Диод полярность – мультиметром, по внешнему виды или подачей питания

Содержание

Полярность светодиода • Самоделки своими руками

Электрический ток, проходящий через светодиод в прямом направлении, вызывает излучение. Обратное же его подключение к электрической цепи не даст никакого эффекта и может даже привести к поломке светодиода. Поэтому для того чтобы предотвратить неисправности в работе или поломку светодиода, необходимо его протестировать — определить полярность светодиода. Ниже приведены методы определения вывода минуса и плюса, которые часто применяются для маломощных диодов диаметром от 3.5 до 10 мм.

Полярность светодиода

Методы определения полярности светодиода:

1) Метод визуального различия выводов светодиода

Новый светодиод имеет два вывода (ножки), один из них немного длиннее другого. Длинный вывод (ножка) – это анод, его нужно подключать к плюсу источника питания. Короткий вывод (ножка) – это катод, который подсоединяют к минусу.

Полярность светодиода

Если светодиод был уже в эксплуатации, то он имеет укороченные выводы одной длины. В таком случае можно определить плюс/минус путём рассмотрения кристалла в пластиковой линзе. Анод (плюс) выполнен меньшим размером контакта по сравнению с катодом. Катод (минус) выполнен в виде флажка, на котором расположен кристалл.

Полярность светодиода

2) Метод определения полярности с помощью источника питания

Также для быстрого тестирования можно воспользоваться источником тока с напряжением от 1,5 до 6 вольт (батарейка) и пригодится резистор сопротивлением 300–470 Ом любой мощности. Резистор необходимо припаять к одной из ножек. Затем нужно коснутся светодиодом контактов источника питания, при правильном подключении светодиод будет светиться. Отсюда будет известно, где находится анодом (плюс), а где катодом (минус).

Полярность светодиода

3) Метод определения полярности с помощью мультиметра

Мультиметр – тестер, с помощью него можно диагностировать электронные компоненты, выявлять короткое замыкание, измерять электрические параметры и т.п. Проверка мультиметром светодиода позволяет легко определить полярность (анод, катод) и его целостность. Устанавливаем переключатель мультиметра в положение «прозвонка, проверка диода». Приложив красный щуп к аноду, а чёрный к катоду, светодиод начнет светится.

Полярность светодиода

Спасибо, что дочитали до конца. Поделитесь с друзьями этими полезными способами, если данная статья вам помогла определить полярность светодиодов.

samodelof.ru

Определяем полярность светодиода

Определяем полярность светодиода

Светодиод — это разновидность диода, поэтому при подключении он требует не только ограничения тока, но и соблюдения полярности. Но в явном виде она на корпусе детали нигде не указана, и её придётся определять по косвенным признакам. Автор Instructables под ником Nikus знает целых пять таких признаков. Теперь их узнаете и вы.

Как и электроды обычного диода, электроды светодиода называются анодом и катодом. Первый из них соответствует плюсу, второй — минусу. При прямой полярности светодиод действует как стабистор: открывается при небольшом напряжении, зависящем от цвета (чем меньше длина волны, тем оно больше). Только в отличие от стабистора, он при этом светится. При обратной же полярности он ведёт себя как стабилитрон, открываясь при значительно большем напряжении. Но этот режим для светодиода — нештатный: производитель не гарантирует, что изделие не выйдет из строя, даже если ток ограничить, да и света вы никакого не получите.

Если светодиод вами ниоткуда не выпаян, а куплен новым, один вывод у него длиннее другого. Думаете, это результат не очень аккуратного изготовления? Nikus другого мнения. Тот вывод, который длиннее, соответствует плюсу, т.е., аноду. Вот и весь секрет!

Определяем полярность светодиода

Но самодельщики не очень часто используют новые светодиоды. Что ж, есть и такой признак, который при впайке, укорачивании выводов и последующей выпайке детали не исчезает. Непосвящённым и он кажется небольшим производственным дефектом. Нет, он тоже неспроста: небольшой плоский участок на цилиндническом корпусе, как будто надфилем случайно сточили. Оказывается, не случайно. Эта метка расположена рядом с отрицательным выводом — катодом.

Определяем полярность светодиода

Также Nikus советует заглянуть внутрь светодиода. Сломать? Вовсе нет. Матовые светодиоды практически исчезли с рынка, остались прозрачные, позволяющие разглядеть сбоку внутреннюю структуру. С выводами соединены две плоские пластины, и они тоже разных размеров. Большая держит чашечку с кристаллом, маленькая — волосок, соединённый с кристаллом сверху. Чашечка — минус, волосок — плюс.

Определяем полярность светодиода

Редкий самодельщик обходится без приборов-помощников, вот и Nikus купил себе недорогой мультиметр.

Определяем полярность светодиода

Среди прочих режимов, у него есть режим проверки диодов.

Определяем полярность светодиода

При подключении обычного диода в правильной полярности прибор показывает в этом режиме прямое падение напряжения. У светодиода это падение всегда больше одного вольта, поэтому даже при правильном подключении показания дисплея не изменятся. Зато светодиод слегка засветится. Если щупы подключены к мультиметру правильно, то есть, чёрный — в гнездо COM, а красный — в гнездо VΩmA, красному щупу будет соответствовать плюс.

Определяем полярность светодиода

Со стрелочными тестерами сложнее. Те из них, которые питаются от одной 1,5-вольтовой батарейки, для проверки светодиодов не годятся. Те же, у которых напряжение питания составляет от 3 до 12 В, подходят, но у них в режиме омметра полярность напряжения на щупах часто обратная. Проверить её можно другим прибором, работающим в режиме вольтметра. Только и на том и на другом подключите щупы правильно!

Nikus пишет, что носит с собой мультиметр повсюду, кроме бассейна. Вы же, скорее всего, так не делаете, а необходимость узнать полярность светодиода может возникнуть внезапно. На помощь придёт распространённая трёхвольтовая батарейка типоразмера 2016, 2025 или 2032. У новой батарейки напряжение без нагрузки может достигать 3,7 В, поэтому лучше взять слегка разряженную, примерно для 2,8 В, так лучше для светодиода.

Определяем полярность светодиода

Положительному полюсу у неё соответствует та контактная площадка, на которую нанесена вся маркировка: производитель, тип, параметры. Нередко там же имеется и знак плюса. Помните, что такие батарейки боятся коротких замыканий.

Определяем полярность светодиода

Запомните эти признаки, и вы всегда сможете безошибочно определить полярность светодиода с первого раза.


Источник Определяем полярность светодиода Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

usamodelkina.ru

как определить где плюс, а где минус?

Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.
Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
светодиод где плюс где минусНо как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?

Определяем зрительно

Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.

Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.

Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.

Применяем источник питания

Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.

светодиоды

Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.

Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его не подключаете, то можно соединить несколько элементов в батарею. Напоминаем, сто элементы соединяются последовательно плюс к минусу, а минус к плюсу.

Применение мультиметра

Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус. На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.

Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.

диод вставленный в пазы колодки для транзисторов мультиметраДанный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.

Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.

le-diod.ru

Как определить полярность светодиода?

Светодиод, как и обычный диод, имеет два вывода: анод и катод.

Выводы светодиода на схеме указываются таким образом, что стрелка диода обозначает прямое направление тока, от анода (+) к катоду (-), следовательно, анод подключается к положительному полюсу, а катод к отрицательному.

 Как определить полярность светодиода

Как определить где катод, а где анод? Это можно сделать несколькими способами, самый простой – визуально. Обычно длинная ножка светодиода указывает на то, что это анод, его подключаем к “+” источника питания.Анод и катод smd светодиодов 5050 и 5730

Если же это SMD светодиод, то

метка указывает на сторону, где расположен катод светодиода. Зачастую в SMD светодиодах расположено несколько кристаллов, поэтому вывод может быть не один, а к примеру 3 как на светодиоде 5050.

С помощью батарейки

Если светодиод не новый, по ножкам определить уже нельзя, но есть еще один простой способ — воспользоваться батарейкой CR2032, которую можно найти в брелоке от сигнализации или материнской плате компьютера. Ее напряжение 3 В, этого вполне хватит практически для всех маломощных светодиодов.

Определение полярности светодиода с помощью батарейки

Необходимо поочередно приложить выводы диода к полюсам батарейки, в том положении, в котором он засветится к “+” батарейки приложен анод, соответственно к “-“ – катод.

С помощью мультиметра

Определить полярность светодиода можно также с помощью мультиметра. Необходимо просто поставить в режим прозвонки диодов (или измерения сопротивления) и поочередно приложить к выводам. Когда красный щуп мультиметра будет приложен к аноду, диод начнет светиться.Определение полярности с помощью мультиметра

Этот способ крайне полезен, когда светодиод имеет очень малые размеры (SMD) или смонтирован на плате. Также с помощью мультиметра можно проверить исправность светодиода, если он не начнет светиться при любом положении щупов, вероятно, он вышел из строя.

  • Просмотров:
  • electroandi.ru

    где находится плюс и минус, порядок и инструменты для определения

    Содержание статьи:

    Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.

    Подробно о полярностях светодиодных ламп

    Несоблюдение полярности и неправильное включение может привести к поломке светодиода

    Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.

    Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «—»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.

    Способы выявления полярности

    Определение полярности светодиода по внешнему виду

    Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.

    Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.

    Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.

    Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.

    Использование мультиметра

    Определение полярности светодиода при помощи мультиметра

    Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:

    • На аппарате устанавливают режим измерения сопротивления.
    • Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
    • Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.

    Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.

    Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:

    • Выставляют нужный режим.
    • Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.

    Если минус светодиода подключен к коллектору, лампочка даст свет.

    Метод подачи напряжения

    Определение полярности светодиода методом подачи напряжения

    Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.

    Действуют таким образом:

    • ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
    • Если полярности элемента соблюдены правильно, светодиод даст колер.
    • Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.

    При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.

    Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.

    Определение полярности с помощью техдокументации

    Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:

    • масса;
    • цоколевка светодиодов;
    • габариты;
    • электрические параметры:
    • иногда распиновка (схема подключения).

    При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.

    Когда требуется определение полярностей LED-лампочек

    Применение светодиодов в декорировании улицы

    Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:

    • уличное освещение: рекламные вывески, парковые подсветки;
    • бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
    • индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
    • детские игрушки;
    • пульты ДУ и многое другое.

    При выходе из строя лампочки мастер прибегает к её замене. При этом требуется определить анод и катод светодиода. В противном случае элемент просто не выдаст освещения.

    На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:

    • Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
    • Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.

    Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.

    Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.

    strojdvor.ru

    Принцип работы и назначение диодов

    Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

    диод

    Принцип работы:

    1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
    2. Между двумя электродами происходит образование электрического поля.
    3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
    4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
    5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
    6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

    принцип работы диода

    Устройство

    устройство диода

    Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

    1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
    2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
    3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
    4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
    5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
    6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

    Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

    Назначение

    диодНиже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

    1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
    2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
    3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
    4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
    5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

    Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

    Прямое включение диода

    прямое включение диода

    На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

    Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

    1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
    2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
    3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
    4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
    5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
    6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
    7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

    Обратное включение диода

    обратное включение диода

    Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

    1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
    2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
    3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
    4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

    Прямое и обратное напряжение

    напряжения диода

    Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

    1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
    2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

    Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

    Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

    Работа диода и его вольт-амперная характеристика

    вольт-амперная характеристика диода

    Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

    Подобный график можно описать следующим образом:

    1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
    2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
    3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
    4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
    5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
    6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
    7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

    Основные неисправности диодов

    диод

    Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

    Всего выделяют 3 основных типа распространенных неисправностей:

    1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
    2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
    3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

    Пробой p-n-перехода

    пробой p-n перехода диода

    Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

    Обычно различается несколько видов:

    1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
    2. Электрические пробои, возникающие под воздействием тока на переход.

    График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

    Электрический пробой

    Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

    При этом, пробои такого типа делятся на две разновидности:

    1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
    2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

    Тепловой пробой

    Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

    Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

    1. Рост колебания атомов, входящих в состав кристалла.
    2. Попадание электронов в проводимую зону.
    3. Резкое повышение температуры.
    4. Разрушение и деформация структуры кристалла.
    5. Полный выход из строя и поломка всего радиокомпонента.

    slarkenergy.ru

    Урок 2.4 — Диоды и светодиоды

    Диод

    Диод – это электронный компонент, обладающий односторонней проводимостью.
    Идеальный диод является проводником в одном направлении и изолятором — в другом направлении.

    Основные характеристики диода

    Максимально допустимый прямой ток и максимально допустимое напряжение – это такие значения тока и напряжения, которые диод может выдержать в течение длительного времени. Если превысить ток и/или напряжение, приложенные к диоду, он может выйти из строя.

    В наборы Мастер Кит входят два типа диодов:
    — диод малой мощности 1N4148. Максимально допустимый ток через этот диод составляет 0,15А, напряжение – до 75В
    — диод средней мощности типа 1N4001…1N4007. Максимально допустимый ток через этот диод составляет 1А, напряжение (в зависимости от последней цифры) – от 50 до 1000В.


    Взаимозаменяемость диодов

    Если под рукой нет нужного диода, его можно заменить аналогичным. Конечно, нужно следить за тем, чтобы предельно допустимые ток и напряжения нового диода были выше таковых параметров схемы. Кроме того, новый диод должен иметь такой же или похожий тип корпуса (иначе диод может физически не поместиться на печатную плату).

    Например, в схеме рекомендуется установить диод типа 1N4005. Его параметры: максимально допустимый ток – 1А, максимально допустимое обратное напряжение – 600В. Допустим, у вас нет диода 1N4005, но есть диод 1N4001 в таком же типе корпуса с параметрами, соответственно, 1А/50В. Но если в вашей схеме рабочие напряжения не превышают 12В, вы смело можете произвести замену рекомендованного диода 1N4005 на 1N4001.
    Такая же ситуация бывает и на складе Мастер Кит, когда мы производим замену временно отсутствующего компонента на аналогичный.

     

    Установка диода на печатную плату

    Диод имеет полярность, то есть должен устанавливаться на печатную плату строго в определённом положении. Если установить диод неправильно, он не только не заработает, но и может выйти из строя.

    На диоде обязательно имеется маркировка полярности. В диодах, входящих в набор Мастер Кит, полосой на корпусе маркируется вывод катода.


    На печатной плате также имеется маркировка полярности диода – полоса. При установке диода на плату нужно совмещать «ключи»: полосу на компоненте и на печатной плате.

    Мастер Кит Урок 2.4 - Диоды и светодиоды Диод

     

    Светодиоды

     
    Светодиод – это разновидность обычного диода, но этот диод обладает важным свойством: он излучает свет при пропускании через него тока в прямом направлении. В зависимости от типа, светодиоды могут иметь разную яркость и цвет свечения: красный, зелёный, синий, жёлтый. Существуют светодиоды невидимого спектра излучения: инфракрасные (широко применяемые в системах дистанционного управления), ультрафиолетовые.

    Мастер Кит Урок 2.4 - Диоды и светодиоды светодиод

    Как и обычный диод, светодиод корректно работает (излучает свет) только при условии правильной полярности приложенного к нему напряжения. Поэтому очень важно при установке светодиода на плату соблюдать «ключи».

    У светодиодов, входящих в наборы Мастер Кит, вывод анода (он же «+») – длиннее.

    На печатной плате также имеется маркировка полярности.

     Мастер Кит Урок 2.4 - Диоды и светодиоды светодиод

     

    Скачать урок в формате PDF

    masterkit.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *