоте, на которой он наименьший; измеряют при «удобном» значении выходной мощности, где Кг наименьший; учитывают не все гармоники спектра искажений. Иногда даже измеряют Кг без нагрузки. При этом искажения, вносимые выходным каскадом усилителя, значительно снижаются – ведь выходной ток усилителя равен нулю. Часто при измерении Кг усилитель питают от специального стабилизированного источника питания, что также позволяет получить более красивые рекламные числа.
Я измерял искажения честно. При измерениях усилитель работал на нагрузку 6 ом и питался от реального источника питания. Кроме того, я измерял Кг на разных частотах таким образом, чтобы учитывалось максимальное количество гармоник спектра искажений (измерялись все гармоники с частотами до 95 кГц). И еще я измерял Кг при различных значениях выходной мощности усилителя. Так что вместо одного числа – значения коэффициента гармоник в каких-то одних условиях измерений, я получил графики.
Зависимость Кг от частоты тестового сигнала при выходной мощности 20 Вт. Учитывались все гармоники в полосе частот до 95 кГц. Разрядность измерений 24 бита.
Hi-Fi усилитель на TDA7294. Зависимость коэффициента гармоник THD от частоты тестового сигнала.Зависимость Кг от выходной мощности при частоте тестового сигнала, равной 1 кГц.
Hi-Fi усилитель на TDA7294. Зависимость коэффициента гармоник THD от выходной мощности.Обратите внимание, что на этом графике коэффициент гармоник значительно растет при выходной мощности, более 30 Вт. Дело в том, что усилитель при измерениях питался от реального источника питания, рассчитанного на максимальную выходную мощность 25 Вт. Поэтому усилитель работает отлично при выходной мощности не больше 25 Вт.
Спектр искажений усилителя при выходной мощности 20 Вт на нагрузке 6 ом очень узкий.
Hi-Fi усилитель на TDA7294. Спектр искажений THD.В нем содержится не более семи высших гармоник, причем амплитуда гармоники убывает с ростом ее номера (амплитуды 6-й и 7-й гармоник меньше -100 дБ и на график эти гармоники не попали). Это означает, что в усилителе отсутствует неприятный «транзисторный звук».
Спектр интермодуляционных искажений (IMD), измеренный на частотах 18 кГц и 19 кГц при выходной мощности 20 Вт на нагрузке 6 ом. Это очень жесткий тест, когда усилитель работает в самых плохих условиях. Тем не менее, в спектре присутствует только одна пара боковых частот (17 кГц и 20 кГц), что характерно только для высококачественных усилителей.
Hi-Fi усилитель на TDA7294. Спектр интермодуляционных искажений.Все спектры узкие, что доказывает высокую линейность усилителя.
В этом Hi-Fi усилителе на микросхеме TDA7294 практически исключена возможность появления динамических искажений при работе совместно с реальными звуковоспроизводящими устройствами.
Усилитель отлично справляется с «трудной» нагрузкой. Такой нагрузкой являются колонки, причем некоторые из них «более легкие», а некоторые «более трудные». Результаты, демонстрируемые усилителем, и сравнение его с некоторыми дорогими усилителями описано в статье Работа усилителя на микросхеме TDA7294 на трудную нагрузку.
Важно! Работа усилителя очень сильно зависит от источника питания. Фактически усилитель занимается тем, что передает энергию из источника питания в колонки. Но делает это под управлением звукового сигнала. Передача энергии происходит так, чтобы в колонках сигнал был точно такой же, как и на входе усилителя.
Hi-Fi усилитель на микросхеме TDA7294 (TDA7293) – схема
Схема Hi-Fi усилителя на микросхеме TDA7293 (TDA7294) показана на рисунке. Конденсатор Cx не имеет порядкового номера. Это сделано для совместимости с самодельной печатной платой: я добавил конденсатор Cx позже.
Hi-Fi усилитель на TDA7294. Принципиальная схема.Схема Hi-Fi усилителя на TDA7293.
Описание усилителя, его свойства и принцип работы описаны в статье Усилитель на TDA7293 / 7294 с Т-образной ООС.
Усилитель не содержит дефицитных деталей и каких-нибудь сложных вещей. Поэтому собрать усилитель своими руками может даже начинающий.
Чертеж печатной платы для самостоятельного изготовления усилителя приведены в статье по ссылке выше. Можно купить печатную плату усилителя, изготовленную промышленным способом: Купить печатную плату. Далее описывается вариант с печатной платой промышленного изготовления, но все это подходит и для усилителя на самодельной печатной плате.
На что обратить внимание
В усилителе можно использовать как TDA7294, так и TDA7293. В зависимости от того, какая микросхема используется, на плате в соответствующем месте устанавливается перемычка.
- Важно! Микросхема TDA7293 может работать в режиме микросхемы TDA7294. Если перемычка на плате установлена в положение TDA7294, то можно устанавливать как микросхему TDA7294, так и микросхему TDA7293. При этом не все преимущества микросхемы TDA7293 будут использованы.
- Микросхема TDA7294 в режиме TDA7293 работать не может! Если перемычка на плате установлена в положение TDA7293, то микросхему TDA7294 использовать нельзя!
Микросхема TDA7293 немного лучше, чем TDA7294: у нее чуть больше выходная мощность и качество звучания, поэтому я рекомендую использовать именно TDA7293.
Емкости конденсаторов C1, C2, Cx не обязательно должны быть такими, как на схеме. Вы их выбираете самостоятельно, исходя из того, какие именно свойства усилителя вы хотите получить.
Емкость конденсатора С1 зависит от сопротивления регулятора громкости.
Усилитель будет иметь максимальное качество только в том случае, если абсолютно все его части правильно сделаны и соединены. Об этом в конце статьи.
Используемые детали
Усилитель доступен для сборки даже начинающими и малочувствителен к качеству комплектующих. Но для получения наилучших параметров и максимально хорошего звука усилитель должен быть собран из качественных деталей. Качественные – это не обязательно дорогие.
Комплектующие неизвестного производителя лучше не использовать: они могут иметь плохие параметры. При применении таких комплектующих, усилитель может работать плохо или вообще не работать.
Список используемых деталей (BOM List) можно загрузить по ссылкам:
На русском языке:
In English:
Резисторы
В усилителе используются недорогие металлопленочные резисторы. Все резисторы кроме R9 мощностью 0,125…0,25 Вт. Если R9 российского производства, то достаточна мощность 0,5 Вт. Если R9 не российского производства, то рекомендуется устанавливать R9 мощностью 1 Вт. Это надежнее для работы на максимальной мощности или в качестве измерительного усилителя.
Если планируется стерео усилитель или многоканальный усилитель, то резисторы, включенные в цепь отрицательной обратной связи (R2…R5), желательно использовать с точностью 1% или лучше (более точные, чем 0,25% не нужны). В этом случае разбаланс громкости стереоканалов будет минимальным. Если доступны только резисторы точностью 5%, то их следует по возможности подобрать одинакового сопротивления во всех каналах. Другие резисторы не критичны к величине точности.
Большое значение имеет резистор R10. Этот резистор служит для разделения земли в усилителе. Но входная и выходная земли должны быть не только разделены, но и обязательно связаны. Если резистор R10 отсутствует, имеет плохой контакт или слишком большое сопротивление, то усилитель работать не будет. Поэтому важно, чтобы этот резистор был надежным и качественным и имел требуемое сопротивление. Аудио качество этому резистору не нужно.
В принципе, резистор R10 можно заменить перемычкой.
Керамические конденсаторы
Конденсаторы C1 и Cx керамические из качественной низковольтной керамики, с максимальным рабочим напряжением 50 вольт. Качественная керамика определяется по температурному коэффициенту емкости конденсатора (ТКЕ, TCC). Эти конденсаторы должны быть с ТКЕ класса НП0 (NP0). Иногда вместо цифры 0 пишут букву О (НПО, NPO) – это то же самое. Производитель конденсаторов является важным. Конденсаторы noname лучше не использовать. Подойдут, например, Murata, Vishay. Можно использовать конденсаторы российского производства.
Выбор емкости конденсаторов C1 и Cx
Конденсатор С1 обрезает высокие частоты, поступающие на вход усилителя (он образует фильтр нижних частот), и тем самым подавляет высокочастотные помехи. Однако при этом сужается диапазон рабочих частот усилителя в области высоких частот. Емкость конденсатора С1 выбирается исходя из величины сопротивления регулятора громкости и требуемой частоты среза фильтра нижних частот (ФНЧ, LPF), который образует этот конденсатор совместно с резистором R1 и сопротивлением регулятора громкости. Я предлагаю на выбор одну из двух частот: 50 кГц и 70 кГц.
Частота среза 50 кГц выбирается для более сильного подавления возможных высокочастотных помех, поступающих на вход. Источниками таких помех может быть как аппаратура связи (мобильные устройства, Wi-Fi и Bluetooth, радиосвязь, телевидение), так и другие промышленные и бытовые устройства. При выборе частоты среза входного фильтра равной 50 кГц усилитель может иметь максимальную рабочую частоту примерно 40 кГц.
Если вы уверены в отсутствии высокочастотных помех, то частоту среза входного фильтра можно выбрать равной 70 кГц. В этом случае усилитель может иметь максимальную рабочую частоту примерно 50 кГц.
Значения емкости конденсатора C1 в зависимости от величины сопротивления регулятора громкости и требуемой частоты среза входного фильтра.
Сопротивление регулятора громкости, кОм | Емкость конденсатора С1, необходимая для получения частоты среза входного фильтра 50 кГц, пФ | Емкость конденсатора С1, необходимая для получения частоты среза входного фильтра 70 кГц, пФ |
Регулятор громкости на входе усилителя отсутствует, используется предусилитель | 2200 | 1500 |
5 | 1200 | 820 |
10 | 820 | 560 |
20 | 510 | 360 |
30 | 360 | 240 |
50 | 220 | 160 |
100 | 120 | 82 |
Конденсатор Cx выполняет несколько функций одновременно:
- – улучшает устойчивость усилителя;
- – увеличивает глубину отрицательной обратной связи (ООС) на высоких частотах и снижает искажения;
- – на высоких частотах форсирует сигнал в цепи ООС, что уменьшает возможность появления динамических искажений.
Конденсатор Cx также как и C1 уменьшает верхнюю граничную частоту усилителя.
Оба конденсатора работают на частотах выше 20 кГц, поэтому на воспроизведение высоких звуковых частот они практически не влияют. Совместное использование этих конденсаторов приводит к тому, что динамические искажения в усилителе вообще не возникают. Однако некоторые люди хотят получить усилитель с частотным диапазоном до 40…50 кГц. Это их право, несмотря на то, что большинство людей не слышит сигналов выше частоты 20 кГц (небольшое исследование на эту тему опубликовано в статье Исследование верхней границы слуха). Кроме того, влияние любых фильтров на частотную характеристику происходит плавно, поэтому даже если верхняя граничная частота усилителя равна 50 кГц, на частоте 20 кГц амплитудно-частотная характеристика усилителя (АЧХ) имеет завал, хоть и микроскопический.
Выбор величины емкости конденсатора Cx.
Вариант 1. Частота среза входного фильтра НЧ равна 70 кГц.
Емкость конденсатора Cx, пФ | Верхняя граничная частота усилителя по уровню -3 дБ, кГц | Завал АЧХ усилителя на частоте 20 кГц, дБ |
47 | 54 | 0,5 |
56 | 50 | 0,6 |
68 | 46 | 0,65 |
75 | 44 | 0,7 |
82 | 42 | 0,8 |
Вариант 2. Частота среза входного фильтра НЧ равна 50 кГц.
Емкость конденсатора Cx, пФ | Верхняя граничная частота усилителя по уровню -3 дБ, кГц | Завал АЧХ усилителя на частоте 20 кГц, дБ |
47 | 42 | 0,8 |
56 | 40 | 0,9 |
68 | 37 | 1 |
Завал АЧХ на частоте 20 кГц величиной 0,8 дБ, а тем более 1 дБ может показаться слишком большим. Но на самом деле он незаметен:
- он ниже порога чувствительности слуха на этой частоте,
- на частоте 20 кГц уже практически нет никакого звука,
- не все люди эту частоту слышат
Пленочные конденсаторы
Конденсаторы C2, C4, C6, C7, C9 пленочные лавсановые (другие названия диэлектрика – майлар, полиэстер, MKT).
Самым важным для звука является конденсатор C2. Он должен быть хорошего качества. На этом месте можно применить конденсатор с диэлектриком из полипропилена (MKP). Разницы в звуке вы, скорее всего, не заметите, но все равно будет приятно, что вы сделали максимум для получения высокого качества звучания.
На самом деле, для получения хорошего звука гораздо важнее использовать правильный блок питания и правильный монтаж блоков усилителя внутри корпуса. Но в любом случае конденсатор C2 не должен быть плохим.
Конденсатор С6 меньше всего влияет на качество звучания. В принципе, его даже можно исключить из схемы. Тем не менее, даже на этом месте использовать плохой конденсатор не рекомендуется.
Конденсатор C4 улучшает устойчивость усилителя. Его максимальное рабочее напряжение может быть до 250 вольт. Если есть возможность выбора, то этот конденсатор рекомендуется выбирать наибольшего размера из всех доступных, но такой, чтобы его можно было нормально установить на плату. При работе усилителя через этот конденсатор проходит сравнительно большой высокочастотный ток, и конденсатор может нагреваться. Чем больше размер конденсатора, тем меньше нагрев. Будьте благоразумными! Размер конденсатора 7,5 мм вполне достаточен!
Конденсаторы C7 и C9 помогают конденсаторам C8 и C10 снабжать усилитель энергией на высоких частотах. Емкость этих конденсаторов 2,2…4,7 мкФ, максимальное рабочее напряжение не менее 63 вольт. Конденсаторы должны быть качественными, чтобы хорошо работать. Чем больше емкость, тем лучше, но будьте разумными. Важно, чтобы длина выводов этих конденсаторов была минимальной – индуктивность длинных выводов будет мешать их работе. Поэтому конденсатор меньшей емкости с короткими выводами будет работать лучше, чем конденсатор большей емкости, но с длинными выводами.
«Зеленые» конденсаторы можно использовать в позициях C4 и C6.
Хорошие конденсаторы не обязательно дорогие. Более того, лучше использовать «обычные» конденсаторы известного производителя, чем конденсаторы неизвестного производителя, заявленные «For Audio».
Выбор емкости конденсатора C2
Величина емкости конденсатора C2 определяет как нижнюю граничную частоту усилителя, так и завал АЧХ усилителя на низких частотах. Этот конденсатор совместно с входным сопротивлением усилителя образует фильтр верхних частот (ФВЧ, HPF), пропускающий частоты выше 10…25 Гц и подавляющий частоты, лежащие ниже этого значения.
Как выглядит амплитудно-частотная характеристика в области низких частот при различных значениях емкости конденсатора C2, показано на рисунке (высокие частоты на этом рисунке изображены условно).
АЧХ усилителя при разных значениях C2.Параметры усилителя в зависимости от емкости конденсатора C2.
Емкость конденсатора C2, мкФ | Нижняя граничная частота усилителя по уровню -3 дБ, Гц | Завал АЧХ усилителя на частоте 20 Гц, дБ | Завал АЧХ усилителя на частоте 25 Гц, дБ | Завал АЧХ усилителя на частоте 30 Гц, дБ |
0,22 | 22 | 3,3 | 2,5 | 1,8 |
0,33 | 14 | 1,8 | 1,3 | 0,9 |
0,47 | 10 | 0,9 | 0,6 | 0,5 |
0,68 | 7 | 0,5 | 0,3 | 0,2 |
1,0 | 5 | 0,2 | 0,2 | 0,1 |
1,5 | 3 | 0,1 | 0,1 | 0,05 |
Стратегия выбора величины емкости конденсатора C2
Чем емкость C2 больше, тем меньше нижняя частота среза усилителя (то есть усилитель достаточно сильно усиливает более низкие частоты), и тем меньше завал АЧХ на низких звуковых частотах.
Но сказать, что чем емкость C2 больше, тем низкие частоты воспроизводятся лучше, будет неверно. Правильнее будет сказать так: если емкость конденсатора C2 меньше некоторого значения, то громкость самых низких частот звукового диапазона будет уменьшаться. Например, если C2 = 0,68 мкФ, то завал АЧХ на частоте 20 Гц составляет 0,5 дБ – это намного меньше, чем предел чувствительности слуха на этой частоте, так что такой завал мы наверняка не услышим. При этом усилитель воспроизводит частоты, начиная с 7 герц. Если же емкость конденсатора C2 уменьшить до 0,1 мкФ, то громкость на самых-самых низких частотах немного снизится. Мы заметим это лишь на очень хорошей фонограмме и отличных колонках. И то, только при сравнительном прослушивании. Но ведь заметим!
А нужны ли настолько низкие частоты?
Утверждают, что если усилитель воспроизводит абсолютно все низкие частоты, начиная с постоянного напряжения, то это улучшает звук. Рассказывают даже о постоянной составляющей звука. Это все рекламные и маркетинговые уловки, не имеющие ничего общего с действительностью.
Постоянная составляющая звука – это атмосферное давление, и изменить его неспособна ни одна колонка. А инфразвуковые частоты, которые могут попасть на выход усилителя и воспроизвестись колонками, вредны для человека. Например, инфразвуковые частоты, совпадающие с частотой альфа-ритма головного мозга (частоты 7…15 Гц), могут вызвать головную боль, дезориентацию и даже панику.
Большое количество инфразвуковых частот образуется при воспроизведении виниловых грампластинок. Особенно старых: покоробленных и имеющих эксцентриситет. Но даже при воспроизведении новых грампластинок инфразвук все же возникает: он создается и двигателем проигрывателя (рокот) и физическими процессами трения иглы в канавке. Подробно об этом писал Дуглас Селф (Douglas Self) в книге Electronics for Vinyl.
К счастью, большинство звуковых колонок на таких частотах не могут создать значительного звукового давления, но лучше, если эти частоты обрезать еще в усилителе.
Другой причиной для отказа от воспроизведения очень низких частот, являются физические процессы в громкоговорителях. Для равной громкости при снижении частоты, ход диффузора растет пропорционально второй степени. То есть, если частота снизилась вдвое, ход диффузора должен вырасти в 4 раза. На самом деле ход диффузора растет еще сильнее из-за уменьшения чувствительности слуха на самых низких частотах. Но диапазон линейного хода громкоговорителя ограничен, поэтому низкие частоты значительного уровня могут перегрузить громкоговоритель, и будет искажаться весь звук вообще.
Особенно подвержены этому явлению колонки с фазоинвертором (ФИ) – на частотах ниже частоты настройки ФИ, ход диффузора ничем не ограничен. При этом колонка звук практически не излучает, так как происходит акустическое короткое замыкание: звук, излучаемый громкоговорителем и звук, излучаемый фазоинвертором, вычитаются друг из друга практически до нуля.
В результате получается, что слышимая перегрузка отсутствует, а звук плохой. Так что с этой точки зрения, ограничение воспроизведения очень низких частот положительно сказывается на работе всей системы, на качестве звучания и на восприятии звука человеком.
С другой стороны, чем выше частота среза усилителя, тем хуже переходные процессы при воспроизведении низкочастотного музыкального сигнала (не бесконечно, а до определенных пределов). Басы, особенно в колонках с фазоинвертором, получаются немного более затянутыми.
Так что с этой точки зрения сильно увеличивать нижнюю граничную частоту усилителя тоже нежелательно.
Что же делать?
Выход такой: частота среза фильтра верхних частот, образованного конденсатором C2, должна быть в 2…3 раза меньше, чем нижняя рабочая частота колонок, подключенных к этому усилителю. Но не ниже 10 Гц. И не бойтесь завала АЧХ на низких частотах! Завал в 1 дБ на частотах ниже 30 Гц на слух незаметен.
Лично я чаще всего использую конденсатор C2 емкостью 0,33 мкФ, и реже емкостью 0,47 мкФ.
Для выбора емкости конденсатора C2 воспользуйтесь этой таблицей.
Назначение усилителя | Емкость конденсатора C2, мкФ |
Колонки среднего качества с нижней рабочей частотой 50…80 Гц. Особенно рекомендуется при воспроизведении винила | 0,22 |
Колонки более высокого качества с нижней рабочей частотой 30…40 Гц Высококачественные колонки с мощными басами и нижней рабочей частотой 20…30 Гц при воспроизведении винила | 0,33 |
Высококачественные колонки с мощными басами и нижней рабочей частотой 20…30 Гц. Качественный сабвуфер при воспроизведении винила | 0,47 |
Качественный сабвуфер при воспроизведении винила Качественный сабвуфер | 0,68 |
Высококачественный сабвуфер | 1,0 |
Сабвуфер для маньяков | 1,5 |
Для себя и обычно на заказ (по согласованию с заказчиками после изучения их требований и их аппаратуры) я делаю два варианта усилителя:
- “Стандартный” с таким набором номиналов элементов: С1 = 2200 пФ (частота среза входного фильтра 50 кГц), Cx = 47 пФ, C2 = 0,33 мкФ полипропиленовый (MKP) Epcos или К78-19.
- “С расширенным частотным диапазоном”. С таким набором номиналов элементов: С1 = 1500 пФ (частота среза входного фильтра 70 кГц), Cx = 47 пФ, C2 = 0,47 мкФ полипропиленовый (MKP) Epcos или К78-19.
Амплитудно-частотные характеристики этих двух вариантов усилителя показаны на рисунке.
Электролитические конденсаторы
В позициях C3 и C5 должны быть обычные качественные конденсаторы. Конденсатор C3 задает время включения усилителя и на звук не влияет. Но если он некачественный или имеет большую утечку, то усилитель может не включиться. При некачественном конденсаторе C5 максимальная неискаженная выходная мощность оказывается намного меньше, чем могла бы быть.
Конденсаторы C8 и C10 выполняют сразу три функции:
- Дополнительно подавляют пульсации напряжения питания.
- Подпитывают усилитель на пиках громкости. Конденсаторы C8 и C10 установлены очень близко к микросхеме, и проводники, идущие от этих конденсаторов, очень короткие. Поэтому эти проводники имеют очень маленькое сопротивление и индуктивность. В результате при необходимости вся энергия этих конденсаторов быстро поступает в микросхему и передается на выход в громкоговорители.
- Пропускают через себя ток громкоговорителей на средних и высоких частотах. В результате этот ток замыкается наиболее коротким путем.
Все эти функции на самом деле объединены. Физически это одна функция. Я их разделяю мысленно, чтобы удобнее было их анализировать.
Функции конденсаторов C8 и C10 очень важны, поэтому эти конденсаторы должны иметь хорошее качество. Очень полезно в этой позиции использовать конденсаторы типа Low ESR или Low Impedance.
Однако будьте благоразумны! Важность качества конденсаторов C8 и C10 зачастую преувеличивается. Нет смысла применять экзотические «волшебные» суперконденсаторы. Вполне достаточно хороших конденсаторов от надежного производителя. Важно, чтобы эти конденсаторы были правильно впаяны с плату. При этом они имеют выводы минимальной длины, а значит минимальное сопротивление и индуктивность.
Использовать конденсаторы C8 и C10 емкостью меньше, чем 1000 мкФ не рекомендуется. Значительно увеличивать их емкость тоже не рекомендуется. Можно использовать конденсаторы емкостью 2200 мкФ, но при качественном источнике питания разницы не будет.
На высоких частотах электролитическим конденсаторам C8 и C10 помогают пленочные конденсаторы C7 и C9, поэтому эти конденсаторы также должны иметь хорошее качество.
Установка микросхемы TDA7294
В зависимости от применяемой микросхемы на плате устанавливается перемычка в нужной позиции.
Установка перемычки TDA7294 или TDA7293Если перемычка установлена в положение TDA7293, то пустую квадратную контактную площадку с надписью TDA7294 можно залить припоем.
Заливка контактной площадкиТак будет совсем-совсем немного, но лучше.
Микросхема должна быть установлена на радиаторе площадью не менее 700 квадратных сантиметров. При установке микросхемы на радиатор необходимо использовать термопасту. Радиатор должен свободно охлаждаться воздухом.
Важно! Корпус микросхемы соединен с минусом источника питания, поэтому, чтобы избежать короткого замыкания источника питания, надо либо устанавливать микросхему через изолирующую прокладку (и изолировать винт, которым микросхема крепится к радиатору), либо надежно изолировать радиатор от корпуса.
В первом варианте микросхема охлаждается немного хуже.
Поступайте так, как вам удобнее.
На один радиатор можно установить несколько микросхем, при этом площадь радиатора увеличить в столько раз, сколько микросхем на него установлено.
Крепить плату к радиатору можно просто прикрутив к нему микросхему. Этот способ применим, если на плате не используются тяжелые экзотические компоненты и если при эксплуатации усилителя отсутствует вибрация. Пример такого крепления платы в корпусе усилителя показан на странице Четырехканальный усилитель.
Габариты платы и присоединительные размеры показаны на рисунке. Фланец микросхемы выступает за габариты платы на 1…2 миллиметра в зависимости от того, как микросхема сориентирована при пайке.
Для более надежного крепления можно использовать специальное крепежное отверстие под винт с резьбой М3. Это отверстие изолировано от схемы.
Подключение регулятора громкости
Если предусилитель отсутствует, то регулятор громкости подключается непосредственно к усилителю. Важно, чтобы входные цепи не имели контакта с «землей» или с корпусом усилителя.
В качестве регулятора рекомендуется использовать переменный резистор (потенциометр) сопротивлением 30…50 кОм. Предельные значения сопротивления регулятора громкости 5…100 кОм, но при этом возможно ухудшение качества звучания.
Переменный резистор лучше использовать с экспоненциальной зависимостью сопротивления от угла поворота. Тогда при вращении ручки регулятора, громкость будет изменяться пропорционально углу поворота. Такие переменные резисторы российского производства имеют в обозначении букву В, а резисторы произведенные не в России – букву A.
Правильное подключение блоков внутри усилителя
Взаимное соединение блоков усилителя является очень важным. Если сделать неправильно, то можно получить очень плохой звук. Усилитель даже может самовозбуждаться. В правильном подключении блоков нет никакого волшебства, чистая физика.
Подробно описано в статье Подключение блоков внутри усилителя.
Источник питания для усилителя
Работа усилителя очень сильно зависит от источника питания. Фактически усилитель занимается тем, что передает энергию из источника питания в колонки. Но делает это под управлением звукового сигнала. Передача энергии происходит так, чтобы в колонках сигнал был точно такой же, как и на входе усилителя. Как сделать правильный и хороший блок питания описано в статье Блок питания для TDA7294.
О том, как правильно сделать усилитель и источник питания, чтобы получить максимальное качество звучания, написано в этих статьях:
Дополнительная информация об усилителях и повышении качества звучания:
Ссылки приведенные в статье
Усилитель на TDA7293 / 7294 с Т-образной ООС
Блок питания для TDA7294
Разделение земли в усилителе
Подключение блоков внутри усилителя
Работа усилителя на микросхеме TDA7293 (TDA7294) на “трудную” нагрузку
Клип-детектор (clip-detector) для усилителя на TDA7293
Исследование верхней границы слуха
Информация, позволяющая лучше понять работу усилителя и получить максимум качества звучания
Hi-Fi усилитель на микросхеме TDA7294
Клиппинг (cliping) в усилителе
Расчет источника питания усилителя
Трансформатор для питания усилителя
Правильный выпрямитель
Выпрямитель для усилителя или сага о быстром диоде
Раздельное питание каналов стерео усилителя
Массив конденсаторов – мифы и реальность
Режимы Mute и StandBy в микросхеме TDA7294 / TDA7293
Дополнительная полезная информация
Сравнительное прослушивание усилителей
Звучание конденсаторов в фильтрах акустических систем
Реальный скин-эффект в кабелях
25.03.2020
Total Page Visits: 357 — Today Page Visits: 7
Простой усилитель на TDA7294 мощностью 100 Вт
Разновидностей бюджетных усилителей довольно много и это один из них. Схема очень проста и содержит в своем составе всего одну микросхему, несколько резисторов и конденсаторов. Характеристики усилителя довольно серьезные, при столь незначительных затратах. Выходная мощность достигает 100 Вт в максимальной мощности. Абсолютно чистый выход равен 70 Вт.
Характеристики усилителя
Более подробные характеристики усилителя на TDA7294:
- Питание двухполярное со средней точкой от 12 до 40 В.
- F вых. — 20-20000 Гц
- Р вых. макс. (пит.+-40V, Rн=8 Ом) — 100 Вт.
- Р вых. макс. (пит.+-35V, Rн=4 Ом) — 100 Вт.
- К гарм. (Рвых.=0.7 Р макс.) — 0.1%.
- Uвх — 700 мВ.
Микросхема TDA7294 дешевая и стоит копейки, покупал — ТУТ.
Схема усилителя на TDA7294

Такие усилители отлично работают в паре, поэтому делайте таких таких два и у вас получится простой стерео усилитель. Более подробные характеристики усилителя и схем включения можно посмотреть в даташит на микросхему TDA7294.
Блок питания для усилителя желательно выбирать в полтора раза мощнее, так что учтите.
Печатная плата усилителя
Рисунок расположения элементов:

Скачать в плату в формате lay:
plata.zip [16,13 Kb] (cкачиваний: 1723)
При печати выставить масштаб 70%.
Готовый усилитель



Микросхему необходимо устанавливать на радиатор, лучше с вентилятором, так как он будет меньше в размерах. Делать печатную плату совсем не обязательно. Можно взять макетную с большим количеством отверстий и собрать усилитель минут за 30.
Я советую вам собрать столь простой усилитель, который себя отлично зарекомендовал.
Блок питания
Блок питания полнен по классической схеме с трансформатором 150 Вт. Рекомендую брать трансформатор с кольцевым сердечником, так как он мощнее, меньше и излучает минимум сетевых помех и электромагнитного фона переменного напряжения. Фильтрующие конденсаторы каждого плеча 10000 мкФ.

Собирайте свой усилитель и до новых встреч!
Усилитель звука своими руками
У каждого радиолюбителя есть мечта, собрать мощный усилитель низкой частоты своими руками. Благодаря современным технологиям любую мечту легко осуществить. Например, собрать высококачественный усилитель мощности HI-FI класса устанавливаемый в дорогой радиоаппаратуре на микросхеме TDA7850. Эта микросхема представляет собой 4-х канальный усилитель НЧ с максимальной выходной мощностью 4х50 Вт на каждый канал при подключении динамических головок с сопротивлением 4 Ом, что в сумме составляет 200 Вт. Номинальная мощность усилителя 4х30 Вт. Чем отличается максимальная мощность от номинальной? Тем, что максимальную мощность усилитель выдает кратковременно, например во время воспроизведения баса. Номинальная мощность, это мощность при которой усилитель может работать без повреждений длительное время, например воспроизводить музыку.
На этом рисунке изображена схема усилителя низкой частоты на микросхеме TDA7850.

Скачать схему усилителя звука на микросхеме TDA7850
Чтобы собрать эту схему, вам понадобится минимальное количество радиодеталей. Процессором усилителя является микросхема TDA7850 заменить её можно только на TDA7560, других аналогов нет. Ни в коем случае не ставьте сюда микросхемы TDA7850A, TDA7850EP, TDA7850H у них совершенно другая распиновка. Все резисторы металлоплёночные мощностью 0.125 Вт или 0.25 Вт. Чтобы не было искажения звука конденсаторы лучше всего поставить полиэстеровые с рабочим напряжением не менее 25 вольт. Конденсаторы С5, С7, С8 обычные электролитические. Кстати С7 и С8 можно заменить одним конденсатором емкостью 10000 мкФ 25В. Большая емкость нужна, чтобы не было просадки напряжения и хрипов во время сочного баса. У микросхемы имеется функция бесшумного включения ST-BY устраняющая щелчки при включении усилителя и функция MUTE, которая устраняет шипение во время отсутствия сигнала на входе усилителя.
По умолчанию эти две функции желательно включить поставив две перемычки в местах отмеченных на схеме Jmp1 и Jmp2. К усилителю можно подключать четыре динамические головки с сопротивлением катушки 4 Ом и номинальной мощностью 50 Вт. Напряжение питания усилителя однополярное от 12 до 16В. Для питания усилителя лучше всего использовать блок питания от компьютера или бортовую сеть автомобиля. На максимальной громкости с четырьмя динамиками усилитель потребляет более 6А. Во время работы, особенно на максимальной громкости микросхема TDA7850 очень сильно нагревается, поэтому необходимо поставить большой радиатор от компьютерного процессора или принудительное охлаждение в виде небольшого вентилятора.

Детали усилителя разместите на печатной плате размером 80х53 мм. Жёлтыми линиями на печатной плате отмечены перемычки, которые необходимо установить. Если вы хотите подключить усилитель к 4-х канальной магнитоле, тогда необходимо удалить две перемычки соединяющие входы IN1, IN2 и IN3, IN4. При подключении к МП3 плееру, телефону, 2-х канальной магнитоле, перемычки должны стоять на своих местах.

Скачать печатную плату усилителя звука на микросхеме TDA7850
В качестве источника звука я подключил универсальный МП3 плеер. Провода соединяющие вход усилителя с источником звука обязательно должны быть экранированными, иначе будет присутствовать противный фоновый шум.

К усилителю можно подключать 4 динамика с сопротивлением катушки 4 Ом и номинальной мощностью 50 Вт. Я подключил всего два динамика АС JVC CS-DR1720, для моих целей вполне достаточно. Звук очень громкий и качественный, как в дорогих автомобильных магнитолах. Осталось установить динамики на свои места и наслаждаться великолепным звучанием.

Радиодетали для сборки усилителя звука низкой частоты
- Микросхема TDA7850 или TDA7560
- Резисторы 0.125 — 0.25 Вт R1, R5 470K, R2, R3 10K, R4 47K
- Конденсаторы C1, C2, C3, C4 0.1mf, C5 47mf 50V, C6, C9 1mf, C7, C8 4700mf 35V, C10 0.47mf
- Динамики 4 шт. сопротивление катушки 4 Ом номинальная мощность 50 Вт из недорогих и качественных АС JVC CS-DR1720
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать усилитель звука своими руками

Приветствую, Самоделкины!
Дочитав данную статью до конца, вы узнаете, как своими руками собрать предельно простой стерео усилитель звука на довольно популярной микросхеме TDA7377.

Данная самоделка была разработана автором YouTube канала «Radiо-Lab». При этом одним из главных условий было то, чтобы этот усилитель смог повторить совершенно любой радиолюбитель, даже начинающий. И микросхема TDA7377 является довольно-таки неплохим вариантом для реализации такой задумки.
Схема будущего усилителя была позаимствована автором с просторов всемирной паутины, и она в точности такая же, как рекомендует и производитель в своей документации.

Ниже представлены основные характеристики будущего усилителя звука.

Специально для данного проекта автор нарисовал печатную плату будущего усилителя. Скачать архив с Gerber и LAY файлами можно по ЭТОЙ ССЫЛКЕ.

Чтобы придать проекту более эстетичный вид, автором было принято решение заказать платы на китайском заводе, который предоставляет такую возможность всем желающим. На заводской плате усилитель будет смотреться красиво и более выигрышно.
По прошествии некоторого времени на почту пришла вот такая коробка с платами внутри.

Вот так выглядят полученные платы, сказать нечего, платы заводские, все качественно, красиво и на высшем уровне.


При заказе плат, в целях экономии, автор нарисовал несколько плат на одной пластине и теперь платы предстоит разделить. Для этой цели можно воспользоваться вот таким мини станком для резки плат.

Таким приспособлением весьма удобно резать печатные платы. Вот так выглядит отрезанная печатная плата будущего усилителя звука на микросхеме TDA7377.

Номиналы всех необходимых деталей имеются на плате, так же есть дорожки без маски, чтобы их можно было по необходимости дополнительно усилить припоем.
Для повторения данного проекта понадобятся: печатная плата, микросхема TDA7377, резисторы (номиналы указаны непосредственно на печатной плате), конденсаторы (номиналы которых также указаны на печатной плате), винтовые клеммники.

Все компоненты для повторения данного проекта можно без труда приобрести на радиорынке. Радиодеталей не много. Все номиналы деталей и места их установки есть на картинке и так же все номиналы деталей и что и куда паять есть на плате.


Ну а теперь можно начинать сборку усилителя. По сборке всё очень просто, тут главное не спешить. Начнем сначала с установки постоянных резисторов, их тут всего парочка. Номинал конкретного элемента автор узнает при помощи тестера радиодеталей. Номинал данного резистора по замеру получился 10кОм.

Ищем его место на печатной плате и устанавливаем его вертикально на свое место, вот как-то так:

Далее точно также устанавливаем следующий резистор. Постоянные резисторы установили. На плате имеется одна перемычка, которую можно изготовить, например, из ножки конденсатора.


Затем приступаем к установке неполярных конденсаторов, их у нас 3 штуки.

Здесь все предельно просто, исходя из номинала необходимо установить их на свои места.

Затем наступает очередь установки электролитических полярных конденсаторов. Их необходимо устанавливать обязательно соблюдая полярность. Номинал конденсатора найдете на корпусе. Более длинная ножка в новых конденсаторах — это плюс (+), а соответствующая метка минуса (-) имеется на корпусе конденсатора. Так же метки плюсов нанесены на печатную плату.

Когда все конденсаторы установлены, приступаем к запайке светодиода.

Помним, что светодиод имеет полярность и его необходимо устанавливать в соответствии с маркировкой на печатной плате. Более длинная ножка светодиода — это плюс (+), а метка минуса обозначена в виде скоса на юбке светодиода. Рисунок корпуса светодиода для правильной его установки есть на печатной плате.
Следующим шагом необходимо установить винтовые клеммники. Автор специально решил применить в данном проекте разные по цвету клеммники, чтобы было более понятно.


И теперь осталось установить и запаять на место микросхему TDA7377.

На плате имеются силовые дорожки без маски, чтобы их можно было дополнительно усилить припоем, что собственно сейчас и сделаем.

Также на всякий случай было решено установить защиту от переполюсовки по питанию в виде защитного диода 1N4007, и в случае переполюсовки будет короткое замыкание по линии питания.

Ну и на заключительном этапе необходимо навести красоту и удалить с печатной платы остатки флюса.
Все. Усилитель звука на микросхеме TDA7377 полностью собран. В результате проделанной работу у нас получился весьма компактный и достаточно простой стереоусилитель звука.

Схема подключения собранного усилителя представлена ниже:

Клеммники автор так же подписал, спереди входы и питание, а по бокам выходы. Данный усилитель АВ класса, и он греется в процессе работы. Для охлаждения микросхемы необходим радиатор.
Усилитель можно питать от подходящего по напряжению и мощности блока питания от сети 220В, но в качестве тестового питания послужит литий-ионный аккумулятор на 12В состоящий из трех элементов формфактора 18650.

Так же для теста понадобятся колонки (автор использует «Радиотехника S-30B»). Для подачи звукового сигнала на усилитель понадобится экранированный провод со штекером 3,5мм.

На плате усилителя левый и правый каналы по бокам и общий провод он же земля — в средине. Вот таким вот образом подключаем провода от колонок на выходы усилителя.


Вот и всё подключение. Осталось запитать усилитель и подключить источник звука к собранному усилителю, например, смартфон. При подключении питания не забываем соблюдать полярность.

Светодиодный индикатор сигнализирует о том, что усилитель запитан и готов к работе. Теперь можно подключить телефон и проверить собранный усилитель звука на работоспособность. Более подробно о процессе сборке и о тестировании данного усилителя смотрите в оригинальном видеоролике автора:
Собранный усилитель заработал сразу, посторонний шум в колонках полностью отсутствует. Уровень громкости регулируется на источнике звука, в данном случае на телефоне. Собранный своими руками усилитель звука на микросхеме TDA7377 работает отлично, громкости хватает с запасом (субъективно, по мнению автора).
На этом можно было бы закончить, но автор решил немного модернизировать получившееся устройство и подключить к этому усилителю врезной модуль Bluetooth.
Подключается данный врезного Bluetooth модуль предельно просто. Сигнальные провода с выхода необходимо подключить на вход усилителя, а провода питания модуля подключим параллельно на клеммы питания усилителя.
Пробуем подать питание от аккумулятора. При включении слышен хлопок, его издает именно врезной модуль, а не усилитель.

При выборе режима Bluetooth в колонках появляется характерный цифровой шум (помехи).
Но выход есть и не один. Чтобы избавиться от шума необходимо запитать врезной модуль от отдельного источника, что гальванически отделит питание и шума не будет. А чтобы запитать всё от одного источника питания и избавится от постороннего шума работы Bluetooth, можно использовать плату гальванической развязки по питанию, которая разрывает земляную петлю и заставляет минус питания идти только по дорожкам питания и не бродить по все плате и звуковой земле, создавая тем самым помехи. Объяснение конечно довольно грубое, но, думаю, более понятное.
Плата гальванической развязки включается в разрыв по питанию беспроводного модуля и модуль нужно перевести на питание 5В установкой перемычки с входа на выход стабилизатора 78М05.


Все подключено. При подаче питания посторонний шум полностью пропал. Режим Bluetooth работает нормально, радио тоже без проблем. Уровень громкости регулируется на врезном Bluetooth модуле
Вот такая простая сборка получилась, осталось упаковать это все в корпус, добавить разъёмы и по сути будет уже готовый мини усилитель с Bluetooth, USB, радио и линейным входом. Благодарю за внимание. До новых встреч!
Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Особенности:
На плате используется чип TDA7190 , двухсторонняя стеклопластиковая панель, цифровая задержка
реверберация, высокая мощность, низкое энергопотребление и низкий уровень искажений. И с тоном
контролировать, вы можете DIY маленькие колонки, радио-медиа, компьютерные колонки. Маленький размер,
отправить полный набор электроустановочных изделий, просты в установке.
Режим: плата усилителя TDA7190
Тип операционного усилителя: JAC4558
Рабочее напряжение: DC12V 2A
Выходная мощность: 20 Вт + 20 Вт
Размер: 125 * 75 * 25MM
Примечание:
1: DIY требует терпения и технологий, пожалуйста, внимательно прочитайте покупатели ли вы
можно контролировать перед покупкой, чтобы не повредить продукт, спасибо! ! !
2: потому что поставщик материала или обновление продукта вызывает физическое и
изображение будет немного отличаться, в зависимости от фактического полученного объекта.
Упаковочный лист:
1шт 7190 плата усилителя
3шт ручек
TDA7377 Аудио Усилитель Платы Одиночный компьютер супер бас 2.1 усилитель плата 3-канальный усилитель звука DIY suite
Описание:
Рабочее напряжение: 9-12 В переменного тока или 12-18 В постоянного тока.
Ток: 1 А (лучше, чем 2 А).
Важное замечание:
1.Мы рекомендуем достаточное электропитание, электрический ток чем больше, тем лучше. Подходящий динамик и коробка одинаково важны, не следует забывать.
2. Обратите внимание на фазу каждого канала, в противном случае возможно снижение эффективности.
3. Это традиционный усилитель, он будет нагреваться на работе, вы можете установить вентилятор для охлаждения.
4. Выход постоянного тока от главного источника питания, следует соблюдать осторожность при использовании.
5. Как вы оцениваете источник шипения (шум): замкните на входе сигнала, затем проверьте выход динамика, если на нем нет шума, усилитель в норме; Другими словами, если плата подключена к ПК или мобильному телефону, есть некоторый шум, то шум был от ПК или мобильного телефона.
В пакет включено:
1 х TDA7377 2.1-канальный комплект усилителя
Описание продукта:
TDA7498 — это усилитель мощностью 100 Вт + 100 Вт, который поддерживает монолитные интегрированные аналоговые, логические и высоковольтные функции, а также эффективность BPI6S по сравнению с другими процессами усиления класса D для достижения более высокой энергии площади микросхемы, а также снижения перекрестных помех. Улучшите качество звука.Кроме того, мощная выходная цепь BCD6S объединяет дополнительные транзисторы NMOS и PMOS, исключая загрузочные конденсаторы и катодные нагрузочные диоды, необходимые для старого процесса. STMicroelectronics TDA7498 имеет искажение (THD + N) менее 0,01%, что обеспечивает более высокое качество прослушивания.
Особенности продукта:
1. Использование оригинального TDA7498
2.Основной фильтрующий электролитический конденсатор принимает известную марку, а его емкость составляет 2200 мкФ, что обеспечивает мощную и непрерывную поддержку мощности.
3. Резистор использует высокоточный резистор с микросхемой 0805, а основная цепь использует металлический пленочный резистор с пятью кольцами с точностью ± 1% для обеспечения хорошего отношения сигнал / шум.
4. На печатной плате используется двухсторонний лист толщиной 1,6 мм, толщина меди 2,0 унции, а весь процесс напыления олова обеспечивает хорошую пропускную способность больших и малых токов.Первоклассное качество печатных плат.
Основные параметры производительности:
Метод работы: класс D
Ток покоя: 50 мА
Эффективность работы: 90%
Номинальная выходная мощность: 2 * 100 Вт
Частотная характеристика: от 20 Гц до 20 кГц
Рабочее напряжение: от DC20V до DC36V
Рекомендуемое напряжение питания: DC32V
Максимальный выходной ток: 7А
Размер печатной платы: (87 × 72) мм
Упаковка:
1 шт
Описание продукта:
2 * 30W Class AB Автомобильный усилитель класса
Особенности:
Напряжение питания: DC9-18V, рекомендуется DC12V
Выходная мощность: макс. 2×35 Вт, стерео (18 В, 4 Ом), динамики 4-8 Ом
Способ ввода: 3.5 мм аудио вход
Защита: защита входной мощности от обратного, короткого замыкания, перегрузки по току, перегрева
Размер печатной платы: 55.12мм * 45.21мм
Открытие ручки потенциометра: 7 мм
Общая (включая радиатор): 55,12 * 59,09 * 50 мм (длина * ширина * высота)
Вес нетто продукта: 80 г
Материалы процесса: высококачественная печатная плата из чистого черного золота, импортные аудио-конденсаторы K-EMET, фильтрующие конденсаторы большой емкости на канал плюс монолитные фильтрующие конденсаторы.Специально сделанный терминал из чистой черной меди, позолоченный входной аудиоразъем.
В пакет включено:
1 шт