Ремонт преобразователя напряжения 12 220 своими руками: Ремонт преобразователя напряжения 12 220 своими руками

Содержание

принципиальная схема преобразователя напряжения и его ремонт

Совсем недавно каждый производитель электронной аппаратуры прикладывал к своему изделию принципиальную электрическую схему и другую документацию, помогающую профессионалам и радиолюбителям быстро найти неисправность в отказавшем аппарате и отремонтировать его. Сегодня ситуация иная.

Схемы и подробную ремонтную документацию производители предоставляют лишь сертифицированным сервисным центрам. И то не всегда. Часто устранение простейшей неисправности сводится к замене неисправного блока. А отказавший блок в лучшем случае отправляют производителю, а в худшем — на свалку.

Те же, кому услуги сервисных центров недоступны из-за дороговизны или территориальной отдалённости, остаются «у разбитого корыта «.

Автор предлагаемой статьи делится своим опытом восстановления недоступной принципиальной схемы аппарата по его печатной плате. Это помогло ему отремонтировать аппарат. Надеемся, описанные им приёмы будут полезны многим читателям.

Взяться за перо меня заставили объективные причины. Во второй половине 2015 г. Крым и г. Севастополь испытали энергетический голод.

И когда в вечернее время город на несколько часов погружался в непроглядную темноту, единственной палочкой-выручалочкой был автомобильный преобразователь постоянного напряжения 12 В в переменное 220 В мощностью 150 Вт. который и осветительную лампу зажжёт, и радио с Wi-Fi предложит.

Но однажды после подключения к нему «умной» светодиодной лампы всё погасло, а сам преобразователь стал издавать жалобный прерывистый писк.

Первым делом в Интернет полетели вопросы относительно схемы устройства. Оказалось, что запищал преобразователь не только у меня, но и у многих товарищей по несчастью. Интернет практически сотрясался от возгласов «Дайте схему!» самых различных устройств.

Поскольку ни я, ни другие (как следует из материалов форумов) не нашли ответа, были изучены все доступные материалы по работе и типовым схемам подобных преобразователей.

Но очень скоро выяснилось, что схема моего преобразователя существенно отличается от типовой. Например, во многих подобных устройствах применена лишь одна микросхема TL494, а у меня их две, да ещё и микросхема LM358L, отсутствующая в найденных схемах. Стало ясно, что для успешного решения моей задачи недостаточно «метода тыка».

Нужна полноценная и правильная принципиальная схема устройства. И похоже, поможет её самостоятельное составление. Вот так и родилось то, что предлагается вниманию читателей На мой взгляд, материал будет полезен и начинающему радиолюбителю, знакомому с азами компьютерных технологий, и опытному, но не имеющему достаточного опыта работы с компьютером.

Инвертор напряжения внутри

Всё будет рассказано на примере преобразователя напряжения, внешний вид которого показан на рис. 1. Чтобы добраться до внутренностей прибора, я внимательно изучил все его крепёжные элементы (винты, защёлки) и первым делом вывинтил винты крепления передней (с розеткой) и задней панелей.

Поскольку эти панели электрически соединены с печатной платой, я аккуратно развёл их в стороны и заглянул внутрь корпуса.

Стало понятным назначение ещё одного винта, расположенного на боковой стороне корпуса (на рис. 1 слева). Этот винт удерживает планку-кронштейн, прижимающую к корпусу, служащему теплоотводом, какие-то детали (позже выяснилось, что это термореле и два мощных транзистора).

Отвинтив и этот винт, я осторожно извлёк из корпуса печатную плату, внешний вид которой сверху приведён на рис. 2, а снизу — на рис. 3. Первое впечатление — связи между элементами устройства весьма сложны, «беглый» анализ схемы и поиск неисправностей затруднены.

Но самая большая проблема — соединения между элементами не видны со стороны их установки на плате. Я занялся решением этой проблемы.

Сфотографировал плату сверху, стараясь получить наиболее резкое изображение с минимальными геометрическими искажениями (см. рис. 2). Поскольку многие детали имеют существенно различную высоту (например, трансформатор и лежащий рядом резистор), при съёмке с малого расстояния система автофокусировки фотоаппарата может выбрать в качестве опорной точки торец трансформатора.

Поверхность платы окажется заметно не в фокусе, но именно там расположены печатные отверстия и мелкие детали. Поэтому, если фотоаппарат имеет функцию ручной фокусировки, необходимо ею воспользоваться. Если фотоаппарат цифровой, то можно применить такую методику: полунажатием на кнопку спуска сфокусироваться на участок поверхности платы, а затем, не отпуская кнопку и не изменяя расстояния до объекта, переместить изображение в центр экрана и дожать кнопку для завершения съёмки.

Рис. 1. Внешний вид преобразователя.

Рис. 2. Плата преобразователя.

Есть ещё один «подводный камень”. В стремлении быстро получить результат подручными средствами, многие решают воспользоваться, например, фотокамерой мобильного телефона, надеясь на её «многомегапиксельность».

Вероятный результат такого решения представлен на рис. 4, где, например, у микросхем справа не видно целого ряда выводов, а высокие элементы (например, оксидные конденсаторы) кажутся «смотрящими» в разные стороны.

Рис. 3. Печатная плата.

Рис. 4. Детали на печатной плате.

Это следствие различия углов, под которыми при съёмке с близкого расстояния видны элементы центральной и периферийных частей платы.

Съёмку платы нужно вести с расстояния не менее метра, что значительно уменьшит различие углов визирования элементов в пределах кадра.

Но при этом придётся использовать объектив с большим фокусным расстоянием или с трансфокатором высокой кратности, и потребуется стабильность взаимного положения аппарата и объекта съёмки. Эта проблема просто решается использованием штатива и режимом автоспуска.

Установив, например, двухсекундный режим автоспуска, изображение объекта съёмки увеличивают трансфокатором до максимального заполнения дисплея. Затем полунажатием на спусковую кнопку фокусируют его, после чего дожимают кнопку до конца. Таким способом удается получить достаточно хорошие кадры вида на монтаж, лишённые описанных выше дефектов.

Аналогичным образом я сделал снимки платы со стороны печатного монтажа. В принципе, эту сторону платы можно и отсканировать, но здесь тоже есть важный нюанс.

Наибольшее распространение в быту получили планшетные сканеры на приборах с зарядовой связью (ПЗС, англ. CCD — Charge Coupled Device) и с контактными датчиками изображения (англ. CIS — Contact Image Sensor) [1]. Первые снабжены специальной оптической системой и способны сканировать неровную поверхность с глубиной резкости до 30 мм, что вполне достаточно даже с установленными на его стороне мелкими элементами.

Сканеры второго типа, как правило, дешевле и по этой причине весьма распространены, однако имеют малую глубину резкости, близкую к нулю.

Они предназначены для работы лишь с плоскими листами документов, плотно прижатыми к стеклу. Полученный на таком сканере вид печатного монтажа (рис. 5) не блещет качеством (размыты мелкие детали, не читаются номиналы резисторов), что подтверждает преимущества фотоспособа.

Рис. 5. Вид печатного монтажа.

Восстановление схемы

Полученные фотографии я сохранил в компьютерных файлах под названиями соответственно «Вид сверху» и «Вид снизу». Не бойтесь использовать в названиях файлов русские буквы.

Современные операционные системы в большинстве случаев это позволяют. Фотоснимки я предварительно обработал в программе Picture Manager — штатном средстве пакета MS Office. Файл изображения можно открыть, щёлкнув правой клавишей мыши по его названию и выбрав нужный пункт из выпадающего списка «Открыть с помощью».

Поскольку вид сверху зеркален относительно вида снизу, последний необходимо перевернуть по вертикали. Для этого я открыл файл «Вид снизу», в главном меню программы выбрал пункт «Рисунок» и далее последовательно перешёл к пунктам «Повернуть и отразить…» и «Отразить сверху вниз».

Теперь изображение печатного монтажа видится как бы сквозь прозрачную плату сверху (рис. 6). Результат сохранил в файле «Вид снизу-повёрнуто».

Теперь вид сверху и перевёрнутый вид снизу нужно максимально совместить по горизонтали, используя как ориентир длинную сторону платы.

Для этого я, пройдя по пунктам «Рисунок» -> «Повернуть и отразить…», задал в окне «Градусов:» угол поворота изображения с шагом 0,01 град, и добился горизонтальности нижней кромки платы на обоих рисунках. Затем выбрал пункт «Рисунок» -» «Обрезка…» и ограничил рисунки размерами собственно платы.

Сохранив полученные результаты, я перешёл к творческому этапу работы, для выполнения которой использовал популярную у радиолюбителей, очень простую в освоении и с множеством полезных функций, русифицированную программу SPlan 7.0. Её легко найти в Интернете. Внешний вид окна программы, с загруженной в него для примера схемой МДМ-усилителя, приведён на рис. 7.

Рис. 6. Изображение печатного монтажа.

Чтобы сделать печатные проводники платы видимыми на стороне установки компонентов, необходимо совместить оба рассматриваемых изображения на одном рисунке, наложив вид снизу (предварительно сделав его прозрачным) на вид сверху.

Но здесь есть «подводные камни». Реальный рисунок печатной платы изобилует технологическими «излишествами» — расширениями проводников и сложной их конфигурацией, буквально закрывающими собой вид сверху на плату при наложении.

Выход из положения — создать скелетную схему печатного монтажа. Предварительно пришлось выполнить некоторые простейшие настройки программы SPlan. В нижней части под рабочим полем слева я задал шаг сетки 0,1 мм, а чуть правее в окнах «Угол изгиба» и «Угол вращения» установил «Нет».

Далее я скопировал на рабочее поле программы изображение перевёрнутого вида снизу (см. рис. 6) Для этого в меню «Файл» выбрал пункт «Открыть файлы графики», нашёл нужный файл и открыл его на рабочем столе двойным щелчком мыши по имени.

На левой вертикальной панели программы SPIan выбрал инструмент «Точка соединения» и расставил точки в местах пайки выводов элементов на плате.

Затем в меню «Опции» выбрал пункт «Стиль и цвет линий», в открывшемся окне задал ширину линий, например «5» (цвет по умолчанию чёрный), и нажал «ОК». Теперь все построенные линии будут иметь эти ширину и цвет.

Рис. 7. Программа SPLan 7.

На боковой панели выбрал инструмент «Линия» и продублировал все соединения, проводя линии между нанесёнными точками наиболее наглядно и рационально, не повторяя все особенности трассировки печатных проводников. Здесь показал в виде небольших прямоугольников элементы (резисторы и конденсаторы), расположенные со стороны печати.

Для большей наглядности выделил их синим цветом. Элементы полученного рисунка я обьединил в группу, однако прежде потребовалось удалить лежащий под ними фоновый вид снизу. Выделив фоновый рисунок, щёлкнув мышью по его границе, я навёл на неё курсор и, удерживая нажатой левую клавишу мыши, выдвинул фоновый рисунок на свободное место рабочего поля.

Рис. 8. Схема печатного монтажа превратилась в единый рисунок с прозрачным фоном.

Далее, удерживая нажатой левую клавишу, выделил (охватил пунктирным прямоугольником) только что созданную схему (при этом она окрасилась в фиолетовый цвет) и щёлкнул мышью по замкнутому замочку в верхней строке меню (можно выбрать пункт «Группировать» в контекстном меню правой клавиши мыши). В результате созданная схема печатного монтажа превратилась в единый рисунок с прозрачным фоном (рис. 8).

Сохранив на всякий случай полученный результат в файле с расширением имени .spl7, я перешёл к следующему этапу работы. Удалил с рабочего поля программы SPIan фотоснимок вида снизу, который только что использовал для создания скелетной схемы, и скопировал сюда вид на плату сверху.

Увеличил высоту изображения приблизительно до половины высоты рабочего поля, потянув за любой из четырёх окружающих его угловых чёрных квадратов.

Выделив щелчком скелетную схему и выбрав в меню правой клавиши мыши пункт «На передний план», я, удерживая нажатой левую клавишу мыши, надвинул эту схему на вид сверху.

Согласовывал масштабы рисунков описанным выше способом до полного их совпадения в узловых точках и приступил к заключительному этапу. Первым делом расставил на скелетной схеме все элементы, находящиеся на верхней стороне платы, используя для этой цели богатые возможности встроенной библиотеки программы SPIan.

Опыт показывает, что целесообразно предварительно выбрать из библиотеки необходимые элементы (резисторы, конденсаторы, диоды, транзисторы, обмотки трансформатора и пр.) и разместить их на рабочем поле рядом с рисунком. На схеме желательно показать и номиналы элементов, что существенно упростит окончательное построение принципиальной схемы. Итог проделанной работы представлен на рис. 9.

Рис. 9. Итог проделанной работы.

В принципе, полученный рисунок уже позволяет приступить к созданию фрагментов принципиальной схемы устройства. Однако я настоятельно рекомендую не отказываться от ещё одной процедуры, которая, в итоге, неизбежно повысит наглядность и читаемость картины, что, в свою очередь, уменьшит вероятность ошибочной интерпретации схемы.

Здесь возможны два варианта. Первый и наиболее простой — распечатать показанную на рис. 9 схему и, вооружившись разноцветными фломастерами, выделить линии связи и соответствующие точки различными цветами, о которых будет сказано ниже. Более интересен вариант создания цветной схемы печатного монтажа средствами программы SPlan.

Он позволяет пофантазировать и поэкспериментировать прежде, чем остановиться на окончательном варианте. Кроме того, всегда удобно иметь перед тобой на мониторе компьютера легко масштабируемую и наглядную печатную схему.

Я выбрал второй вариант и, выделив весь изображённый на рис. 9 рисунок, разгруппировал его элементы щелчком мыши по разомкнутому замочку в главном меню (вместо этого можно выбрать пункт выпадающего меню «Разгруппировать”).

Но нужно помнить, если ранее группировка производилась не однократно, а по частям, то и разгруппирование нужно повторить соответствующее число раз. Если предварительно был создан раскрашенный от руки рисунок схемы, его можно использовать как образец.

Для окраски или изменения других свойств любого графического элемента необходимо выделить его щелчком мыши (чтобы придать одинаковые свойства нескольким обьектам, например линиям, необходимо выделять их, удерживая нажатой клавишу Shift). Затем в меню правой клавиши нужно выбрать пункт «Свойства (атрибуты) элемента», в подменю которого можно задать нужный цвет, ширину и тип линии, цвет заливки.

Результат моей обработки скелетной схемы показан на рис. 10. Здесь красным цветом выделены линии, имеющие отношение к положительной полярности входного и полученного внутри устройства напряжений. Зелёным цветом обозначена отрицательная полярность (общий провод). Фиолетовый цвет показывает остальные линии связи.

Перемычки на плате (порой скрытые от глаз, например, установленные под микросхемами) показаны насыщенным синим цветом. Все элементы поверхностного монтажа, размещённые на стороне печатных проводников, обозначены прямоугольниками синего цвета. Элементы, размещённые на противоположной стороне платы, изображены тонкими чёрными линиями.

Рис. 10. Результат моей обработки скелетной схемы.

Сравнивая рис. 9 и рис. 10, можно убедиться в высокой наглядности последнего. Для успешного восстановления принципиальной схемы и в дальнейшем для анализа работы устройства потребовалось все обнаруженные активные элементы (диоды, транзисторы, микросхемы) найти в справочниках или Интернете и узнать их назначение, расположение выводов, основные параметры.

При этом я узнал для себя много нового. Например, что микросхемы TL494 [2, 3] представляют собой приборы, реализующие широтно-импульсную модуля цию выходных импульсов с богатым набором функциональных возможностей.

Рис. 11. Принципиальная схема инвертора напряжения.

Поскольку была выполнена предварительная работа по изучению (например, в [4]) типовых схем импульсных преобразователей напряжения, я уже имел общее представление о структуре подобных устройств.

Далее начался интересный творческий процесс, от качества выполнения которого во многом зависел успех решения поставленной задачи. Было заведомо ясно, что получить окончательную принципиальную схему с первого раза наскоком не удастся.

Рассуждения я начал от входных контактов, куда подаётся постоянное напряжение 12 В от аккумуляторной батареи. Глядя на свой рисунок (рис. 10) и двигаясь от входного контакта +12 В по красной линии, я увидел, что это напряжение приходит на выводы трансформатора Т1. На печатной плате в этой области имеются пять равноудалённых контактных площадок.

Три средних из них соединены между собой и с цепью + 12 В. Есть основания предположить, что на них выведена средняя точка первичной обмотки трансформатора. Не рисуя пока ничего, я продолжил беглое знакомство с окружением трансформатора.

Крайние выводы первичной обмотки трансформатора связаны со стоками полевых транзисторов Q1 и Q2, затворы которых, в свою очередь, получают сигналы управления от расположенных справа элементов, в частности, от микросхемы U1.

Рис. 12. Фрагмент схемы.

Эти наблюдения позволили увидеть логику расположения рассмотренных узлов, учитывая, что итог их работы — изменение состояния транзисторов Q1 и 02, стоки которых подключены к крайним выводам первичной обмотки.

Следовательно, трансформатор должен быть расположен на листе бумаги где-то справа и вертикально, поскольку построение схемы в дальнейшем будет, очевидно, продолжаться по горизонтали.

В процессе рисования я заметил, что элементы управления каждой половиной обмотки расположены симметрично относительно её средней точки. Когда «бумажный» вариант фрагмента схемы откорректирован, его можно повторить на компьютере, например, в программе SPlan. Итог этой работы приведён на рис. 11.

На этой и всех последующих схемах сохранены позиционные обозначения элементов, нанесённые на плату преобразователя, хотя они существенно отличаются от принятых в России Например, диоды и транзистор (VD и VТ по нашим стандартам) обозначены соответственно D и Q.

Позиционные номера элементов также сохранены, хотя на составленных схемах они следуют хаотически, что значительно затрудняет поиск нужного элемента по его номеру.

Далее я приступил к части схемы, связанной с вторичной обмоткой трансформатора. В большинстве предварительно изученных схем напряжение вторичной обмотки поступало непосредственно на выходную розетку.

Но в моём случае оба её вывода подключены к мосту из диодов D4-D7, хотя они размещены на печатной плате так, что обнаружить мост удалось лишь после некоторых усилий.

Следовательно, здесь формируется ещё одно (кроме 12 В) постоянное напряжение. Судя по параметрам оксидного конденсатора С2 (10 мкФ, 400 В), расположенного в верхней части платы и соединённого с диодным мостом, это напряжение довольно высокое.

От плюсового выхода моста видно ответвление вправо в область платы, которая, судя по насыщенности её разнообразными элементами, весьма сложна по схеме, играет какую-то самостоятельную роль и достойна отдельного внимания. Я решил рассмотреть её чуть позже, а пока продолжил движение по плюсовому проводнику.

Все соединённые с ним элементы расположены в верхней части платы, число их невелико. Это позволило без труда завершить создание схемы этого фрагмента, представленной на рис. 12.

Её анализ показывает, что перед нами выпрямитель высокого переменного напряжения, из выходного постоянного напряжения которого каким-то неизвестным пока образом будет сформировано переменное выходное напряжение 220 В частотой 50 Гц.

Продолжив двигаться вправо от верхнего по схеме вывода резистора R16, я попал на вывод 4 микросхемы U2 (TL494L). Зная из [3], что её выводы 8 и 11 — коллекторы выходных транзисторов, я проследил, куда идут от них печатные проводники, и увидел, что к базам и затворам транзисторов пока не рассмотренного узла. Схема узла на элементе U2 имеет вид, изображённый на рис. 13.

Рис. 13. Схема узла на элементе U2.

Рис. 14. Схема формирователя выходного переменного напряжения.

Теперь можно было взяться за выходной узел — формирователь переменного напряжения 220 В 50 Гц. Я возвратился к печатному проводнику, идущему от катодов диодов к стокам транзисторов 05 и Q6.

Предстояло составить схему самого сложного, на первый взгляд, узла, насыщенного плотно размещёнными элементами со сложно организованными связями. Это потребовало большего внимания и усидчивости.

Поскольку формирователем выходного переменного напряжения, как я предположил, управляет микросхема U2, подавая на него прямоугольные симметричные импульсы, соединённые стоки упомянутых выше двух транзисторов могут свидетельствовать о наличии двух независимых каналов преобразования. Не исключая такую возможность, я начал движение по одному из них.

Обнаружил соединение между истоком транзистора Q5 и стоком транзистора Q8. Кстати, здесь же берёт начало один из проводов, идущих к выходной розетке преобразователя напряжения.

Исток транзистора Q8 соединён с общим проводом через низкоомный резистор R1, что подтверждает его соединение с минусом высоковольтного выпрямителя. Аккуратно дорисовал цепи управления этими транзисторами и стрелками показал связи с другими узлами.

Сделав аналогичные построения для второго канала, начиная с транзистора Q6, я обнаружил их полную идентичность. Это позволило при создании схемы в программе SPlan нарисовать схему лишь одного канала, затем в меню правой клавиши мыши выбрать пункт «Дублировать» и, переместив копию на нужное место, зафиксировать её здесь.

Откорректировав позиционные номера элементов второго канала и отредактировав схему в целом, я выделил (обведя мышью) весь рисунок, сгруппировал все его элементы и сохранил схему в файле. Полученная схема формирователя выходного переменного напряжения изображена на рис. 14.

И наконец, последний активный элемент прибора — микросхема U3 LM358L [5]. Это сдвоенный маломощный ОУ. Восстановление схемы содержащего её узла не вызвало никаких затруднений. Она изображена на рис. 15. Этот узел связан только с микросхемой U1, поэтому на полной принципиальной схеме прибора они, очевидно, будут расположены рядом.

Созданные фрагменты схемы я перенёс на единый лист и расположил их в логической последовательности. Поскольку вся предыдущая работа была выполнена тщательно и аккуратно, после объединения фрагментов и окончательного редактирования получена принципиальная электрическая схема преобразователя постоянного напряжения 12 В в переменное 220 В, 50 Гц, показанная на рис. 16.

Рис. 15. Схема узла с микросхемой LM358L.

В принципе, созданной схемы, даже без номиналов некоторых элементов (они плохо читаемы), достаточно для анализа работы устройства и поиска причины его отказа.

Первый активный элемент преобразователя, получающий напряжение + 12 В от аккумуляторной батареи, — TL494L (U1). Задающим узлом в ней служит генератор пилообразного напряжения, параметры колебаний которого заданы резистором R13 и конденсатором С4. Как следует из описания микросхемы, частоту генерации F можно определить по формуле:

При указанных на схеме номиналах этих элементов расчётное значение — 73,33 кГц. Подключив осциллограф к выводу 5 микросхемы U1, я убедился в работоспособности генератора (рис. 17, масштаб по оси времени — 5 мкс/дел., по оси напряжения — 500 мВ/дел.).

Наличие пилообразного напряжения амплитудой 2,7 В и частотой около 81 кГц свидетельствует об исправности генератора, а отклонение измеренной частоты от расчётного значения может быть следствием разброса параметров резистора и конденсатора.

Рис. 16. Принципиальная электрическая схема преобразователя постоянного напряжения 12 В в переменное 220 В, 50 Гц.

Рис. 16. Продолжение принципиальной схемы.

Проверку работы микросхемы U1 я завершил наблюдением её выходных сигналов на выводах 9 и 10 (рис. 18, масштаб по оси времени — 5 мкс/дел., по оси напряжения — 5 В/дел.).

Полная идентичность выходных импульсов и их взаимный сдвиг на полпериода свидетельствовали о правильном функционировании микросхемы. Дальнейшие исследования переместились к трансформатору Т1. Подключившись к его вторичной обмотке, я проверил исправность транзисторов Q1-Q4 и самого трансформатора.

Рис. 17. Сигнал с генератора.

Здесь нужно иметь в виду, что выходное напряжение трансформатора может быть более 300 В, что опасно для осциллографа. Например, у осциллографа ISDS205B, которым я пользовался, максимальное допустимое входное напряжение — всего 60 В.

Поэтому измерение проводилось с простейшим делителем напряжения 1:10, схема которого показана на рис. 19. Я увидел симметричные двухполярные импульсы, следующие с частотой около 40 кГц.

Рис. 18. Сигнал на выводах 9 и 10.

Рис. 19. Схема делителя напряжения 1 до 10.

Значит, все узлы, расположенные на схеме левее трансформатора, исправны. Этот же результат можно было получить, сразу подключившись к трансформатору, но любые предварительные ознакомительные измерения полезны. Работу диодного моста D4-D7 можно приближённо оценить, приняв во внимание следующие соображения.

В режиме холостого хода, когда нагрузка к выходу преобразователя не подключена, при частоте пульсаций выпрямленного напряжения около 80 кГц на пряжение на сглаживающем конденсаторе С2 не успевает заметно изменяться в паузах между импульсами и практически равно пиковому значению напряжения на вторичной обмотке (за вычетом падения напряжения на двух диодах моста).

Если измеренное постоянное напряжение на конденсаторе С2 равно амплитуде импульсов на вторичной обмотке трансформатора, то диодный мост и конденсатор С2 исправны.

Заманчиво было сразу перейти к выходному узлу преобразователя, расположенному на схеме правее выпрямителя. Но здравое рассуждение и внутренний голос подсказали, что этим узлом управляет микросхема U2 и, пожалуй, лучше начать с неё. Поскольку микросхемы U1 и U2 идентичны и с первой из них я уже знаком, следовало посмотреть, что происходит со второй.

Я начал с задающего генератора и, подключившись к выводу 5, увидел здесь пилообразные импульсы амплитудой 2,5 В, повторяющиеся с частотой около 98 Гц.

Подстроечным резистором VR2 можно установить частоту 100 Гц. Очевидно, что из них будут сформированы выходные импульсы частотой 50 Гц. На выводах 8 и 11 должны присутствовать однополярные идентичные прямоугольные импульсы, длительность которых зависит от постоянного напряжения на выводе 4.

В моём случае управляющее напряжение поступает с резисторов R3 и VR1 и представляет собой часть постоянного напряжения на выходе выпрямителя.

Следовательно, уменьшение напряжения аккумуляторной батареи в процессе её разрядки и соответствующее ему снижение выходного напряжения выпрямителя приводят к расширению выходных импульсов и стабилизации за счёт этого выходного переменного напряжения.

Согласно надписи на корпусе преобразователя, его эффективное значение должно быть установлено (с помощью подстроечного резистора VR1) равным 220 В. Хотя сегодняшние стандарты требуют, чтобы номинальное сетевое напряжение было равным 230 В, практика показывает, что электроприборы, рассчитанные на 230 В, прекрасно работают и от напряжения 220 В. Поэтому регулировку можно оставить прежней.

Напряжение на том же выводе 4 при опасном начальном напряжении свежезаряженной аккумуляторной батареи, близком к 15 В, блокирует работу микросхемы U2 и прекращает формирование выходного напряжения.

Проверив осциллографом выходные импульсы на выводах 8 и 11, я обнаружил их заметное различие по амплитуде (соответственно 8,75 и 9,94 В). Это меня насторожило, поскольку на выходах аналогичной микросхемы U1 импульсы практически одинаковы по амплитуде.

Возможны две причины: неисправность микросхемы U2 или её внешних цепей. Поскольку проверить микросхему, не выпаивая её из печатной платы, не удалось, я занялся внешними цепями.

Отключил от преобразователя напряжение питания 12 В и цифровым омметром «прозвонил» относительно общего провода выводы 8 и 11 микросхемы U2. Сопротивление участка цепи, связанного с выводом 8, оказалось меньше, чем связанного с выводом 11. Эта информация не внесла ясности в ситуацию.

Я начал рассуждать. Оба канала — потребители сигналов управления и абсолютно идентичны. Значит, и участки этих каналов должны обладать одинаковым сопротивлением.

И таких участков в каждом канале два: делители напряжения на базах транзисторов Q9 и Q10 и цепи затворов транзисторов Q8 и Q7. Внимательно посмотрев на схему, я убедился, что эти участки соединены параллельно. Следовательно, их общее сопротивление должно быть меньше меньшего из них.

Однако резисторы R32 и R7 отделены от общего провода огромным сопротивлением изоляции затворов транзисторов Q8 и Q7, следовательно, остаются только делители напряжения с сопротивлением около 13 кОм и незнакомые мне внутренние цепи микросхемы. Подключив омметр между выводом 11 микросхемы U2 и общим проводом, я увидел, что он показал 6,35 кОм.

Перенос щупа омметра к выводу 8 принесло сюрприз — здесь сопротивление почему-то 3,9 кОм. Оно подозрительно близко к сопротивлению соединённых последовательно резисторов R33 и R34, если параллельно им подключить резистор R7. Но такого не может быть, ведь резистор R7 отделён от общего провода изоляцией затвора транзистора Q7.

Чтобы проверить подозрение, я подключил щуп омметра к затвору транзистора Q7, и прибор показал сопротивление, близкое к нулю. Значит, изоляция затвора от канала транзистора пробита, поэтому резистор R7 действительно соединён правым (по схеме) выводом с общим проводом.

Проведённая немедленно «прозвонка» канала сток-исток транзистора Q7 показала и его пробой. Теперь стала понятна и причина неожиданно странного поведения преобразователя — тревожные акустические сигналы и провалы напряжения на нагрузке на фоне появившихся пульсаций. В своих рассуждениях я исходил из того факта, что при нормальной работе пары транзисторов Q5 с Q7 и Q6 с Q8 открываются и закрываются поочерёдно, чем обеспечивается смена полярности напряжения, поступающего на нагрузку.

На схеме видна связь датчика тока — резистора R1 с выводом 1 микросхемы U2. Этот вывод представляет собой неинвертирующий вход одного из внутренних компараторов микросхемы U2, на его инвертирующий вход 2 с делителя напряжения R25R23 поступает образцовое напряжение около 75 мВ.

При исправной работе преобразователя и максимальной мощности нагрузки 150 Вт на резисторе R1 падает напряжение приблизительно 60 мВ, что не вызывает срабатывания компаратора и тем самым не изменяет режима работы микросхемы U2.

При перегрузке преобразователя падение напряжения на резисторе R1 возрастает, и по превышении им значения 75 мВ компаратор изменяет своё состояние, чем блокирует работу микросхемы U2 и закрывает выходные транзисторы преобразователя. Это происходит в каждом полупериоде выходного напряжения.

В рассматриваемом случае цепь нагрузки исправна, а пробой транзистора Q7 вызывает перегрузку выпрямителя только в полупериоды, когда открыт транзистор Q6 и происходит рассмотренная выше блокировка микросхемы U2. В результате на нагрузку поступает однополупериодное пульсирующее напряжение, что ей (и преобразователю) очень не нравится.

После замены транзистора Q7 работоспособность преобразователя восстановилась, о чём свидетельствует осциллограмма выходного напряжения, приведённая на рис. 20 (масштаб по оси времени — 5 мс/дел., по оси напряжения с учётом его делителя -100 В/дел.). Значит, вся работа была не напрасна.

Рис. 20. Осциллограмма выходного напряжения.

Единственное, что осталось без внимания — узел на микросхеме U3. Взглянув на него, можно догадаться, что он предназначен для звуковой сигнализации о возникновении какой-то проблемы, о чём свидетельствует наличие звукоизлучателя BZ. На неинвертирующие входы обоих ОУ поступает стабилизированное образцовое напряжение 5 В от микросхемы U1.

На инвертирующий вход верхнего по схеме ОУ поступает напряжение с резистивного делителя R14R27R35. После подключения к преобразователю аккумуляторной батареи начинает заряжаться конденсатор С1.

Пока напряжение на нём не достигнет 9,7 В, напряжение на выводе 2 будет меньше образцовых 5 В, поэтому на выводе 1 верхнего ОУ действует высокий уровень напряжения, которое через диод D8 поступает на вывод 16 микросхемы U1, запрещая работу её и в результате всего преобразователя.

Пока напряжение на инвертирующем входе нижнего ОУ меньше 5 В, работают генератор сигнала звуковой частоты на нижнем по схеме ОУ микросхемы U3 и звукоизлучатель BZ, извещая о низком напряжении питания.

Этот звук всегда сопровождает процесс подключения аккумуляторной батареи к преобразователю. При напряжении на конденсаторе С1 более 10,3 В звук исчезает, а преобразователь входит в нормальный режим работы. Естественно, при снижении напряжения батареи в результате разрядки до 10,3 В и ниже звуковой сигнал обратит внимание пользователя на этот факт.

На этом завершим краткое путешествие по функциональным узлам преобразователя напряжения, основной целью которого было ознакомление с ходом рассуждений и локальных исследований при поиске неисправности.

Возможность такого экскурса появилась только после кропотливой, но плодотворной работы по восстановлению принципиальной схемы устройства. Хочется надеяться, что предложенный материал окажется полезным всем творческим, любознательным и целеустремлённым людям, которые ремонту «на стороне» предпочитают восторг собственной победы.

Ю. Быковский, г. Севастополь, Украина. Р-11-17, 12-17.

Литература:

  1. Какой выбрать сканер CCD или CIS? — skanworld.ru
  2. Широков С. TL494CN: схема включения, описание на русском, схема — fb.ru
  3. TL494 ШИМ — datasheet
  4. Преобразователи напряжения на ИМС TL494. — yandex.ru/search
  5. Описание и применение операционного усилителя LM358. — joyta.ru.

Инверторы 12-220 Вольт (обзор) » Автосхемы, схемы для авто, своими руками

Инверторы или преобразователи напряжения нашли широкое применение в быту, поэтому сейчас почти в каждом магазине электроники они встречаются в продаже. Благодаря импульсным технологиям, эти инверторы стали значительно компактней, не занимают много места и весят очень мало, по этой причине они часто приобретаются автолюбителями. Данная модель преобразователя напряжения предназначена для получение сетевого напряжение от стандартной сети автомобиля 12 Вольт, подключается к прикуривателю и весит всего 300 грамм.

Мощность такого инвертора, не смотря на компактные размеры составляет 200 ватт, но это долговременная мощность, а пиковая доходит до 400 ватт по словам производителя. Я же в свою очередь убедился в этом, подключая к инвертору сборку из 4-х ламп накаливания на 100 ватт каждая. Если нагружать преобразователь нагрузкой более 450 ватт, то сработает защита от перегрузки и схема сама по себе выключится, имеется также защита от короткого замыкания на выходе.


Схема достаточно стандартная и отработанная. Генератор импульсов построен на широко применяемом ШИМ контроллере на микросхемке TL494 — двухтактный высокоточный ШИМ контроллер, который не имеет драйвера на выходе, поэтому качать полевые транзисторы с тяжелыми затворами он может не долго. Именно для этого собран отдельный драйвер на маломощных транзисторах, для усиления сигнала с микросхемы.

В качестве силовых ключей применены полевые транзисторы серии IRL3705, это достаточно высококачественные логичные ключи, но в инверторах промышленного типа используются довольно редко.

Напряжение после трансформатора выпрямляется мостом из ультрабыстрых диодов, поскольку рабочая частота преобразователь 60-70кГц и обычные диоды тут работать не будут. Далее напряжение (уже постоянное) сглаживается электролитическим конденсатором на 400 Вольт 10мкФ.

В выходной части устройства собран отдельный генератор на 50 Герц, сигнал усиливается полевыми ключами. Сам генератор питается от более пониженного напряжения, а это напряжение обеспечивается стабилитроном и линейным стабилизатором напряжения. Благодаря отдельному генератору на выходе получается почти синусоидальный сигнал с сетевой частотой 50 Герц.

Такой преобразователь спокойно может питать как пассивные (лампы накаливания, кипятильники, паяльники), так и активные нагрузки (телевизоры, плееры, зарядные устройства и т.п.).

Схема работает бесшумно, размеры платы очень компактные, половины места в корпусе остается свободным. Корпус сделан из легкого алюминия и одновременно служит охлаждением для полевых ключей, хотя последние греются слабо даже с достаточно приличной нагрузкой на выходе.

Преобразователь напряжения 12 220 схема, конструкция описание и наладка

Преобразователь напряжения 12 220 схема

Многие радиолюбители являются и автолюбителями и любят отдохнуть с друзьями на природе, а от благ цивилизации отказываться совсем не хочется. Поэтому они собирают своими руками преобразователь напряжения 12 220 схема которого рассмотрена на рисунках ниже. В этой статье я расскажу и покажу различные варианты конструкций инверторов, который используются для получения сетевого напряжения 220 Вольт от автомобильного аккумулятора.

Преобразователь напряжения 12 220 схема, очень простая для повторения

Устройство построено на двухтактном инверторе на двух мощных полевых транзисторах. К данной конструкции подойдут любые N-канальные полевые транзисторы с током 40 Ампер и более, я применил недорогие транзисторы IRFZ44/46/48, но если вам на выходе нужна большая мощность лучше используйте более мощные полевые транзисторы IRF3205.

Трансформатор наматываем на ферритовом кольце или броневом сердечнике Е50, да можно и на любом другом. Первичную обмотку следует наматывать двух жильным проводом с сечением 0,8мм — 15 витков. Если применить броневой сердечник с двумя секциями на каркасе, первичная обмотка мотается в одной из секций, а вторичная состоит из 110-120 витков медного провода 0,3-0,4мм. На выходе трансформатора получаем переменное напряжение в диапазоне 190-260 Вольт, импульсов прямоугольной формы.

Преобразователь напряжения 12 220 схема которого была описана, может питать различную нагрузку, мощность которой не более 100 ватт

Преобразователь напряжения 12 220 схема собранна по двухтактному типу

В этой схеме преобразователя напряжения генератор генерирует прямоугольные импульсы с частотой следования около 50 Гц с защитными паузами, которые исключают одновременное открывание полевых транзисторов VT5 и VT6. Когда на выходе Q1 (или Q2) появится низкий уровень, произойдет открытие транзисторов VT1 и VT3 (или VT2 и VT4), и затворные емкости начинают разряжаться, и закрываются транзисторы VT5 и VT6.
Собственно преобразователь собран по классической двухтактной схеме.
Если напряжение на выходе преобразователя превысит установленное значение, напряжение на резисторе R12 будет выше 2,5 В, и поэтому ток через стабилизатор DA3 резко увеличится и появится сигнал высокого уровня на входе FV микросхемы DA1.

Ее выходы Q1 и Q2 переключатся в нулевое состояние и полевые транзисторы VT5 и VT6 закроются, вызывая уменьшение выходного напряжения.
В схему преобразователя напряжения также добавлен узел защиты по току, на основе реле К1. Если ток, протекающий через обмотку, будет выше установленного значение, сработают контакты геркона К1.1. На входе FC микросхемы DA1 будет высокий уровень и ее выходы перейдут в состояние низкого уровня, вызывая закрытие транзисторов VT5 и VT6 и резкое снижение потребляемого тока.

После этого, DA1 останется в заблокированном состоянии. Для запуска преобразователя потребуется перепад напряжения на входе IN DA1, чего можно добиться либо отключением питания, либо кратковременным замыканием емкости С1. Для этого можно ввести в схему кнопку без фиксации, контакты которой припаять параллельно конденсатору.
Т.к выходное напряжение — меандр, для его сглаживания предназначен конденсатор С8. Светодиод HL1 необходим для индикации наличия выходного напряжения.
Трансформатор Т1 сделан из ТС-180, его можно найти в блоках питания старых кинескопных телевизоров. Все его вторичные обмотки удаляют, а сетевую на напряжение 220 В оставляют. Она и служит выходной обмоткой преобразователя. Полуобмотки 1.1 и I.2 делают из провода ПЭВ-2 1,8 по 35 витков. Начало одной обмотки соединяют с концом другой.
Реле — самодельное. Его обмотка состоит из 1-2 витков изолированного провода, рассчитанного на ток до 20. 30 А. Провод намотан на корпусе геркона с замыкающими контактами.

Подбором резистора R3 можно задать требуемую частоту выходного напряжения. а резистором R12 — амплитуду от 215. 220 В.

Преобразователь напряжения 12 220 схема на TL494

Этот преобразователь достаточно мощный и его можно применить для питания паяльника, болгарки, микроволновки и прочих устройств. Но не забываем о том, что рабочая частота его не 50 Герц.

Первичная обмотка трансформатора наматывается 7-ю жилами сразу, проводом диаметром 0,6мм и содержит 10 витков с отводом от середины растянутая по всему ферритовому кольцу. После намотки, обмотку изолируем и начинаем наматывать повышающую, тем же проводом, но уже 80 витков.

Силовые транзисторы желательно установить на теплоотводы. Если собрать схему преобразователя правильно, то она должна заработать сразу же и настройки не требует.

Схема преобразователя напряжения 12-220 на TL494 альтернативный вариант

Как и в предыдущей конструкции, сердцем схемы является TL494.

Это готовое устройство двухтактного импульсного преобразователя, полным отечественный аналогом ее является 1114ЕУ4. На выходе схемы применены высокоэффективные выпрямительные диоды и С-фильтр.

В преобразователе я применил ферритовый Ш-образный сердечник от трансформатора ТПИ телевизора. Все родные обмотки были размотаны, т.к наматывал я заново вторичную обмотку 84 витка проводом 0,6 в эмалевой изоляции, потом слой изоляции и переходим к первичной обмотке: 4 витка косой из 8-ми поводов 0,6, после намотки обмотки были прозвонены и разделены пополам, получились 2 обмотки по 4 витка в 4 провода, начало одной соеденил с концом другой, т. о сделал отвод от середины, и в завершении намотал обмотку обратной связи пятью витками провода ПЭЛ 0,3.

Преобразователь напряжения 12 220 схема которую мы рассмотрели, включает в свой состав дроссель. Его можно изготовить своими руками намотав на ферритовом кольце от компьютерного блока питания диаметром 10мм и 20 витков проводом ПЭЛ 2.

Имеется также рисунок печатной платы схемы преобразователя напряжения 12 220 вольт:

И несколько фоток получившегося преобразователя 12-220 Вольт:

Преобразователь напряжения 12 220 схема на TL494 в банке из под газировки

Опять понравившееся мне TL494 в паре с мосфетами (Эта такая современная разновидность полевых транзисторов), трансформатор на этот раз я позаимствовал из старого компьютерного блока питания. При разводке платы я учитывал выводы именно его, поэтому при своем варианте размещения будьте бдительны.

Для изготовлении корпуса я использовал банку 0,25L из под газировки, так удачно сныканную после перелета из Владивостока, острым ножем срезаем верхнее колечко и вырезаем у него середину, в него на эпоксидке вклеил кружок из стеклотекстолита с отверстиями под выключатель и разъем.

Для придания банке жесткости, вырезал из пластиковой бутылки полоску шириной с наш корпус, и обмазал его эпоксидным клеем поместил в банку, после высыхания клея банка стала достаточно жесткой и с изолированными стенками, дно банки оставил чистым, для лучшего теплового контакта с радиатором транзисторов.

В завершение сборки припаял провода к крышке я закрепил ее термоклеем, это позволит, если возникнет необходимость разобрать преобразователь напряжения, просто нагрев крышку феном.

Схема преобразователя напряжения 12-220 на на 200 ВТ

Конструкция преобразователя напряжения предназначена для преобразования 12 вольтового напряжения от аккумулятора в 220 Вольт переменного с частотой 50 Гц. Идея схемы позаимствована из старого выпуска журнала радио за ноябрь 1989 года.

Радиолюбительская конструкция содержит задающий генератор рассчитанный на частоту 100Гц на триггере К561ТМ2, делитель частоты на 2 на той же микросхеме, но на втором триггере и усилитель мощности на транзисторах, нагруженный трансформатором.

Транзисторы учитывая выходную мощность преобразователя напряжения следует установить на радиаторы с большой площадью охлаждения.

Трансформатор можно перемотать из старого сетевого трансформатора ТС-180. Сетевую обмотку можно использовать в качестве вторичной, а затем наматываются обмотки Ia и Ib.

Собранный из рабочих компонентов преобразователь напряжения не требует налаживания, за исключением подборки конденсатора С7 при подключенной нагрузке.

Если необходим чертеж печатной платы выполненный в программе sprint layout. щелкните на рисунок ПП.

Преобразователь 12 220 с управлением на микроконтроллере с выходной мощностью 500 Вт

Сигналы с микроконтроллера PIC16F628A через сопротивления по 470 Ом управляют силовыми транзисторами, заставляя их поочередно открываться. В истоковые цепи полевых трпнзисторов подключены полуобмотки трансформатора мощность 500-1000 ВА. На его вторичных обмотках должно быть по 10 вольт. Если взять Провод сечением 3 мм.кв, то выходная мощность будет около 500 Вт.

Вся конструкция получается очень компактная, так что можно использовать макетную плату, без травления дорожек. Архив с прошивкой микроконтроллера ловите по зеленой ссылке чуть выше

Преобразователь напряжения 12 220 схема на цифровых микросхемах CD4001 и CD4013 рассчитанный на 70 Вт

Схема преобразователя 12-220 выполнена на генераторе, создающем симметричные импульсы, следующие противофазно и выходного блока реализованного на полевых ключах, в нагрузку которым подключен повышающим трансформатором. На элементах DD1.1 и DD1.2 собран по классической схеме мультивибратор, генерирующий импульсы с частотой следования 100 Гц.

Для формирования симметричных импульсов идущих в противофазе, в схеме использован D-триггер микросхемы CD4013. Он делит на два все импульсы, попадающие на его вход. Если имеем сигнал идущий на вход с частотой 100Гц, то на выходе триггера будет всего 50Гц.

Так как полевые транзисторы имеют изолированный затвор, то активное сопротивление между их каналом и затвором стремится к бесконечно большой величине. Для защиты выходов триггера от перегрузки в схеме имеется два буферных элемента DD1.3 и DD1.4, через которые импульсы следуют на полевые транзисторы.

В стоковые цепи транзисторов включен повышающий трансформатор. Для защиты от самоиндукции самоиндукции на стоках к ним подсоединены стабилитроны повышенной мощности. Подавление ВЧ помех осуществляется фильтром на R4, C3.

Обмотка дросселя L1 сделана своими руками на ферритовом кольце диаметром 28мм. Она намотана проводом ПЭЛ-2 0,6 мм одним слоем. Трансформатор самый обычный сетевой на 220 вольт, но мощностью не ниже 100Вт и имеющий две вторичные обмотки на 9В каждая.

Преобразователь напряжения 12 220 схема на 500 Вт на К155ЛА3 и К155ТМ2

Для повышения КПД преобразователя напряжения и предотвращения сильного перегрева, в выходном каскаде схемы инвертора применены полевые транзисторы с низким сопротивлением.

На DD1.1 – DD1.3, C1, R1, сделан генератор прямоугольных импульсов с частотой следования импульсов 200 Гц. Затем импульсы поступают на делитель частоты построенный на элементах DD2.1 – DD2.2. Поэтому на выходе делителя 6 выходе DD2.1 частота понижается до 100Гц, а уже на 8 выходе DD2.2. она составляет 50 Гц.

Сигнал с 8 вывода DD1 и с 6 вывода DD2 следует на диоды VD1 и VD2. Для полного открытия полевых транзисторов требуется увеличить амплитуду сигнала, который проходит с диодов VD1 и VD2, для этого в схеме преобразователя напряжения применены биполярные транзисторы VT1 и VT2. Посредством VT3 и VT4 осуществляется управление полевыми выходными транзисторами. Если в процессе сборки инвертора не было сделано ошибок, то он начинает работать сразу после подачи питания. Единственное что рекомендуется сделать это подобрать номинал сопротивления R1, чтобы на выходе были привычные 50 Гц.

Преобразователь напряжения 12 220 диаграммы поясняющие схему

Трансформатор для схемы преобразователя напряжения 12 220, можно изготовить своими руками. Для этого придется немного переделать старый силовой трансформатор от отечественного телевизора. Все обмотки удаляем, кроме сетевой. Затем наматываем две обмотки проводом ПЭЛ – 2,1 мм. Полевые транзисторы требуется установить на радиатор.

http://www.texnic.ru

Преобразователь с 12В на 220В своими руками

Преобразователь с 12В на 220В своими руками

 

Конструкция такого самодельного преобразователя с 12 на 220 проста и может быть повторена, даже если у вас нет особых навыков в области электроники. Ядро схемы — симметричный мультивибратор, который можно построить на маломощных транзисторах серии КТ361. Мощность рассматриваемого преобразователя во многом зависит от мощности самого трансформатора и числа пар транзисторных ключей.

 

Схема прекрасно работает и на отечественных компонентах, ниже о заменах номиналов.


 2SC912 — можно заменить буквально любыми маломощными, типа КТ361 или КТ3107 и т.п. На этих транзисторах собрана схема мультивибратора — формирователей импульсов.


 2SC1061 — на транзисторы средней мощности типа КТ817, КТ815 с любыми буквами. На крайняк можно использовать более мощные НЧ транзисторы. Эти транзисторы предварительно усиливают сигнал (буферный каскад) и подают его на выходники.


 Выходные каскады — именно они являются силовой частью схемы. Тут можно использовать транзисторы серии КТ819 (желательно с буквами ГМ).

 

Для повышения выходной мощности можно использовать более мощные биполярные транзисторы серии КТ827 или КТ825.


 Трансформатор можно взять готовый или же мотать самому. Намоточных данных не могу дать, поскольку они зависят от мощности используемого трансформатора. Использован в данном случае сетевой трансформатор на 400 ватт. Трансформатор имеет две обмотки на 12 вольт, Сетевая обмотка тоже стандартная. Первичные обмотки должны быть намотаны проводом, диаметр который от 2 до 4мм.

Предлагаемый самодельный преобразователь напряжения 12 220, может питать нагрузки с мощностью до пол киловатта, но мощность может быть увеличена (увеличением числа транзисторов и соответственно трансформатора).


 Уменьшением количества каскадов можно снизить общую мощность устройства. Это даст возможность использования маломощных трансформаторов, которые найти достаточно просто. В качестве трансформатора может быть использован готовый сетевой трансформатор от китайских бытовых сабвуферов. Такие сабвуферные комплексы (2:1, 3:1 или 5:1) питаются от двухполярного источника на 12 или 17 вольт.

Во время работы транзисторы выходного каскада будут перегреваться, поэтому их нужно укрепить на теплоотвод, но не забудьте изолировать каждый транзистор от радиатора.

 

Данный преобразователь 12В > 220В, был собран для проверки и на скорую руку, поэтому монтаж компонентов получился неаккуратным, с этим прошу простить.

 

Источник: all-he.ru

СХЕМА ИНВЕРТОРА 12-220

   Такой простой и компактный преобразователь напряжения автомобилистам, поскольку в машине очень часто может возникнуть необходимость получения сетевого напряжения. Этот преобразователь может быть использован для запитки паяльников, ламп накаливания, кофеварок и прочих устройств, которые питаются от сети 220 Вольт. Преобразователь может также питать активные нагрузки — телевизор или DVD проигрыватель, но стоит заметить, что это достаточно опасно, поскольку рабочая частота преобразователя довольно сильно отличается от сетевых 50 Герц. Но, как известно, в указанных устройствах установлены импульсные блоки питания, где сетевое напряжение выпрямляется диодами. Эти диоды могут выпрямлять ток высокой частоты, но должен заметить, что не во всех импульсных блоках могут быть такие диоды, поэтому лучше не рискнуть. Такой DC-AC преобразователь напряжения можно собрать за пару часов, если меть под рукой нужные компоненты. Уменьшенная схема показана на рискнке: 

   Трансформатор — силовой компонент такого преобразователя. Он намотан на кольце феррита, который был снят от китайского блока для питания галогенок (мощность 60 ватт).

   Первичная обмотка трансформатора моталась 7-ю жилами. Для намотки обеих обмоток использовался провод с диаметром 0,5-0,6мм. Первичная обмотка состоит из 10 витков с отводом от середины, т.е. две равноценные половинки по 5 витков каждая. Обмотки растянуты по всему кольцу. После намотки, обмотки желательно изолировать и мотать повышающую.  

   Вторичная обмотка состоит из 80 витков (провод использовался тот же, что и для намотки первичной обмотки). Транзисторы были установлены на теплоотводы, но не забываем изолировать их при помощи специальных прокладок и шайб. Это делается только тогда, когда у обеих транзисторов общий теплоотвод.

   Дроссель можно убрать и подключить питание напрямую. Он состоит из 7-10 витков провода 1мм. Дроссель может быть намотан на кольце из порошкового железа (такие кольца легко можно найти в компьютерных БП). Схема инвертора 12-220В в предварительной наладке не нуждается и работает сразу. 

   Работа достаточно стабильная, благодаря дополнительному драйверу, микросхема не греется. Транзисторы греются в пределах нормы, но советую подобрать для них теплоотвод побольше. 

   Монтаж выполнен в корпусе от электронного трансформатора, который и играет роль теплоотвода для полевых ключей.

Originally posted 2018-12-10 01:27:11. Republished by Blog Post Promoter

Схема простого инвертора на 100 Вт и 12-220 В – Поделки для авто

Для того, чтобы конструктивно реализовать простой инвертор, достаточно использовать трансформатор из блока питания персонального компьютера. Хорошо известно, что в данном устройстве есть три трансформатора, поэтому нужно выпаять самый большой из них. В случае, когда необходимо получить напряжение в четыре сотни вольт, на выходе должен стоять умножитель напряжения.

В любом случае, данный трансформатор идеально подходит для создания инверторов с мощностью от 500 до 600 Вт. Но в этой статье рассматривается конструкция инвертора с мощностью от 80 до 100 Вт. В основу стандартной двухтактной схемы положен ШИМ контроллер TL494, а также пара мощных силовых ключей из серии IRFZ44. Если необходимо, можно взять ключи IRF3205, которые позволяют увеличить входную мощность на тридцать-пятьдесят Ватт.

Небольшие габариты такой схемы существенно расширяют возможности по ее применению. Карманный вариант схемы может понадобиться во время походов и прочих подобных мероприятий, ведь это еще и прекрасный источник сетевого напряжения.

Выходное напряжение трансформатора выпрямляется силами диодного моста. В принципе, подойдут любые быстрые диоды, обратное напряжение которых превышает отметку в четыреста Вольт. Подходят и отечественные элементы, например, импульсные диоды с током от одного до пяти Ампер и частотой в 60-100 кГц.

После диодного моста потребитель получает уже выпрямленное напряжение. Для чего это нужно? Дело в том, что это импульсная схема, поэтому выходной ток имеет повышенную частоту, способную вывести из строя большинство электронных устройств, работающих от сети с стандартным бытовым напряжением.

Хоть в большей части современной электроники и реализованы БП импульсного типа, сетевое напряжение проходит через диодный выпрямитель, диоды которого не могут работать с высокими частотами. Как результат – при подаче такого напряжения диоды сразу же выгорают, так и не успев сработать с нужной скоростью. Если же на диодный мост подается постоянное напряжение, то оно же поступает и на выход схемы.

Данный инвертор не подходит для питания устройств, в которых роль источника питания отведена пятидесятигерцовым трансформаторам. А вот паяльники, зарядные устройства, телевизоры и светильники будут работать без перебоев и проблем.

Для установки полевых транзисторов следует подготовить отдельные или один общий теплоотвод. Но в случае с общим теплоотводом стоит укрепить элементы через изоляционные прокладки. В противном случае возникнет КЗ и схема не будет работать.

Преобразователь напряжения (инвертор) 12 / 220 50 Гц 500 Вт схема своими руками | РадиоДом

Купить мужские и женские унты с доставкой по России
Самодельный преобразователь напряжения (инвертор) 12 вольт на 220 вольт может быть полезен автомобилистам, выезжающим на своем автомобиле на природу, рыбалку, дачу. Он позволяет зарядить телефон, в ночное время подключить лампы для освещения, поработать и поиграть на ноутбуке, посмотреть телевизор.
Преобразователь 12 вольт на 220 вольт с максимальной выходной мощностью 500 Вт собран на 2 отечественных микросхемах (К155ЛА3 и К155ТМ2) и 6 транзисторах, и нескольких радиодеталей. Для повышения КПД и предотвращения сильного нагревания, в выходном каскаде устройства использованы очень мощные полевые транзисторы IRLR2905 с минимальным сопротивлением. Возможно замена на IRF2804, но мощность преобразователя немного упадёт
На элементах DD1.1 – DD1.3, C1, R1, по стандартной схеме собран задающий генератор прямоугольных импульсов с примерной частотой 200 герц. С выхода генератора импульсы следуют на делитель частоты, состоящий из элементов DD2.1 – DD2.2. Вследствие этого на выходе делителя (вывод 6 элемента DD2.1) частота следования импульсов снижается до 100 герц, а уже на выходе 8 DD2.2. частота сигнала равна 50 герц.
Прямоугольный сигнал с вывода 8 микросхемы DD1 и с вывода 6 микросхемы DD2 поступает на диоды VD1 и VD2 соответственно. Чтобы полевые транзисторы полностью открывались необходимо увеличить амплитуду сигнала, который поступает с диода VD1 и VD2, для этого используются транзисторы VT1 и VT2. С помощью транзисторов VT3 и VT4 (они выполняют роль драйвера) происходит управление выходными силовыми транзисторами. Если в процессе сборки инвертора не было допущено ошибок, то он начинает работать сразу после включения. Возможно что может потребоваться подбор сопротивления резистора R1, чтобы на выходе было ровно 50 герц.

Преобразователь напряжения (инвертор) 12 / 220 50 Гц 500 Вт схема своими руками

 


  Кремниевые транзисторы VT1, VT3 и VT4 – КТ315 с любой буквой. Транзистор VT2 возможно заменить на КТ361. Стабилизатор DA1 — отечественный аналог КР142ЕН5А. Все резисторы в схеме мощностью 0,25 Вт. Диоды любые КД105, 1N4002. Конденсатор C1 со стабильной емкостью — тип К10-17. В качестве трансформатора ТР1 возможно применить силовой трансформатор от старого советского телевизора. Все обмотки необходимо удалить, оставив только сетевую обмотку. Поверх сетевой обмотки намотать одновременно две обмотки проводом ПЭЛ – 2,2 мм. Полевые силовые транзисторы необходимо обязательно установить на алюминиевый ребристый радиатор общей площадью 750 кв.см.

Рекомендуется первый запуск преобразователя(инвертора) производить через бытовую лампу накаливания 220 вольт и мощностью 100 — 150 ватт, включив последовательно в одну из питающих проводов, этим вы обезопасите от порчи радиодеталей в случае допущенной ошибки.

Работая с повышающими преобразователями или инверторами соблюдайте правила электрической безопасности так как работа производится с опасным для организма напряжением !!! Выходную вторичную обмотку в процессе наладки и сборки обязательно изолировать кембриками из резиновых трубочек во избежание случайного контакта.


Как работает инвертор, как ремонтировать инверторы — общие советы

В этом посте мы попытаемся узнать, как диагностировать и ремонтировать инвертор, всесторонне изучив различные этапы инвертора и как работает базовый инвертор.

Прежде чем мы обсудим, как отремонтировать инвертор, было бы важно, чтобы вы сначала получили полную информацию об основных функциях инвертора и его этапах. Следующее содержание объясняет важные аспекты инвертора.

Этапы инвертора

Как следует из названия, преобразователь постоянного тока в переменный — это электронное устройство, которое способно «инвертировать» постоянный потенциал, обычно получаемый от свинцово-кислотной батареи, в повышенный потенциал переменного тока. Выходной сигнал инвертора обычно вполне сопоставим с напряжением, которое имеется в наших домашних розетках сети переменного тока.

Ремонт сложных преобразователей частоты — непростая задача из-за большого количества сложных этапов, требующих наличия специальных знаний в данной области. Инверторы, которые обеспечивают выходы синусоидальной волны или инверторы, использующие технологию ШИМ для генерации модифицированной синусоидальной волны, могут быть трудными для диагностики и устранения неисправностей для людей, которые относительно плохо знакомы с электроникой.

Тем не менее, более простые конструкции инверторов, основанные на основных принципах работы, могут быть отремонтированы даже человеком, который не является специалистом в области электроники.

Прежде чем мы перейдем к деталям поиска неисправностей, было бы важно обсудить, как работает инвертор, и различные ступени, которые обычно может включать инвертор:

Инвертор в его самой основной форме можно разделить на три основных этапа, а именно. генератор, драйвер и выходной каскад трансформатора.

Генератор:

Этот каскад в основном отвечает за генерацию колебательных импульсов через микросхему или транзисторную схему.

Эти колебания в основном являются производством чередующихся положительных и отрицательных (заземляющих) пиков напряжения аккумуляторной батареи с определенной заданной частотой (числом положительных пиков в секунду). Такие колебания обычно имеют форму квадратных столбов и называются прямоугольными волнами. и инверторы, работающие с такими генераторами, называются инверторами прямоугольной формы.

Вышеупомянутые генерируемые прямоугольные импульсы слишком слабы и никогда не могут использоваться для управления сильноточными выходными трансформаторами. Поэтому эти импульсы подаются на следующий каскад усилителя для выполнения требуемой задачи.

Для получения информации об генераторах инвертора вы также можете обратиться к полному руководству, в котором объясняется, как спроектировать инвертор с нуля.

Бустер или усилитель (драйвер):

Здесь принятая частота колебаний соответствующим образом усиливается до высоких уровней тока, используя либо силовые транзисторы или МОП-транзисторы.

Хотя усиленный отклик является переменным током, он все еще находится на уровне напряжения питания батареи и поэтому не может использоваться для управления электрическими приборами, которые работают с более высокими потенциалами переменного тока.

Таким образом, усиленное напряжение подается на вторичную обмотку выходного трансформатора.

Выходной силовой трансформатор:

Все мы знаем, как работает трансформатор; в источниках питания переменного / постоянного тока он обычно используется для понижения подаваемого входного переменного тока сети до более низких заданных уровней переменного тока за счет магнитной индукции двух его обмоток.

В инверторах трансформатор используется для аналогичной цели, но с прямо противоположной ориентацией, то есть здесь переменный ток низкого уровня от вышеупомянутых электронных каскадов подается на вторичные обмотки, что приводит к индуцированному повышенному напряжению на первичной обмотке трансформатора.

Это напряжение, наконец, используется для питания различных бытовых электрических устройств, таких как фонари, вентиляторы, миксеры, паяльники и т.д. Принцип становится основой всех традиционных конструкций инверторов, от самых простых до самых сложных.

Функционирование показанной конструкции можно понять из следующих пунктов:

1) Плюс батареи питает микросхему генератора (вывод Vcc), а также центральный отвод трансформатора.

2) Микросхема генератора при включении начинает производить поочередно переключающиеся импульсы Hi / Lo на своих выходных контактах PinA и PinB с некоторой заданной частотой, в основном 50 Гц или 60 Гц в зависимости от спецификаций страны.

3) Видно, что эти распиновки связаны с соответствующими силовыми устройствами №1 и №2, которые могут быть МОП-транзисторами или силовыми BJT.

3) В любой момент, когда на PinA высокий уровень, а на PinB низкий, силовое устройство №1 находится в проводящем режиме, а силовое устройство №2 остается выключенным.

4) В этой ситуации верхний отвод трансформатора соединяется с землей через силовое устройство №1, которое, в свою очередь, заставляет положительный полюс батареи проходить через верхнюю половину трансформатора, запитывая эту секцию трансформатора.

5) Аналогично, в следующий момент, когда на контакте B высокий уровень, а на контакте A низкий, активируется нижняя первичная обмотка трансформатора.

6) Этот цикл непрерывно повторяется, вызывая двухтактную проводимость высокого тока через две половины обмотки трансформатора.

7) Вышеупомянутое действие во вторичной обмотке трансформатора вызывает переключение эквивалентной величины напряжения и тока через вторичную обмотку посредством магнитной индукции, что приводит к выработке необходимых 220 В или 120 В переменного тока на вторичной обмотке трансформатора, как показано на схеме.

Преобразователь постоянного тока в переменный, советы по ремонту

В приведенном выше объяснении несколько моментов становятся очень важными для получения правильных результатов от преобразователя.

1) Во-первых, генерация колебаний, из-за которых силовые полевые МОП-транзисторы включаются / выключаются, инициируя процесс индукции электромагнитного напряжения на первичной / вторичной обмотке трансформатора. Поскольку полевые МОП-транзисторы переключают первичную обмотку трансформатора двухтактным образом, это вызывает переменное напряжение 220 В или 120 В переменного тока на вторичной обмотке трансформатора.

2) Вторым важным фактором является частота колебаний, которая фиксируется в соответствии со спецификациями страны, например, страны, которые поставляют 230 В, обычно имеют рабочую частоту 50 Гц, в других странах, где обычно указывается 120 В. работают на частоте 60 Гц.

3) Сложные электронные устройства, такие как телевизоры, DVD-плееры, компьютеры и т. Д., Никогда не рекомендуется использовать с преобразователями прямоугольной формы. Резкий подъем и спад прямоугольных волн просто не подходят для таких приложений.

4) Однако есть способы с помощью более сложных электронных схем для изменения прямоугольных волн так, чтобы они стали более подходящими с вышеупомянутым электронным оборудованием.

Инверторы, использующие другие сложные схемы, могут генерировать сигналы, почти идентичные сигналам, имеющимся в наших домашних розетках переменного тока.

Как отремонтировать инвертор

Если вы хорошо разбираетесь в различных ступенях, обычно встроенных в инверторный блок, как описано выше, устранение неисправностей становится относительно простым. Следующие советы проиллюстрируют, как отремонтировать преобразователь постоянного тока в переменный:

Инвертор «мертв»:

Если ваш инвертор вышел из строя, выполните предварительные исследования, такие как проверка напряжения батареи и соединений, проверка на перегоревший предохранитель , потеря связи и т. д.Если все в порядке, откройте внешнюю крышку инвертора и выполните следующие действия:

1) Найдите секцию генератора; отключите его выход от каскада MOSFET и с помощью частотомера убедитесь, генерирует ли он требуемую частоту. Обычно для инвертора 220 В эта частота составляет 50 Гц, а для инвертора 120 В — 60 Гц. Если ваш измеритель не показывает частоту или стабильный постоянный ток, это может указывать на возможную неисправность этого каскада генератора. Проверьте его интегральную схему и соответствующие компоненты на предмет устранения проблемы.

2) Если вы обнаружите, что каскад генератора работает нормально, переходите к следующему каскаду, то есть каскаду усилителя тока (силовой полевой МОП-транзистор). Изолируйте полевые МОП-транзисторы от трансформатора и проверьте каждое устройство с помощью цифрового мультиметра. Помните, что вам, возможно, придется полностью удалить MOSFET или BJT с платы во время их тестирования с помощью цифрового мультиметра. Если вы обнаружите, что какое-то устройство неисправно, замените его новым и проверьте реакцию, включив инвертор. Желательно подключать лампу постоянного тока высокой мощности последовательно к батарее во время тестирования реакции, чтобы быть в большей безопасности и предотвратить любое чрезмерное повреждение батареи

3) Иногда трансформаторы также могут стать основной причиной неисправности.Вы можете проверить наличие обрыва обмотки или ненадежного внутреннего соединения в соответствующем трансформаторе. Если вы сочтете это подозрительным, немедленно замените его новым.

Хотя не так-то просто узнать все о том, как отремонтировать преобразователь постоянного тока в переменный, из самой этой главы, но определенно все начнет «готовиться», когда вы будете углубляться в процедуру через неустанную практику и некоторые методы проб и ошибок.

Все еще есть сомнения … не стесняйтесь задавать здесь свои конкретные вопросы.

Как починить силовой инвертор? — Устранение основных неисправностей

Если вы живете в удаленном месте, где для питания используется только постоянный ток, вам понадобится инвертор мощности. То же самое применимо, если вы собираетесь в поход на автофургоне или у вас есть только внедорожник. Инверторы мощности или цифровые инверторы необычайно эффективны, когда дело доходит до использования батарей в качестве более мощного источника энергии. Они помогут вам превратить постоянный ток автомобильного аккумулятора в переменный ток и позволят заряжать устройства, запускать ноутбук или что-то в этом роде.

Однако, если вы в конечном итоге получите неисправный преобразователь мощности , и у вас нет другого выхода, кроме как отремонтировать его самостоятельно, эта статья для вас. Я расскажу обо всем, что вам следует знать о силовых инверторах, о том, что это такое и как они работают. Как только вы узнаете , как работает ваш инвертор , вы пройдете через процессы, которым вы должны следовать, чтобы отремонтировать его. Придерживайтесь процесса и самостоятельно отремонтируйте инвертор.

Что такое инвертор мощности?

Инвертор мощности — это устройство преобразователя мощности, которое может преобразовывать постоянный ток батареи в переменный ток.Это генератор, который может быстро переключать настройки полярности с постоянного тока на переменный и генерировать прямоугольную волну. С помощью инвертора мощности вы можете использовать устройства, которым требуется переменный ток, а не постоянный ток. Вы можете получить как выходной ток 220 В, так и 240 В с помощью инвертора, который поможет вам запустить любой тип устройства. Существует три наиболее популярных типа для инверторов : инверторы с синусоидальной волной, прямоугольные и модифицированные синусоидальные инверторы. Вы также найдете инверторы с разными типами фаз, однофазные и трехфазные инверторы для различных типов работ.

Почему мой инвертор не работает?

Знание всех причин, по которым ваш инвертор может выйти из строя, поможет вам выбрать правильные методы поиска и устранения неисправностей. Вот наиболее частые причины, по которым ваш инвертор мог перестать работать или работать некорректно:

  • Неисправное соединение батареи: Батарея, которую вы подключаете к инвертору, может иметь ненадежный контакт или вообще не подключаться.
  • Корродированные клеммы аккумулятора: Если вы используете инвертор в течение длительного времени, клеммы аккумулятора могут корродировать из-за влажности или выделения водорода.
  • Неисправный выключатель питания: Если ваш инвертор вообще не включается, неисправность может быть связана с выключателем питания на инверторе.
  • Разрядился аккумулятор: Может быть, проблема вовсе не в инверторе; вместо этого ваша батарея может быть недостаточно заряжена.
  • Перегоревший предохранитель: Если вы используете его с постоянным контактом, и генератор внезапно выходит из строя, причиной может быть перегоревший предохранитель!

Как отремонтировать силовой инвертор

Если вы в конечном итоге получите неисправный инвертор, который, возможно, вы считаете мертвым, возможно, он все-таки не полностью вышел из строя! Если проблему можно устранить в домашних условиях, вы можете сделать это самостоятельно, проверив инвертор.Вот что можно сделать, если в последнее время вы столкнулись с неисправным преобразователем мощности:

1. Найдите и устраните неисправность выключателя питания

Если инвертор мощности не включается после нажатия переключателя питания, проблема может быть в переключателе! Сначала вы должны проверить, хорошо это или нет, и процесс прост. Отключите инвертор от источника питания, подключите к нему другой прибор и включите его. Если он не включается, вам необходимо заменить выключатель питания.Вызовите профессионального электрика и получите замену переключателю, чтобы заменить его. Если вы не против сделать это самостоятельно, вы также можете заменить его самостоятельно.

2. Проверьте соединения аккумулятора.

Если вы используете установку в течение длительного времени, а инвертор не работает или не включается, возможно, неисправность связана с аккумулятором. В большинстве случаев проблема заключается в слабом соединении с аккумулятором, поэтому вам необходимо очистить и подтянуть его. Если проблема не в разъеме, возможно, батарея заржавела или корродировала.Осмотрите аккумулятор и проверьте на предмет коррозии, если таковая имеется, отсоедините, выньте аккумулятор и очистите его. Чтобы очистить его, возьмите немного пищевой соды, смешанной с горячей водой, возьмите жесткую зубную щетку и потрите ею терминал после того, как окунетесь в смесь. После удаления коррозии очистите разъемы и вытрите их бумажным полотенцем. Подключите их снова и попробуйте снова повернуть инвертор.

3. Разряженный или неисправный аккумулятор

Ошибка может быть вообще не в инверторе, в первую очередь, когда ваш силовой инвертор не работает.Проблема также может быть в аккумуляторе, особенно если вы используете его в течение длительного времени. Батарея могла быть изношена и быстро разряжена, или у нее может быть внутренняя неисправность. Если ваша батарея разряжена, вам, возможно, придется заменить или отремонтировать ее, если это возможно. Если батарея свинцово-кислотная и у нее заканчивается кислота, вам нужно заменить ее кислотой, и этого будет достаточно.

4. Диагностика инвертора

Если проблема не в выключателе питания или аккумуляторе, возможно, проблема в самом инверторе, и для ее решения необходимо выполнить диагностику.Лучший способ сделать это, узнав, как работает система, получить схему инвертора. Когда у вас есть диаграмма, самое время проверить точки контакта одну за другой после вскрытия корпуса. Если вы обнаружите, что точки контакта кажутся хорошими, переходите к остальным компонентам. Вы должны проверить вольтметр, а затем другие компоненты. Примите дополнительные меры предосторожности, чтобы быть в безопасности, сначала отключите его от всего.

5. Заказ и замена запчастей

Если вы обнаружили неисправные детали, самое время заказать их замену и установить их.По возможности приобретайте запасные части от того же производителя, чтобы обеспечить лучшее качество. Когда у вас есть компоненты, снимите старые части с инвертора и осторожно установите новые. В процессе снятия помните, как вы его снимали и в какую сторону уходит деталь. Это поможет вам правильно поставить новую деталь на место.

6. Проверить инвертор

После того, как вы установили новые детали на старые неисправные детали и при необходимости установили их на места, настало время тестирования.Подключите инвертор к батарее и подключите его к регулируемой и ограниченной мощности, например, к лампе низкого напряжения. Теперь используйте вольтметр, чтобы получить показания на выходе инвертора и посмотреть, работает ли он нормально. Если все в порядке, машина должна работать исправно, и лампа должна загореться.

FAQ

Вот наиболее распространенных вопросов об инверторах питания, которые задают люди, которые могут вас заинтересовать:

Как сбросить инвертор?
Нажмите и удерживайте кнопку ВКЛ / ВЫКЛ в течение 15 секунд и подождите, пока светодиод зарядки не начнет быстро мигать.
Сколько ватт потребляет инвертор?
Обычная инверторная батарея заряжается от 10 ампер и 12 вольт, что в сумме составляет 120 кВт.
Будет ли инвертор на 2000 ватт работать с холодильником?
Да, инвертор мощностью 2000 Вт может включить морозильную камеру на 500 Вт, включая дополнительные фонари.

Заключительные слова

Инвертор мощности — действительно отличный инструмент, поскольку он может помочь вам запускать устройства с постоянным током, даже если они работают с переменным током. Он будет поддерживать вас, если у вас нет подключения к электросети после отключения электроэнергии или во время кемпинга.Однако, если он выходит из строя, вы можете исправить это самостоятельно, если проблема связана с теми, которые я упомянул выше. Не оставляйте его подключенным к адаптеру переменного тока, когда вы работаете внутри инвертора. Отключите его перед началом работы, иначе может быть проблема, так как он работает с электричеством.

Автор: Джонатан Роос — владелец yorator.com, где он пишет обо всех новейших инструментах резервного питания, таких как различные типы и генераторы с питанием, инверторы и связанные с ними аксессуары, а также информацию об использовании и техническом обслуживании.

В чем разница между 110 В и 220 В?

Сравнивая проводку 110 В и 220 В, вы должны иметь в виду, что они оба, по сути, делают одно и то же. То есть они вырабатывают энергию для работы электрических розеток. Уравнение выглядит следующим образом: мощность = напряжение x ток, при этом ток измеряется в амперах. При использовании проводки 220В требуется меньший ток, чем при проводке 110В. Мощность измеряется в ваттах. Таким образом, для достижения мощности 900 Вт потребуется 4,1 А при проводке 220 В, тогда как примерно 8.При подключении 110 вольт потребуется 2 ампера.

Хотя и высокая сила тока, и напряжение могут представлять опасность в случае поражения электрическим током, сила тока, необходимая для смертельного удара, может составлять всего 80 мА. Таким образом, более высокий ток может быть более опасным, чем более высокое напряжение; однако, поскольку напряжение и сила тока прямо пропорциональны (в условиях с одинаковым сопротивлением), проводка на 110 В обычно считается более безопасной для работы, потому что она использует меньше вольт и, как таковая, может пропускать только половину тока, чем проводка 220 В.Хотя верно, что 220 В требует меньшего тока для обеспечения того же количества энергии, как отмечалось выше, он все же может пропускать гораздо больший ток и представляет более высокий риск серьезной травмы.

Дома в США подключены к сети как на 110 В, так и на 220 В. Обычные розетки по всему дому подключены к сети 110 В, в то время как только несколько розеток подключены к сети 220 В. Оба они обоснованы; таким образом, в них встроены функции безопасности. Тем не менее, вы все равно должны проявлять осторожность, особенно при подключении 220 В.

В то время как большинство потребительских товаров, включая портативную электронику и большую часть бытовой техники, работают от напряжения 110 В, для некоторых требуется 220 В. Для бытовой техники, такой как сушилки, определенные духовки, мощные электроинструменты и компрессоры, явно требуется питание 220 В.

Для типичной схемы электропроводки на 110 В требуется три разных провода: горячий, нейтральный и заземляющий. При электропроводке 220В возможны как трехпроводные, так и четырехпроводные схемы. Красный и черный провода в схемах 220 В каждый несут по 110 В, а зеленый провод — это земля.В четырехпроводной схеме используется белый провод, который называется нейтральным или общим проводом.

Когда электромонтаж завершен, соответствующие розетки для питания 110 В и 220 В также будут отличаться. Стандартные розетки на 110В выполнены под трехконтактные вилки, середина которых — земля. Два других имеют разные размеры, поэтому вставлять вилку можно только одним способом. В розетках 220 В на каждую розетку приходится три или четыре отверстия.

При подключении к сети 220 В в вашем доме вы должны связать ток в амперах с напряжением конкретного провода, чтобы создать мощность, необходимую для питания сушилок, электроинструментов и т. Д.Вы должны установить разные прерыватели для обеспечения усилителей. Оттуда электрический провод 10-го калибра проходит от выключателя до конкретной розетки 220 В.

Поначалу обсуждение разницы между питанием 110 В и 220 В может показаться сложным, но помните, что на самом деле это две стороны одной медали. Подача питания к розетке — цель обоих; просто некоторые приборы и инструменты, подключаемые к этим розеткам, требуют большей мощности для работы. При фиксированном уровне тока в доме необходимо увеличить напряжение, чтобы обеспечить эту мощность, и именно там проводка 220 В обеспечивает необходимое усиление.Кроме того, мощность 220 В более эффективна с точки зрения тока, поскольку для обеспечения той же мощности требуется меньше энергии из-за повышенного напряжения. Однако, как упоминалось ранее, это увеличение также означает, что 220 В представляет более высокий риск для безопасности, чем 110 В.

Мощность — SkyBell

Устранение проблем с питанием

Питание с внутренним звуковым сигналом

Использование внутреннего звонка:

  • Если SkyBell не загорается, плотно прижмите лицевую сторону SkyBell слева от кнопки дверного звонка.
  • Если SkyBell не загорается, отрегулируйте вилки питания на задней стороне SkyBell, чтобы улучшить контакт с силовыми винтами на креплении.
  • Если SkyBell не загорается, закоротите силовые винты чем-нибудь металлическим и убедитесь, что внутренний звонок звучит.

Если звуковой сигнал прошел успешно, продолжите проверку питания других устройств.

Определите, достаточно ли мощности для SkyBell:

  • Найдите трансформатор, который питает систему дверного звонка (иногда его можно найти на чердаке, в гараже или в стене за звонком).
  • Запишите выходные характеристики трансформатора (например, 16 В переменного тока 10 ВА или 24 В переменного тока 20 ВА)
  • С помощью вольтметра проверьте текущее напряжение на держателе SkyBell.
  • Если используется трансформатор 16 В, напряжение должно быть примерно 19 В переменного тока, для трансформатора 24 В мощность должна быть выше 28 В переменного тока.
  • Если минимальная мощность недоступна, потребуется замена трансформатора.

Прерывистая потеря мощности

Устройство включается, когда два контакта на задней панели устройства SkyBell касаются металлических винтов на монтажном кронштейне.Если устройство неправильно установлено на креплении, оно будет выглядеть мертвым или не иметь питания. Это потому, что зубцы и винты больше не контактируют. Хорошей проверкой этого состояния будет приложить руку к SkyBell, приложив некоторое усилие

Снятие SkyBell и ослабление винтов на монтажном кронштейне примерно на пол-1 оборота позволяет немного провисать и предотвращает деформацию монтажного кронштейна. Убедитесь, что металлические контакты на задней панели SkyBell не вдавлены, это также предотвратит зарядку / включение устройства.Осторожно потяните за металлические контакты на задней стороне SkyBell, если вы обнаружите, что они вдавлены так, чтобы устройство правильно сидело на креплении. Наконец, убедитесь, что провода дверного звонка намотаны и правильно заправлены под винты питания.

Светодиод постоянно мигает красным / синим цветом

Наиболее частые причины этого:

  1. Устройство SkyBell подключается к цифровому дверному звонку без использования адаптера цифрового дверного звонка (DDA).
  2. Трансформатор, питающий систему дверного звонка, не выдает достаточно энергии для постоянной зарядки SkyBell.Это состояние можно исключить, проверив напряжение в точке SkyBell с помощью вольтметра. Если напряжение ниже 10 В переменного тока, мощности недостаточно для зарядки устройства SkyBell и поддержания его нормальной работы. Такая ситуация более вероятна, если возраст трансформатора превышает 15 лет. Для просмотра списка совместимых трансформаторов щелкните здесь.
  3. Устройство SkyBell может быть подключено ненадежно. Убедитесь, что SkyBell подключен и подключен правильно, и убедитесь, что все провода во всей цепи дверного звонка надежно закреплены.

Как не жарить вашу электронику за границей: Краткое руководство

Кто-нибудь еще находит дорожные адаптеры и преобразователи напряжения чертовски запутанными?

Даже после того, как я путешествовал по миру в течение последних 10 лет, мне все еще нужно быстро освежить в памяти, как работают преобразователи и адаптеры, когда мы путешествуем в новое место.

Итак, я подумал, что напишу короткое и простое руководство для всех нас, кто всего хочет, чтобы не жарили нашу электронику за границей .

Фото Кэти

Итак, вот что важно знать: разница между преобразователем и адаптером .

Дорожный адаптер соединяет вилку вилки с розеткой, где бы вы ни находились. Адаптер НЕ изменяет выходную мощность, поступающую из розетки.

Преобразователь напряжения регулирует выходную мощность из розетки и преобразует ее в правильное напряжение.

Итак, как узнать, нужен ли вам преобразователь или адаптер?

Если напряжение, которое использует зарядное устройство для смартфона или ноутбук (или любой другой электрический прибор), совпадает с напряжением в пункте назначения, все, что вам нужно, — это дорожный адаптер .Даже если форма розетки сильно различается, с вашей электроникой все будет в порядке, если напряжение будет одинаковым.

Вот пример: вы подключаете электронику к универсальной вилке адаптера зарядного устройства eForCity для путешествий по всему миру и выбираете вилки, которые нужно вставить в розетку. Очень просто.

Если напряжение РАЗНОЕ, то вам понадобится преобразователь напряжения . Это может быть боль в заднице. Обычно они тяжелые, неудобные и стоят намного дороже. Мы никогда не путешествовали с одним из них, вместо этого оставляя дома любую электронику, которая не работает с несколькими напряжениями или надлежащим напряжением.И наоборот, мы все время путешествуем с несколькими адаптерами, поскольку они обычно легкие и маленькие.

Проще говоря:

Если напряжение ТАК ЖЕ , что и ваша электроника, то все, что вам нужно, это адаптер .

Если напряжение на ОТЛИЧИЕ от напряжения вашей электроники, то вам понадобится преобразователь .

Как узнать, какое напряжение может использовать ваша электроника?

Обычно информацию о напряжении можно найти на самом устройстве, просто найдите номер входа.На ноутбуке наклейка будет на блоке зарядного шнура, и она будет на задней стороне зарядного устройства вашего смартфона или планшета (а не на самом устройстве).

Большинство устройств с двойным напряжением (они принимают 110–120 В, а также 220–240 В) работают автоматически, однако некоторые устройства, такие как фены для волос и даже старые ноутбуки, фактически используют выключатель, поэтому внимательно проверьте свое устройство в первый раз, прежде чем подключать его. к переходнику.

И это важно: j Просто потому, что вилка выглядит одинаково, это не означает, что напряжение одинаковое. У вас может быть одна и та же вилка в розетке по всему миру, но напряжение может быть разным. Именно здесь ваш смартфон или ноутбук может стать очень хрустящим и очень быстро.

Если вам нужно использовать преобразователь, убедитесь, что он имеет достаточно мощности для работы вашей электроники. Большинство электронных устройств, таких как ноутбуки и зарядные устройства, не потребляют много энергии, но такие вещи, как фены и чайники, требуют больше ватт и, следовательно, более крупного и тяжелого преобразователя напряжения. Хорошее практическое правило: если есть сомнения, не подключайте его.

Заявление об отказе от ответственности

Если вам нужна дополнительная информация, ознакомьтесь с полным руководством по электричеству Roaming Boomers для путешественников по всему миру.

Устройство защиты от перенапряжения — тоже хорошая идея.

Хотя в этом нет необходимости, установить сетевой фильтр — отличная идея. Мы уже много лет носим с собой эту замечательную миниатюрную поворачивающуюся зарядку с 3 розетками Belkin для путешествий и перенапряжения. Он легкий и отлично подходит для зарядки нескольких устройств. Он рассчитан только на 110–120 В, но на самом деле мы использовали его без проблем (в основном случайно) в европейских странах много раз во время наших путешествий.

Пока все хорошо. Несмотря на то, что я превратил свой телефон в iTurd в Испании, мы еще не поджарили (постучите по дереву) электронику.

Вот небольшой удобный рисунок от Cheapflights, который поможет вам определить, какой адаптер вам нужен.

Исправить неправильное напряжение — кухонный комбайн

Привет @Rebeca Marx,

К чему сейчас подключен трансформатор, 220 В переменного тока или 120 В переменного тока, поскольку вы сказали, что он «работал» в Испании, и в вашем вопросе указано «Исправить для неправильного использованного напряжения»? Где использовалось / использовалось неправильное напряжение, поскольку трансформатор должен был подавать правильное напряжение, если напряжение было 220 В переменного тока?

Если по-прежнему питается от сети 220 В переменного тока, есть ли у вас какие-либо другие устройства, требующие 120 В переменного тока, которые можно подключить к понижающему трансформатору, чтобы убедиться, что он работает нормально i.е. 120 В переменного тока на его выходе?

Это может быть то, что вам, возможно, придется попробовать в первую очередь, если вы еще этого не сделали, прежде чем приступить к кухонному комбайну.

Если выходной сигнал правильный, тогда, если у вас есть цифровой мультиметр (цифровой мультиметр), используйте его функцию омметра, а процессор отключен от всего оборудования, подключите измеритель непосредственно к контактам разъема питания процессора и проверьте, есть ли показания. шнур питания в процессор. Возможно, вам придется включить его, чтобы получить показания.Если нет показаний, даже если они есть, вам придется открыть процессор и проверить печатную плату на предмет повреждений.

Разместите здесь несколько картинок доски на случай, если вы ничего не видите (или даже если можете).

Привет @Rebeca Marx,

Я подозреваю, что часть Switch (плата управления), показанная на вашем изображении, была повреждена. Будем надеяться, что двигатель тоже не был поврежден.

Вам нужно будет открыть процессор и проверить, какие повреждения произошли с платой управления и, возможно, с двигателем.

Разместите здесь несколько крупным планом изображений любых повреждений или даже если вы не видите ничего очевидного, поскольку это может быть очевидно для других.

Если плата повреждена, то ее починка (или замена) может решить проблему , но она может возникнуть снова в будущем, если проблема вызвана тем, что понижающий трансформатор не подходит для процессора, и в конечном итоге плата выйдет из строя снова. (см. объяснение ниже).

Согласно руководству пользователя кухонного комбайна, его электрические характеристики: 120 В переменного тока, 60 Гц и, скорее всего, сеть, в которой вы находитесь, составляет 230 В переменного тока, 50 Гц .

Я понимаю, что у вас есть понижающий трансформатор, но он обычно только преобразует напряжение, а НЕ частоту источника питания. Они просто подают более низкое напряжение с той же частотой, что и вход, то есть 50 Гц. Какая марка и номер модели понижающего трансформатора? Существуют понижающие трансформаторы, которые преобразуют как напряжение, так и частоту, но они обычно более чем в 3 раза дороже тех, которые преобразуют только напряжение.

Также другие устройства, которые вы подключили к понижающему трансформатору, могли быть спроектированы таким образом, чтобы без проблем работать как на 50 Гц, так и на 60 Гц.Проверьте, что написано на этикетке с информацией о продукте, прикрепленной к этим устройствам.

Работа приборов с неправильной частотой может вызвать проблемы. Вот ссылка, которая объясняет это лучше, чем я. См. Случай 2: У вас есть мощность 50 Гц для устройства 60 Гц

Привет @Rebeca Marx,

Сработал сетевой фильтр MOV.

Я могу разглядеть только часть маркировки значений компонентов, напечатанных на нем.

Если бы вы могли осторожно, переместить его и попытаться разобрать все, что написано на компоненте, это упростит поиск заменяемого компонента, и что это все, что может потребоваться заменить, чтобы он снова заработал.Старайтесь не прикасаться к маркировкам, так как иногда они легко стираются при обращении с ними.

Вот увеличенное изображение поврежденного компонента.

Мои глаза не те, что были, поэтому я могу только разобрать:

верхний ряд V (Y?) D R

средний ряд 1 0? 7 1 К

нижний ряд ? ? 0 4

(щелкните изображение, чтобы увеличить для лучшего просмотра)

Преобразователь

Вт в ампер (таблицы +12 В, 24 В, 120 В, 220 В, 240 В)

Пример: кондиционер работает от 900 Вт.Сколько это ампер? Это 7,5 ампер.

Чтобы преобразовать электрическую мощность в электрический ток (ватты в амперы), нам нужно использовать уравнение электрической мощности:

P = I * V

где:

  • P — электрическая мощность , измеряется в ваттах (Вт) .
  • I — электрический ток или сила тока, измеряется в амперах (A) .
  • В — электрический потенциал или напряжение, измеряется в вольтах (В) .Стандартное напряжение для большинства электрических устройств составляет 110-120 В, а для мощных электрических устройств с повышенным напряжением используется 220 или 240 В. Батареи работают от 12 В или 24 В.

Используя это уравнение, мы можем преобразовать ватты напрямую в амперы, , если нам известно напряжение . Чем выше мощность, тем ниже будет сила тока при таком же количестве ватт.

Чтобы помочь вам, мы подготовили простой в использовании калькулятор Вт / А . Ниже калькулятора вы найдете примеры того, как выполнить преобразование, и 5 cal , рассчитав таблицы мощности ватт на 12 В, 24 В, 120 В, 220 В и 240 В .

Калькулятор ватт в ампер (от W до A)

Здесь вы можете легко преобразовать ватты в амперы с помощью этого калькулятора. Вы также можете немного поиграть с числами:

Чтобы продемонстрировать, как ватты можно преобразовать в усилители, мы решили несколько примеров того, сколько ампер составляет 500 Вт, 1000 Вт и 3000 Вт. В конце концов, вы также найдете таблицу ватт-ампер при электрическом потенциале 120 В.

Вот небольшая полезная информация:

Сколько ватт в усилителе?

При 120 В, , 120 Вт составляет 1 ампер.Это означает, что 1 ампер = 120 Вт .

Сколько ватт в 1 ампер при 220 вольт?

При 220 В получается 220 Вт на 1 ампер.

Имея это в виду, давайте рассмотрим 3 примера:

Пример 1: Сколько ампер в 500 Вт?

Допустим, у нас есть вилка кондиционера мощностью 500 Вт, подключенная к напряжению 120 В.

Вот как мы можем рассчитать, сколько ампер в 500 Вт:

I = P / V

Если мы введем P = 500 Вт и V = 120 В, мы получим:

I = 500 Вт / 120 В = 4.17 ампер

Короче говоря, 500 Вт равняются 4,17 А.

Что делать, если напряжение будет 220В?

Давайте посчитаем, сколько ампер в 500 Вт при 220 В:

I = 500 Вт / 220 В = 2,27 А

При 220 В, 500 Вт потребляет 2,27 А.

Пример 2: Сколько ампер в 1000 Вт?

Если мы повторим упражнение и спросим себя, сколько ампер равно 1000 Вт, мы получим:

I = 1000 Вт / 120 В = 8.33 ампер

Мы видим, что устройство на 1000 Вт потребляет в два раза больше ампер, чем устройство на 500 Вт.

Для 220 В мы получаем расчет ватт в ампер:

I = 1000 Вт / 220 В = 4,55 А

Короче говоря, 1000 Вт потребляет 8,33 А при 120 В и 4,55 А при 220 В.

Пример 3: 3000 Вт равняется сколько ампер?

Устройства мощностью 3000 Вт могут быть подключены к сети 120 В или 220 В. В случаях с более высокой мощностью нет ничего необычного в использовании более высокого напряжения 220 В.Это сделано для уменьшения силы тока.

Например, 3000 Вт равно:

  • 25 А, если вы используете 120 В.
  • 13,64 А, при 220 В.

Например, для 25 ампер вам уже понадобится автоматический выключатель. Но если подключить такое устройство к сети 220 В, генерируемый ток составит всего 13,64 А (автоматические выключатели не нужны).

Пример: Для более крупных многозонных мини-сплит-блоков обычно требуются автоматические выключатели. Вы можете проверить 2-зонную, 3-зонную, 4-зонную и 5-зонную мини-сплит-систему, чтобы узнать, на скольких усилителях они работают.

Вт в ампер при 12 В (для батарей)

Вт: А (при 12 В):
1 Вт в усилители при 12 В: 83 мА (миллиампер)
От 10 Вт до ампер при 12 В: 830 мА
От 50 Вт до ампер при 12 В: 4,17 А
От 100 Вт до ампер при 12 В: 8,33 А
200 Вт до ампер при 12 В: 16.67 Ампер
От 300 Вт до ампер при 12 В: 25,00 А
От 400 Вт до ампер при 12 В: 33,3 А
500 Вт до ампер при 12 В: 41,7 А
600 Вт до ампер при 12 В: 50,0 А
700 Вт до ампер при 12 В: 58,3 А
800 Вт до ампер при 12 В: 66,7 А
900 Вт до ампер при 12 В: 75.0 Ампер
От 1000 Вт до ампер при 12 В: 83,3 А
1100 Вт в амперы при 12 В: 91,7 А
1200 Вт до ампер при 12 В: 100,0 А
1300 Вт в амперы при 12 В: 108,3 А
1400 Вт в амперы при 12 В: 116,7 А
От 1500 Вт до ампер при 12 В: 121,7 А
1800 Вт до ампер при 12 В: 150.0 Ампер
2000 Вт до ампер при 12 В: 166,7 А
2500 Вт до ампер при 12 В: 208,3 А
3000 Вт до ампер при 12 В: 250,0 А

Вт в ампер при 24 В (для батарей)

Вт: А (при 24 В):
1 Вт в усилители при 24 В: 42 мА (миллиампер)
От 10 Вт до ампер при 24 В: 420 мА
50 Вт до ампер при 24 В: 2.08 Ампер
От 100 Вт до ампер при 24 В: 4,17 А
200 Вт до ампер при 24 В: 8,33 А
От 300 Вт до ампер при 24 В: 12,50 А
400 Вт до ампер при 24 В: 16,67 А
500 Вт до ампер при 24 В: 20,83 А
600 Вт до ампер при 24 В: 25,00 А
700 Ватт в ампер при 24 В: 29.17 Ампер
800 Вт в амперы при 24 В: 33,33 А
900 Вт до ампер при 24 В: 37,50 А
От 1000 Вт до ампер при 24 В: 41,67 А
1100 Вт в амперы при 24 В: 45,83 А
1200 Вт до ампер при 24 В: 50,00 ампер
1300 Вт в амперы при 24 В: 54,17 Ампер
1400 Вт в амперы при 24 В: 58.33 Ампер
От 1500 Вт до ампер при 24 В: 62,50 А
1800 Вт до ампер при 24 В: 75,00 ампер
2000 Вт до ампер при 24 В: 83,33 А
2500 Вт до ампер при 24 В: 104,17 А
3000 Вт до ампер при 24 В: 125,00 А

Вт в ампер при 120 В (стандартная розетка)

Вт: Ампер (при 120 В):
От 100 Вт до ампер при 120 В: 0.83 Ампер
200 Вт до ампер при 120 В: 1,67 А
300 Вт в ампер при 120 В: 2,50 А
От 400 Вт до ампер при 120 В: 3,33 А
500 Вт до ампер при 120 В: 4,17 А
600 Вт до ампер при 120 В: 5,00 ампер
700 Ватт в ампер при 120 В: 5,83 А
800 Вт в амперы при 120 В: 6.67 Ампер
900 Вт в амперы при 120 В: 7,50 А
От 1000 Вт до ампер при 120 В: 8,33 А
1100 Вт в амперы при 120 В: 9,17 А
1200 Вт в амперы при 120 В: 10,00 А
1300 Вт в амперы при 120 В: 10,83 А
1400 Вт в амперы при 120 В: 11,67 А
От 1500 Вт до ампер при 120 В: 12.17 Ампер
1800 Вт в амперы при 120 В: 15,00 А
2000 Вт в амперы при 120 В: 16,67 А
2500 Вт до ампер при 120 В: 20,83 А
3000 Вт в амперы при 120 В: 25,00 А

Вт в ампер при 220 В (розетка 220 В)

Вт: Ампер (при 220 В):
100 Вт в амперы при 220 вольт: 0.45 Ампер
200 Вт в амперы при 220 вольт: 0,91 А
300 Вт в амперы при 220 вольт: 1,36 А
От 400 Вт до ампер при 220 вольт: 1,82 А
500 Вт до ампер при 220 вольт: 2,27 А
600 Вт до ампер при 220 вольт: 2,73 А
700 Вт в амперы при 220 вольт: 3.18 ампер
800 Вт в амперы при 220 вольт: 3,64 А
900 Вт в амперы при 220 вольт: 4,09 А
от 1000 Вт до ампер при 220 вольт: 4,55 А
1100 Вт в амперы при 220 вольт: 5,00 ампер
1200 Вт в амперы при 220 вольт: 5,45 А
1300 Вт в амперы при 220 вольт: 5.91 Ампер
1400 Вт в амперы при 220 вольт: 6,36 А
От 1500 Вт до ампер при 220 вольт: 6,82 А
1800 Вт в амперы при 220 вольт: 8,18 А
2000 Вт в амперы при 220 вольт: 9,09 А
2500 Вт до ампер при 220 вольт: 11,36 А
3000 Вт в амперы при 220 вольт: 13.64 Ампер

Вт в ампер при 240 В (розетка 240 В)

Вт: Ампер (при 120 В):
100 Вт до ампер при 240 В: 0,42 А
200 Вт до ампер при 240 В: 0,83 А
300 Вт до ампер при 240 В: 1,25 А
От 400 Вт до ампер при 240 В: 1,67 А
500 Вт до ампер при 240 В: 2.08 Ампер
600 Вт до ампер при 240 В: 2,50 А
700 Ватт в ампер при 240 В: 2,92 А
800 Вт в амперы при 240 В: 3,33 А
900 Вт в амперы при 240 В: 3,75 А
От 1000 Вт до ампер при 240 В: 4,17 А
1100 Вт в амперы при 240 В: 4,58 А
1200 Вт в амперы при 240 В: 5.00 ампер
1300 Вт в амперы при 240 В: 5,42 А
1400 Вт в амперы при 240 В: 5,83 А
От 1500 Вт до ампер при 240 В: 6,25 А
1800 Вт до ампер при 240 В: 7,50 А
2000 Вт в амперы при 240 В: 8,33 А
2500 Вт до ампер при 240 В: 10,42 А
3000 Вт в амперы при 240 В: 12.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *