Как узнать где плюс и минус у диода. Какие существуют способы определения полярности светодиода. Как правильно подключить диод, соблюдая полярность. Почему важно соблюдать полярность при подключении диодов.
Что такое полярность диода и почему ее важно соблюдать
Диод — это полупроводниковый элемент, который пропускает электрический ток только в одном направлении. Полярность диода определяет, в каком именно направлении он будет проводить ток:
- Анод — положительный вывод (плюс)
- Катод — отрицательный вывод (минус)
Соблюдение правильной полярности при подключении диода критически важно по следующим причинам:
- При неправильном подключении диод не будет выполнять свою функцию пропускания тока в одном направлении
- Светодиод не загорится при обратной полярности
- Возможен выход диода из строя при длительном обратном включении
- Снижается срок службы и эффективность работы диода
Поэтому перед монтажом диода в схему необходимо точно определить его полярность. Рассмотрим основные способы, как это можно сделать.
Визуальное определение полярности диода
Самый простой способ — это визуальный осмотр диода. Производители часто наносят маркировку, позволяющую определить расположение анода и катода:
- Катод обычно помечается полосой, точкой или срезом на корпусе
- У светодиодов вывод катода часто короче анода
- На корпусе могут быть нанесены символы «+» и «-«
- Внутри прозрачного корпуса катод выглядит как чашечка с кристаллом
Однако не все диоды имеют четкую визуальную маркировку. В этом случае приходится использовать другие методы определения полярности.
Определение полярности диода мультиметром
Мультиметр позволяет быстро и точно определить полярность любого диода. Для этого нужно:
- Переключить мультиметр в режим проверки диодов
- Подключить щупы к выводам диода в произвольном порядке
- Если диод открылся, на дисплее отобразится напряжение 0,5-0,7 В
- Красный щуп при этом подключен к аноду, черный — к катоду
- При обратном подключении диод закрыт, показания будут «1» или «OL»
Этот метод работает для любых диодов, включая светодиоды. Мультиметр — самый надежный способ определения полярности.
Проверка полярности диода с помощью батарейки
Если под рукой нет мультиметра, можно проверить полярность с помощью батарейки и резистора:
- Подключите резистор 1 кОм последовательно с диодом
- Подсоедините эту цепочку к батарейке 3-9 В
- Если диод открылся, ток потечет и светодиод загорится
- Плюс батарейки при этом подключен к аноду диода
- При обратном включении ток не потечет
Важно использовать резистор для ограничения тока, иначе можно повредить диод. Этот метод удобен для быстрой проверки в полевых условиях.
Определение полярности по маркировке диода
На корпусе многих диодов нанесена буквенно-цифровая маркировка. По ней также можно определить расположение анода и катода:
- Первая буква обозначает материал: А — германий, К — кремний
- Буква Д означает «диод»
- Цифры — порядковый номер изделия
- Последняя буква — группа по параметрам
Катод обычно находится со стороны начала маркировки. Например, в диоде КД202А катод будет со стороны буквы «К».
Как определить полярность светодиода
Для светодиодов действуют те же методы, что и для обычных диодов. Дополнительно можно ориентироваться по следующим признакам:
- Длинный вывод — анод, короткий — катод
- Плоский срез на корпусе со стороны катода
- Внутри корпуса анод имеет меньшую площадь контакта
- При подаче напряжения светодиод загорится только при правильной полярности
Важно соблюдать осторожность при проверке, чтобы не повредить светодиод большим током.
Почему светодиод может не работать при правильной полярности
Иногда даже при правильном подключении светодиод не загорается. Причинами этого могут быть:
- Недостаточное напряжение питания
- Слишком большое сопротивление в цепи
- Неисправность самого светодиода
- Плохой контакт в местах соединения
- Несоответствие цвета светодиода и напряжения
Поэтому при диагностике важно проверять не только полярность, но и другие параметры цепи. Проще всего использовать для проверки специальный тестер светодиодов.
Как правильно подключить диод в схему
После определения полярности диода его нужно правильно подключить в схему:
- Анод (длинный вывод) подключается к положительному полюсу источника питания
- Катод (короткий вывод) — к отрицательному полюсу
- Для светодиода нужно добавить токоограничивающий резистор
- Рассчитать номинал резистора по закону Ома
- Соблюдать максимально допустимый ток через диод
При правильном подключении диод будет надежно работать и выполнять свою функцию в схеме.
Заключение
Определение полярности — важный этап при работе с диодами и светодиодами. Существует несколько способов узнать, где у диода анод и катод:
- Визуальный осмотр корпуса и маркировки
- Проверка мультиметром
- Подключение к батарейке через резистор
- Анализ буквенно-цифровой маркировки
Самый надежный метод — использование мультиметра в режиме проверки диодов. Правильное определение полярности позволит корректно подключить диод и обеспечить его долгую и эффективную работу в схеме.
где находится плюс и минус, порядок и инструменты для определения
На чтение 6 мин Просмотров 730 Опубликовано Обновлено
Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.
Подробно о полярностях светодиодных ламп
Несоблюдение полярности и неправильное включение может привести к поломке светодиодаРаботают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.
Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «—»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.
Способы выявления полярности
Определение полярности светодиода по внешнему видуВыделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.
Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.
Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.
Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.
Использование мультиметра
Определение полярности светодиода при помощи мультиметраЕсли определить светодиод — анод/катод — визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:
- На аппарате устанавливают режим измерения сопротивления.
- Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
- Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.
Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.
Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:
- Выставляют нужный режим.
- Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.
Если минус светодиода подключен к коллектору, лампочка даст свет.
Метод подачи напряжения
Определение полярности светодиода методом подачи напряженияЧтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.
Действуют таким образом:
- ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
- Если полярности элемента соблюдены правильно, светодиод даст колер.
- Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.
При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.
Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.
Определение полярности с помощью техдокументации
Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:
- масса;
- цоколевка светодиодов;
- габариты;
- электрические параметры:
- иногда распиновка (схема подключения).
При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.
Когда требуется определение полярностей LED-лампочек
Применение светодиодов в декорировании улицыМаленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:
- уличное освещение: рекламные вывески, парковые подсветки;
- бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
- индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
- детские игрушки;
- пульты ДУ и многое другое.
При выходе из строя лампочки мастер прибегает к её замене. При этом требуется определить анод и катод светодиода. В противном случае элемент просто не выдаст освещения.
На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:
- Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
- Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.
Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.
Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.
Как у диода определить полярность
Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.
Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?
Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.
Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.
Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.
Применяем источник питания
Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.
Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.
Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его ни подключаете, то можно соединить несколько элементов в батарею. Напоминаем, что элементы соединяются последовательно плюс к минусу, а минус к плюсу.
Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус. На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.
Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.
Данный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.
Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.
Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.
Подробно о полярностях светодиодных ламп
Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.
Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «—»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.
Способы выявления полярности
Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.
Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.
Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.
Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.
Использование мультиметра
Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:
- На аппарате устанавливают режим измерения сопротивления.
- Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
- Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.
Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.
Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:
- Выставляют нужный режим.
- Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.
Если минус светодиода подключен к коллектору, лампочка даст свет.
Метод подачи напряжения
Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.
Действуют таким образом:
- ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
- Если полярности элемента соблюдены правильно, светодиод даст колер.
- Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.
При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.
Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.
Определение полярности с помощью техдокументации
Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:
- масса;
- цоколевка светодиодов;
- габариты;
- электрические параметры:
- иногда распиновка (схема подключения).
При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.
Когда требуется определение полярностей LED-лампочек
Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:
- уличное освещение: рекламные вывески, парковые подсветки;
- бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
- индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
- детские игрушки;
- пульты ДУ и многое другое.
На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:
- Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
- Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.
Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.
Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.
Диоды относятся к категории электронных приборов, работающих по принципу полупроводника, который особым образом реагирует на приложенное к нему напряжение. С внешним видом и схемным обозначением этого полупроводникового изделия можно ознакомиться на рисунке, размещённом ниже.
Общий вид изделия
Особенностью включения этого элемента в электронную схему является необходимость соблюдения полярности диода.
Дополнительное пояснение. Под полярностью подразумевается строго установленный порядок включения, при котором учитывается, где плюс, а где минус у данного изделия.
Эти два условных обозначения привязываются к его выводам, называемым анодом и катодом, соответственно.
Особенности функционирования
Известно, что любой полупроводниковый диод при подаче на него постоянного или переменного напряжения пропускает ток только в одном направлении. В случае обратного его включения постоянный ток не протекает, так как n-p переход будет смещён в непроводящем направлении. Из рисунка видно, что минус полупроводника располагается со стороны его катода, а плюс – с противоположного конца.
Расположение и обозначение выводов
Особенно наглядно эффект односторонней проводимости может быть подтверждён на примере полупроводниковых изделий, называемых светодиодами и работающих лишь при условии правильного включения.
На практике нередки ситуации, когда на корпусе изделия нет явных признаков, позволяющих сразу же сказать, где у него какой полюс. Именно поэтому важно знать особые приметы, по которым можно научиться различать их.
Способы определения полярности
Для определения полярности диодного изделия можно воспользоваться различными приёмами, каждый из которых подходит для определённых ситуаций и будет рассмотрен отдельно. Эти методы условно делятся на следующие группы:
- Метод визуального осмотра, позволяющий определиться с полярностью по имеющейся маркировке или характерным признакам;
- Проверка посредством мультиметра, включённого в режим прозвонки;
- Выяснение, где плюс, а где минус путём сборки несложной схемы с миниатюрной лампочкой.
Рассмотрим каждый из перечисленных подходов отдельно.
Визуальный осмотр
Этот способ позволяет расшифровать полярность по имеющимся на полупроводниковом изделии специальным меткам. У некоторых диодов это может быть точка или кольцевая полоска, смещённая в сторону анода. Некоторые образцы старой марки (КД226, например) имеют характерную заострённую с одной стороны форму, которая соответствует плюсу. С другого, совершенно плоского конца, соответственно, располагается минус.
Обратите внимание! При визуальном обследовании светодиодов, например, обнаруживается, что на одной из их ножек имеется характерный выступ.
По этому признаку обычно определяют, где у такого диода плюс, а где противоположный ему контакт.
Применение измерительного прибора
Самый простой и надёжный способ определения полярности – использование измерительного устройства типа «мультиметр», включённого в режим «Прозвонка». При измерении всегда нужно помнить, что на шнур в изоляции красного цвета от встроенной батарейки подаётся плюс, а на шнур в чёрной изоляции – минус.
После произвольного подсоединения этих «концов» к выводам диода с неизвестной полярностью нужно следить за показаниями на дисплее прибора. Если индикатор покажет напряжение порядка 0,5-0.7 Вольт – это значит, что он включён в прямом направлении, и та ножка, к которой подсоединён щуп в красной изоляции, является плюсовой.
В случае если индикатор показывает «единицу» (бесконечность), можно сказать, что диод включён в обратном направлении, и на основании этого можно будет судить о его полярности.
Дополнительная информация. Некоторые радиолюбители для проверки светодиодов используют панельку, предназначенную для измерения параметров транзисторов.
Диод в этом случае включается как один из переходов транзисторного прибора, а его полярность определяется по тому, светится он или нет.
Включение в схему
В крайнем случае, когда визуально определить расположение выводов не удаётся, а измерительного прибора под рукой не имеется, можно воспользоваться методом включения диода в несложную схему, изображённую на рисунке ниже.
Проверка с помощью лампочки
При его включении в такую цепь лампочка либо загорится (это значит, что полупроводник пропускает через себя ток), либо нет. В первом случае плюс батарейки будет подключён к положительному выводу изделия (аноду), а во втором – наоборот, к его катоду.
В заключение отметим, что способов, как определить полярность диода, существует довольно много. При этом выбор конкретного приёма ее выявления зависит от условий проведения эксперимента и возможностей пользователя.
Видео
как определить где плюс, а где минус? Блог › Методы определения полярности у светодиодов
Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится.
Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.
Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?
Определяем зрительно
Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.
Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.
Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.
Применяем источник питания
Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.
Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.
Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его не подключаете, то можно соединить несколько элементов в батарею. Напоминаем, сто элементы соединяются последовательно плюс к минусу, а минус к плюсу.
Применение мультиметра
Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус. На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.
Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.
Данный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.
Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.
Упирается одним из своих углов. На диода х, маркированных по новому стандарту, это обозначение дополнительно как бы перечеркнуто — суть от этого не меняется. Посмотрите, как именно ориентировано обозначение относительно выводов диода : тому из них, который расположен ближе к треугольнику, соответствует анод, а тому, который расположен ближе к отрезку прямой — катод .
Если точно известен тип диода , а под рукой имеется справочник или даташит, определить полярность можно так. Посмотрите, около какого из выводов должна быть расположена точка (или несколько точек) либо окружность. Иногда по количеству или цвету точек можно дополнительно определить буквенный индекс диода пределах серии, а по нему, в свою очередь — максимальное обратное напряжение .
Если на диоде нет вообще никаких обозначений и все, что вам о нем известно — это прямой ток и обратное напряжение, определите его полярность следующим образом. Возьмите омметр (или многофункциональный прибор, обладающий такой функцией). Определите полярность напряжения на его щупах в режиме измерения сопротивления , используя в качестве образцового другой диод, цоколевка которого известна. Затем, подключая щупы к испытуемому диоду различными способами, определите расположение его электродов по аналогии.
Очень удобно использовать для определения цоколевки диодов использовать специальный пробник. Возьмите две пальчиковые батарейки , светодиод, резистор на 1 килоом и два щупа. Все детали соедините последовательно, а полярность включения диода определите экспериментально, чтобы при замыкании щупов он светился. Испытуемый диод подключите к щупам сначала в одной полярности, затем в другой. Когда светодиод светится, вывод диода , обращенный к минусу источника питания, является катод ным.
Любой диод меняет свою проводимость в зависимости от полярности приложенного к нему напряжения. Расположение же электродов на его корпусе указано не всегда. Если соответствующая маркировка отсутствует, определить, какой электрод подключен к какому выводу, можно и самостоятельно.
Инструкция
Первым делом, определите полярность напряжения на щупах того измерительного прибора, которым вы пользуетесь. Если он многофункциональный, переведите его в режим омметра. Возьмите любой диод, на корпусе которого обозначено расположение электродов. На этом обозначении «треугольник » соответствует аноду , а «полосочка» — катоду. Попробуйте подключать щупы к диоду в различных полярностях. Если он проводит ток, значит , щуп с положительным потенциалом подключен к аноду, а с отрицательным — к катоду. Помните, что полярность в режиме измерения сопротивления на стрелочных приборах может отличаться от той, которая указана для режимов измерения напряжения и тока. А вот на цифровых приборах она обычно одинакова во всех режимах, но осуществить проверку все равно не помешает.
Если проверяется вакуумный диод с прямым накалом, прежде всего, найдите у него сочетание штырьков, между которыми ток проходит независимо от полярности подключения измерительного прибора. Это — нить накала , она же является и катодом. По справочнику найдите номинальное напряжение накала диода . Подайте на нить накала постоянное напряжение соответствующей величины. Щуп прибора, на котором находится отрицательный потенциал , подключите к одному из штырьков нити накала, а положительным щупом прикасайтесь по очереди к остальным выводам лампы. Обнаружив штырек, при прикосновении щупа к которому отображается сопротивление, меньшее бесконечности, сделайте вывод, что это — анод. Мощные вакуумные диоды с прямым накалом (кенотроны) могут иметь два анода.
У вакуумного диода с косвенным накалом подогреватель изолирован от катода. Найдя его, подайте на него переменное напряжение, действующее значение которого равно указанному в справочнике. Затем среди остальных выводов найдите два таких, между которыми при определенной полярности проходит ток. Тот из них, к которому подключен щуп с положительным потенциалом, является анодом, противоположный — катодом. Помните, что многие вакуумные диоды с косвенным накалом имеют по два анода, а некоторые — и два катода.
Полупроводниковый диод имеет всего два вывода. Соответственно, прибор к нему можно подключить всего двумя способами. Найдите такое положение элемента , при котором ток через него проходит. Щуп с положительным потенциалом при этом окажется подключенным к аноду, а с отрицательным — к катоду.
Светоизлучающий диод, в отличие от лампочки, работает только при соблюдении полярности. Но на самом приборе она обычно не указана. Определить расположение выводов светодиода можно опытным путем.
Инструкция
Изготовьте прибор для проверки полярности светодиодов . Для этого возьмите батарейный отсек на три элемента AA, резистор сопротивлением в 1000 Ом и два щупа: красный и черный. Отрицательный вывод батарейного отсека соедините напрямую с черным щупом, а положительный — через резистор с красным щупом. Поместите прибор в подходящий корпус. Вставьте в отсек батарейки.
Чтобы проверить светодиод, подключите к нему щупы сначала в одной полярности, а затем, если он не засветится, в другой. Когда диод светится , черный щуп подключен к его катоду, а красный — к его аноду. Резистор в приборе выбран таким, чтобы свечение было неярким, зато можно было проверять даже самые маломощные светодиоды.
Изготовьте для хранения изготовленного вами прибора чехол. В нем предусмотрите места для раздельного хранения щупов. Это необходимо для того, чтобы они при переноске не замкнулись между собой. Замыкание не повредит прибору, но если держать щупы замкнутыми долго, элементы питания постепенно разрядятся через резистор.
Определив полярность светодиода, в дальнейшем не подавайте на него обратное напряжение. Вероятность выхода его из строя при этом невелика, но она имеется.
Если вы приобрели большое количество светодиодов одного типа, определите полярность лишь нескольких из них. Убедитесь, что у всех них цоколевка одинакова. В дальнейшем для экономии времени определяйте полярность светодиодов перед впайкой по форме и длине выводов. Но так поступайте лишь в том случае, если вы точно уверены, что все диоды относятся к одному типу.
Никогда не используйте светодиоды без резисторов . Даже превышение тока через такой прибор всего в два раза способно сократить его срок службы почти в сто раз. Десятикратное превышение выведет его из строя мгновенно.
Видео по теме
Источники:
- полярность светодиода
Диод имеет два электрода, называемые анодом и катодом. Он способен проводить ток от анода к катоду, но не наоборот. Маркировка, поясняющая назначение выводов, имеется не на всех диодах .
Инструкция
Если маркировка имеется, обратите внимание на ее внешний вид и . Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, протекающего через диод. Иными словами, стрелке соответствует анодный вывод, а пластине — катодный.
Аналоговые многофункциональные измерительные приборы имеют различную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра или амперметра, у других — противоположная. Если она вам неизвестна, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, после чего подключите к диоду сначала в одной, а потом в другой полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Теперь, подключая щупы в различной полярности к другим диодам, вы сможете определять расположение их электродов.
У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов — рядом с соответствующим положением переключателя имеется обозначение этой детали . Красный щуп соответствует аноду, черный — катоду. В правильной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.
Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Соедините их последовательно, подключив светодиод в такой полярности, чтобы светодиод светился. Теперь включите в разрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, чтобы светодиод засветился снова. Вывод диода, обращенный к плюсу батарейки — анодный.
Если при проверке обнаружится, что диод постоянно открыт или постоянно закрыт, и от полярности ничего не зависит , значит он неисправен. Замените его, предварительно убедившись в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае сначала замените и их.
Обратите внимание
Любой диод меняет свою проводимость в зависимости от полярности приложенного к нему напряжения. Расположение же электродов на его корпусе указано не всегда. Если соответствующая маркировка отсутствует, определить, какой электрод подключен к какому выводу, можно и самостоятельно.
Спонсор размещения P&G Статьи по теме «Как определить полярность диода» Как определить полярность светодиодов Как определить анод диода Как проверить полярность
Инструкция
Первым делом, определите полярность напряжения на щупах того измерительного прибора, которым вы пользуетесь. Если он многофункциональный, переведите его в режим омметра. Возьмите любой диод, на корпусе которого обозначено расположение электродов. На этом обозначении «треугольник» соответствует аноду, а «полосочка» — катоду. Попробуйте подключать щупы к диоду в различных полярностях. Если он проводит ток, значит, щуп с положительным потенциалом подключен к аноду, а с отрицательным — к катоду. Помните, что полярность в режиме измерения сопротивления на стрелочных приборах может отличаться от той, которая указана для режимов измерения напряжения и тока. А вот на цифровых приборах она обычно одинакова во всех режимах, но осуществить проверку все равно не помешает.
Если проверяется вакуумный диод с прямым накалом, прежде всего, найдите у него сочетание штырьков, между которыми ток проходит независимо от полярности подключения измерительного прибора. Это — нить накала, она же является и катодом. По справочнику найдите номинальное напряжение накала диода. Подайте на нить накала постоянное напряжение соответствующей величины. Щуп прибора, на котором находится отрицательный потенциал, подключите к одному из штырьков нити накала, а положительным щупом прикасайтесь по очереди к остальным выводам лампы. Обнаружив штырек, при прикосновении щупа к которому отображается сопротивление, меньшее бесконечности, сделайте вывод, что это — анод. Мощные вакуумные диоды с прямым накалом (кенотроны) могут иметь два анода.
У вакуумного диода с косвенным накалом подогреватель изолирован от катода. Найдя его, подайте на него переменное напряжение, действующее значение которого равно указанному в справочнике. Затем среди остальных выводов найдите два таких, между которыми при определенной полярности проходит ток. Тот из них, к которому подключен щуп с положительным потенциалом, является анодом, противоположный — катодом. Помните, что многие вакуумные диоды с косвенным накалом имеют по два анода, а некоторые — и два катода.
Полупроводниковый диод имеет всего два вывода. Соответственно, прибор к нему можно подключить всего двумя способами. Найдите такое положение элемента, при котором ток через него проходит. Щуп с положительным потенциалом при этом окажется подключенным к аноду, а с отрицательным — к катоду.
Как простоДругие новости по теме:
Биполярный транзистор имеет три электрода: эмиттер, коллектор и базу. Если цоколевка прибора неизвестна, ее можно определить опытным путем. Для этого можно воспользоваться обычным омметром. Спонсор размещения P&G Статьи по теме «Как определить базу у транзистора» Как проверить биполярный транзистор
Светоизлучающий диод, в отличие от лампочки, работает только при соблюдении полярности. Но на самом приборе она обычно не указана. Определить расположение выводов светодиода можно опытным путем. Спонсор размещения P&G Статьи по теме «Как определить полярность светодиодов» Как подключать светодиоды
В блоке питания выпрямитель — это цепь, следующая сразу за трансформатором. Существуют различные конструкции выпрямителей, отличающиеся друг от друга сложностью и эффективностью. Спонсор размещения P&G Статьи по теме «Как собрать выпрямитель» Как сделать из переменного тока постоянный Как
Диод – простейшее полупроводниковое устройство. Используется для выпрямления переменного ток в постоянный, для блокировки и ограничения напряжений, а также для освещения и индикации. Проверяют работоспособность диода мультиметром с функцией проверки диодов. Спонсор размещения P&G Статьи по теме
Диоды – это электронные приборы, обладающие свойством односторонней проводимости. Ранее широко использовались электровакуумные и газоразрядные диоды. Теперь, если говорят о диодах, то, как правило, имеют в виду полупроводниковые. Свойство односторонней проводимости диодов широко используют для
Чтобы подключить диод, необходимо убедиться, что его параметры соответствуют электрической цепи. Кроме того, перед подключением диод следует проверить на исправность, чтобы устройство не вышло из строя. Вам понадобится Необходимое оборудование: паяльник, отвертка, провода, нож, мультиметр. Спонсор
Диоды относятся к классу полупроводников и считаются активными электронным компонентам (резисторы и конденсаторы — пассивными).
При подключении диода в цепь должна быть соблюдена правильная полярность. Чтобы было легко определить расположение катода и анода, на корпус или на один из выводов диода наносят специальные метки. Встречаются различные способы маркировки диодов, но чаще всего на сторону корпуса, соответствующую катоду, наносят кольцевую полоску.
Если маркировка диода отсутствует, то выводы полупроводниковых диодов можно определить с помощью измерительного прибора — как уже говорилось выше, диод пропускает ток только в одну сторону. Если измерительного прибора под рукой нет, можно использовать батарейку и маломощную лампочку так, как описано в приводящемся ниже эксперименте.
Работа диода
Работу диода можно наглядно представить при помощи простого эксперимента. Если к диоду через маломощную лампу накаливания подключить батарею так, чтобы положительный вывод батареи был соединен с анодом, а отрицательный — с катодом диода, то в получившейся электрической цепи потечет ток и лампочка загорится. Максимальная величина этого тока зависит от сопротивления полупроводникового перехода диода и поданного на него постоянного напряжения. Данное состояние диода назвается открытым, ток, текущий через него, — прямым током I пр , а поданное на него напряжение, из-за которого диод оказался в открытым, — прямым напряжением U пр .
Если выводы диода поменять местами, то лампа не будет светиться, так как диод будет находиться в закрытом состоянии и оказывать току в цепи сильное сопротивление. Стоит отметить, что небольшой ток через полупроводниковый переход диода в обратном направлении все же потечет, но в сравнении с прямым током будет настолько маленьким, что лампочка даже не среагирует. Такой ток называют обратым током I обр , а напряжение, создающее его,- обратным напряжением U обр .
В нейронных цепях BEAM-роботов диоды часто применяются при создании нейронов, моделирующих логическое сложение (элементы ИЛИ). Кроме того, в схемах BEAM-роботов иногда используются емкостные свойства диодов.
Smd диод полярность. Все методы определения полярности у светодиодов. Определение полярности по технической документации
Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.
Подробно о полярностях светодиодных ламп
Несоблюдение полярности и неправильное включение может привести к поломке светодиода
Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.
Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «-»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.
Способы выявления полярности
Определение полярности светодиода по внешнему виду
Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.
Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.
Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.
Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.
Использование мультиметра
Определение полярности светодиода при помощи мультиметра
Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:
- На аппарате устанавливают режим измерения сопротивления.
- Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
- Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.
Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.
Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:
- Выставляют нужный режим.
- Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.
Если минус светодиода подключен к коллектору, лампочка даст свет.
Метод подачи напряжения
Определение полярности светодиода методом подачи напряжения
Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.
Действуют таким образом:
- ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
- Если полярности элемента соблюдены правильно, светодиод даст колер.
- Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.
При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.
Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.
Определение полярности с помощью техдокументации
Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:
- масса;
- цоколевка светодиодов;
- габариты;
- электрические параметры:
- иногда распиновка (схема подключения).
При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.
Когда требуется определение полярностей LED-лампочек
Применение светодиодов в декорировании улицы
Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:
- уличное освещение: рекламные вывески, парковые подсветки;
- бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
- индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
- детские игрушки;
- пульты ДУ и многое другое.
При выходе из строя лампочки мастер прибегает к её замене. При этом требуется определить анод и катод светодиода. В противном случае элемент просто не выдаст освещения.
На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:
- Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
- Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.
Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.
Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.
Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.
Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.
Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:
* Низкое электропотребления – в 10 раз экономичней лампочек
* Долгий срок службы – до 11 лет непрерывной работы
* Высокий ресурс прочности – не боятся вибраций и ударов
* Большое разнообразие цветов
* Способность работать при низких напряжениях
* Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.
Маркировка светодиодов
Рис. 1. Конструкция индикаторных 5 мм светодиодов
В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.
Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.
Рис. 2. Виды корпусов светодиодов
Цвета светодиодов
Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…
Таблица 1. Маркировка светодиодов
Многоцветные светодиоды
Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.
Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.
При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.
Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.
Напряжение питания
Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.
Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).
Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.
Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:
R
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.
Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:
P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.
Расчет токогораничивающего резистора и его мощности для одного светодиода
Типичные характеристики светодиодов
Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.
Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.
Таблица падения напряжений светодиодов в зависимости от цвета
По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.
Последовательное и параллельное включение светодиодов
При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:
При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.
Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой
* Nmax – максимально допустимое количество светодиодов в гирлянде
* Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
* Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
* При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.
При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.
Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =
Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.
Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.
Параллельное включение светодиодов с общим резистором — плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.
Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.
Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).
А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.
Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.
Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).
Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.
Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.
Как запитать светодиод от сети 220 В.
Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.
Еще один вариант подключения светодиода к электросети 220в:
Или же поставить два светодиода встречно-параллельно.
Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.
Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).
Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.
Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.
На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.
Наиболее распространённые ошибки при подключении светодиодов
1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.
2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).
3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.
4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.
5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.
6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.
Мигающие светодиоды
Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.
Отличительные качества мигающих сеетодиодое:
- Малые размеры
Компактное устройство световой сигнализации
Широкий диапазон питающего напряжения (вплоть до 14 вольт)
Различный цвет излучения.
В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.
Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.
Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.
Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.
Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.
Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.
Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.
Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.
Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.
В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).
Способны пропускать электрический ток в определенном направлении. Если подключение выполнено инверсионно, электрический ток не проходит по цепи, а нужный электроприбор не включится. Объясняется это тем, что приборы по принципу устройства представляют собой диоды, и не все имеют способность светиться. Это говорит о том, что светодиод имеет полярность и функционирует при определенном направлении тока. В связи с этим для подключения важно правильно определить, где у светодиодов минус и плюс. Разберем несколько способов.
Визуально
Если у Вас в руках светодиод где плюс где минус вы не знаете, попробуйте сделать это визуально. Как визуально определить светодиодную полярность? Достаточно просто.
У нового светодиода два вывода, один должен быть короче. Короткий вывод — это катод. Запомнить легко: «короткий» — «катод», оба слова на «к». Плюс находится там, где длинный вывод. Если имеем дело с использованным светодиодом, ножки которого согнуты, задача усложняется.
Тогда вглядываемся в корпус, где находится самый важный элемент — кристаллик. Он лежит на крошечной подставке, чашечке. Вывод с подставки — катод, с его стороны располагается срез или засечка.
НО данный способ не всегда применим. Многие производители сегодня при производстве не соблюдают стандарты, а ассортимент моделей поражает многообразием. Некоторые изготовители отмечают катоды точкой или линией зеленого цвета, либо проставляют знаки «-» и «+». Если же внешних опознавательных признаков нет, нужно провести электротестирование.
Источник питания в помощь
Второй способ определить светодиодную полярность — подключить его к . Главное, правильно подобрать источник питания с напряжением, чтобы оно не превышало максимальный уровень напряжения светодиода, иначе он перегорит или испортится. Элементы соединяются так: к » +» подключается «-«, к «-» подключается «+».
Мультиметр
Если вышеописанные способы не дали результатов, используйте мультиметр. Чтобы мультиметром определить полярность светодиода потребует максимум минута. Сначала нужно выбрать на оборудовании режим измерения уровня сопротивления, а затем прикоснуться специальными щипцами к светодиодным контактам. Черный провод идет к «-», а красный к «+». Не нужно касаться слишком долго, 20-30 секунд хватит. Если включение было выполнено напрямую (« + » к « + », а « — » к « -»), на мультиметре отображается показатель в области 1,7 кило Ом. Если включение обратное — на приборе не отображаются измерения..
Измерять в режиме диода несколько легче: при подсоединении напрямую, загорится . Этот режим подходит для зеленых и красных лампочек, а вот белые и синие лампочки рассчитаны на ток с напряжением более 3 В. По этой причине при подключении лампочек синего и белого цвета, они могут засветиться и при правильной полярности.
В данном случае используется режим измерения характеристик транзисторов. Светодиод вставляется в пазы колодки, снизу мультиметра. Применяется часть PNP: одна ножка диода вставляется в разъем «Е» — эмиттер, а вторая в «С» — коллектор. Лампочка светится когда, к коллектору подсоединили катод.
Таким образом, определение полярности не представляет особой сложности.
Эти полупроводниковые радиодетали используются в различных электронных схемах в качестве элементов индикации. Проблем с их монтажом на плате, как правило, нет. Чтобы пропаять 2 ножки, вставленные в соответствующие отверстия на «дорожках», не нужно быть крупным специалистом в этой области. А вот с полярностью, которую необходимо учитывать при работе со всеми п/п приборами, а не только светодиодами, у людей без опыта возникают сложности. Как правильно определить полярность?
Самый простой способ, если светодиод новый, ни разу не использовавшийся. Его выводы неодинаковы – один немного длиннее. Здесь несложно запомнить такую аналогию. Слова «катод» и «короткая» начинаются с одной и той же буквы – «К».
Следовательно, другая ножка, более длинная – анод светодиода. Зная это, сложно перепутать. Хотя у некоторых производителей встречается иное – они могут быть одинаковы. Стоит учесть.
По внутреннему наполнению
Если колба хорошо просматривается, то найти «чашечку» (а это катод) совсем нетрудно.
Узнать полярность светодиода – это еще не все. Необходимо его и правильно установить на плате. Схемное изображение этого полупроводника показано на рисунке. Вершина символа прибора (треугольника) указывает на катод (минусовый вывод).
По корпусу
Так проверить полярность можно не у всех светодиодов, так как это зависит от производителя. Но у некоторых на «ободке» напротив катода есть небольшая риска (засечка). Если присмотреться, заметить ее несложно. Как вариант – небольшая точка, срез.
С помощью батарейки
Также простая методика, но здесь необходимо учесть, что светодиоды разных типов отличаются напряжением пробоя. Чтобы полупроводник не вывести из строя (частично или полностью), в цепь нужно последовательно включить ограничительное сопротивление. Номиналом на 0,1 – 0,5 кОм вполне достаточно.
Мультиметром
Кстати, вполне можно задействовать и , который уже укомплектован всем необходимым – источником питания и щупами. Это даже еще лучше.
Способ определения полярности 1 – основан на свойстве светодиода «загораться» при прохождении по нему тока. Следовательно, его анод будет там, где «плюс» батарейки мультиметра (гнездо для щупа «+»), а катод, соответственно, где минус. Чтобы проверить на «свечение», переключатель прибора устанавливается в позицию «измерение диода».
Способ определения полярности 2 – здесь измеряется сопротивление p -n перехода. Переключатель мультиметра – в положение «измерение сопротивления», предел, в зависимости от модификации тестера, в положение более 2 кОм. Например, на 10.
Касание щупами выводов светодиода – лишь кратковременное, чтобы не вывести радиодеталь из строя. Если полярности п/п и источника питания совпадают, то сопротивление будет небольшим (от сотен Ом до нескольких кОм). В этом случае красный щуп (его принято вставлять в гнездо прибора «+») указывает на ножку-анод, а черный («–»), соответственно, на катод.
Если мультиметр показывает большое сопротивление, значит, при касании щупами выводов полярность была нарушена. Следует повторить измерение, изменив ее, чтобы удостовериться в отсутствии внутреннего обрыва. Только в этом случае можно говорить не только о полярности светодиода, но и о его исправности и готовности к использованию по назначению.
На различных тематических форумах встречаются суждения, что ничего страшного не произойдет; можно подключать источник питания в любой полярности, и на светодиоде это не отразится. Но это не совсем так.
- Во-первых, все зависит от величины напряжения пробоя, то есть характеристики конкретного полупроводника.
- Во-вторых, он может в дальнейшем и работать, но частично утратить свои свойства. Проще говоря, светить, но не так сильно, как должен.
- В-третьих, подобные эксперименты негативно отражаются на эксплуатационном ресурсе светодиода. Если его гарантированная производителем наработка на отказ порядка 45 000 часов (в среднем), то после таких проверок на полярность он прослужит намного меньше. Подтверждено практикой!
Все диоды обязательно имеют положительный и отрицательный выводы. Эти выводы получили специальные названия: положительный называется анодом , а отрицательный — катодом . Катод диода легко опознать по полоске красного или черного цвета, расположенной у этого вывода на корпусе.
На рис. 4.8 как раз показан диод с подобной маркировкой полярности . Полоска, таким образом, соответствует вертикальной линии схемотехнического символа данного элемента. Важно, чтобы, «читая» принципиальную схему какого-либо устройства, вы правильно трактовали расположение в ней диода и направление протекающего тока
Рис. 4.8. Используя диоды, всегда помните об их полярности. Полоска на одном из концов корпуса диода указывает его
Внимание
Как уже говорилось в самом начале этого раздела, диоды позволяют проходить через них току в прямом направлении и блокируют ток, протекающий в обратном. Таким образом, если вставить диод в схему неправильно, схема или не заработает, или некоторые элементы рискуют выйти из строя. Всегда внимательно проверяйте полярность диодов в схеме — лучше дважды перепроверить, чем один раз устранять последствия!
Как определить плюс в автомобиле. Как определить полярность аккумулятора автомобиля прямая или обратная. Способы измерения полярности
Инструкция
Для определения полярности проводов, выходящих из зарядного устройства, включите мультиметр в режим измерения постоянного напряжения до 20 , черный провод (отрицательный) вставьте в гнездо COM, а красный (положительный) – в гнездо VΩmA. Подсоедините щупы к клеммам зарядного устройства и включите его. Если на дисплее мультиметра знак «минус», полярность подключения противоположная, то есть красный щуп подключен к отрицательной клемме, а черный — к положительной клемме зарядного устройства. В случае знака «минус» клеммы соответствуют подключенным к ним щупам.
Для проверки полярности динамиков кратковременно коснитесь его выводов провода ми от батарейки на 3 вольта. При движении диффузора динамика наружу полярность клемм динамика соответствует полярности батареи. При движении внутрь полярность выводов динамика противоположна полярности батареи.
Провода питания в фирменных автомагнитолах легко различить по цвету, который постоянно соответствует своему проводу. Черный цвет у провода , подключаемого к массе или общему «минусу» питания, красный провод – «плюс» питания, подключается к замку , желтый провод тоже к « » питания, только подключается к аккумулятору. В любом случае провод с предохранителем является «силовым плюсом» питания.
При замене неисправного выключателя не всегда есть возможность обесточить дом или . В этом случае поможет определить фазный () провод индикаторная отвертка. Она поможет и в том случае, когда при проведении каких либо ремонтных работ вы наткнулись на неизвестный провод.
Для достижения поставленной задачи извлекается из аккумуляторного гнезда и располагается таким образом, что при визуальном осмотре сверху ее клеммы должны быть внизу. Обратите внимание, что одна из них немного тоньше другой (она ).
В тех случаях, когда более тонкая клемма справа – АКБ прямой полярности.
Чтобы окончательно убедиться в правильности определения полярности аккумулятора , присоедините к нему вольтметр. При этом красный щуп прибора снимает напряжение с толстой клеммы, а черный – с тонкой. Показание на шкале без «минус» подтверждает исследуемые параметры АКБ.
Видео по теме
Обратите внимание
Установка аккумулятора ненадлежащей полярности в автомобиль грозит тем, что к его клеммам не получиться присоединить кабели.
Источники:
- как определить полярность батареи
При подключении силовых трехфазных, однофазных и сигнальных проводов ошибки недопустимы. Они могут привести к нарушению работоспособности оборудования, работы систем заземления и поражению обслуживающего персонала электрическим током. Большое значение имеет соответствие цветовой маркировки кабеля подключаемым цепям.
Вам понадобится
- Техническое описание кабеля
Инструкция
Чтобы определить провода по цвету в трехфазной проводке, воспользуйтесь следующим правилом.
Современная маркировка трехфазных кабелей такая: фазы A, B, C, маркируются соответственно белым, черным и красным цветом. Нейтральный провод обозначен синим цветом, а провод заземления – желто-зеленым. В маркировке проводов однофазной сети используется три цвета: белый – фазный, синий – нулевой, заземление обозначено проводом желто-зеленого цвета.
При случайном обрыве USB-провода, восстановите его, следуя следующей схеме цветовой маркировки: плюсу питания соответствует провод красного, минусу питания – черного цвета, белому проводу соответствует отрицательный провод данных, а зеленому – положительный.
Самые сложные расцветки проводов в многожильных кабелях. Например, для быстрого поиска места повреждения коммуникаций кабелей СБЗПУ или СБПУ потребуется определить целостность жил между соседними отводами магистрального кабеля (как правило, такие типы кабелей используются на железной дороге). Для уточнения цветовой разводки кабеля конкретной марки воспользуйтесь соответствующим техническим описанием.
Так, например, если произошел обрыв в кабеле СБЗПУ или СБПУ, то определить цвет провода можно по следующей схеме:
Пара 1. Цвет жилы Б – голубой, жилы А — белый.
Пара 2. Цвет жилы Б – желтый, жилы А — белый.
Пара 3. Цвет жилы Б – зеленый, жилы А — белый.
Пара 4. Цвет жилы Б – коричневый, жилы А — белый.
Пара 5. Цвет жилы Б – серый, жилы А — белый.
Пара 6. Цвет жилы Б – красный, жилы А — белый.
Пара 7. Цвет жилы Б – голубой, жилы А — красный.
Пара 8. Цвет жилы Б – желтый, жилы А — красный.
Пара 9. Цвет жилы Б – зеленый, жилы А — красный.
Пара 10. Цвет жилы Б – коричневый, жилы А — красный.
Пара 11. Цвет жилы Б – серый, жилы А — красный.
Пара 12. Цвет жилы Б – красный, жилы А — красный.
Видео по теме
Источники:
Светоизлучающий диод, в отличие от лампочки, работает только при соблюдении полярности. Но на самом приборе она обычно не указана. Определить расположение выводов светодиода можно опытным путем.
Инструкция
Изготовьте прибор для проверки полярности . Для этого возьмите батарейный отсек на три элемента AA, резистор сопротивлением в 1000 Ом и два щупа: и черный. Отрицательный вывод батарейного отсека соедините напрямую с черным щупом, а положительный — через резистор с красным щупом. Поместите прибор в подходящий корпус. Вставьте в отсек батарейки.
Чтобы проверить светодиод, подключите к нему щупы сначала в одной полярности, а затем, если он не засветится, в другой. Когда диод , черный щуп подключен к его катоду, а красный — к его аноду. Резистор в приборе выбран таким, чтобы свечение было неярким, зато можно было проверять даже самые маломощные светодиоды.
Изготовьте для хранения изготовленного вами прибора чехол. В нем предусмотрите места для раздельного хранения щупов. Это необходимо для того, чтобы они при переноске не замкнулись между собой. Замыкание не повредит прибору, но если держать щупы замкнутыми долго, элементы питания постепенно разрядятся через резистор.
Определив полярность светодиода, в дальнейшем не подавайте на него обратное напряжение. Вероятность выхода его из строя при этом невелика, но она имеется.
Если вы приобрели большое количество светодиодов одного типа, определите полярность лишь нескольких из них. Убедитесь, что у всех них одинакова. В дальнейшем для экономии времени определяйте полярность светодиодов перед впайкой по форме и длине выводов. Но так поступайте лишь в том случае, если вы точно уверены, что все диоды к одному типу.
Никогда не используйте светодиоды без . Даже тока через такой прибор всего в два раза способно сократить его срок службы почти в сто раз. Десятикратное превышение выведет его из строя мгновенно.
Видео по теме
Источники:
- полярность светодиода
На первый взгляд, обозначать на динамике полярность нет смысла, поскольку подается на него переменное напряжение. Но когда в акустической системе несколько динамических головок, их необходимо включать синфазно. Принято обозначать на выводах головки такую полярность , при которой диффузор перемещается вперед.
Инструкция
Изготовьте для проверки динамиков специальный пробник. Для этого возьмите обыкновенный карманный фонарь на основе лампочки накаливания. Удалите из него выключатель, а вместо последнего подключите два щупа. У них обязательно должны быть изолированные ручки, поскольку в момент отключения напряжения на выводах головки возникает напряжение самоиндукции. Проверьте полярность напряжения на щупах при помощи контрольного вольтметра. Нанесите на них соответствующие обозначения. Убедитесь, что если щупы замкнуть, лампочка светится.
Выключите усилитель и весь стереокомплекс (в том числе и из розетки). Отключите оба вывода динамической головки от остальных цепей акустической системы. Подключите щупы к выводам головки, не касаясь ни последних, ни металлических частей щупов. В этот момент внимательно смотрите на диффузор. Если при подключении он перемещается наружу, а при отключении — внутрь, полярность правильная. Если же наблюдается обратная картина, поменяйте полярность подключения щупов, после чего повторите проверку. Затем обозначьте на каркасе динамической головки несмываемым фломастером полярность , соответствующую полярности подключения щупов.
В промышленной аппаратуре и в радиолюбительских конструкциях широко применяются индикаторные и сверхъяркие светодиоды (LED). Как и любые другие диоды, LED имеют два вывода – анод и катод (плюс и минус). Поэтому они должны подключаться с соблюдением полярности. Определить полярность светодиода можно несколькими способами:
Как определить полярность тестером (мультиметром)
Практически у всех профессионалов и у большинства радиолюбителей под рукой есть цифровые или стрелочные мультиметры. С их помощью можно легко определить полярность полупроводникового диода, проверить его работоспособность. Измерения нужно проводить в режиме омметра.
У многих современных мультиметров есть специальный режим – «тест диода».
Для определения полярности щупы тестера подключают к диоду и следят за показаниями прибора. Если прибор показывает «бесконечное» сопротивление, то щупы следует поменять местами. Если мультиметр покажет некоторое конечное значение сопротивления, это означает, что прибор подключен с соблюдением полярности, и мы определили, где у светодиода плюс и минус.
Есть один важный нюанс. У некоторых стрелочных приборов полярность щупов в режиме измерения напряжения и в режиме омметра не совпадают.
Такой особенностью обладают, например, старые тестеры ТЛ – 4М. Поэтому желательно проверить, нет ли расхождений в полярности тестера в различных режимах измерения с помощью другого прибора или вольтметра постоянного напряжения.
Мультиметром можно воспользоваться и для определения полярности. Порядок действий такой же, как при определении плюса и минуса обычного диода. При исправном светодиоде и правильном его подключении он даже может начать светиться. Однако, этот способ определения полярности срабатывает далеко не всегда. Дело в том, что падение напряжения открытого светодиода может составлять 1.5 – 3.2 и более вольт. Это значительно больше, чем у обычного полупроводникового диода.
Величина падения напряжения зависит от цвета и мощности светоизлучающего диода. Тестеры с низковольтным питанием не имеют на своих зажимах достаточного напряжения для открытия светодиода. Такими приборами измерения выполнить не удастся.
Как определить полярность по внешнему виду
Существует множество типов корпусов светодиодов. Широко распространены светоизлучающие диоды в цилиндрических корпусах диаметром 3, 5 и более миллиметров. Выпускается много SMD светодиодов для поверхностного монтажа, которые различаются как типом корпуса, так и размерами кристаллов. Мощные сверхъяркие светодиоды размещаются на теплоотводах и имеют планарные плоские выводы. Опытные специалисты без труда определяют назначение выводов по внешнему виду.
Проще всего определять полярность мощных светодиодов. У них, как правило, выводы промаркированы знаками «+» и «-».
Неплохо дело обстоит со светодиодами в цилиндрических корпусах. У них полярность можно определить по нескольким признакам. Например, внутри корпуса светоизлучающего диода можно рассмотреть два электрода имеющие разную площадь. У катода площадь электрода заметно больше. Этот электрод является минусом. Еще одним признаком, по которому можно определить катод цилиндрического led, это скос на юбке прибора. У новых выводы имеют различную длину. Более длинный вывод подсказывает, где плюс у светодиода (анод).
Светодиоды для поверхностного монтажа тоже имеют отличительные признаки назначения выводов. Многие SMD LED имеют специальный скос (ключ) на одном из углов. Ключ указывает на минус (катод).
На корпусах некоторых типов SMD светодиодов наносятся специальные символы позволяющие определить полярность прибора. Некоторые из них показаны на фото.
Определение полярности путем подачи питания
Наиболее наглядным способом определения полярности LED является подключение к источнику напряжения. Этот метод позволяет проверить исправность светодиода и определить его полярность.
Для проведения «эксперимента» потребуется источник постоянного напряжения. Им может послужить блок питания или аккумуляторная батарея. Удобно использовать лабораторный блок питания с плавной регулировкой напряжения и вольтметр постоянного тока.
Светодиод нужно подключить к блоку питания и постепенно поднимать напряжение. При правильном подключении он должен начать светиться. Если при достижении 3 – 4 вольт LED не начал светиться, следует изменить полярность подключения и повторить эксперимент. При зажигании светодиода не стоит продолжать увеличивать напряжение, т.к. он может сгореть.
Вместо регулируемого блока питания, можно воспользоваться любой батареей напряжением 4.5 – 12 вольт. В качестве батареи можно использовать несколько элементов на 1.5 вольта, соединенных последовательно, аккумулятор от сотового телефона или автомобиля.
Подключать светодиод к батарее напрямую нельзя. Он может выйти из строя.
Для проверки работоспособности последовательно со светодиодом нужно подключить токоограничивающий резистор. Сопротивление резистора для маломощных светоизлучающих диодом может составлять от 680 Ом до нескольких кОм. Для мощных светодиодов подойдет резистор в несколько десятков Ом.
Определение полярности по технической документации
Исчерпывающую информацию о светодиодах можно получить из технической документации завода производителя. Она отражает данные о массе и габаритах led, его цоколевке и электрических параметрах. При крупных поставках такая документация обязательно имеется в сопроводительных документах.
К сожалению, продавцы, торгующие в розницу, не всегда могут предоставить интересующие данные. К счастью, зная марку светоизлучающего прибора, информацию о назначении его выводов всегда можно найти в интернете.
Итоги
Мы рассмотрели несколько способов как определить плюс и минус светодиода. Их можно применять по одному, или перепроверять результат несколькими способами. Ведь каждый из них не является идеальным. Визуально и тем более по технической документации невозможно судить о работоспособности данного экземпляра LED. С помощью тестера трудно прозвонить мощный сверхъяркий светоизлучающий диод. Проверка путем подачи напряжения дает точный результат, но требует принятия мер предосторожности.
Как определить полярность неизвестного вам источника питания? Давайте предположим, что вам в руки попался какой-то блок питания постоянного напряжения, батарейка или аккумулятор. Но… на нем не обозначено, где плюс, а где минус. Да, дело быстро решается , но что делать, если у вас его нет под рукой? Спокойно. Есть три проверенных рабочих способа.
Думаю, это самый простой способ определения полярности. Первым делом наливаем водичку в какую-нибудь емкость. Желательно не металлическую. От источника питания с неизвестными клеммами отводим два провода, отпускаем их в нашу водичку и смотрим внимательно на контакты. На минусовом выводе начнут выделяться пузырьки водорода. Начинается электролиз воды.
С помощью сырого картофеля
Берем сырую картофелину и разрезаем ее пополам.
Втыкаем в нее два наших провода от неизвестного источника постоянного тока и ждем 5-10 мин.
Около плюсового вывода на картошке образуется светло-зеленый цвет.
С помощью вентилятора от ПК
Берем вентилятор от компьютера. Он имеет два вывода, а иногда даже три. Третий может быть желтый провод — датчик оборотов. Но его мы все равно использовать не будем. Нас волнуют только два провода — это красный и черный. Если на красном проводе будет плюс, а на черном — минус, то вентилятор у нас будет вращаться
Если же не угадали, то лопасти будут стоять на месте.
Вентилятор используем, если известно, что напряжение источника питания от 3 и до 20 Вольт. Подавать на вентилятор напряжение более 20 Вольт чревато для него летальным исходом.
Заключение
В заключении хотелось бы сказать, что с переменным током эти фишки не прокатывают. А как вы знаете, переменный однофазный ток состоит из двух проводов — фазы и ноля, кто не помнит, как их можно определить, прошу заглянуть вот сюда . Хочется также пожелать вам, чтобы вы никогда не путали полюсовку, потому что «защиты от дурака» (защиты от переполюсовки) ставят не во всех электронных приборах.
Однако такое может произойти не специально, а так скажем по неопытности. Все дело в том, что на отечественных автомобилях имеется прямая полярность аккумулятора, а на многих иномарках обратная (сразу отмечу не на всех). Начинающие автомобилисты не знают что такое полярность, я уже молчу о том — чем они отличаются. Сегодня подробная статья, которая даст ответы на все ваши вопросы …
Для начала небольшое определение.
Полярность — это расположение внешних токовыводящих элементов (токовыводов) на лицевой или верхней крышке аккумулятора. Самые распространенные схемы расположения — это так называемые «прямая» и «обратная», однако справедливости ради нужно отметить, что бывают еще и очень экзотические расположения токовыводов, но как правило они не прижились не в нашей стране, не в зарубежных странах.
Простыми словами, это расположение клемм — в некоторых случаях плюсовая находится справа, а в другом случае слева. Именно в этом есть основная разница.
Прямая (иногда маркируется как «1»), это чисто отечественная разработка. Определить легко и просто — возьмите аккумуляторную батарею, поверните ее к себе (лицом), чтобы токовыводы были внизу (этикетка была перед глазами). Если плюсовая клемма находится слева, а минусовая справа – это прямая полярность. Вот схема.
Такие батареи стоят на многих отечественных автомобилях, например на наших ВАЗ, в частности на «Приоре».
Обратная полярность аккумулятораОбратная — маркируется как «0», европейская разработка. Отличается от прямой, соединением «банок» батареи. Определяем – поворачиваем батарею «лицом» токовыводы внизу, этикетка перед глазами. Если минусовая находится слева, а плюсовая справа – это обратная полярность. Смотрим схему.
Такие батареи стоят на многих Европейских автомобилях, бывают исключения, но редко.
Чем отличаются аккумуляторыОтличий минимум, если не считать полюса. Хочется отметить, что внешне аккумуляторы практически идентичные — то есть и корпус, и количество банок, и сила тока и даже этикетка. И перепутать аккумулятор очень легко, то есть можно купить с неправильным расположением токовыводов (клемм). Даже опытный водитель может попасть впросак, если совершит выбор спонтанно. Поэтому, если сами не понимаете в этом, спросите продавца подобрать, именно, для вашего авто, как правило у них имеются каталоги в которых описаны подходящие модели. Так будет лучше всего!
Поэтому если задумались о замене аккумулятора нужно точно знать и определять расположение клемм, это крайне важно!
Можно ли установить другой полярности?Мне часто задают такой вопрос, бывает что новички покупают по неопытности, зачастую даже устанавливают и беспощадно «палят» свои автомобили! Ребята если перепутать клеммы, то как минимум у вас может сгореть электроника вместе с ЭБУ, а как максимум тут и до пожара недалеко. Поэтому сравните хотя бы со старой батареей, не поленитесь, вам нужно знать точно как у вас располагаются полюса.
Если определили что выбрали не правильно, то вам нужно однозначно менять новую батарею на правильную! Это очень важно!
Однако зачастую идут такие вопросы — «распознала только после установки, клеммы ободрались и даже немного замкнули, магазин не меняет по гарантии. Что делать? как установить?»
Все дело в том, что у вас банально не будет хватать минусового (плюсового) провода!
Вам нужно его либо нарастить, могут подойти кстати , но все это банально халтура! можете неправильно рассчитать сечение провода.
Все же постарайтесь продать эту батарею. Дайте объявление напишите причину продажи, и далее покупайте уже правильный! Если не продается то делать нечего покупаем еще одну но правильную.
Сейчас небольшое видео, сравнение практически двух одинаковых образцов.
Старался максимально просто рассказать о этом явлении. На этом все, думаю вам, информация была полезна. Читайте наш АВТОБЛОГ.
Точное знание полярности электроприбора крайне важно. Ведь если подключить электрическую аппаратуру с нарушением полярности, она может либо не работать, либо полностью выйти из строя.
В большинстве случаев «плюс» и «минус» проводов и контактов в подобных устройствах обозначаются буквенным, символьным или цветовым способом (на корпусе возле контактов есть маркер «+» и «-», а провода имеют черный цвет для минуса и красный для плюса). Но иногда случается, что визуально определить полюса нет возможности. Для этого можно воспользоваться как обыкновенным тестером полярности, так и подручными средствами.
Определение полярности мультиметром
Иногда случается, что в новом электрическом аппарате, который необходимо подключить, отсутствует маркировка полярности или необходимо перепаять проводку поврежденного устройства, а все провода одного цвета. В такой ситуации важно правильно определить полюса проводов или контактов. Но при наличии необходимых приборов возникает закономерный вопрос: как мультиметром определить плюс и минус электроприбора?
Для определения полярности мультиметр необходимо включить в режим замера постоянного напряжения до 20 В. Провод черного щупа подключается в гнездо с маркировкой СОМ (он соответствует отрицательному полюсу), а красный подключается в гнездо с маркером VΩmA (он, соответственно, является плюсом).
После этого щупы подсоединяются к проводам или контактам и прибор, полярность которого необходимо узнать, включается. Если на дисплее мультиметра отображается значение без дополнительных знаков, то полюса определены правильно, контакт к которому подключен красный щуп – это плюс, а к которому подключен черный щуп будет соответствовать минусу. В том случае если мультиметр показал значение напряжения со знаком минус – это будет означать, что щупы подключены к устройству неверно и красный щуп будет минусом, а черный – плюсом.
Если мультиметр, которым производится замер, аналоговый (со стрелкой и табло с градациями значений), при правильном подключении полюсов стрелка покажет действительное значение напряжения, а сели полюса перепутаны то стрелка будет отклоняться в противоположную сторону относительно нуля, то есть показывает отрицательное значение напряжения тока.
Определение полярности альтернативными методами
Если случилось так, что мультиметра под рукой нет, а полярность необходимо найти, можно использовать альтернативные и «народные» средства.
К примеру, заряды проводки динамиков проверяются при помощи батарейки на 3 вольта. Для этого необходимо на короткий промежуток времени прикоснуться проводами, присоединенными к батарейке, к выводам динамика. Если диффузор в динамике начинает двигаться наружу, это будет значить, что положительная клемма динамика присоединена к плюсу батарейки, а отрицательная к минусу. Если же диффузор движется внутрь – полярность перепутана: положительная клемма замкнута на минусе, а отрицательная на плюсе.
Если необходимо подключить блок питания постоянного напряжения или аккумулятор, но на них нет маркировки полярности, а под рукой нет мультиметра, плюс и минус можно определить «народными» методами при помощи подручных материалов.
Самый простой способ определения полярности, которым можно воспользоваться дома – это использовать картофель. Для этого необходимо взять один клубень сырого картофеля и разрезать пополам. После этого два провода (желательно разного цвета или с любым другим отличительным знаком) оголенными концами втыкаются в срез картофеля на расстоянии 1-2 сантиметра друг от друга.
Другие концы проводов подключаются к проверяемому источнику постоянно тока, и прибор включается в сеть (если это аккумулятор, то после подсоединения проводов больше ничего делать не нужно) на 15-20 минут. По истечении этого времени на срезе картофеля, вокруг одного из проводов образуется светло-зеленое пятно, которое будет признаком плюсового заряда провода.
Второй способ также не требует, каких либо, особых устройств или инструментов. Для определения полярности проводов источника постоянного тока понадобится емкость с теплой водой, в которую опускаются два подключенных к источнику питания провода. После включения прибора в сеть вокруг одного из проводов начнут появляться пузыри газа (водород) – это процесс электролиза воды. Эти пузырьки образуются вокруг источника отрицательного заряда.
Следующий способ подойдет в том случае, если есть не используемый, рабочий компьютерный кулер. Способ определения полярности данным методом заключается в том, что кулер необходимо запитать от проверяемого источника бесперебойного питания. Но зачастую в кулерах присутствует три провода:
- черный, отвечает за отрицательный заряд;
- красный, отвечает за положительный заряд;
- желтый, является датчиком оборотов.
В данном случае желтый провод игнорируется и никуда не подключается. Если после подключения кулера к источнику постоянного напряжения, кулер начал работать, то полярность определена правильно, плюс подключен к красному проводу, а минус – к черному. А если кулер не срабатывает – это будет означать что полярность неправильная.
Также, если мультиметр отсутствует, положительный и отрицательный контакты аккумулятора можно определить при помощи индикаторной отвертки.
Для этого необходимо дотронутся индикатором до одного из выводов аккумулятора, прижать палец к обратной стороне индикатора (к контакту на рукоятке), а ко второму выводу аккумулятора дотронуться рукой.
Если индикатор начал светиться, то заряд проверенного вывода, с которым он контактирует, имеет положительное значение, а если индикатор не засветился – вывод отрицательный. Но у этого способа определения полярности есть один недостаток. Если аккумулятор разрядился или поврежден (пробит), индикатор будет загораться при контакте с обеими клеммами, из-за чего определить значения полюсов аккумуляторной батареи будет невозможно.
Какова правильная полярность подключения светодиода – АвтоТоп
Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.
Вы можете встретить два обозначения LED на принципиальной электрической схеме.
Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?
Цоколевка 5мм диодов
Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.
На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.
Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.
Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!
Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.
Как определить анод и катод у диодов 1Вт и более
В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.
Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.
Как узнать полярность SMD?
SMD активно применяются практических в любой технике:
- Лампочки;
- светодиодные ленты;
- фонарики;
- индикация чего-либо.
Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.
Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.
Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.
Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.
Как определить плюс на маленьком SMD?
В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.
Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.
Определяем полярность мультиметром
При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.
Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.
Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?
Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.
Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.
Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.
В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.
Другие способы определения полярности
Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.
Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.
Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.
Схема самодельного пробника
При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.
Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).
И последний способ изображен на фото ниже.
Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.
Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.
Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.
Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.
Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.
Подробно о полярностях светодиодных ламп
Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.
Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «—»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.
Способы выявления полярности
Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.
Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.
Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.
Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.
Использование мультиметра
Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:
- На аппарате устанавливают режим измерения сопротивления.
- Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
- Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.
Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.
Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:
- Выставляют нужный режим.
- Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.
Если минус светодиода подключен к коллектору, лампочка даст свет.
Метод подачи напряжения
Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.
Действуют таким образом:
- ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
- Если полярности элемента соблюдены правильно, светодиод даст колер.
- Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.
При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.
Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.
Определение полярности с помощью техдокументации
Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:
- масса;
- цоколевка светодиодов;
- габариты;
- электрические параметры:
- иногда распиновка (схема подключения).
При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.
Когда требуется определение полярностей LED-лампочек
Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:
- уличное освещение: рекламные вывески, парковые подсветки;
- бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
- индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
- детские игрушки;
- пульты ДУ и многое другое.
На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:
- Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
- Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.
Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.
Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.
Светодиод – полупроводниковый оптический прибор, пропускающий электрический ток в прямом направлении. При подключении инверсионно тока в цепи не будет, и, естественно, не произойдет свечения. Чтобы этого не случилось, нужно соблюдать полярность светодиода.
Светодиод на схеме обозначается треугольником в кружке с поперечной чертой – это катод, который имеет знак «-» (минус). С противоположной стороны находится анод, имеющий знак «+» (плюс).
В монтажных схемах должна присутствовать цоколевка (или распиновка) выводов для идентификации всех контактов соединения.
Как определить полярность диода, держа в руках крохотную лампочку? Ведь для правильного подключения нужно знать, где у него минус, а где плюс. Если распайка выводов будет попутана, схема не заработает.
Визуальный метод определения полярности
Первый способ определения – визуальный. У диода два вывода. Короткая ножка будет катодом, анод у светодиода всегда длиннее. Запомнить легко, так как присутствует начальная буква «к» и в том и другом слове.
Когда оба вывода согнуты или прибор снят с другой платы, их длину бывает сложно определить. Тогда можно попробовать разглядеть в корпусе небольшой кристалл, который выполнен из прозрачного материала. Он располагается на небольшой подставке. Этот вывод соответствует катоду.
Также катод светодиода можно определить по небольшой засечке. В новых моделях светодиодных лент и ламп применяются полупроводники для поверхностного монтажа. Имеющийся ключ в виде скоса указывает на то, что это отрицательный электрод (катод).
Иногда на светодиодах стоит маркировка «+» и «-». Некоторые производители отмечают катод точкой, иногда линией зеленого цвета. Если нет никакой отметки или ее трудно разглядеть из-за того, что светодиод был снят с другой схемы, нужно произвести тестирование.
Тестирование с применением мультиметра или аккумулятора
Хорошо, если под рукой есть мультиметр. Тогда определение полярности светодиода произойдет за одну минуту. Выбрав режим омметра (измерение сопротивлений), нетрудно произвести следующее действие. Приложив щупы к ножкам светодиода, производится замер сопротивления. Красный провод должен подключаться к плюсу, а черный – к минусу.
При правильном включении прибор выдаст значение, примерно равное 1,7 кОм, и будет наблюдаться свечение. При обратном включении на дисплее мультиметра отобразится бесконечно большая величина. Если проверка показывает, что в обе стороны диод показывает малое сопротивление, то он пробит, и его следует утилизировать.
В некоторые приборах существует специальный режим. Он предназначен для проверки полярности диода. Прямое включение будет сигнализировать подсветкой диода. Этот метод подходит для красных и зеленых полупроводников.
Синие и белые светодиоды выдают индикацию только при напряжении более 3 вольт, поэтому нельзя достигнуть нужного результата. Для их тестирования можно использовать мультиметры типа DT830 или 831, в которых предусмотрен режим определения характеристик транзисторов.
Используя PNP-часть, один вывод светодиода вставляют в коллекторное гнездо, второй – в эмиттерное отверстие. В случае прямого подключения появится индикация, инверсионное включение не даст подобного эффекта.
Как определить полярность светодиода, если под рукой нет мультиметра? Можно прибегнуть к обычной батарейке или аккумулятору. Для этого понадобится еще любой резистор. Это нужно для защиты светодиода от пробоя и выхода из строя. Последовательно соединенный резистор, величина сопротивления которого должна быть примерно 600 Ом, позволит ограничить ток в цепи.
И еще несколько советов:
- если известна полярность светодиода, впредь нельзя подавать на него обратное напряжение. В противном случае есть вероятность пробоя и выхода из строя. При правильной эксплуатации светодиод будет служить исправно, так как он долговечен, а также его корпус хорошо защищен от попадания влаги и пыли;
- некоторые типы светодиодов чувствительны к воздействию статического электричества (синие, фиолетовые, белые, изумрудные). Поэтому их нужно предохранять от влияния «статики»;
- при тестировании светодиода мультиметром желательно это действие произвести быстро, касание к выводам должно быть кратковременным, чтобы избежать пробоя диода и вывода его из строя.
Как определить анод диода
Диод имеет два электрода, называемые анодом и катодом. Он способен проводить ток от анода к катоду, но не наоборот. Маркировка, поясняющая назначение выводов, имеется не на всех диодах.Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, протекающего через диод. Иными словами, стрелке соответствует анодный вывод, а пластине — катодный.
Аналоговые многофункциональные измерительные приборы имеют различную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра или амперметра, у других — противоположная. Если она вам неизвестна, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, после чего подключите к диоду сначала в одной, а потом в другой полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Теперь, подключая щупы в различной полярности к другим диодам, вы сможете определять расположение их электродов.
У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов — рядом с соответствующим положением переключателя имеется обозначение этой детали. Красный щуп соответствует аноду, черный — катоду. В правильной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.
Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Соедините их последовательно, подключив светодиод в такой полярности, чтобы светодиод светился. Теперь включите в разрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, чтобы светодиод засветился снова. Вывод диода, обращенный к плюсу батарейки — анодный.
Если при проверке обнаружится, что диод постоянно открыт или постоянно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, предварительно убедившись в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае сначала замените и их.
Диод на схеме там, где плюс. Основные способы определения полярности светодиода. Другие способы определения полярности
Все диоды должны иметь положительный и отрицательный выводы. Эти выводы получили специальные названия: положительный называется , анод , а отрицательный — , катод … Катод диода легко определить по красной или черной полосе, расположенной у этого вывода на корпусе.
На рис. 4.8 только что показан диод с аналогичной маркировкой полярности … Полоса, таким образом, соответствует вертикальному обозначению схемы этого элемента … Важно, чтобы при «чтении» принципиальной схемы любого устройства вы правильно интерпретировали расположение диода в нем и направление протекающего тока
Рис. 4.8. При использовании диодов всегда помните об их полярности. Полоса на одном конце корпуса диода указывает на это.
Внимание
Как упоминалось в самом начале этого раздела, диоды позволяют току проходить через них в прямом направлении и блокируют ток, текущий в противоположном направлении.Таким образом, если вы неправильно вставите диод в схему, схема либо не будет работать, либо некоторые элементы могут выйти из строя. Всегда внимательно проверяйте полярность диодов в цепи — лучше перепроверить, чем один раз устранять последствия!
Диоды относятся к категории электронных устройств, работающих по принципу полупроводника, который особым образом реагирует на приложенное к нему напряжение. С внешним видом и схематическим обозначением этого полупроводникового изделия можно ознакомиться на рисунке ниже.
Особенностью включения этого элемента в электронную схему является необходимость соблюдения полярности диода.
Дополнительные пояснения. Полярность означает строго установленный порядок включения, который учитывает где плюс, а где минус для данного продукта.
Эти две легенды привязаны к его выводам, называемым анодом и катодом соответственно.
Особенности работы
Известно, что любой полупроводниковый диод при подаче на него постоянного или переменного напряжения пропускает ток только в одном направлении.Если его снова включить, постоянный ток не протекает, потому что n-p переход будет смещен в непроводящем направлении. Из рисунка видно, что минус полупроводника расположен со стороны его катода, а плюс — с противоположного конца.
Эффект односторонней проводимости особенно наглядно подтверждается на примере полупроводниковых изделий, называемых светодиодами, работающих только при правильном включении.
На практике нередки ситуации, когда на корпусе изделия нет явных знаков, позволяющих сразу сказать, где у него какая штанга.Вот почему важно знать специальные знаки, по которым можно научиться различать их.
Методы определения полярности
Для определения полярности диодного изделия можно использовать различные методики, каждая из которых подходит для определенных ситуаций и будет рассмотрена отдельно. Эти методы условно делятся на следующие группы:
- Метод визуального контроля для определения полярности на основе существующей маркировки или характерных особенностей;
- Проверка с помощью мультиметра, включенного в режиме набора номера;
- Узнаем где плюс, а где минус, собрав простую схему с миниатюрной лампочкой.
Рассмотрим каждый из перечисленных подходов отдельно.
Визуальный контроль
Этот метод позволяет расшифровать полярность по специальным отметкам на полупроводниковом изделии. Для некоторых диодов это может быть точка или кольцевая полоска, смещенная к аноду. Некоторые образцы старой марки (например, КД226) имеют характерную форму, заостренную с одной стороны, что соответствует плюсу. На другом, полностью плоском торце, соответственно есть минус.
Примечание! Например, визуальный осмотр светодиодов показывает характерный выступ на одной из их ножек.
На основании этого обычно определяют, где у такого диода плюс, а где — противоположный контакт.
Приложение измерительного прибора
Самым простым и надежным способом определения полярности является использование измерительного прибора типа «мультиметр», включенного в режим «Обратный вызов». При замере всегда следует помнить, что на шнур в красной изоляции от встроенного аккумулятора подается плюс, а на шнур в черной изоляции — минус.
После случайного соединения этих «концов» с выводами диода с неизвестной полярностью нужно следить за показаниями на дисплее прибора. Если индикатор показывает напряжение около 0,5-0,7 Вольт, это означает, что он включен в прямом направлении, а ножка, к которой подключен зонд в красной изоляции, положительная.
Если индикатор показывает «единицу» (бесконечность), можно сказать, что диод включен в обратную сторону, и по этому можно будет судить о его полярности.
Дополнительная информация. Некоторые радиолюбители используют для проверки светодиодов розетку, предназначенную для измерения параметров транзисторов.
Диод в этом случае включается как один из переходов транзисторного устройства, а его полярность определяется тем, светится он или нет.
Включение в схему
В крайнем случае, когда визуально определить расположение выводов невозможно, а под рукой нет измерительного прибора, можно воспользоваться методом включения диода в показанную простую схему на рисунке ниже.
При включении в такой цепи лампочка либо загорится (это означает, что полупроводник пропускает ток через себя), либо нет. В первом случае плюс аккумулятора будет подключен к плюсовой клемме изделия (аноду), а во втором, наоборот, к его катоду.
В заключение отметим, что способов определения полярности диода довольно много. При этом выбор конкретного метода его обнаружения зависит от условий эксперимента и возможностей пользователя.
Видео
Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить реверсом, то по цепи не будет проходить постоянный ток, и прибор не загорится. Это происходит потому, что, по сути, устройство представляет собой диод, просто не каждый диод способен светиться. Получается, что у светодиода есть полярность, то есть он чувствует направление движения тока и работает только в определенном направлении.
Определить полярность прибора по схеме несложно.Светодиод обозначается треугольником внутри круга. Треугольник всегда упирается в катод (знак «-», поперечина, минус), положительный анод находится на противоположной стороне.
а как определить полярность, если сам аппарат держишь? Вот небольшая лампочка с двумя проводами. К какой разводке нужно подключить плюс источника, а к какому минусу, чтобы схема работала? Как правильно выставить сопротивление где плюс?
Определить визуально
Первый способ — визуальный.Допустим, вам нужно определить полярность нового двухпроводного светодиода. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это катод. Помните, что это катод по слову «короткий», так как оба слова начинаются с буквы «k». Плюс будет соответствовать более длинному. Однако иногда бывает сложно определить полярность на глаз, особенно если ножки погнуты или изменили свои размеры в результате предыдущей установки.
Заглянув в прозрачный корпус, можно увидеть сам кристалл. Он расположен как бы в маленькой чашке на подставке. Выходом из этой опоры будет катод. Со стороны катода тоже можно увидеть небольшую выемку, похожую на надрез.
Но эти особенности не всегда заметны в светодиодах, так как некоторые производители отклоняются от стандартов. Кроме того, существует множество моделей, изготовленных по другому принципу. Сегодня производитель ставит знаки «+» и «-» на сложные конструкции, маркирует катод точкой или зеленой линией, чтобы все было очень четко.Но если таких отметок по каким-то причинам нет, то на помощь приходит электрическое испытание.
Применяем блок питания
Более действенный метод определения полярности — подключаем светодиод к источнику питания. Внимание! Необходимо выбрать источник, напряжение которого не превышает допустимого напряжения светодиода. Самодельный тестер можно собрать, используя обычную батарею и резистор. Это требование связано с тем, что при повторном подключении светодиод может перегореть или ухудшить свои световые характеристики.
Некоторые говорят, что так и то подключили светодиод, и он от этого не испортился. Но все дело в предельном значении обратного напряжения. К тому же лампочка может не сразу погаснуть, но срок ее службы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.
Если заряда аккумулятора для светодиода не хватает, а прибор не загорается, так как вы его не подключаете, то к аккумулятору можно подключить несколько элементов.Напоминаем, что сто элементов соединены последовательно плюс к минусу, а минус к плюсу.
Приложение «Мультиметр»
Есть такое устройство, которое называется мультиметром. С его помощью можно с успехом узнать, куда подключить плюс, а где — минус. Это займет ровно одну минуту. В мультиметре выберите режим измерения сопротивления и прикоснитесь щупами к контактам светодиода. Красный провод указывает на положительное соединение, а черный провод указывает на отрицательное соединение.Желательно, чтобы прикосновение было недолговечным. При повторном включении прибор ничего не показывает, а при прямом включении (плюс к плюсу и минус к минусу) прибор покажет значение в районе 1,7 кОм.
Также можно включить мультиметр в режим проверки диодов. В этом случае при прямом включении светодиодная лампа будет гореть.
Этот метод наиболее эффективен для красных и зеленых лампочек. Светодиод, излучающий синий или белый свет, рассчитан на напряжение более 3 вольт, поэтому он не всегда будет светиться при подключении к мультиметру даже при правильной полярности.Вы можете легко выйти из этой ситуации, если воспользуетесь режимом определения характеристик транзистора. На современных моделях, таких как DT830 или 831, он присутствует.
Диод вставляется в пазы специальной колодки для транзисторов, которая обычно находится внизу устройства. Используется PNP-часть (как и для транзисторов соответствующей структуры). Одна ножка светодиода вставляется в разъем C, который соответствует коллектору, вторая ножка — в разъем E, соответствующий эмиттеру.Лампа загорится, если катод (минус) подключить к коллектору. Таким образом определяется полярность.
Как проверить диод в цепи с помощью мультиметра?
Введение
Полупроводниковый диод , также известный как кристаллический диод, имеет очевидную однонаправленную проводимость. Это разновидность электронных компонентов , широко используемых в электрооборудовании для защиты, выпрямления, переключения и многих других приложений.Поэтому довольно часто можно увидеть диоды в повседневных электронных схемах, таких как стабилитроны, светодиоды, фотодиоды и т. Д. Следовательно, необходимо знать, как проверить, правильно ли работает диод или нет.
Как проверить диод с помощью мультиметра
Каталог
1) Зубчатый конец — катод диода.
2) Конец с горизонтальной полосой — катод.
3) Конец с белыми параллельными полосами — катод.
4) Один конец треугольной стрелки — катод.
5) Маленький конец вставного диода — это катод, а другой большой конец — это анод.
1.2 Что может вызвать отказ диода?
Распространенными причинами выхода из строя диода являются обрыв цепи, короткое замыкание и нестабильное регулирование напряжения. Среди этих трех типов отказов могут быть признаки.Например, напряжение источника питания повышается, напряжение питания падает до нуля или выход нестабилен. Поэтому для проверки диодов необходимо детально проанализировать конкретные проблемы.
Обычным инструментом для измерения диодов является мультиметр, включая измерение в цепи (диод находится на печатной плате) и измерение вне цепи (диода нет на плате). Что касается основного принципа измерения диодов, измеряется прямое сопротивление и обратное сопротивление PN перехода, и основное суждение основывается на их значениях.Следовательно, чтобы хорошо выполнить проверку диодов, необходимо понять основную структуру и принцип работы диодов, а затем понять основные характеристики неисправности диода.
1.3 Анализ общих отказов диодов
1) обрыв цепи
Это означает, что положительный и отрицательный электроды диода отключены, а прямое и обратное сопротивление диода стало бесконечным. После разомкнутого диода цепь находится в разомкнутом состоянии.
2) пробой напряжения
Это означает, что существует путь между положительным и отрицательным электродами диода, а прямое и обратное сопротивление одинаковы или близки друг к другу (но не бесконечны). После выхода из строя диода действие между положительным и отрицательным электродами всегда может прекратиться, потому что в разных цепях проявляются разные проявления.
3) прямое напряжение
Если прямое сопротивление диода слишком велико, падение напряжения сигнала на диоде будет увеличиваться, что приведет к уменьшению выходного сигнала, и диод будет поврежден из-за нагрева.После того, как прямое сопротивление станет больше, однонаправленная проводимость диода станет плохой.
4) обратное напряжение
Обратное сопротивление диода становится меньше, что означает однонаправленную проводимость диода.
5) снижение производительности
В этом случае диод не имеет явных отказов, таких как обрыв цепи или пробой. Однако, когда ситуация ухудшается, стабильность схемы ухудшается или напряжение выходного сигнала схемы падает.
Ⅱ Как проверить диод мультиметром?
2.1 Цифровой мультиметр и аналоговый мультиметр
При использовании цифрового мультиметра для проверки диода красный зонд соединяется с анодом, а черный зонд соединяется с катодом. В это время измеренное сопротивление является сопротивлением прямой проводимости диода, что прямо противоположно результату тестирования аналогового мультиметра.
2.2 Общие правила тестирования диодов
(1) Прямое сопротивление германиевого диода малой мощности составляет 300 Ом ~ 500 Ом, а кремниевого диода — 1 кОм или более.Первое обратное сопротивление составляет десятки тысяч Ом, а второе больше 500кОм (номинал мощного диода меньше).
(2) О полярности диода можно судить по значениям сопротивления (малое прямое сопротивление и большое обратное сопротивление). Установите мультиметр на блок Ом (обычно используйте блок R × 100 или R × 1k, не используйте блок R × 1 или R × 10k. Блок R × 1 находится в большом токе, легко сжечь лампу , при использовании блока R × 10k может привести к выходу из строя лампы под высоким напряжением).Подключите диод с двумя полярностями к измерительным щупам соответственно и измерьте два значения сопротивления. Когда измеренное значение сопротивления меньше, конец, подключенный к черному проводу, является анодом. Точно так же, когда измеренное значение сопротивления больше, конец, подключенный к черному щупу, является катодом. Если измеренное обратное сопротивление мало, это означает, что диод закорочен, наоборот, если прямое сопротивление большое, это означает, что трубка открыта.В обоих случаях диод не может нормально работать.
(3) Кремниевые диоды обычно имеют прямое падение напряжения 0,6 В 0,7 В, а прямое падение напряжения германиевого диода составляет 0IV 0,3 В. Измеряя прямое напряжение диода, можно судить, что тестируемый диод представляет собой силиконовую трубку или германиевую трубку. Этот метод заключается в подключении резистора (1 кОм) за источником питания, а затем в соединении с диодом в соответствии с характеристикой полярности, чтобы диод стал проводящим прямо.В это время используйте мультиметр для измерения падения напряжения на трубке. Кроме того, он более удобен при динамическом измерении под напряжением.
2.3 Методы тестирования типов диодов
Как проверить стабилитрон? Ниже приведены некоторые идеи.
(1) Обычно используйте низкоомный блок для проверки стабилитрона с помощью мультиметра. Поскольку батарея в измерителе на 1,5 В, этого напряжения недостаточно, чтобы вызвать обратный пробой стабилитрона.Таким образом, прямое и обратное сопротивление должны быть такими же, как у обычного диода.
(2) Измерение значения стабилизации напряжения Vz стабилитрона. При измерении диода напряжение источника питания должно быть больше стабильного напряжения тестируемой трубки. Таким образом, необходимо использовать высокоомный блок мультиметра (R × 10k). В это время батарея в счетчике имеет более высокое напряжение. Когда диапазон мультиметра установлен на высокий барьер, измерьте обратное сопротивление диода.Если измеренное сопротивление равно Rx, значение стабилизации напряжения стабилитрона составляет:
.В формуле n — это блокировка используемой передачи. Например, если самый высокий электрический барьер
R0 — центральное сопротивление мультиметра.
E0 — максимальное значение напряжения батареи используемого мультиметра.
Пример. Используйте мультиметр MF50 для измерения диода 2CW14.
R0 = 10 Ом, самый высокий электрический барьер R × 10 кОм.
E0 = 15 В, измеренное обратное сопротивление 75 кОм, значение регулирования напряжения:
Если измеренное сопротивление очень большое (близкое к бесконечному), это означает, что тестируемое напряжение Vz больше, чем E0, следовательно, трубка не сломается. Если измеренное сопротивление очень мало (0 или всего несколько Ом), это означает, что измерительные щупы подключены в обратном порядке, а затем просто поменяйте их местами.
- Светодиоды (LED)
Светоизлучающий диод — это полупроводниковый прибор, преобразующий электрическую энергию в световую.Он отличается небольшими размерами, низким рабочим напряжением и низким рабочим током.
(1) Внутри светодиода имеется PN переход, поэтому светодиод имеет такую же характеристику однонаправленной проводимости. Его обнаружение аналогично измерению обычных диодов.
(2) Используйте передачу R × 1k или R × 10k, и измеряются значения сопротивления переднего и заднего хода. Как правило, прямое сопротивление меньше 50 кОм, а обратное сопротивление больше 200 кОм.
(3) Рабочий ток светодиода — важный параметр. Если рабочий ток слишком мал, светодиод не загорится, а он слишком большой, светодиод легко повредится.
(4) Напряжение прямого включения светодиода составляет 1,2 В ~ 2,5 В, а напряжение обратного пробоя составляет около 5 В.
Фотодиод — это полупроводниковый прибор, который может преобразовывать силу света в электрические сигналы.
(1) В верхней части фотодиода есть окно, которое может излучать свет, через который свет попадает на кристалл. При возбуждении света в фотодиоде генерируется большое количество фотоэлектрических частиц, что значительно увеличивает его проводимость и снижает внутреннее сопротивление.
(2) Фотодиод аналогичен стабилитрону. Также работает в обратном состоянии, с обратным напряжением.
(3) Прямое сопротивление фотодиода не меняется со светом.Его обратное сопротивление больше, когда нет света, и становится меньше, когда он подвергается воздействию света. То есть чем сильнее свет, тем меньше обратное сопротивление. Без света обратное сопротивление вернется к исходному значению.
(4) Согласно соответствующему принципу, используйте мультиметр для измерения обратного сопротивления фотодиода. Измените интенсивность света при измерении и наблюдайте за изменением обратного сопротивления фотодиода. Если при смене света обратное сопротивление не меняется или изменяется меньше, это означает, что трубка вышла из строя.
- Быстродействующие переключающие диоды
Метод обнаружения быстродействующих кремниевых переключающих диодов такой же, как и у обычных диодов. Разница в том, что прямое сопротивление этой трубки относительно велико. При измерении с блоком Rxlk значение прямого сопротивления составляет 5 кОм ~ 10 кОм, а значение обратного сопротивления бесконечно.
- Диоды быстрого восстановления / Диоды сверхбыстрого восстановления
Обнаружение диодов с быстрым и сверхбыстрым восстановлением с помощью мультиметра в основном такое же, как и обнаружение кремниевых выпрямительных диодов в пластиковой оболочке.То есть сначала используйте блок Rxlk, чтобы проверить его однонаправленную проводимость. Обычно величина прямого сопротивления составляет около 4 ~ 5 кОм, а обратное сопротивление бесконечно. А затем используйте блок Rxl, чтобы повторить тест, в это время прямое сопротивление составляет несколько Ом, а обратное сопротивление все еще бесконечно.
- DIAC (Диод для переменного тока) Диоды
Используйте блок Rxlk и измерьте значения прямого и обратного сопротивления диака, которые должны быть бесконечными.Если испытательные щупы заменяются для измерения, стрелка поворачивается вправо, что указывает на то, что в пробирке есть утечка. Другой способ — поместить мультиметр в блок постоянного напряжения. Во время теста встряхните мегомметр, и значение напряжения, показанное мультиметром, будет значением VBO трубки. Затем замените два штифта тестируемой трубки и таким же образом измерьте значение VBR. Наконец, сравните VBO и VBR. Чем меньше разница между абсолютными значениями этих двух значений, тем лучше симметрия диак-диода.
Для двойного TVS значения сопротивления между двумя контактами должны быть бесконечными, когда красный и черный щупы мультиметра меняются случайным образом. В противном случае трубка имеет плохие характеристики или повреждена.
- Варисторные диоды высокочастотные
а. Определите полярность диода
Отличие высокочастотных варисторных диодов от обычных диодов в том, что их цветовой код отличается. Обычно он черный из обычных диодов, в то время как высокочастотные варисторные диоды светятся.Его правила полярности аналогичны правилам обычных диодов. То есть конец с зеленым кольцом — это катод, в противном случае — анод.
г. Измерение прямого и обратного сопротивления
Конкретный метод такой же, как и метод измерения обычных диодов. Используя блок Rxlk мультиметра AM-500, прямое сопротивление составляет 5 кОм 55 кОм, а обратное сопротивление бесконечно.
При использовании блока Rx10k, независимо от того, как заменяются красный и черный измерительные провода для измерения, сопротивление между двумя выводами варакторного диода должно быть бесконечным.Если во время измерения мультиметр слегка отклоняется вправо или значение сопротивления равно нулю, это означает, что тестируемый варакторный диод имеет утечку или вышел из строя. Независимо от потери емкости варакторного диода или внутреннего обрыва цепи, их невозможно обнаружить с помощью мультиметра. При необходимости можно использовать метод замены для осмотра и принятия решения.
- Инфракрасные светодиоды (IRED)
Вставьте мультиметр в блок Rxlk и измерьте прямое и обратное сопротивление диода IRED.Как правило, прямое сопротивление должно быть около 30 кОм, а обратное сопротивление должно быть выше 500 кОм. Значит, трубка может нормально работать. Чем больше обратное сопротивление, тем лучше.
а. Идентификация внешнего вида: диодный катод / анод
(1) Обычные инфракрасные приемные диоды имеют черный цвет. Кроме того, в верхней части корпуса инфракрасного приемного диода имеется небольшая наклонная плоскость. Обычно штифт с одним концом наклонной плоскости является отрицательным полюсом, а другой конец — положительным полюсом.
(2) Используйте блок Rxlk для проверки сопротивлений между двумя контактами. Когда диод работает нормально, значения сопротивления двух выводов различаются. И несколько раз обменяйте тестовые провода, чтобы получить несколько пар значений. Согласно меньшему значению сопротивления, вывод, подключенный к красному щупу, является катодом, а вывод, подсоединенным к черному щупу, является анодом.
г. Обнаружение производительности
Используйте мультиметр для измерения прямого и обратного сопротивления инфракрасного приемного диода.По значениям сопротивления можно судить предварительно, поврежден ли диод.
Используйте блок мультиметра Rxlk и определите порядок контактов лазерного диода в соответствии с методом обнаружения обычных диодов. Поскольку прямое падение напряжения лазерного диода больше, чем у обычного диода, при обнаружении прямого сопротивления стрелка мультиметра слегка отклоняется вправо, а обратное сопротивление бесконечно.
- Однопереходный транзистор (UJT)
а. Дискриминация электродов
На основе блока R × 1k используйте двухметровые ручки для измерения прямого и обратного сопротивления между любыми двумя из трех электродов (база B1 и база B2, а также эмиттер E) диода ujt. Измеренные значения сопротивления между двумя электродами составляют 2 ~ 10 кОм, кроме того, B1 и B2 будут разными.
г. Судебное решение
О рабочих характеристиках ujt-диода можно судить, измерив нормальное сопротивление между его выводами.Используйте барьер R × 1k, черный измерительный провод подключается к эмиттеру E, а красный измерительный провод подключается к двум базовым электродам по очереди. Обычно значение сопротивления должно составлять от нескольких тысяч до десяти тысяч Ом. Напротив, красный измерительный провод подключается к эмиттеру E, а черный измерительный провод подключается к двум базовым электродам по очереди, и при нормальных условиях сопротивление должно быть бесконечным. Значения прямого и обратного сопротивления между двумя базами находятся в диапазоне 2 ~ 10 кОм.Если они сильно отличаются от нормального значения, диод поврежден.
Ⅲ Пример анализа
3.1 Проверка диода в цепи
a. Проверка диодов с помощью аналогового мультиметра
Все следующие измерения основаны на кремниевых диодах. Если это германиевый диод, прямое и обратное сопротивление диода уменьшатся.
1) Измерьте прямое сопротивление FR
На следующем рисунке представлена принципиальная электрическая схема для измерения прямого сопротивления диода аналоговым мультиметром:
Дайте результат следующим образом:
Показатель | Описание |
Используйте блок R × 1k для измерения диода, прямое сопротивление составляет несколько тысяч Ом, а стрелка показывает стабильность.Если стрелка немного покачивается, это означает, что термостабильность диода плохая. | |
Если стрелка при измерении прямого сопротивления показывает сотни кОм, это означает, что диод открыт. | |
Если стрелка показывает десятки кОм, это означает, что диод имеет большое прямое сопротивление и плохие характеристики диода. |
Описание измерения прямого сопротивления:
Прямое сопротивление (FR) | Описание |
тысяч Ом | Обычный |
Ноль или намного меньше нескольких тысяч Ом | Разбивка |
Сотни килограммов | Большой FR, диод открыт |
Десятки килоом | Большая передняя, плохие передние характеристики |
Указатель нестабилен | Плохая стабильность |
2) Измерьте обратное сопротивление RR
На следующем рисунке представлена принципиальная электрическая схема для измерения обратного сопротивления диода аналоговым мультиметром:
Дайте результат следующим образом:
Показатель | Описание |
При измерении обратного сопротивления значение должно составлять несколько сотен кОм.Чем больше значение сопротивления, тем стабильнее индикатор. | |
Если обратное сопротивление составляет всего несколько тысяч Ом, это означает, что диод вышел из строя и потерял однонаправленную проводимость. |
Описание измерения обратного сопротивления
Обратное сопротивление | Описание |
Сотни килограммов | Обычный |
Ноль | Разбивка |
Намного меньше нескольких сотен тысяч Ом | Обратная характеристика диода не очень хорошая. |
Указатель не двигается | Диод открыт. Примечание: обратное сопротивление некоторых диодов очень велико, в настоящее время нет уверенности в том, что диод открыт, поэтому следует измерить его прямое сопротивление. Если значение в норме, значит диод не открыт. |
Указатель нестабилен | Стрелка не может быть стабилизирована при определенном значении сопротивления во время измерения, что указывает на плохую стабильность диода. |
3.2 Методы тестирования при выключении и включении питания
Измерение диода в цепи делится на две ситуации: состояние выключения и включения питания
а. Измерение отключения питания
Здесь следует отметить методику этого теста.
- Влияние внешней цепи на результат теста такое же, как сопротивление и емкость, измеренные внутренней цепи. И влияние измеренного прямого сопротивления внешней цепью меньше, чем обратного сопротивления.
- Если есть сомнения относительно результата измерения, диод следует вынуть из схемы и измерить отдельно.
г. Измерение при включении питания
Когда на печатную плату подается питание, контрольной точкой является падение напряжения на лампе. Потому что диод имеет очень важную характеристику: когда он включен, падение напряжения на лампе практически не меняется. Таким образом, падение напряжения после включения нормальное, то есть диод в норме.
Метод измерения: На схеме ниже показана схема подключения падения напряжения на трубке после диода в цепи постоянного тока. При установке мультиметра в блок постоянного напряжения 1 В красный щуп подключается к катоду диода, а указанное напряжение является прямым падением напряжения на диоде.
Результаты измерения прямого падения напряжения на диоде анализируются следующим образом:
Диод | Описание | |
Кремниевый диод | 0.6В | Диод нормальный и находится в прямом проводящем состоянии. |
> 0,6 В | Диод не в проводящем состоянии. | |
Рядом с 0 | Диод в пробивном состоянии, ток в шлейфе будет увеличиваться. | |
Германиевый диод | 0.2В | Диод нормальный и находится в прямом проводящем состоянии. |
> 0,2 В | Диод выключен или неисправен. | |
Рядом с 0 | В состоянии пробоя ток в контуре значительно увеличивается без однонаправленной проводимости. |
3.3 Вывод
При измерении диодов следует учитывать следующие моменты:
1) Диод переменного тока находится в отключенном состоянии, потому что диод находится в обратном состоянии, и обратное напряжение на обоих концах очень велико. Среднее напряжение на диоде, измеренное блоком постоянного тока, в это время отрицательно.
2) Используйте разные блоки одного и того же мультиметра для измерения положительного и отрицательного сопротивления одного диода, их значения будут разными. Прямое и обратное сопротивление одного и того же диода, измеренное разными мультиметрами, также различается.
3) Если при измерении прямого сопротивления диода стрелка не может остановиться на определенном значении сопротивления и постоянно качается, это указывает на плохую термическую стабильность диода.
4) Некоторые мультиметры предоставляют функцию «проверки диода», которая отображает фактическое прямое напряжение диода, когда он проводит ток. Такие измерители обычно показывают немного более низкое прямое напряжение, чем то, что является «номинальным состоянием» диода, из-за очень небольшого количества тока, используемого во время измерения.
Часто задаваемые вопросы о тестировании диодов
1. Что такое проверка диодов?
Диод лучше всего проверять путем измерения падения напряжения на диоде при прямом смещении. … В режиме проверки диодов мультиметра между измерительными проводами возникает небольшое напряжение. Затем мультиметр отображает падение напряжения, когда измерительные провода подключены к диоду при прямом смещении.
2. Как проверить выпрямительный диод?
Поднесите красный (положительный) щуп мультиметра к положительному выводу шкафа диодов внутри корпуса сварочного аппарата.Коснитесь черным (отрицательным) щупом мультиметра отрицательной клеммой того же диода. Мультиметр должен показывать сопротивление от 0 до 1 Ом, или диод неисправен.
3. Как узнать, положительный или отрицательный диод?
Иногда проще всего проверить полярность мультиметром. Установите мультиметр в положение диода (обычно обозначается символом диода) и прикоснитесь каждым щупом к одной из клемм светодиода. Если светодиод горит, положительный датчик касается анода, а отрицательный датчик касается катода.
4. Как проверить диод Шоттки?
Подключите красный положительный измерительный провод к аноду диода Шоттки, а черный общий измерительный провод к катоду диода. Послушайте «гудок» или «гудок» мультиметра. Если диод Шоттки сработает должным образом, мультиметр подаст звуковой сигнал.
5. Могу ли я проверить диод в цепи?
Диод лучше всего проверять путем измерения падения напряжения на диоде при прямом смещении.Диод с прямым смещением действует как замкнутый переключатель, позволяя току течь. В режиме проверки диодов мультиметра между измерительными проводами возникает небольшое напряжение. … В цепи может присутствовать напряжение из-за заряженных конденсаторов.
6. Как проверить диод?
Полярность диода
Полярность обоих диодов обозначена полосой на одном конце корпуса. Полоса соответствует линии на схематическом символе, обозначающей катод. Другой конец (без полосы) — это анод, обозначенный треугольником на условном обозначении.
7. Что происходит при выходе из строя диода?
Однако неисправный диод тоже может закоротить. В этом случае диод будет иметь небольшое сопротивление в обоих направлениях. Распространенными причинами выхода из строя диода являются чрезмерный прямой ток и большое обратное напряжение. Обычно большое обратное напряжение приводит к короткому замыканию диода, в то время как перегрузка по току приводит к его размыканию при отказе.
8. Как узнать, перегорел ли диод?
Поверните циферблат в режим «проверка диодов».
Этот уровень тока достаточно высок для получения показаний, но не настолько высок, чтобы диод вышел из строя.На мультиметре это также может быть обозначено как «проверка диодов» и обычно обозначается маленьким символом диода. Символ диода будет выглядеть как треугольник, указывающий на линию.
Альтернативные модели
Деталь | Сравнить | Производителей | Категория | Описание | |
Производитель.Часть #: 2N3700 | Сравнить: Текущая часть | Производитель: ST Microelectronics | Категория: БЮЦ | Описание: Trans GP BJT NPN 80V 1A 0.Сумка TO-18, 5 Вт (1/2 Вт), 3 контакта, | |
Производитель Номер детали: JANTX2N3700 | Сравнить: 2N3700 VS JANTX2N3700 | Производитель: Microsemi | Категория: БЮЦ | Описание: Trans GP BJT NPN 80V 1A 3Pin TO-18 | |
ПроизводительНомер детали: JANTXV2N3700 | Сравнить: 2N3700 VS JANTXV2N3700 | Производитель: Microsemi | Категория: БЮЦ | Описание: Кремниевый транзистор низкой мощности NPN со сквозным отверстием, 80 В, 1 А, серия JANTXV — TO-18 | |
ПроизводительЧасть #: 2N3700 | Сравнить: 2N3700 VS 2N3700 | Производитель: Multicomp | Категория: БЮЦ | Описание: MULTICOMP 2N3700 Биполярный (BJT) одиночный транзистор, NPN, 80 В, 400 МГц, 0.5 Вт (1/2 Вт), 1 А, 300 чFE |
: Введение в стабилитроны
Стабилитроны— это особый тип полупроводниковых диодов — устройств, которые позволяют току течь только в одном направлении, которые также позволяют току течь в противоположном направлении, но только при достаточном напряжении.И хотя это звучит немного эзотерически, на самом деле они являются одними из самых удобных компонентов, когда-либо встречавшихся на рабочем месте инженера, обеспечивая отличные решения для ряда общих потребностей в схемотехнике.
Далее мы покажем вам, как (и когда) использовать стабилитрон для приложений, включая простые опорные напряжения, ограничение сигналов до определенных диапазонов напряжения и ослабление нагрузки на регулятор напряжения.
Справочная информация: полупроводниковые диоды, настоящие и идеальные
Чтобы понять, чем стабилитроны отличаются от других диодов, давайте сначала рассмотрим свойства обычных диодов.И хотя существует много различных типов диодов — см. Здесь длинный список — мы собираемся сосредоточиться на так называемых «нормальных» полупроводниковых диодах, чаще всего построенных с кремниевым p-n переходом.
Диоды обычно поставляются в стеклянных или пластиковых цилиндрических корпусах, маркированных полосой с одной стороны для обозначения полярности. В идеальном диоде ток течет только в одном направлении, от анода (положительная сторона) к катоду (отрицательная сторона), отмеченному полосой.Схематический символ представляет собой треугольник, указывающий на полосу, где ток течет в том же направлении, к концу с перемычкой (полосой). Версии диодов для поверхностного монтажа, как правило, следуют одному и тому же соглашению о маркировке, где катодный конец маркируется широкой полосой.
Если мы подключим диод в простую схему с источником переменного напряжения и ограничивающим ток резистором, мы сможем измерить ток I через диод, когда к нему приложено заданное напряжение В, .В идеальном диоде ток вообще не проходит, когда напряжение меньше нуля: диод полностью предотвращает обратный ток. Для небольшого положительного напряжения («прямое смещение» или иногда «прямое напряжение») может протекать крошечный ток, а очень большой ток будет течь выше заданного порога. Величина протекающего тока фактически экспоненциальна с увеличением напряжения.
Пороговое значение, при котором протекает значительный ток, обычно составляет около 0,7 В для простых полупроводниковых диодов, но может быть и ниже 0.15 В для диодов Шоттки или до 4 В для некоторых типов светодиодов.
Конечно, ни один диод не идеален. В реальных диодах, когда напряжение меняется на противоположное, может протекать очень небольшой ток (утечка). И, что более важно, каждый диод рассчитан на определенную максимальную величину обратного напряжения. Если вы приложите напряжение более отрицательное, чем этот предел, диод подвергнется «обратному пробою» и начнет проводить значительный ток, но назад, от нормального направления тока диода.Для обычного диода мы бы сказали, что отказал диод , если он начинает проводить ток в этом направлении.
Помимо: Фактическая физика того, что происходит при пробое, довольно интересна; этому поведению способствуют два отдельных эффекта: эффект Зенера и лавинный пробой.
Стабилитроны
Стабилитроны— это полупроводниковые диоды, которые были изготовлены так, чтобы их обратный пробой происходил при определенном, четко определенном напряжении (его «напряжение стабилитрона»), и которые спроектированы таким образом, чтобы они могли непрерывно работать в этом режиме пробоя.Обычно доступные стабилитроны доступны с пробивными напряжениями («напряжениями стабилитрона») от 1,8 до 200 В.
Схематический символ стабилитрона показан выше — он очень похож на обычный диод, но с загнутыми краями на полосе. Стабилитрон по-прежнему проводит электричество в прямом направлении, как любой другой диод, но также проводит в обратном направлении, если приложенное напряжение обратное и больше, чем напряжение пробоя стабилитрона.
Типичное применение может быть таким, как указано выше: стабилитрон 10 В (тип 1N4740) включен последовательно с резистором и фиксированным источником питания 12 В. Номинал резистора выбирается таким образом, чтобы через него и через стабилитрон протекало несколько мА, удерживая его в области пробоя. В приведенной выше схеме напряжение на стабилитроне составляет 10 В, а на резисторе — 2 В. При 2 В на резисторе 400 Ом ток через этот резистор (и диод последовательно) составляет 5 мА.
Опоры напряжения Зенера
Фиксированное напряжение стабилитронов делает их чрезвычайно удобными в качестве источников быстрого опорного напряжения.Базовая схема выглядит так:
Необходимо учитывать несколько требований. Во-первых, входное напряжение должно быть выше напряжения стабилитрона. Во-вторых, номинал резистора должен быть выбран таким, чтобы через стабилитрон всегда протекал ток.
Некоторые предостережения: Это не обязательно хороший источник питания для всех целей — резистор ограничивает величину потребляемого тока. Это также не обязательно должно быть прецизионное опорное напряжение ; напряжение будет зависеть от величины потребляемого тока.(То есть, чтобы напряжение было стабильным, нагрузка, управляемая этим опорным напряжением, должна быть постоянной.) Напряжение также зависит от температуры. Стабилитроны в диапазоне 5-6 В имеют лучшую температурную стабильность, и есть высокоточные стабилитроны (например, LM399), которые включают в себя собственную термостабилизированную печь, чтобы в дальнейшем поддерживать температуру диода как можно более стабильной.
Развивая эту идею немного дальше, вы можете создать полноценный многорельсовый источник питания, не используя ничего более экзотического, чем набор стабилитронов для генерации всех необходимых напряжений, при условии, что текущие требования к разным напряжениям питания невысоки. .Схема выше является частью работающего лабораторного прибора.
Клещи напряжения: ограничение сигналов с помощью стабилитронов
Изменяющийся аналоговый сигнал может быть ограничен довольно узким диапазоном напряжений с помощью одного стабилитрона. Если у вас есть напряжение, которое колеблется между + 7 В и -7 В, вы можете использовать один стабилитрон 4 В, подключенный к земле, чтобы гарантировать, что сигнал не превышает 4 В или опускается ниже -0,7 В (где диод проводит вперед на землю).
Если вы хотите ограничить сигнал, чтобы он никогда не становился отрицательным — например, для входа в аналого-цифровой преобразователь, который принимает сигналы в диапазоне 0-5 В, вы можете подключить анод стабилитрона к шине питания на 1 В вместо земли. Тогда диапазон выходного сигнала будет ограничен диапазоном 0,3 В — 5 В.
Еще один изящный трюк — использовать последовательно два противоположно ориентированных стабилитрона. Это может обеспечить, например, симметричный предел отклонения сигнала от земли.Это также обычная конфигурация для использования стабилитронов в качестве подавителя переходных процессов.
Преобразование напряжения: снижение нагрузки на регулятор
Вот что-то не работает. У нас есть TL750L05, который представляет собой тип линейного стабилизатора с выходом 5 В, который может выдавать выходной ток до 150 мА, а его нагрузка будет переменной. Нам нужно запитать его от источника 36 В. К сожалению, максимальное входное напряжение TL750L05 составляет 26 В.
Давайте попробуем добавить резистор последовательно, чтобы немного понизить это напряжение:
Наша выходная нагрузка может составлять от 125 мА до 10 мА.Итак, резистор какого номинала у нас подойдет?
Предположим, что мы предполагаем нагрузку 125 мА. Затем снять (скажем) 20 В на резисторе, 20 В / .125 А = 160 Ом. Если мы используем 160 Ом, то при нагрузке 10 мА оно упадет только на 160 Ом × 0,01 А = 1,6 В, а 36 В — 1,6 В все еще больше, чем 26 В. Чтобы быть безопасным для нагрузки 10 мА, мы должны выбрать резистор, который дает нам падение как минимум 11 В для входного сигнала регулятора 25 В. Таким образом, 11 В / 0,01 А = 1100 Ом будет безопасным для нагрузки 10 мА. Но если нагрузка увеличится до 125 мА, падение на 1100 Ом будет V = 0.125 А × 1100 Ом = 137 В, что означает, что на входе регулятора будет ниже 5 В, и он перестанет работать.
Очевидно, что вы не можете выбрать номинал резистора, который действительно работал бы как для низкого, так и для сильноточного случая.
В сторону: Мы пропустили пару незначительных деталей о регуляторах напряжения, которые часто заслуживают внимания. Во-первых, линейный регулятор всегда требует немного больше напряжения на входе, чем на выходе.Эта разница напряжений называется «падением напряжения» и может достигать 0,6 В для TL750L05, так называемого стабилизатора с «малым падением напряжения». Это означает, что при выводе 5 В при 150 мА входная клемма регулятора должна быть на 5,6 В или выше. Мы можем спокойно игнорировать это здесь, потому что 36 В — 137 В все еще ниже 5,6 В.
Вторая небольшая деталь заключается в том, что линейный регулятор на самом деле потребляет немного больше тока на своем входе, чем на выходе. Причина этого в том, что часть тока, протекающего на вход регулятора, течет на землю через его третью «заземляющую» клемму, а не на выходную клемму.Этот «ток покоя» может достигать 12 мА для TL750L05. Это означает, что когда 125 мА выходит из выходной клеммы регулятора, на входную клемму может поступать до 137 мА. В приведенном выше примере это означает, что максимальное падение напряжения на резисторе 1100 Ом можно было бы более точно оценить как V = 0,137 А × 1100 Ом = 151 В. Опять же, это не меняет нашего анализа.
Давайте попробуем еще раз, на этот раз с нашим другом, стабилитроном.
Наконец, давайте попробуем использовать один жирный стабилитрон на 20 В (тип 1N5357BRLG), чтобы сбросить часть нагрузки.Тогда выход на аноде стабилитрона составляет всего 16 В, что находится в пределах безопасного входного диапазона регулятора. 1N5357BRLG рассчитан на максимум 5 Вт.
Когда регулятор работает на выходе 125 мА, его входной ток может достигать 137 мА, включая ток покоя, поэтому мощность, рассеиваемая стабилитроном, может достигать 20 В × 0,137 А = 2,74 Вт. Он будет нагреваться, но мы находимся в безопасных условиях эксплуатации стабилитрона, и теперь схема заработает.
Обновлено в апреле 2020 года, чтобы включить примечания о падении напряжения линейного регулятора и токе покоя.
PN Соединительный диод »Примечания по электронике
Диод с PN переходом — это основная форма полупроводникового прибора, а его технология лежит в основе многих других полупроводниковых приборов.
Diode Tutorial:
Типы диодов
Характеристики и номиналы диодов
PN переходный диод
ВЕЛ
PIN-диод
Диод с барьером Шоттки
Солнечный элемент / фотоэлектрический диод
Варактор / варикап
Стабилитрон
После резисторов и конденсаторов одним из наиболее широко используемых электронных компонентов является диод с PN переходом.
Диод с PN переходом является основным форматом полупроводниковых диодов. Он используется для многих форм выпрямления для уровней тока, больших и малых, а также для уровней высокого и низкого напряжения, и это полупроводниковое устройство находит множество применений во всех типах конструкций электронных схем.
PN-переход обладает очень полезным свойством: электроны могут течь только в одном направлении. Поскольку ток состоит из потока электронов, это означает, что ток может течь только в одном направлении через структуру, но не может течь в другом направлении через переход.
диодов с PN переходом можно получить из ряда полупроводниковых материалов — самые ранние диоды, как правило, делались из германия, но сегодня большинство из них представляют собой кремниевые диоды.
Диод прост по своей основной концепции, он сформирован из соединения материалов N-типа и P-типа, хотя на самом деле производство и теория работы более сложны.
Обозначение диодной цепи и полярность
Как и любой диод, диод с PN переходом имеет два контакта или два электрода.Отсюда и название: «ди-» означает два, а «-оде» — сокращение от электрода.
Один электрод полупроводникового прибора называется анодом, а другой — катодом. Чтобы ток протекал через переход PN-диода, он должен быть смещен в прямом направлении. В этих условиях обычный ток течет от анода к катоду, но не наоборот.
Обозначение диодной цепи и физическая ориентация диодаПолярность многих проводных диодов легко определить.«Полоса» на символе схемы соответствует катоду диода и часто отмечается белой линией по окружности самого диода. Ориентация SMD-диодов менее очевидна и обычно определяется в результате того, что диоды содержатся в таком же корпусе, что и транзисторы с тремя выводами — только два используются для SMD-диодов, но они могут быть ориентированы только в одном направлении.
Когда диод с PN-переходом смещен в прямом направлении, анод является положительным по отношению к катоду, и наоборот, при обратном смещении катод является положительным по отношению к аноду.
Полярность напряжения для работы диода с PN переходомЭто означает, что когда диод используется в такой цепи, как выпрямитель, катод обеспечивает положительный выход — анод по-прежнему остается более положительным, как показано на схеме ниже.
Диодный выпрямитель, показывающий полярности напряженияПолярность на диоде для условий прямого смещения / проводимости
Эта схема показывает, как анод диода является положительным по отношению к катоду, а катод подключен к выходу, который является положительным с обратной стороной к линия нулевого напряжения.Таким образом сохраняется полярность напряжения в цепи.
Разработка диода PN-перехода
PN-переход — одна из самых важных структур в современной электронике. Он составляет основу большинства современных полупроводниковых технологий и был первым полупроводниковым устройством, которое использовалось.
Первым использованным полупроводниковым диодом был беспроводной извещатель Cat’s Whisker, который использовался в ранних беспроводных устройствах. Он состоял из проволоки, помещенной на материал, который фактически был полупроводником.Точка, где провод встречается с полупроводником, затем формирует небольшой PN-переход, который обнаруживает радиосигналы. На самом деле это была форма диода Шоттки, но, тем не менее, самая ранняя форма PN-перехода и полупроводникового устройства.
Типичный детектор кошачьих усов 1920-х годовДиод или PN-переход был первой формой полупроводникового устройства, которое было исследовано в начале 1940-х годов, когда были предприняты первые реальные исследования полупроводниковой технологии. Было обнаружено, что небольшие точечные контактные диоды были способны исправлять некоторые из микроволновых частот, используемых в ранних радиолокационных системах, и в результате вскоре они нашли множество применений.
Сегодня узел PN претерпел значительное развитие. Многие разновидности диодов используются во множестве приложений. В дополнение к этому, PN-переход составляет основу большей части современной полупроводниковой технологии, где он используется в транзисторах, полевых транзисторах и многих типах интегральных схем.
PN-переход используется сегодня во многих полупроводниковых устройствах, включая полупроводниковые диоды, биполярные транзисторы, полевые транзисторы с переходом, полевые МОП-транзисторы, диакритические схемы, тиристоры и симисторы — они составляют основу огромного количества современных полупроводниковых технологий.
Примечание об изобретении диода с PN переходом:
Диод с PN переходом был изобретен случайно, когда Рассел Ол, работающий в Bell Labs в США, заметил некоторые особенности в образце кремния с трещиной в его структуре.
Подробнее о Изобретение диода с PN переходом.
PN Соединение
PN-переход обычно изготавливается из цельного куска полупроводника, имеющего две разные области: одна сделана для P-типа, а другая для N-типа.
Соответственно, разные области полупроводника имеют разные свойства. Полупроводник N-типа имеет избыток электронов, в то время как P-тип имеет избыток дырок.
Диод можно представить как состоящий из двух областей, находящихся в тесном контакте друг с другом.
Когда это происходит, отверстия диффундируют в область N-типа, и аналогичный процесс происходит для материала P-типа.
Когда происходит эта диффузия, поток зарядов создает электрическое поле, которое начинает препятствовать потоку дальнейшего заряда, и вскоре достигается состояние равновесия, и дальнейший поток заряда не происходит.
Там, где две области встречаются и в состоянии равновесия нет свободных дырок или электронов. Это означает, что в этом регионе нет доступных зарядных устройств. Ввиду того, что эта область обеднена носителями заряда, она известна как область обеднения.
PN-переход полупроводникового диода без приложенного смещенияОбласть обеднения очень тонкая — часто всего несколько тысячных долей миллиметра — но этого достаточно, чтобы предотвратить нормальное протекание тока. Однако обнаружено, что в зависимости от способа приложения напряжения к переходу наблюдаются различные эффекты.
PN переход полупроводникового диода с прямым смещениемТекущий поток — Если напряжение приложено так, что область типа P становится положительной, а тип N становится отрицательной, дырки притягиваются к отрицательному напряжению и им помогают прыгнуть через слой истощения.
Подобным образом электроны движутся к положительному напряжению и перепрыгивают через слой обеднения. Несмотря на то, что дырки и электроны движутся в противоположных направлениях, они несут противоположные заряды и в результате представляют собой ток, протекающий в одном направлении.
Нет тока — Если напряжение подается на PN переход в противоположном направлении, ток не течет. Причина этого в том, что дырки притягиваются к отрицательному потенциалу, приложенному к области P-типа.
Аналогичным образом электроны притягиваются к положительному потенциалу, приложенному к области N-типа. Другими словами, дырки и электроны притягиваются от самого перехода, и ширина обедненной области увеличивается.Соответственно, через PN-переход ток не течет.
Характеристики PN перехода
Хотя PN-переход обеспечивает отличное выпрямляющее действие, это не идеальный диод, имеющий бесконечное сопротивление в обратном направлении и нулевое сопротивление в прямом направлении. Для того, чтобы можно было использовать PN переход, необходимо немного знать о его свойствах и характеристиках при прямом и обратном смещении.
Глядя на характеристический график PN-перехода, можно увидеть, что в прямом направлении (с прямым смещением) можно увидеть, что очень небольшой ток течет до тех пор, пока не будет достигнуто определенное напряжение. Это представляет собой работу, которая требуется для того, чтобы носители заряда могли пересечь обедненный слой. Это напряжение варьируется от одного типа полупроводника к другому. Для германия оно составляет около 0,2 или 0,3 вольт, а для кремния — около 0,6 вольт.
Можно измерить напряжение около 0.6 В на большинстве диодов с малым током, когда они смещены в прямом направлении, поскольку большинство этих электронных компонентов являются кремниевыми. Небольшое число покажет более низкое напряжение и, вероятно, будет германием. Диоды выпрямителя мощности обычно имеют большее напряжение на них, но отчасти это связано с тем, что в кремнии есть некоторое сопротивление, а отчасти с тем, что протекают более высокие токи, и они работают дальше по кривой.
PN-диод IV характеристикаВ обратном направлении идеальный диод не пропускал бы ток.На самом деле протекает небольшое количество тока, хотя оно, вероятно, будет очень маленьким и находится в диапазоне пикоампер или микроампер. На схеме он увеличен, чтобы его можно было увидеть. Хотя обычно он очень низкий, характеристики любого диода будут ухудшаться при более высоких температурах, и также обнаружено, что германий не так хорош, как кремний.
Этот обратный ток является результатом так называемых неосновных носителей. Это очень небольшое количество электронов, обнаруженных в области P-типа, или дырок в области N-типа.Ранние полупроводники имели относительно высокие уровни неосновных носителей, но теперь, когда производство полупроводниковых материалов стало намного лучше, количество неосновных носителей значительно уменьшилось, как и уровни обратных токов.
Базовый диодный переход PN используется сегодня во многих электронных компонентах всей электронной промышленности: во многих новых общих конструкциях электронных схем, ВЧ конструкциях и во многих других областях.
Даже в своей базовой форме, как диод, этот электронный компонент используется в огромных количествах, но помимо этого, PN-переход составляет основу большинства современных высокотехнологичных транзисторов, интегральных схем и других полупроводниковых устройств.Без PN-перехода жизнь сегодня была бы совсем другой, и электроника была бы совсем другой.
Другие электронные компоненты:
резисторов
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты». . .
Все, что вы хотели знать и многое другое
Добро пожаловать в мир диодов.В этом руководстве я расскажу вам обо всех основных моментах, от диодов до их использования в электронике.
Это часть нашей серии статей о диодах и транзисторах.
Что такое диод?
Самый простой способ определить диод — это:
Определение диода= электрический компонент, который проводит ток в основном в одном направлении
Эта уникальная возможность делает диоды очень полезными в электронике. Они похожи на дороги с односторонним движением в городе.По этой аналогии они позволяют вам направлять поток так, как вы хотите.
# 1 Урок для диодов заключается в том, что они похожи на односторонние вентили, которые позволяют вам контролировать направление тока, протекающего через вашу схему.
Как работает диод?
Чтобы увидеть, как работает диод, давайте посмотрим на поведение диода.
Идеальный диод
Диод выполняет две функции:
- позволяет току течь в одном направлении, называемом прямым направлением
- блокирует ток в другом направлении, называемом обратным направлением
Он идеален в том смысле, что он делает и то, и другое отлично.Если мы построим график зависимости тока через диод от напряжения, это будет выглядеть следующим образом: идеальная ВАХ диода.
Реальные диоды не так совершенны из-за процесса изготовления. Мы обсудим, почему, по мере продолжения.
Символ диода
Оказывается, есть простой способ представить диоды с помощью символов на схеме. Вот они:
Обратите внимание, что существует множество различных символов диодов для типов диодов. Это небольшие отклонения от штатной диодной схемы.
Например, символ стабилитрона просто имеет две дополнительные линии, направленные в противоположные стороны.
Полярность диода
Теперь, когда у нас есть хорошая основа, мы должны обсудить полярность диода. Оказывается, направление диода играет ключевую роль в его поведении.
Почему?
Ну это тут физика в диоде. Давайте разберем два конца диода следующим образом:
Анод диода: положительный конец диода, когда напряжение здесь выше, чем на катоде и достаточно высокое, чтобы включить диод, через него будет течь ток
Диод Катод: отрицательный конец диода, он не будет пропускать ток через этот конец, если напряжение не станет достаточно высоким, чтобы диод не мог с ним справиться, что известно как пробой.
PN Junction Diode
Физика твердого тела, лежащая в основе работы PN-диода, связана с манипуляциями с электронами.
Оказывается, мы можем изготавливать материалы с избытком электронов, N-тип, а также без электронов, или P-тип.
Когда мы помещаем материал N-типа рядом с материалом P-типа, мы получаем аккуратное поведение.
Секция P-типа, в которой отсутствуют электроны, действует как «дырки», которые создают положительные носители заряда.
Секция N-типа имеет избыток электронов.
Так почему бы электронам не присоединиться к дыркам и не уравновесить все в материале? электроны, потому что они сдвинуты по отношению друг к другу.
Когда на диод подается прямое напряжение, что означает, что на анод подается более положительное напряжение, то сдвиг между электронами и отверстиями перемещается намного ближе друг к другу, обеспечивая хорошее движение электронов (тока) через устройство.
Так создается ваша улица с односторонним движением.
Когда применяется обратное напряжение смещения, сдвиг между электронами и дырками, который уже существует, перемещается еще больше, что затрудняет прохождение электронов через диод.
Дорожный блок для тока создан.
Что делает диод
Как мы уже говорили, диоды — это как улица с односторонним движением. Мы можем использовать их, чтобы помочь направить ток определенными путями и предотвратить его возвращение определенными путями.
Мы более подробно рассмотрим различные способы использования диодов позже в разделе «Использование диодов».
Во-первых, давайте обсудим еще несколько ключевых понятий о диодах.
Прямой смещенный диод
Что означает наличие прямого смещения диода? Ответ довольно прост, если вы посмотрите на него правильно.
Видите ли, диод сам по себе состоит из материала N-типа и P-типа, зажатого вместе, как мы уже обсуждали ранее.
Объединяя эти два материала и их поведение, мы получаем то, что называется областью истощения, которая препятствует легкому протеканию тока через устройство.
Однако, если мы приложим прямое напряжение, которое обычно составляет 0,7 В для общего диода, между анодом и катодом, мы можем заставить исчезнуть область обеднения, что позволит току легко течь через диод.
Мы можем видеть этот эффект на изображении выше. Обратите внимание, как на анод подается 0,7 Вольт по сравнению с катодом в нижнем примере, и теперь ток свободно течет через устройство, потому что область истощения теперь исчезла.
Диод обратного смещения
Точно так же, как прямое напряжение может удалить область истощения, напряжение обратного смещения может сделать область истощения еще больше.
Это дает эффект усиления блокирующей способности диода, не позволяя току течь от катода к аноду через устройство.
Типичный диод имеет диапазон напряжения обратного смещения до 50 вольт. Конечно, вы можете получить диоды, которые идут намного выше этого. Иногда в технических данных эту переменную называют напряжением блокировки постоянного тока.
Как вы можете видеть на изображении выше, приложив напряжение к катодному концу диода в нижнем примере, вы можете еще больше увеличить область обеднения, блокируя протекание любого тока через устройство.
Reverse Bias Leakage
Настоящие диоды не идеальны, так как некоторый ток утечки будет проходить от катода к аноду. Однако это количество обычно невелико, но если это проблема для вашей конструкции, важен правильный выбор диода.
Напряжение пробоя
Что произойдет, если мы продолжим увеличивать напряжение на катоде и превысим номинальное значение обратного смещения на диод?
Авария — вот что случается. Это происходит тогда, когда диод выходит за рамки ожидаемого расчетного поведения, и теперь диод начинает пропускать ток через него от катода к аноду.
Большинство диодов обычно повреждаются, когда это происходит
Характеристики диода
Чтобы наглядно представить себе, что мы только что узнали, давайте посмотрим на график, который показывает различные режимы работы диода. Это ВАХ реального диода.
Обратите внимание, как ток по оси Y протекает через диод при прямом напряжении 0,7 В для типичного диода. Напряжение пробоя — это когда ток начинает течь в противоположном направлении, что составляет -50 Вольт для типичного диода.
Все настоящие диоды также будут иметь ток утечки, в котором ток будет течь от катода к аноду без прямого смещения.
Иногда есть другие характеристики, которые вам могут понадобиться, например сопротивление диода. Для многих схем этот фактор не имеет значения.
Однако для более чувствительных схем одним из способов определения сопротивления диода в режиме прямого смещения является использование классического уравнения сопротивления = напряжение / ток.
В этом случае вы можете измерить падение напряжения на диоде для различных режимов схемы, которые вам интересны, в зависимости от тока через диод.
Уравнение диода
Полезным упражнением для понимания поведения диода является изучение уравнения тока диода.
Давайте сначала рассмотрим уравнение идеального диода, а затем посмотрим, как эффекты реального мира меняют его поведение. Это выглядит следующим образом:
где:
- Is = ток темнового насыщения
- q = значение заряда электрона
- Vd = напряжение на диоде
- n = идеальный коэффициент, n = 1 для идеальных диодов и n = 1-2 для реальных диоды
- k = постоянная Больцмана, 1.38064852E-23 Джоуль / Кельвин
- T = температура (Кельвин)
Чтобы уменьшить уравнение, мы знаем, что kT / q — это то, что называется тепловым напряжением, или Vt. Мы можем изменить уравнение следующим образом:
Здесь Vt = 0,026 В при нормальной температуре.
Как видите, уравнение нелинейное, что затрудняет моделирование поведения диодов. Это просто означает, что настоящие диоды в основном делают то же, что и идеальные, но не идеально.
Если вас интересует моделирование диодов, здесь есть отличная статья.
Типы диодов
Лавинный диод
Лавинные диоды — это диоды, которые специально предназначены для работы в режиме пробивного напряжения. Следовательно, они не повреждаются при переходе в режим пробоя, потому что их конструкция более равномерно распределяет плотность тока.
Эти диоды обычно используются как форма защиты от нежелательных или неожиданных напряжений. Они могут переходить в режим пробоя и отводить избыточную энергию в землю, сохраняя цепь, которая не предназначена для работы с этими напряжениями.
Германиевый диод
Обычные диоды изготовлены из кремния, который обладает особыми свойствами, благодаря которым его прямое напряжение составляет 0,7 Вольт. Но что, если вам нужен диод с более низким напряжением?
Вот тут и пригодится германиевый диод. Учитывая свойства материала, эти диоды имеют типичное прямое напряжение 0,3 В.
Низкое напряжение делает этот тип диода удобным в аудио- и FM-схемах. Раньше это был популярный диод еще до того, как кремниевые диоды стали мейнстримом.
Диод Ганна
Диод Ганна также известен как устройство с переносом электронов (TED). Он отличается от других диодов тем, что имеет только материал N-типа (в нем нет материала P-типа).
Он имеет две секции материала N-типа, соединенные тонкой секцией материала N-типа. Что происходит, так это то, что по мере увеличения напряжения на устройстве ток увеличивается до определенной точки, в которой ток начинает уменьшаться.
Это заставляет устройство работать так, как будто оно имеет отрицательное сопротивление.Он также может проводить ток в обоих направлениях из-за отсутствия материала P-типа.
Они обычно используются в схемах электронных генераторов для создания микроволн, в том числе радарных стрелок и автоматических открывателей дверей.
Светодиодный диод
Светодиодный диод обозначает светоизлучающий диод. Диодный светодиод — это устройство, которое излучает фотоны, когда через него проходит ток.
Светодиоды в наши дни чрезвычайно распространены и их можно найти повсюду в электронике. Цена снизилась до такой степени, что они даже используются в схемах для обозначения функций на уровне платы.
Новые технологии работают над снижением стоимости органических светодиодов, которые предлагают еще больше преимуществ, включая гибкие дисплеи.
Фотодиод
Фотодиод — это устройство, которое генерирует ток, когда поглощает фотоны. Следовательно, эти устройства удобны для обнаружения фотонов на многих различных длинах волн.
Фактически, все технологии цифровых фотоаппаратов работают с использованием матрицы фотодиодов, где каждый диод считается пикселем.
Есть даже такие вещи, как детекторы с диодной матрицей, которые имеют массив фотодиодов, которые работают при обнаружении различных длин волн света, так что можно собирать информацию в широком спектральном диапазоне.
PIN-диод
PIN-диод, как следует из названия, — это место, где нелегированный материал помещается между материалами P-типа и N-типа. Нелегированный материал создает так называемую внутреннюю область.
Эти диоды удобны в высокочастотных цепях. Из них получаются отличные ВЧ- и СВЧ-аттенюаторы и переключатели.
Диод Шоттки
Диод Шоттки — это диод, в котором удаляется материал P-типа, а вместо материала N-типа используется металл для создания диода.
Преимущество — более низкое прямое напряжение, которое помогает увеличить частоту коммутации в определенных приложениях. Это в сочетании с более быстрым временем восстановления делает их полезными в схемах, таких как импульсные источники питания.
Диод Шокли
Диод Шокли — один из первых, изобретенных Уильямом Шокли.Он состоял из четырех слоев материала PNPN.
Эти диоды больше не производятся, но их поведение можно имитировать с помощью динисторов.
Кремниевый диод
Кремниевые диоды — это повседневная работа обычных диодов, которые вы найдете в схемах. Они наиболее распространены и обычно имеют прямое напряжение около 0,7 В.
Изображение 1N914 можно увидеть ниже.
Туннельный диод
Туннельный диод использует эффект, называемый квантовым туннелированием.
В этих устройствах замечательно то, что сначала ток очень легко проходит от анода к катоду. Затем, когда прямое напряжение увеличивается, ток, протекающий через устройство, уменьшается, создавая отрицательное сопротивление.
Затем по мере увеличения напряжения он начинает работать как обычный диод. Однако диод желателен из-за его области отрицательного сопротивления. Они полезны в схемах преобразователя частоты и детектора.
Варакторный диод
Назначение варакторного диода — использовать зависящую от напряжения емкость диода в режиме обратного смещения.
Фактически, они могут использоваться в качестве конденсаторов с регулируемым напряжением и удобны в схемах генератора и умножителя частоты.
Стабилитрон
Стабилитроны имеют гораздо более резкую кривую тока, чем другие диоды в области пробоя.
Это означает, что, хотя они работают как другие обычные диоды (от анода к катоду), они также могут пропускать ток в обратном направлении (от катода к аноду) при достижении напряжения обратного смещения.
Другие диоды не предназначены для работы в режим пробивного напряжения, тогда как стабилитроны рассчитаны на работу именно там.
Общие диоды
Серия 1N400X
Отличным диодом общего назначения для многих различных приложений является серия 1N400X. Их часто можно найти в цепях питания постоянного тока для защиты. Изображение диода 1N4001 можно увидеть ниже.
Вот почему они так хороши:
- низкая стоимость
- низкая обратная утечка
- высокий прямой импульсный ток
- максимальный прямой ток макс = 1 А
- максимальное прямое напряжение при максимальном токе = 1,1 В
- максимальное обратное напряжение смещения меняется на выбранной части X, от 50 В до 1000 В
Некоторые конкретные примеры:
- Диод 1N4001 — обратное смещение = 50 В, звено
- Диод 1N4004 — обратное смещение = 400 В, звено
- 1N4007 диод — обратное смещение = 1000 В, ссылка
1N540X Series
Если вам нужен больший прямой ток, то серия 1N540X — отличный вариант.Они очень похожи на серию 1N400X, за исключением:
- максимальный прямой ток = 3 А
- импульсный ток намного выше
Пример:
Диод 1N5408 — обратное смещение = 1000 Вольт, л чернил
Слабый сигнал
Для других типов схем, включая приложения с малым сигналом, доступны более подходящие диоды.
Эти диоды пригодятся, когда вы имеете дело с более низкими токами и напряжениями.
Вот несколько отличных примеров:
- 1N914 диод — обратное смещение = 100 В, прямой ток = 0.2 А, ссылка
- Диод 1N4148 — обратное смещение = 100 В, прямой ток = 0,2 А, ссылка
Упаковка диодов
Диоды поставляются во многих различных вариантах корпусов, включая сквозное отверстие, поверхностный монтаж и подобные корпуса большего размера используется в ВЧ-устройствах и приложениях с высокой мощностью
В зависимости от технических характеристик диода его размер может быть разным. Например, высоковольтные диоды будут иметь гораздо больший размер, чем низковольтные.
Маркировка диодов
Диоды будут иметь определенную маркировку для обозначения номера детали, а также полярности устройства.
Например, диоды со сквозным отверстием будут иметь цифры, напечатанные на детали, а также будут иметь тонкую полосу на одном конце диода, которая обозначает катод.
Техническое описание детали покажет вам, из чего состоит маркировка и что они означают.
Пример германиевого диода со сквозным отверстием можно увидеть ниже.
Использование диодов
Давайте рассмотрим некоторые из самых популярных диодных схем, чтобы лучше понять, как использовать диоды.
Выпрямительный диод
Диодный выпрямитель — один из наиболее распространенных способов использования диода.Давайте теперь рассмотрим некоторые конкретные примеры.
Диодный мост
Здесь стоит упомянуть две разновидности: полуволновые и двухполупериодные выпрямители.
Полуволновый выпрямитель
Скажем, например, у вас есть сигнал переменного тока (AC), и вам нужна только часть сигнал выше 0 В. Для этого можно использовать диод.
Обычно этот тип схемы используется для выпрямителя переменного тока на 120 В., как показано ниже, он называется полуволновым выпрямителем.
Обратите внимание, как передаются только положительные компоненты входного сигнала, а отрицательные — нет.
Проблема в том, что в этом примере вы получаете только половину сигнала, положительную половину. Во многих ситуациях это может быть все, что вам нужно.
В ситуациях, когда вам нужны оба компонента, вам понадобится полная волна, которую мы рассмотрим далее.
Двухполупериодный выпрямитель
Двухполупериодный выпрямитель представляет собой комбинацию из 4 диодов вместе, чтобы преобразовать как положительную, так и отрицательную составляющие сигнала в положительный выход.
Диоды расположены таким образом, что входной сигнал всегда проходит через диоды, независимо от его положительного или отрицательного напряжения. Такое расположение диодов можно увидеть ниже.
Входной сигнал преобразуется во все положительные, как показано ниже (вход и выход имеют цвет, соответствующий приведенной выше диаграмме.
Двухполупериодные выпрямителипоставляются в готовой упаковке с более высокими предельными значениями тока. Пример можно увидеть ниже.
Вы также можете расположить свои собственные диоды индивидуально, чтобы создать свой собственный двухполупериодный мост.Вы можете выбрать хорошие силовые диоды или диоды с более высоким прямым током и более высоким напряжением пробоя для вашего приложения.
Детали 1N4007 и 1N5408 — отличный выбор для прямого выпрямления 120 В переменного тока, в зависимости от ваших требований к максимальному току. Обратите внимание, что максимальное обратное смещение здесь имеет решающее значение, и номинальное напряжение в 1000 вольт на этих деталях дает вам большой запас прочности.
Если вы используете понижающий трансформатор между 120 В переменного тока и двухполупериодным мостом, определите максимальное напряжение и убедитесь, что выбранные вами диоды имеют достаточный запас (в 2-3 раза выше) для обратного смещения.
Если вы заинтересованы в сглаживании пульсаций, вы можете использовать конденсатор на выходе, который подходит для вашего тока в вашей цепи, и получить хорошее постоянное напряжение на выходе.
Обратный диод
Есть много названий для того же типа диодов, включая демпферный диод, диод свободного хода и ограничительный диод.
Обратный диод — удобный способ использования диода для уменьшения внезапных скачков напряжения, возникающих при внезапном изменении тока через индуктивную нагрузку .
Как мы обсуждали в статье об индукторах, всякий раз, когда индуктор видит изменение тока, проходящего через него, он создает всплеск напряжения ЭДС, чтобы попытаться стабилизировать изменение тока.
Во многих схемах эта генерируемая ЭДС обычно нежелательна и иногда может вызывать повреждение других частей схемы.
Во избежание повреждения диод можно разместить так, чтобы в случае всплеска напряжения ЭДС через диод протекал ток, а не через другие компоненты схемы, которые могут быть повреждены.
Распространенной схемой, в которой это может быть полезно, является управление маленьким вентилятором или релейным дросселем. Как правило, большинство цифровых выводов могут давать ток менее 20 мА, поэтому это необходимо для усилителя тока. См. Пример схемы диода ниже.
Здесь хорошо работает NPN-транзистор, потому что цифровой вывод может подавать 10 миллиампер для включения NPN-транзистора, а транзистор может обрабатывать примерно ампер тока, необходимого для вентилятора или катушки индуктивности реле.
Каждый раз, когда транзистор выключается, в катушке индуктивности происходит резкое падение тока и возникает всплеск обратной ЭДС.
Без диода пик будет проходить через транзистор, обычно повреждая его. При размещении диода параллельно катушке индуктивности скачок напряжения ЭДС включает диод и позволяет току течь через диод и обратно в катушку индуктивности, где он рассеивается.
Этот обратный ток обратно в катушку индуктивности является источником названия этого типа диода.
Для диода D1 в приведенной выше схеме обычно выбирается 1N4001, который имеет прямой ток 1 А. , высокий импульсный ток и обратное смещение 50 Вольт.Это хорошо работает в цепях с напряжением 12 В. Если у вас напряжение выше, вам может понадобиться более способная деталь.
Стабилитронный стабилизатор напряжения
Как мы уже обсуждали ранее, стабилитроны предназначены для работы в режиме напряжения пробоя.
Одним из способов воспользоваться этим преимуществом является стабилитрон. Нам просто нужен резистор и стабилитрон, правильно подобранные, чтобы дать нам желаемое выходное напряжение
Пример схемы стабилитрона можно увидеть ниже.
Стабилитрон будет ограничивать входное напряжение до напряжения пробоя диода в этой цепи для выхода.Для этого он должен пропускать ток через диод, который будет рассеиваться в виде тепла, но только тогда, когда входное напряжение выше напряжения пробоя.
Требуемое выходное напряжение будет определять стабилитрон, поскольку вы выбираете диод на основе его напряжения пробоя, чтобы соответствовать выходному напряжению. Вы должны получить диод, способный выдержать рассеиваемую мощность.
Резистор необходимо тщательно выбирать в зависимости от силы тока цепи. Отличный калькулятор для выбора этих деталей здесь.
Блокирующий диод
Такое использование диода — это просто название ситуации, когда диод используется для управления током, протекающим только в одном направлении.
Отличный пример — схема солнечной панели и зарядного устройства. Когда солнце не светит и солнечные панели вырабатывают ток, они обычно имеют более высокое напряжение, чем батарея, которую заряжает цепь, поэтому ток будет течь от панелей в батарею.
Однако в ночное время солнечный свет не попадает на солнечные панели, поэтому они не будут вырабатывать ток.Батарея в этот момент будет иметь более высокое напряжение, и без блокирующего диода ток будет течь от батареи к панелям, тратя энергию.
Когда диод помещается между солнечными панелями и батареей, он позволяет току течь от панелей к батарее, но не позволяет току течь от батареи к панелям.
Следовательно, он «блокирует» протекание тока нежелательным образом
Другое место, где это полезно, — это батареи в цепи.Каждый раз, когда есть вероятность, что кто-то может вставить батареи задом наперед или подключить питание постоянного тока наоборот, отличный способ защитить цепь — это использовать блокирующий диод.
Диод гарантирует, что только правильная полярность напряжения позволит току течь в цепи, защищая их от отрицательного напряжения.
Загвоздка в том, что вы должны выбрать диод, который может выдерживать максимальный прямой ток, который будут тянуть цепи. Кроме того, напряжение в цепи будет уменьшено прямым напряжением диода.
Ограничивающий диод
Ограничивающий диод — это просто способ использования конденсатора и диода для управления уровнем постоянного тока сигнала.
В приведенном ниже примере схемы конденсатор и диод создают смещение постоянного тока на входном сигнале переменного тока.
Если мы хотим изменить направление смещения постоянного тока, мы просто меняем направление диода, как показано ниже.
Вы можете пойти еще дальше, если поместите источник напряжения между диодом и землей, чтобы можно было добавить дополнительное смещение постоянного тока в желаемом направлении.
Клипсирующий диод
В отличие от зажима есть клипсование. Здесь вы можете использовать последовательный резистор и диод, чтобы отсечь нежелательную часть входного сигнала.
Для положительного ограничения диод расположен так, что он включен, когда сигнал выше прямого напряжения, и, следовательно, диод проводит ток, ограничивая верхнее напряжение на уровне около 0,7 В.
Пример можно увидеть ниже. R2 — это просто пример резистора и не требуется.
В приведенном выше примере обратите внимание на то, что максимальное верхнее напряжение ограничено 0,7 В, что является прямым напряжением диода.
Если требуется отрицательное ограничение, вы можете просто перевернуть диод. В этом случае, когда входной сигнал отрицателен за пределами прямого напряжения, диод будет включаться и проводить ток, ограничивая отрицательный сигнал на уровне -0,7 вольт.
Пример ниже. Опять же, R2 не требуется.
Обратите внимание на то, что в приведенном выше примере отрицательная часть сигнала обрезается до -0.7 Вольт.
Чтобы пойти еще дальше, вы можете добавить напряжение между диодом и землей, чтобы сместить место ограничения входного сигнала.
Вы также можете выполнить как положительное, так и отрицательное ограничение вместе, разместив два диода параллельно с противоположными полярностями, чтобы ограничить верхнюю и нижнюю части сигнала.
Вам понравилась эта статья или у вас есть интересный опыт работы с диодами? Сообщите нам об этом в комментариях ниже!
Практическое руководство по диодам
Самым простым из электронных устройств является диод.Его часто называют полупроводниковым диодом, но технически диод имеет свои специфические электрические характеристики. Верно для всех электронных устройств. Они отличаются уникальными электрическими характеристиками, хотя могут быть доступны разные конструкции, типы и области применения.
При этом полупроводниковый диод является наиболее распространенной и базовой конструкцией диодного устройства.
Что такое диоды
В качестве электронного устройства диод представляет собой двухполюсный односторонний переключатель.В ответ на приложенный сигнал он действует как замкнутый переключатель для одной полярности напряжения и разомкнутый переключатель для обратной полярности.
Электронное устройство как диод определяется двумя важными характеристиками:
1. Это двухконтактное устройство
2. Оно позволяет проводить ток в одном направлении и препятствует прохождению тока в обратном направлении.
В результате любой диод имеет две уникальные области, независимо от его типа. Одна из них — активная область, где полярность приложенного напряжения позволяет диоду проводить через нее ток.Другой — область обратного смещения, где приложенная полярность заставляет диод препятствовать прохождению тока.
Диод — простое устройство, но у него бесконечное количество применений.
Полупроводниковый диод
Полупроводниковый диод — это самая простая конструкция диода. Фактически, концепция диодного устройства произошла от полупроводникового диода. Все полупроводниковые устройства построены путем соединения внутренних полупроводниковых материалов — внешнего p-типа и внешнего n-типа.
Оба этих материала сформированы на собственной подложке путем легирования атомов акцепторной примеси на атомы p-типа и атомы донорной примеси на областях n-типа соответственно. Это создает p-n переход.
Переход p-n — с материалами p- и n-типа с обеих сторон, с соответствующими выходными (проводящими) выводами — представляет собой полупроводниковый диод.
Собственный материал, который подвергается легированию для образования p-n-перехода, может быть кремнием, германием или арсенидом галлия.
Диод, как простой p-n переход, представляет собой основную функцию всех полупроводниковых устройств. Те же принципы, которые применяются к полупроводниковым диодам, применимы и к другим сложным полупроводниковым устройствам, независимо от их конструкции, сложности, работы или характеристик.
Вот почему изучение полупроводниковых диодов является основой современной электроники.
Диоды в действии
В материале полупроводникового диода p-типа дырки являются основными носителями заряда, а электроны — неосновными носителями заряда.В материале n-типа все наоборот. Электроны являются основными носителями заряда, а дырка — неосновными носителями заряда в материале n-типа.
Неосновные носители в обоих материалах представляют вклад собственной подложки, а основные носители представляют вклад примесных атомов. Концентрация основных носителей заряда в 100 000 раз больше, чем неосновных носителей в обоих материалах.
Кроме того, оба они могут иметь разные уровни легирования, что не влияет на электрическую нейтральность материалов или диода.
Как уже упоминалось, диод — это устройство с двумя выводами. Проводящий конец материала p-типа является анодом, а проводящий конец n-типа — катодным выводом.
Из-за своих электрических характеристик диод имеет несколько рабочих областей.
- В активной области вольт-амперных характеристик он позволяет проводить обычный ток от анода к катоду.
- В непроводящей области своих вольт-амперных характеристик он блокирует любой поток обычного тока от катода к аноду.
В качестве устройства с двумя выводами, управляемого напряжением, диод имеет три возможных электрических состояния:
1. На диод не подается внешнее напряжение
2. Анод имеет более высокий потенциал, чем катод
3. Катод имеет более высокий потенциал, чем анод
Электрические условия…
Нет приложенного смещения: При отсутствии внешнего напряжения на диоде через него не протекает ток.Как только материалы p- и n-типа образуют переход, отверстия от p-типа диффундируют в материале n-типа вблизи перехода. Это приводит к образованию слоя положительных ионов в материале n-типа и вокруг перехода.
Точно так же электроны n-типа диффундируют в материале p-типа около перехода. Это приводит к образованию слоя отрицательных ионов в материале p-типа и вокруг перехода. Это формирует область истощения на стыке, в которой отсутствуют какие-либо свободные носители заряда с обеих сторон.
Поскольку основные носители заряда находятся в высокой концентрации — неосновных носителей в обоих материалах почти в 100 000 раз больше — лишь немногие из основных носителей обладают достаточной энергией, чтобы пересечь область обеднения (из-за тепла и света).
Чтобы пройти через диод, отверстия в материале p-типа будут пытаться преодолеть силу притяжения отрицательных ионов на стороне p-типа перехода и силу отталкивания положительных ионов на стороне n-типа. соединение.
Чтобы пройти через диод, электроны n-типа должны также преодолеть силу притяжения положительных ионов на стороне n-типа перехода и силу отталкивания отрицательных ионов на стороне p-типа перехода. Только несколько основных носителей заряда получают достаточную кинетическую энергию, чтобы пересечь эту область обеднения, которая компенсируется движением неосновных носителей заряда через соединение.
В результате при отсутствии напряжения на диоде отсутствует ток.Таким образом, ток может протекать через диод только тогда, когда большинство носителей заряда набирают достаточно кинетической энергии, чтобы пересечь переход под действием внешнего электрического поля.
Прямое смещение: Когда анод имеет более высокий потенциал, чем катод, диод считается смещенным в прямом направлении. Из-за положительного потенциала на проводящем конце материала p-типа отверстия в этом материале смещаются в сторону n-типа. Точно так же из-за отрицательного потенциала на проводящем конце материала n-типа электроны в этом типе материала выталкиваются в сторону p-типа.
В результате область истощения начинает уменьшаться. При определенной положительной разности напряжений, известной как напряжение включения , область истощения позволяет большому количеству основных носителей с обеих сторон протекать через диод. Это вызывает экспоненциальный рост тока через диод.
По мере того, как напряжение прямого смещения превышает напряжение включения, многие основные носители получают достаточно кинетической энергии (под влиянием внешнего напряжения), чтобы пересечь область истощения.
Ток будет продолжать расти с приложенным вперед напряжением до тех пор, пока не достигнет максимального предела, в результате чего диод будет действовать как проводник. Максимальный ток через диод в прямом смещении ограничен концентрацией свободных носителей заряда в обоих материалах. Чем выше уровень примеси в обоих материалах, тем выше предел прямого тока диода.
После снятия прямого напряжения с диода область истощения медленно восстанавливается, и диод возвращается в состояние непроводимости, как в случае без приложенного напряжения.
Обратное смещение: Когда катод имеет более высокий потенциал, чем анод, считается, что диод имеет обратное смещение. Отрицательный потенциал на проводящем конце материала p-типа притягивает отверстия этого материала к его проводящему концу. Точно так же положительный потенциал на проводящем конце n-типа тянет электроны этого материала к его проводящему концу.
В результате область обеднения расширяется, и основные носители заряда в обоих материалах не имеют возможности пересечь область истощения.Чтобы пересечь диод, эта полярность напряжения позволяет неосновным носителям вносить вклад через внутреннюю подложку с обеих сторон. Чрезвычайно малый ток (из-за неосновных носителей), известный как обратный ток насыщения ,
протекает через диод. Это называется обратным током насыщения, потому что он быстро достигает максимального предела, после которого он не изменится.
Обратный ток насыщения обычно выражается в наноамперах или микроамперах, за исключением мощных диодов.Фактический обратный ток больше, чем обратный ток насыщения, поскольку он включает в себя другие факторы, такие как токи утечки, температурную чувствительность, площадь перехода и носители заряда в области истощения.
В электронных схемах это настолько малая величина тока, что она ничтожна по сравнению с током в проводящем проводе и других токоактивных компонентах сети.
Область пробоя: В состоянии обратного смещения область обеднения расширяется по мере увеличения обратного напряжения.Из-за высокого обратного напряжения в определенный момент неосновные носители набирают достаточно кинетической энергии, чтобы инициировать процесс ионизации, сталкиваясь с атомами. В результате ионизации в обоих материалах высвобождается несколько носителей, которые могут проходить через диод. Это вызывает протекание высокого лавинного тока от катода к аноду.
Тяжелая авария неосновных носителей называется лавинной аварией. Максимальное обратное напряжение до того, как на диоде возникнет сильный лавинный ток, называется пиковым обратным напряжением (PRV) , p eak обратное напряжение (PIV), или k nee напряжение .
Область характеристик за пределами рейтинга PIV — это область Зенера . Увеличивая уровень легирующей примеси материалов p- и n-типа, рейтинг PIV может быть приближен к -5В. Из-за повышенного уровня легирования возникает другое явление, известное как пробой Зенера , при котором повышенный уровень тока возникает из-за сильных электрических полей, разрушающих атомные связи в легированных материалах.
Специальным полупроводниковым диодом, сильно легированным для обеспечения пробоя стабилитрона при обратном смещении, является стабилитрон .Стабилитроны используются для регулирования напряжения.
Вольт-амперные характеристики
Диод имеет две рабочие области. В состоянии «без смещения» через него протекает нулевой ток. При прямом смещении диод переходит в состояние проводимости. Это означает, что через анод проходит небольшой ток, пока не будет достигнуто напряжение включения.
За пределами напряжения включения ток экспоненциально возрастает в соответствии с уравнением:
I = I с * e VD / nVT — I с
Где…
- I — ток через диод
- I с — обратный ток насыщения
- В D — приложенное напряжение прямого смещения
- n — идеальный коэффициент, который колеблется от одного до двух, в зависимости от условий эксплуатации и конструкции диода
- В T — тепловое напряжение
Тепловое напряжение:
V T = k * T K / q
Где…
- VT — тепловое напряжение
- k — постоянная Больцмана = 1.38 * 10 -23 Дж / К
- TK — абсолютная температура в градусах Кельвина
- q — заряд электрона = 1,6 * 10 -19 C
При прямом смещении прямой ток через диод экспоненциально увеличивается с напряжением прямого смещения. Значение теплового напряжения также увеличивается с температурой. Следовательно, при повышении температуры прямой ток уменьшается, а при понижении температуры прямой ток увеличивается.
При обратном смещении обратный ток насыщения из-за неосновных носителей является единственным током, который течет через диод до тех пор, пока не будет достигнуто критическое напряжение. Прямой ток находится в диапазоне мА и увеличивается на десятые доли вольт от прямого смещения. Напряжение обратного смещения составляет десятки вольт, а обратный ток насыщения обычно составляет пА или мкА.
Напряжение включения, обратный ток насыщения и напряжение колена зависят от неосновных носителей заряда, которые вносятся внутренней подложкой.Следовательно, напряжение включения, обратный ток насыщения и напряжение перегиба зависят от материала подложки.
Напряжение включения для:
- Кремниевые диоды: 0,7 В
- Германиевые (Ge) диоды: 0,3 В
- Диоды из арсенида галлия (GaAs): 1,2 В
Обратный ток насыщения для:
- Кремниевые (Si) диоды: 10pA
- Германиевые (Ge) диоды: 1 мкА
- Диоды из арсенида галлия (GaAs): 1pA
Пиковое обратное напряжение:
- Кремниевые (Si) диоды: 50 В ~ 1 кВ
- Германиевые (Ge) диоды: 100-400В
- Диоды из арсенида галлия (GaAs): 100 ~ 20 кВ
Отклик на сигнал постоянного тока
Когда на диод подается сигнал постоянного тока, он работает в определенной точке, связанной с его характеристической кривой.Ток протекает через диод только тогда, когда сигнал постоянного тока подается с положительной полярностью.
В зависимости от точки срабатывания диод проводит фиксированный прямой ток в диапазоне мА, обеспечивая фиксированное постоянное / статическое сопротивление.
Отклик переменного тока
Когда на диод подается сигнал переменного тока, его точка срабатывания на характеристической кривой непрерывно изменяется между положительным и отрицательным пиками подаваемого сигнала.
Ток через диод проходит вверх и вниз по точке покоя или Q-точке.Эта точка Q полезна для определения мгновенного сопротивления диода сигналу по переменному току. Мгновенное сопротивление переменному току определяется по касательной в точке Q рабочего сигнала. Среднее сопротивление переменного тока определяется изменением напряжения до изменения тока в положительных и отрицательных пиках сигнала переменного тока.
Если подаваемый сигнал имеет более низкие уровни пикового напряжения, сопротивление переменного тока от диода к сигналу выше. Если приложенный сигнал имеет более высокие уровни пикового напряжения, сопротивление диода переменному току меньше.
Электрические характеристики
Несколько важных электрических характеристик полупроводникового диода:
- Напряжение включения
- Максимальный прямой ток
- Обратный ток насыщения
- Обратный ток
- PIV рейтинг
- Напряжение стабилитрона
- Сопротивление постоянному току
- Сопротивление переменному току
- Среднее сопротивление переменному току
- Переходная емкость
- Диффузионная емкость
Типы диодов
Полупроводниковый диод — не единственный доступный тип диода.Однако существует несколько типов полупроводниковых диодов, каждый из которых предназначен для работы в определенных характеристических областях или для обеспечения определенных физических или электрических свойств.
Несколько примеров включают питание, стабилитроны, слабый сигнал, большой сигнал, светодиоды и другие.
Например, существует множество диодов со специальной конструкцией, таких как лазерные диоды, диоды Шокли, диоды Шоттки и т. Д. Независимо от конструкции, рабочих характеристик или физических свойств, характеристическая кривая и электрические характеристики всех диодов остаются одинаковыми.
Все диоды — это двухконтактные односторонние переключатели с управлением напряжением.
Рубрика: Технические статьи
Осевые выпрямители, БАРЬЕРНЫЕ выпрямители SCHOTTKY 1.0 АМПЕР 20, 30 и 40 Вольт
% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > транслировать application / pdf