Конденсаторы типы корпусов: О маркировке конденсаторов в т.ч. керамических и импортных: расшифровки обозначений

Содержание

О маркировке конденсаторов в т.ч. керамических и импортных: расшифровки обозначений

Самодельные электронные схемы собираются с применением конденсаторов, которые нужно правильно подобрать. К слову, могут быть использованы конденсаторы, уже бывшие в употреблении. Прежде чем применять их, следует тщательно проверить, в особенности это касается электролитических видов, сильно подверженных старению. В этой статье рассмотрим обозначение конденсаторов, и как они маркируются.

Каждая маркировка имеет свое значение

Особенности конденсаторов

Конденсаторами называют двухполюсники с переменным или определенным значением емкости и малой проводимостью. Отличительная черта изделия – оно обеспечивает накопление заряда и энергии электрического поля. Сам элемент применяется как пассивный электронный компонент. Конструкция не представляет ничего сложного – два электрода в виде пластин, которые разделены диэлектриком небольшой толщины. Все чаще применяются элементы, имеющие многослойные диэлектрики и электроды.

Существует большой выбор конденсаторов, которые находят применение в самых различных схемах. Чтобы грамотно подобрать параметры электросети, следует разобраться, как осуществляется маркировка керамических конденсаторов, – это ключевое их значение. Это не совсем просто, так как параметры могут существенно отличаться, в зависимости от компании-изготовителя, страны-экспортера, вида, размера и самих параметров элемента.

Керамические конденсаторы позволяют накапливать электрический заряд. Для измерения емкости используются особые единицы – фарады (F). Но стоит учесть, что одна единица фарада является большой величиной, которая не находит применения в радиотехнике. В случае с конденсаторами актуален микрофарад – это один фарад, поделенный на миллион. Почти что на всех элементах встречается обозначение мкФ. При ознакомлении с теоретическими расчетами иногда встречается миллифарад – фарад, деленный на тысячу. Для обозначения маленьких устройств используются нанофарады и пикофарады. Важно разбираться в обозначениях, чтобы подбирать правильные элементы.

Номиналы конденсаторов различаются, но для чего это на практике? Определенная емкость конденсатора требуется, если необходим выброс значительного количества энергии. То есть элемент позволяет высвободить за доли секунд немалый объем энергии, которая будет двигаться в том направлении, которое укажет человек.

Обозначение конденсаторов на схеме осуществляется при помощи двух параллельных отрезков, которые символизируют обкладки элемента с выводами от их середин.

Радиокомпоненты позволяют собирать электросхемы

Обратите внимание! На схеме рядом указывается буквенное обозначение устройства – буква С (от латинского Capacitor – конденсатор).

Каких видов бывают конденсаторы

  • Из бумаги или металлобумаги – применимы как для высоко-, так и низкочастотных цепей. Из-за небольшой механической прочности их «начинка» размещена в корпусе из металла;
  • Электролитические – их диэлектрик – тонкий слой оксида металла, который образуется в результате электрохимических манипуляций. Практически все виды данных элементов поляризованы, поэтому функционируют лишь в тех цепях, где есть постоянное напряжение, и соблюдается полярность. Если случается инверсия полярности, внутри элемента происходит необратимая химическая реакция, которая способна привести к его разрушению. Так как внутри выделяется газ, изделие может даже взорваться;
  • Полимерные – полимерный диэлектрик нивелирует раздутие и потерю заряда конденсаторов. Полимер характеризуется своими физическими параметрами, поэтому изделие имеет следующие достоинства: большой импульсный ток, низкий показатель эквивалентного сопротивления, стабильный температурный коэффициент даже в условиях низкой температуры;
  • Плёночные – диэлектриком здесь служит пластиковая пленка. Имеют немало преимуществ: способны функционировать при больших токах, прочные на растяжение и характеризуются минимальным током утечки. Применяются следующие виды пластика: полиэстер, поликарбонат, полипропилен. В последнее время все чаще применяется полифениленсульфид;
  • Керамические – такие изделия имеют различные свойства и кодировку. Лишь материалы, произведенные из керамики, обладают широким диапазоном значений относительной электропроницаемости (исчисляется десятками тысяч). Высокая проницаемость позволяет производить элементы компактных размеров, но большой емкости. При этом они способны функционировать при любой поляризации и характеризуются небольшими утечками. Параметры устройства зависят от температуры, напряжения и частоты;
  • С воздушным диэлектриком – диэлектрик устройств – воздух. Их особенность – отличная работоспособность при высоких частотах. По этой причине они нередко устанавливаются как конденсаторы с переменной емкостью.

Устройства бывают разных видов

Типы маркировок

Производители, выпуская конденсаторы, пользуются несколькими типами маркировок, которые располагаются непосредственно на корпусе элемента. Представленные ниже значения сугубо теоретические, в качестве наглядного примера:

  • Наиболее простым типом маркировки считается, когда ёмкость сразу указывается на теле конденсатора. То есть не применяются различные шифры и табличные замещения, вся необходимая информация содержится на корпусе. Данный способ был бы актуален для всех устройств, однако, не всегда его получается использовать в силу громоздкости. Для того чтобы предоставить полное обозначение емкости, подходят только довольно большие изделия, в ином случае рассмотреть цифры проблематично даже с применением лупы. На примере разберем запись 100 µF±6% – это ёмкость конденсатора 100 микрофарад, а амортизация 6% от общей емкости. В итоге значение – 94-106 микрофарад. В некоторых ситуациях применяется маркировка следующего вида: 100 µF +8%/-10% – это неравнозначная амортизация, 90-108 микрофарад. Подобная маркировка пленочных конденсаторов хоть и считается наиболее простой и понятной, но применима не во всех случаях из-за своей громоздкости. Как правило, она используется на больших приборах немалых ёмкостей;
  • Цифровая маркировка (или с использованием цифр и букв) актуальна, если площадь изделия слишком мала, чтобы на ней разместить подробную запись. Здесь для замены определенных значений применяются обычные цифры и латинские буквы, которые необходимо уметь расшифровывать. Если на поверхности изделия встречаются лишь цифры (как правило, их три), то чтение простое. Первые две цифры – так обозначается емкость. Третья цифра – число нулей, которые следует дописать после первых двух. Для измерения емкости подобных конденсаторов применимы пикофарады. В качестве примера ознакомимся с изделием, на теле которого размещена цифра 104. Оставляем первые цифры, к которым приписываются нули: в нашем случае это 4. В итоге имеем значение в 100000 пикофарад. Чтобы уменьшить число нулей, используется другое значение – микрофарады, которых в нашем случае 100. В некоторых ситуациях величина обозначается буквой. Например, 2n2 – 2.2 нанофарад. Чтобы определить, к какому классу принадлежит изделие, в конце дописывают дополнительную кодовую маркировку конденсатора, к примеру, 100V;
  • Маркировка импортных конденсаторов из керамики осуществляется с использованием букв и чисел – это стандарт для данных изделий. Алгоритмы шифрования аналогичны предыдущему методу. Надписи наносит сам производитель;
  • Цветовая маркировка конденсаторов тоже встречается, хотя и реже, так как данный способ несколько устарел. Ее применяли в советское время, что позволяло упростить считывание маркировки, даже если изделие было слишком маленьким. Здесь есть единственный недостаток – сразу запомнить обозначения проблематично, поэтому первое время рекомендуется иметь при себе специальную таблицу. Чтение маркировки выглядит так: первые два цвета – емкость в пикофарадах, третий цвет – число дописываемых нулей, четвертый и пятый цвета – номинал напряжения, подаваемого на изделие, и возможный допуск. Так, желтый прибор имеет обозначение цифрой 4, а синий – 6;
  • Импортные конденсаторы маркируются так же, а кириллица заменяется латиницей. К примеру, возьмем отечественный вариант с обозначением 5мк1 – 5.1 микрофарад. В случае с импортной кодовой маркировкой выглядеть будет как 5µ.

Для сборки электросхем необходимо уметь читать маркировку

Важно! Если расшифровка непонятна, то следует обратиться к официальному производителю, на сайте которого, как правило, имеется соответствующая таблица.

Маркировка таких элементов, как конденсаторы, бывает самой разнообразной, и чем меньше элемент, тем компактнее следует размещать на нем данные. Благодаря современному производству, на устройства наносятся даже самые маленькие значения, расшифровывать которые можно, отталкиваясь от вышеописанных способов. Чтобы собранная электрическая цепь работала исправно, необходимо быть внимательным с полученными значениями, которые следует тщательно проверять.

Видео

Что такое конденсатор, типы конденсаторов и их обозначение на схемах

Радиоэлектроника, схемы, статьи и программы для радиолюбителей.
  • Схемы
    • Аудио аппаратура
      • Схемы транзисторных УНЧ
      • Схемы интегральных УНЧ
      • Схемы ламповых УНЧ
      • Предусилители
      • Регуляторы тембра и эквалайзеры
      • Коммутация и индикация
      • Эффекты и приставки
      • Акустические системы
    • Спецтехника
      • Радиомикрофоны и жучки
      • Обработка голоса
      • Защита информации
    • Связь и телефония
      • Радиоприёмники
      • Радиопередатчики
      • Радиостанции и трансиверы
      • Аппаратура радиоуправления
      • Антенны
      • Телефония
    • Источники питания
      • Блоки питания и ЗУ
      • Стабилизаторы и преобразователи
      • Защита и бесперебойное питание
    • Автоматика и микроконтроллеры
      • На микроконтроллерах
      • Управление и контроль
      • Схемы роботов
    • Для начинающих
      • Эксперименты
      • Простые схемки
    • Фабричная техника
      • Усилители мощности
      • Предварительные усилители
      • Музыкальные центры
      • Акустические системы
      • Пусковые и зарядные устройства
      • Измерительные приборы
      • Компьютеры и периферия
      • Аппаратура для связи
    • Измерение и индикация
    • Бытовая электроника
    • Автомобилисту
    • Охранные устройства
    • Компьютерная техника
    • Медицинская техника
    • Металлоискатели
    • Оборудование для сварки
    • Узлы радиаппаратуры
    • Разные схемы
  • Статьи
    • Справочная и

Конденсатор | ldsound.ru

Конденсатор — это двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Список конденсаторов

Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Изобрел первую конструкцию-прототип электрического конденсатора «лейденскую банку» в 1745 году, в Лейдене, немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук.

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью, собственной индуктивностью и сопротивлением потерь.

Резонансная частота конденсатора равна: fр = 1/ (2∏ ∙ √Lс ∙ C).

При f > fp конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f < fp, на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Отечественные неполярные конденсаторы:

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·106 пФ = 1·10−6 Ф) и пикофарадах, но нередко и в нанофарадах (1 нФ = 1·10−9 Ф). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 — 180».

Основные параметры конденсаторов:

  1. Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  2. Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  3. Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  4. Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  5. Полярность. Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Обозначение на схемах:

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  1. Конденсаторы вакуумные (между обкладками находится вакуум).
  2. Конденсаторы с газообразным диэлектриком.
  3. Конденсаторы с жидким диэлектриком.
  4. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  5. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  6. Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичнного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура — основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы — вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Вакуумный конденсатор:

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  1. Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  2. Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  3. Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

Два бумажных электролитических конденсатора 1930 года:

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Серебрянный конденсатор для аудио.

Также различают конденсаторы по форме обкладок:

Типы конденсаторов, их характеристики и назначение :: SYL.ru

Накопление и преобразование электрической энергии можно отнести к базовым задачам, которые решают вспомогательные элементы радиоаппаратуры. Конденсатор относится к пассивным компонентам и выступает своего рода емкостью для поступающего заряда. Конструкция стандартных устройств предусматривает наличие пластинчатых электродов, которые разделяются тонкими диэлектриками. Более сложные типы конденсаторов могут содержать несколько электродных слоев, формирующих цилиндрическую намотку. Есть и другие отличительные признаки, обуславливающие возможности применения элементов для той или иной аппаратуры.

Назначение конденсаторов

На сегодняшний день едва ли найдется область радиотехники, в которой бы не использовались данные устройства. Наиболее распространены комбинации конденсаторов с резисторами и катушками индуктивности, участвующие в построении электрических цепей. Такие узлы поддерживают функции частотных фильтров, колебательных контуров и линий с обратной связью. Еще одна их распространенная задача – сглаживание пульсаций напряжения, требуемое во вторичных источниках энергоснабжения. В лазерных установках, системах вспышки и магнитных ускорителях электрический конденсатор используется для выдачи разового заряда с большим показателем мощности. И напротив, электротехнические приборы оснащаются данными элементами с целью компенсации реактивной мощностной энергии. Хотя такие элементы нельзя рассматривать в качестве полноценных емкостных накопителей энергии, в некоторых системах они выступают и как носители информации.

Маркировка устройств

Для визуального определения принадлежности конденсатора к той или иной категории используются специальные обозначения. В первую очередь указывается емкостный потенциал, выражаемый микрофарадами (мкФ). Могут применяться и другие единицы измерения, о чем также будет свидетельствовать соответствующая маркировка. Не всегда отмечается тип используемого в конструкции материала – как правило, без маркировки выпускаются керамические и пленочные неполярные модели. В свою очередь, обозначение танталовых конденсаторов соответствует резисторам – за исключением наличия знака µ и цифр 104 или 107. Такие устройства могут иметь оранжевый, желтый или черный цвет. В знаковой маркировке также указываются размерные параметры и емкость. Высоковольтные и электролитические модели помечаются величиной максимального напряжения, а для переменных конденсаторов указывается диапазон емкости.

Основные характеристики

Главным рабочим параметром является емкость, от которой зависит способность конкретной модели накапливать заряд. Следует разделять номинальную и фактическую емкость, так как на практике использования вторая величина может быть меньше. Диапазон значений по объему может варьироваться от 1 до 50 мкФ, а в некоторых случаях максимум достигает и 10 000 мкФ. Важен и показатель энергетической плотности, во многом определяемый конструкцией изделия. Наибольшей плотностью характеризуются крупноформатные типы конденсаторов, у которых масса обкладки с электролитом существенно превышает вес корпуса. К примеру, при емкости в 10 000 мкФ с напряжением в 0,45 кВт и массой порядка 2 кг плотность может достигать 600-800 Дж/кг. Как раз такие модели выгодно использовать для длительного хранения энергии. Помимо этого, рабочие свойства конденсаторов определяются допуском. Речь идет как раз о погрешности в соотношении показателей реальной и номинальной емкости. Данная величина выражается в процентах и в среднем составляет 20-30 %. В некоторых направлениях радиотехники применяются изделия с 1 % допуска.

Керамические конденсаторы

Это устройства, базирующиеся на дисковых керамических элементах с диэлектриками из титаната бария. Такой конденсатор можно использовать в системах с напряжением до 50 000 В, но важно учитывать, что он имеет минимальную температурную стабильность и широкий спектр изменения емкости. Среди достоинств можно отметить небольшие утечки тока, скромные размеры (при большой емкости заряда) и способность работать на высокой частоте. Что касается назначения, то керамические конденсаторы применяются в цепях с пульсирующим, переменным и постоянным током. Чаще всего используют модели емкостью до 0,5 мкФ. В процессе работы конденсатор этого типа хорошо справляется с внешними нагрузками, среди которых механические удары. Нельзя сказать, что керамический корпус отличается большим эксплуатационным сроком и долговечностью, однако в заявленный период технические свойства поддерживает стабильно.

Полиэстеровые модели

На схемах устройства данного типа обозначаются маркировкой K73-17 или CL21. Их оболочку формирует металлизированная пленка, а для корпуса используется эпоксидный компаунд. Как раз наличие этого наполнителя в конструкции делает полиэстеровые конденсаторы устойчивыми к температурным, физическим и химическим воздействиям. Этот набор эксплуатационных качеств обусловил и широкое распространение конденсаторов типа K73-17 в производстве светотехнических приборов. Средняя емкость устройства составляет 15 мкФ при максимальном напряжении порядка 1500 В. Характеристики скромные, но это не мешает применять конденсатор в тех же цепях с импульсным и переменным током. К тому же и низкая стоимость устройства способствует его популярности на радиорынке.

Конденсатор на основе полипропилена

Тоже вариант относительно недорогого накопителя электрического заряда, который при этом отличается низким коэффициентом потерь и высокой диэлектрической прочностью. К плюсам можно отнести и оптимальную гигроскопичность. То есть один из главных врагов радиоэлементов в виде влажности полипропиленовым конденсаторам не страшен. В качестве изоляторов применяется металлизированная пленка или полоски фольги. В новейших версиях используют и технологию самовосстанавливающейся оболочки, что повышает надежность и долговечность конденсатора.

Устройство может работать на повышенных частотах с сохранением достаточной мощности. Это качество позволяет использовать конденсаторы в системах индукционного обогрева, дополненных водяным охлаждением. Распространено и применение таких элементов в оснастке электромоторов на 220 В. В данном случае они выступают как пусковые компоненты. Эту функцию лучше всего реализуют модели с рабочей емкостью в диапазоне 1-100 мкФ и напряжением в 440 В. Но и это не единственные накопители на синтетической основе. Какие бывают конденсаторы из термопластиков? Внимания заслуживают полисульфоновые и поликарбонатные элементы. Первые отличаются низким влагопоглощением и способностью поддерживать высокое напряжение при температурных перепадах, а вторые в процессе работы демонстрируют оптимальную электротехническую стабильность.

Танталовые конденсаторы

Основу устройства формирует пентоксид тантала с оксидным электролитическим наполнением. Конденсатор отличается высоким отношением емкости к объему, широким спектром поддерживаемых температур и компактностью. Используют такие компоненты в мелком приборостроении, компьютерах и другой вычислительной технике. В этом семействе можно выделить следующие типы конденсаторов: полярные и неполярные, твердотельные, жидкостные. Наиболее привлекательные по эксплуатационным качествам именно твердотельные устройства, так как они характеризуются способностью поддерживать большое напряжение. Однако в условиях критического превышения допустимой величины тока они могут выходить из строя. Емкость танталовых моделей составляет 1000 мкФ, но по сравнению с электролитическими аналогами их собственная индуктивность гораздо ниже, что допускает возможность применения элемента на высоких частотах.

Особенности высоковольтных моделей

Элементы такого типа могут применяться в системах с высокими показателями напряжения, достигающими 15 000 В. При этом емкость у высоковольтных конденсаторов небольшая – порядка 50-100 нФ. В качестве диэлектрического материала чаще используется керамика. Благодаря этой основе выдерживаются большие нагрузки напряжения, а корпус защищает начинку от пробоев пластин.

Распространены и стеклянные вакуумные изделия, также поддерживающие напряжение более 10 000 В. Они представляют собой колбы с концентрическими электродами, в процессе работы обеспечивающими небольшие частотные потери. Применяют высоковольтные конденсаторы такого типа для решения ответственных радиочастотных задач с индуктивным нагревом. Но стоят такие компоненты дороже, отличаются хрупкостью и большими размерами.

Многослойные и однослойные конструкции

Обычно данную классификацию применяют в отношении конденсаторов, выполненных из керамики. Так, однослойные конденсаторы (дисковые) имеют простое устройство, но это не сказывается на уменьшении размеров. В большинстве случаев они массивнее, чем многослойные аналоги. В итоге увеличивается емкость устройства, но крупные размеры все же ограничивают их распространение в отдельных областях.

Что касается многослойных элементов, то они по эксплуатационным качествам в целом схожи с дисковыми, но потенциал накопителей еще выше. Также существенное преимущество заключается в надежности и долговечности. Форм-фактор, в котором выполняются многослойные конденсаторы, делает их менее чувствительными к агрессивным средам, что расширяет область применения. Такие компоненты преимущественно используют в дорогой профессиональной аппаратуре.

Масляные конденсаторы с пропитками

Это отдельная группа радиотехнических элементов, в основе которых находятся бумажные наполнители. Они обрабатываются специальными растворами наподобие воска и эпоксидных смол. Какие бывают конденсаторы масляного типа? Принципиально отличаются модели для постоянного и переменного тока. Первые используются в целях частотной фильтрации, повышения напряжения и устранения электрической дуги. Конденсаторы на масляной пропитке для систем с переменным током применяют в промышленности. Такое устройство располагает большой емкостью и может справляться с большими пиковыми нагрузками. Как правило, его используют в качестве пускового компонента для электромоторов. К дополнительным функциям можно отнести разделение фаз, коррекцию мощности и выравнивание напряжения.

Негативные факторы применения конденсаторов

Одной из главных проблем использования конденсаторов является высокая вероятность взрыва при перегревах, которые происходят из-за больших утечек. Также повысить риск поломки элемента могут близко расположенные радиаторы с высоким тепловым излучением. Какие типы конденсаторов наиболее подвержены взрывам? Чаще всего это происходит с электролитическими устройствами, обеспеченными ненадежными корпусами. Оптимизация конструкции с целью уменьшения размеров изделия заставляет производителей использовать тонкие оболочки, поэтому может иметь место разлет частей конденсатора и разбрызгивание электролита при сильном перегреве или в условиях повышенного внутреннего давления.

Заключение

И простейшие однослойные, и многослойные высоковольтные модели конденсаторов выполняют важные для радиоаппаратуры задачи. Как минимум они корректируют параметры тока, что при схожих размерах не может обеспечить ни один другой технический компонент. В то же время электрический конденсатор вовсе не является идеальным решением, что обуславливает постоянные поиски новых форматов его исполнения. Производители сложной аппаратуры экспериментируют с конструкциями, наполнителями и физическими свойствами, стараясь предлагать оптимальные потребительские качества данного устройства. Среди наиболее важных целевых параметров в этом плане можно назвать устойчивость конденсатора к нагрузкам, широкие рабочие диапазоны, минимальное радиационное воздействие и высокий срок службы.

Конденсатор [База знаний]

Конденсатор. Определение, обозначение на схемах, принцип работы, основные характеристики

Теория

КОМПОНЕНТЫ
ARDUINO
RASPBERRY
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Конденсатор — распространенный двухполюсный электронный компонент, главным свойством которого является способность накапливать электрический заряд и «отпускать» его обратно. Процесс накопления заряда называется зарядкой, а процесс его потери – разрядкой.



Сегодня выпускаются конденсаторы самых разных типов и конструкций. Наиболее распространены в электронике и любительской радиотехнике следующие их виды:
  • Керамические конденсаторы
  • Танталовые конденсаторы
  • Алюминиевые электролитические конденсаторы (поляризованные)*
  • Конденсаторы переменной емкости

* При включении электролитических конденсаторов в цепь необходимо соблюдать полярность. Отрицательный контакт обычно короче положительного и дополнительно может обозначаться соостветствующими пометками на корпусе. Для керамических конденсаторов полярность подключения не имеет значения.

На схемах конденсатор изображается следующими условными обозначениями:



В простейшем виде конденсатор состоит их двух металлических пластин, называемых обкладками, которые разделены слоем диэлектрика. При включении конденсатора в цепь с источником тока, под воздействием элекрического поля на одной обкладке накапливается положительный заряд, а на другой – отрицательный. Это будет происходить до тех пор, пока на обкладках не накопится максимально возможное количество заряда. Оно определяется важной характеристикой конденсатора — емкостью. Емкость конденсатора определяется количеством заряда, которое он может накопить при заданном напряжении:

На формуле выше C — емкость конденсатора, q — заряд, U — напряжение.

Емкость зависит от таких физических характеристик, как, например, площадь обкладок, расстояние между ними и диэлектрическая проницаемость диэлектрика. Единицей измерения емкости конденсаторов в в международной системе единиц (СИ) является Фарад (Ф).

Чем больше ёмкость, тем больший заряд может удерживать конденсатор при заданном напряжении и тем меньше скорость его зарядки и разрядки.

Пока конденсатор не заряжен, в цепи можно наблюдать небольшой ток, который однако прекращается по мере зарядки конденсатора. Заряд собирается на обкладках, но не может свободно перетекать между ними, так как этому препятствует диэлектрик. Таким образом конденсатор заряжается. Если из цепи с заряженным конденсатором удалить источник напряжения, то конденсатор начнет разряжаться, так как между его обкладками уже имеется некоторая разность потенциалов, и в цепи опять появится электрический ток. Иллюстрация процессов зарядки и разрядки конденсатора представлена на анимации ниже.



Конденсаторы препятствуют прохождению через них постоянного тока, в то время как для переменного тока данный электронный компонент не является преградой.

На анимации ниже представлена цепь с источником постоянного тока и цепь с источником переменного тока.




Основные характеристики

ЕмкостьCФ
Максимальное допустимое напряжениеVВ

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов уменьшается общая емкость и увеличивается общее напряжение конденсаторов. Общая емкость при последовательном соединении конденсаторов будет вычисляться по формуле:

Общее напряжение будет равняться сумме напряжений всех конденсаторов.

Например: мы имеем три конденсатора по 30 мкФ x 100 В каждый. При их последовательном соединении общий конденсатор будет иметь следующие данные: 10 мкФ x 300 В.

 


Параллельное соединение конденсаторов

При параллельном соединении общая емкость конденсаторов складывается, а допустимое напряжение всего набора будет равно напряжению конденсатора, имеющего самое низкое значение допустимого напряжения из всего набора.

Например: мы имеем три конденсатора 30 мкФ x 100 В, соединённые параллельно. Параметры всего набора конденсаторов в этом случае будут следующие: 90 мкФ x 100 В.

 


Соединение более двух конденсаторов последовательно редко встречается в реальных схемах. Хотя для увеличения общего напряжения такой набор может встретиться в высоковольтных источниках питания. А вот в низковольтных источниках довольно часто встречается параллельное соединение нескольких конденсаторов для сглаживания пульсаций после выпрямления при больших токах потребления.

Обратите внимание, формулы вычисления емкости последовательного и параллельного соединения конденсаторов в точности обратны формулам вычисления сопротивления при последовательном и параллельном соединении резисторов.


Калькулятор


Понятие конденсатора. Классификация конденсаторов — Студопедия

Конденсатор — это элемент электрической цепи, состоящий из проводящих электродов(обкладок), разделённых диэлектриком и предназначенный для использования его ёмкости. Ёмкость конденсатора — есть отношение заряда конденсатора к разности потенциалов, которую заряд сообщает конденсатору.

В качестве диэлектрика в конденсаторах используются органические и неорганические материалы, в том числе оксидные плёнки некоторых металлов. При приложении к конденсатору постоянного напряжения происходит его заряд; при этом затрачивается определённая работа, выражаемая в джоулях.

Классификация конденсаторов.

В зависимости от назначения конденсаторы разделяются на две большие группы: общего и специального назначения.

Группа общего назначения включает в себя широко применяемые конденсаторы, используемые в большинстве видов и классов аппаратуры. Традиционно к ней относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования.

Все остальные конденсаторы являются специальными. К ним относятся: высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и др.


В зависимости от способа монтажа конденсаторы могут выполняться для печатного и навесного монтажа, а также в составе микромодулей и микросхем или для сопряжения с ними. Выводы конденсаторов для навесного монтажа могут быть жёсткие или мягкие, аксиальные или радиальные из проволоки круглого сечения или ленты, в виде лепестков, с кабельным вводом, в виде проходных шпилек, опорных винтов и т. п.

По характеру защиты от внешних воздействий конденсаторы выполняются: незащищёнными, защищёнными, неизолированными, изолированными, уплотнёнными и герметизированными.

Незащищённые конденсаторы допускают эксплуатацию в условиях повышенной влажности только в составе герметизированной аппаратуры. Защищённые конденсаторы допускают эксплуатацию в аппаратуре любого конструктивного исполнения. Неизолированные конденсаторы (с покрытием или без него) не допускают касаний своим корпусом шасси аппаратуры. Изолированные конденсаторы имеют достаточно хорошее изоляционное покрытие и допускают касания корпусом шасси аппаратуры. Уплотнённые конденсаторы имеют уплотнённую органическими материалами конструкцию корпуса.

Герметизированные конденсаторы имеют герметичную конструкцию корпуса, который исключает возможность сообщения окружающей среды с его внутренним пространством. Герметизация производится с помощью керамических и металлических корпусов или стеклянных колб.


По виду диэлектрика все конденсаторы можно разделить на группы: с органическим, неорганическим, газообразным и оксидным диэлектриком.

Конденсаторы с органическим диэлектриком.

Эти конденсаторы изготовляют намоткой тонких длинных лент конденсаторной бумаги, плёнок или их комбинации с металлизированными или фольговыми электродами.

По назначению конденсаторы можно разделить на : низкочастотные и высокочастотные.

К низкочастотным плёночным относятся конденсаторы на основе полярных и слабополярных плёнок (бумажные, металлобумажные, полиэтилентерефталатные, комбинированные, лакоплёночные, поликарбонатные и полипропиленовые). Они способны работать на частотах до 104-105Гц при существенном снижении амплитуды переменной составляющей напряжения с увеличением частоты.

К высокочастотным плёночным относятся конденсаторы на основе неполярных плёнок (полистирольные и фторопластовые). Они допускают работу на частотах до 105-107Гц. Верхний предел по частоте зависит от конструкции обкладок, контактного узла и от ёмкости. К этой группе относят некоторые типы конденсаторов на основе слабополярной полипропиленовой плёнки.

Высоковольтные конденсаторы можно разделить на высоковольтные постоянного напряжения и импульсные.

В качестве диэлектрика высоковольтных конденсаторов постоянного напряжения используют: бумагу, полистирол, политетрафторэтилен, полиэтилентерефталат и сочетание бумаги и синтетических плёнок.

Конденсаторы высоковольтные, импульсные делают на основе бумажного и комбинированного диэлектриков.

Основное требование к высоковольтным конденсаторам — это высокая электрическая прочность изоляции. Импульсные конденсаторы наряду с высокой электрической прочностью и сравнительно большими ёмкостями должны допускать быстрые разряды.

Импульсные

Дозиметрические конденсаторы работают в цепях с низким уровнем токовых нагрузок, поэтому они должны обладать малым саморазрядом, большим сопротивлением изоляции, а следовательно и большой постоянной времени.

Конденсаторы

— learn.sparkfun.com

Добавлено в избранное Любимый 71

Типы конденсаторов

Существуют всевозможные типы конденсаторов, каждый из которых имеет определенные особенности и недостатки, которые делают его лучше для одних приложений, чем для других.

При выборе типа конденсатора необходимо учитывать несколько факторов:

  • Размер — Размер как по физическому объему, так и по емкости.Конденсатор нередко является самым большим компонентом в цепи. Также они могут быть очень маленькими. Для большей емкости обычно требуется конденсатор большего размера.
  • Максимальное напряжение — Каждый конденсатор рассчитан на максимальное падение напряжения на нем. Некоторые конденсаторы могут быть рассчитаны на 1,5 В, другие — на 100 В. Превышение максимального напряжения обычно приводит к разрушению конденсатора.
  • Ток утечки — Конденсаторы не идеальны.Каждая крышка склонна пропускать небольшое количество тока через диэлектрик от одного вывода к другому. Эта крошечная потеря тока (обычно наноампер или меньше) называется утечкой. Утечка заставляет энергию, накопленную в конденсаторе, медленно, но верно уходить.
  • Эквивалентное последовательное сопротивление (ESR) — Выводы конденсатора не на 100% проводящие, у них всегда будет небольшое сопротивление (обычно менее 0,01 Ом). Это сопротивление становится проблемой, когда через колпачок проходит большой ток, вызывая потери тепла и мощности.
  • Допуск — Конденсаторы также не могут иметь точную, точную емкость. Каждая крышка будет рассчитана на свою номинальную емкость, но, в зависимости от типа, точное значение может варьироваться от ± 1% до ± 20% от желаемого значения.

Конденсаторы керамические

Наиболее часто используемый и производимый конденсатор — керамический конденсатор. Название происходит от материала, из которого сделан их диэлектрик.

Керамические конденсаторы обычно бывают физически и емкостными малыми .Трудно найти керамический конденсатор больше 10 мкФ. Керамический колпачок для поверхностного монтажа обычно находится в крошечных корпусах 0402 (0,4 мм x 0,2 мм), 0603 (0,6 мм x 0,3 мм) или 0805. Керамические колпачки со сквозными отверстиями обычно выглядят как маленькие (обычно желтые или красные) лампочки с двумя выступающими клеммами.

Две крышки в радиальном корпусе со сквозным отверстием; конденсатор 22 пФ слева и 0,1 мкФ справа. Посередине — крошечная крышка 0,1 мкФ 0603 для поверхностного монтажа.

По сравнению с не менее популярными электролитическими крышками керамические конденсаторы являются более близкими к идеальным (гораздо более низкими значениями ESR и токов утечки), но их небольшая емкость может быть ограничивающей.Обычно они также являются наименее дорогим вариантом. Эти колпачки хорошо подходят для высокочастотной связи и развязки.

Электролитический алюминий и тантал

Электролитики

хороши тем, что они могут упаковать много и емкости в относительно небольшой объем. Если вам нужен конденсатор емкостью от 1 мкФ до 1 мФ, вы, скорее всего, найдете его в электролитической форме. Они особенно хорошо подходят для высоковольтных приложений из-за их относительно высокого максимального номинального напряжения.

Алюминиевые электролитические конденсаторы, самые популярные из семейства электролитических, обычно выглядят как маленькие жестяные банки с обоими выводами, выходящими снизу.

Ассортимент электролитических конденсаторов для сквозного и поверхностного монтажа. Обратите внимание, что у каждого из них есть метод маркировки катода (отрицательный вывод).

К сожалению, электролитические колпачки обычно имеют поляризацию . У них есть положительный вывод — анод — и отрицательный вывод, называемый катодом.Когда напряжение подается на электролитический колпачок, анод должен иметь более высокое напряжение, чем катод. Катод электролитического конденсатора обычно обозначается знаком «-» и цветной полосой на корпусе. Ножка анода также может быть немного длиннее, как еще один признак. Если на электролитический колпачок подать напряжение в обратном направлении, они выйдут из строя (из-за чего выскочит из и лопнет) и навсегда. После лопания электролитик будет вести себя как короткое замыкание.

Эти колпачки также печально известны утечкой — пропускание небольшого количества тока (порядка нА) через диэлектрик от одного вывода к другому. Это делает электролитические колпачки менее чем идеальными для хранения энергии, что, к сожалению, с учетом их высокой емкости и номинального напряжения.

Суперконденсаторы

Если вы ищете конденсатор, предназначенный для хранения энергии, не ищите ничего, кроме суперконденсаторов. Эти колпачки имеют уникальную конструкцию, обеспечивающую высокую емкость в диапазоне фарад.

Суперконденсатор 1Ф (!). Высокая емкость, но рассчитана только на 2,5 В. Обратите внимание, что они также поляризованы.

Несмотря на то, что они могут хранить огромное количество заряда, суперкаперы не справляются с очень высокими напряжениями. Этот суперконденсатор 10F рассчитан только на максимальное напряжение 2,5 В. Более того, это уничтожит его. Суперэлементы обычно устанавливаются последовательно для достижения более высокого номинального напряжения (при уменьшении общей емкости).

Основное применение суперконденсаторов в — накопление и выделение энергии , как батареи, которые являются их основным конкурентом.Хотя суперконденсаторы не могут удерживать столько энергии, сколько батарея такого же размера, они могут высвобождать ее намного быстрее и обычно имеют гораздо больший срок службы.

Прочие

Электролитические и керамические крышки покрывают около 80% типов конденсаторов (а суперкапсы только около 2%, но они супер!). Другой распространенный тип конденсатора — это пленочный конденсатор , который отличается очень низкими паразитными потерями (ESR), что делает их идеальными для работы с очень высокими токами.

Есть много других менее распространенных конденсаторов. Переменные конденсаторы могут создавать различные емкости, что делает их хорошей альтернативой переменным резисторам в схемах настройки. Скрученные провода или печатные платы могут создавать емкость (иногда нежелательную), поскольку каждый состоит из двух проводников, разделенных изолятором. Лейденские банки — стеклянная банка, наполненная проводниками и окруженная ими, — это О. семейства конденсаторов. Наконец, конечно, конденсаторы потока (странная комбинация катушки индуктивности и конденсатора) имеют решающее значение, если вы когда-нибудь планируете вернуться в дни славы.



← Предыдущая страница
Теория конденсатора

Конденсаторы

НАЖМИТЕ ЗДЕСЬ ДЛЯ УКАЗАНИЯ СТРАНИЦЫ

КОНДЕНСАТОР

В.Райан 2002-2019

ФАЙЛ PDF — НАЖМИТЕ ЗДЕСЬ ДЛЯ ПЕЧАТИ НА ОСНОВЕ РАБОТА НИЖЕ

Конденсаторы — это компоненты, которые используются для хранения электрического заряда и используются в схемах таймера. Можно использовать конденсатор с резистором, чтобы произвести таймер.Иногда конденсаторы используются для сглаживания ток в цепи, поскольку они могут предотвратить ложное срабатывание других компоненты, такие как реле. Когда питание подается в цепь, которая включает конденсатор — конденсатор заряжается. При отключении питания конденсатор медленно разряжает свой электрический заряд.

Конденсатор состоит из двух проводников, разделенных изоляционный материал под названием DIELECTRIC.Диэлектрик может быть бумажным, полиэтиленовая пленка, керамика, воздух или вакуум. Пластины могут быть алюминиевыми дисками, алюминиевая фольга или тонкая металлическая пленка, нанесенная на противоположные стороны твердого тела диэлектрик. Сэндвич ПРОВОДНИК — ДИЭЛЕКТРИК — ПРОВОДНИК можно свернуть в цилиндр или левую плоскость

КАК РАБОТАЕТ КОНДЕНСАТОР

Когда цепь включена, светодиод излучает свет, и конденсатор заряжается.Когда переключатель повернут при выключенном светодиоде светится несколько секунд, потому что электричество хранящийся в конденсаторе медленно разряжается. Когда он полностью разряжен это электричество, светодиод больше не излучает свет. Если добавлен резистор в цепи конденсатор заряжается медленнее, но и разряжается больше. медленно. Что будет со светом?

Конденсаторы электролитические поляризованные это означает, что они имеют положительный и отрицательный вывод и должны быть расположены в цепь в правильном направлении (положительный провод должен идти к положительному сторона схемы).
Они также имеют гораздо более высокую емкость, чем неэлектролитические конденсаторы.

Неэлектролитические конденсаторы обычно имеют меньшую емкость.
Они не поляризованы (не имеют положительного и отрицательного вывода) и в любом случае можно разместить в цепи.
Обычно они используются для сглаживания тока в цепи.

ЕМКОСТЬ — означает номинал конденсатора.

Обратите внимание на электролитический конденсаторы выше.Все они имеют два поляризованных вывода, другими словами, они есть положительная и отрицательная нога. Этот тип конденсатора используется с ИС. такие как микросхема таймера 555, и именно конденсаторы и резисторы определить временную последовательность.

Внимательно посмотрите фотографии двух типов конденсаторы.Вы можете определить, какой из них электролитический и неэлектролитический ?

Простая схема (см. Ссылку ниже) представляет собой переключатель, который подключен к компу. При нажатии переключателя компьютер обнаруживает что реле замыкается, а затем включается двигатель.
Однако есть проблема. Когда переключатель нажат, он закрывает только реле на долю секунды а для компьютера этого времени мало программа для определения того, что она была нажата в первую очередь.Задержка по времени это очевидный ответ, и этого можно достичь, добавив конденсатор в параллельно переключателю. Если реле удерживается замкнутым в течение 3/4 секунды, компьютерная программа успеет это обнаружить — конденсатор обеспечивает время задержка.

ПОМНИТЕ — есть поляризованные и неполяризованные конденсаторы. Ищите положительное и отрицательное подписать.

НАЖМИТЕ ЗДЕСЬ ДЛЯ ПРИМЕРОВ — КАК КОНДЕНСАТОРЫ МОГУТ ИСПОЛЬЗОВАТЬСЯ

Корпус для конденсаторов по лучшей цене — Выгодные предложения на корпус для конденсаторов от глобальных продавцов корпусов для конденсаторов

Отличные новости !!! Вы попали в нужное место для корпуса конденсаторов.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот корпус конденсаторов в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили корпус конденсатора на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в корпусе конденсаторов и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести Capacitors case по самой выгодной цене.

Мы всегда в курсе последних технологий, новейших тенденций и самых обсуждаемых лейблов.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

Твердотельные конденсаторы с проводящим полимерным танталом (POSCAP) — Industrial Devices & Solutions

  • Политика в отношении файлов cookie
  • Потребитель
  • Бизнес
  • Продукты
  • Руководства по применению
  • Загрузить
  • Поддержка дизайна
  • Новости
  • Свяжитесь с нами
Закрыть
  • Конденсаторы
  • Резисторы
  • Катушки индуктивности
  • Решения для управления температурным режимом
  • Компоненты ЭМС, защита цепей
  • Датчики
  • Устройства ввода
  • Полупроводники
  • Реле, разъемы
  • FA Датчики и компоненты
  • Моторы, компрессоры
  • Промышленные устройства, носители информации
  • Пользовательские и модульные устройства
  • Завод автоматики, сварочные аппараты
  • Промышленные батареи
  • Электронные материалы
  • Материалы
  • Конденсаторы электролитические с проводящим полимером
  • Алюминиевые электролитические конденсаторы
  • Двухслойные электрические конденсаторы (золотой конденсатор)
  • Пленочные конденсаторы
  • Чип резисторы
  • Резисторы прочие
  • Силовые индукторы для автомобильной промышленности
  • Силовые индукторы бытовые
  • Силовые индукторы многослойного типа
  • Катушки повышения напряжения
  • Лист термозащиты (Графитовый лист (PGS) / прикладные продукты PGS / NASBIS)
  • Термистор NTC (чип)
  • Вентилятор охлаждения с уникальным гидродинамическим подшипником
  • Материалы печатных плат
  • Компоненты ЭМС
  • Защита цепей (электростатические разряды, скачки напряжения, предохранители и т. Д.)
  • Датчики
  • Встроенные датчики
  • Датчики для автоматизации производства
  • Коммутаторы
  • Емкостное чувствительное устройство
  • Энкодеры, потенциометры
  • Микрокомпьютеры
  • Аудио и видео
  • Тег NFC и защищенная микросхема
  • ИС драйвера светодиодов
  • ИС драйвера двигателя
  • МОП-транзисторы
  • Лазерные диоды
  • Датчики изображения
  • Радиочастотные устройства
  • Силовые устройства
  • Реле
  • Разъемы
  • Датчики для автоматизации производства
  • Устройства FA
  • Двигатели для FA и промышленного применения
  • Двигатели для предприятий / бытовой техники и автомобилей
  • Компрессоры
  • Насосы постоянного тока
  • Носители записи
  • Оптические компоненты
  • Пользовательские устройства
  • Модульные устройства
  • FA
  • Сварочные аппараты, промышленные роботы
  • Устройства FA
  • Вторичные батареи (аккумуляторы)
  • Первичные батареи
  • Материалы печатных плат
  • Герметичные полупроводниковые материалы, клеи
  • Пластиковая формовочная масса
  • Продвинутые фильмы
  • Монокристалл оксида цинка пана-тетра
  • Составная смола Pana-Tetra
  • Пленка для предотвращения электрификации Pana-Tetra
  • «AMTECLEAN A» Чистящее средство для термопластавтоматов
  • «AMTECLEAN Z» Неорганическое противомикробное средство
  • Алюминиевые электролитические конденсаторы с проводящим полимером (SP-Cap)
  • Твердотельные конденсаторы с проводящим полимерным танталом (POSCAP)
  • Проводящие полимерные алюминиевые твердотельные конденсаторы (OS-CON)
  • Гибридные алюминиевые электролитические конденсаторы с проводящим полимером
  • Проводящие полимерные алюминиевые твердотельные конденсаторы (OS-CON)
  • Гибридные алюминиевые электролитические конденсаторы с проводящим полимером
  • Алюминиевые электролитические конденсаторы (поверхностного монтажа)
  • Алюминиевые электролитические конденсаторы (с радиальными выводами)
  • Двухслойные электрические конденсаторы (намотанного типа)
  • Пленочные конденсаторы (для электронного оборудования)
  • Пленочные конденсаторы (для двигателей переменного тока)
  • Пленочные конденсаторы (автомобильные, промышленные и инфраструктурные)
  • Высокотемпературные чип-резисторы
  • Прецизионные чип-резисторы
  • Токочувствительные чип-резисторы
  • Чип-резисторы малой и большой мощности
  • Антисульфурные чип-резисторы
  • Чип-резисторы общего назначения
  • Сетевой резистор
  • Резисторы с выводами
  • Аттенюатор
  • Силовые индукторы для автомобильной промышленности
  • Силовые индукторы для потребителей
  • Силовые индукторы многослойного типа
  • Катушки повышения напряжения
  • Лист термозащиты (Графитовый лист (PGS) / прикладные продукты PGS / NASBIS)
  • Термистор NTC (чип)
  • Вентилятор охлаждения с уникальным гидродинамическим подшипником

Конденсаторы — PCB 3D

перейти к содержанию Меню
  • Дом
  • Продукты
  • 3D Модели
  • Следы
  • Учебники
    • Altium Designer
    • Стандарты IPC
    • Двигатели и приводы постоянного тока
    • Дизайн печатной платы
    • Программные средства САПР для 2D и 3D
    • Другое
  • FAQ
  • Контакт
  • Логин
  • Регистр
CAP_AVX_BZ15_Series_Single_N-Lead_BH_Option_BestCap_Thickness_420 3D модель | Техническая спецификация CAP_AVX_BZ15_Series_Single_N-Lead_BH_Option_BestCap_Thickness_460 3D модель | Техническая спецификация CAP_muRata_DK1xxxxxxxx86Rxxxx_Ceramic_Capacitor_1140X600X250-2_SMD Бесплатная 3D модель | Техническая спецификация CAP_muRata_LXRW0YV600-035_Variable_SMD 3D модель | Техническая спецификация CAP_muRata_TZC3_Series_Ceramic_Trimmer_SMD 3D модель | Техническая спецификация CAP_TDK_CKG45N_Series_EIA_CC1812 3D модель | Техническая спецификация CAP-Kemet-C4AFxBWxxxxA3Fx-Series-CAPRR-P3750P1-1020W120L4200T2000h5000-300-4pins Бесплатная 3D модель | Техническая спецификация CAP-Kemet-C4AFxBWxxxxA3Fx-Series-CAPRR-P3750P1-1020W120L4200T2000h5000-300-4pins-wm Бесплатная 3D модель | Техническая спецификация CAPAE1030X1020N_EIA_CASE_G 3D модель | Техническая спецификация CAPAE1080X850_EIA_CASE_G_Kemet_FCS0V474ZFTBR24 3D модель | Техническая спецификация CAPAE1350X1250-EIA-CASE-h23-Panasonic-FK-Series-Type-V-EEV-FK2A680Q Бесплатная 3D модель | Техническая спецификация CAPAE1350X1250-EIA-CASE-h23-Panasonic-FK-Series-Type-V-EEV-FK2A680Q-wm Бесплатная 3D модель | Техническая спецификация CAPAE1350X1350N_EIA_CASE_h23 Бесплатная 3D модель | Техническая спецификация CAPAE1700X1650N_EIA_CASE_J16 3D модель | Техническая спецификация CAPAE1900X1650N_EIA_CASE_K16 3D модель | Техническая спецификация CAPAE330X540N_EIA_CASE_A Бесплатная 3D модель | Техническая спецификация CAPAE430X540N_EIA_CASE_B 3D модель | Техническая спецификация CAPAE430X580N_EIA_CASE_B 3D модель | Техническая спецификация CAPAE530X540N_EIA_CASE_C Бесплатная 3D модель | Техническая спецификация CAPAE530X580N_EIA_CASE_C 3D модель | Техническая спецификация CAPAE530X610_EIA_CASE_C_Panasonic_FK_Series Бесплатная 3D модель | Техническая спецификация CAPAE660X580N_EIA_CASE_D 3D модель | Техническая спецификация CAPAE660X770N_EIA_CASE_D8 3D модель | Техническая спецификация CAPAE660X800-EIA-CASE-D8-Panasonic-FK-series-type-V-Виброзащита Бесплатная 3D модель | Техническая спецификация CAPAE660X800-EIA-CASE-D8-Panasonic-FK-series-type-V-Vibration-proof-wm Бесплатная 3D модель | Техническая спецификация CAPAE830X1020N_EIA_CASE_F 3D модель | Техническая спецификация CAPAE830X620_EIA_CASE_E_Kemet_EEV_Series_Case_9L 3D модель | Техническая спецификация CAPAE830X620_EIA_CASE_E_Kemet_EEV_Series_Case_9L_wm Бесплатная 3D модель | Техническая спецификация CAPAE830X620N_EIA_CASE_E 3D модель | Техническая спецификация CAPAE830X650_EIA_CASE_E_Panasonic_S_Series 3D модель | Техническая спецификация CAPC0402X20N_EIA_01005_METRIC_0402_040x020x020 Бесплатная 3D модель | Техническая спецификация CAPC1005X025_EIA_0402-10_METRIC_1005_100x050x025_with_marking 3D модель | Техническая спецификация CAPC1005X038_EIA_0402-15_METRIC_1005_100x050x038_with_marking 3D модель | Техническая спецификация CAPC1005X040_EIA_0402-16_METRIC_1005_100x050x040_with_marking Бесплатная 3D модель | Техническая спецификация CAPC1005X050_EIA_0402-20_METRIC_1005_100x050x050_with_marking 3D модель | Техническая спецификация CAPC1005X055_EIA_0402-22_METRIC_1005_100x050x055_with_marking 3D модель | Техническая спецификация CAPC1005X065_EIA_0402-26_METRIC_1005_100x050x065_with_marking Бесплатная 3D модель | Техническая спецификация CAPC1005X070_EIA_0402-28_METRIC_1005_100x050x070_with_marking 3D модель | Техническая спецификация CAPC1005X60N_EIA_0402_METRIC_1005_100x050x060 3D модель | Техническая спецификация CAPC1310X102N_EIA_0504_METRIC_1310_117x102x102 3D модель | Техническая спецификация CAPC1608X050_EIA_0603-20_METRIC_1608_160x080x050_with_marking 3D модель | Техническая спецификация CAPC1608X080-EIA-0603-31-METRIC-1608-160x080x080x035-wm1 Бесплатная 3D модель | Техническая спецификация CAPC1608X090_EIA_0603-35_METRIC_1608_160x080x090_with_marking 3D модель | Техническая спецификация CAPC1608X095_EIA_0603-37_METRIC_1608_160x080x095_with_marking Бесплатная 3D модель | Техническая спецификация CAPC1608X100_EIA_0603-40_METRIC_1608_160x080x100_with_marking 3D модель | Техническая спецификация CAPC1608X85N_EIA_0603_METRIC_1608_160x80x85 3D модель | Техническая спецификация CAPC2012X070_EIA_0805-28_METRIC_2012_200x120x070 Бесплатная 3D модель | Техническая спецификация CAPC2012X070_EIA_0805-28_METRIC_2012_200x120x070_with_marking 3D модель | Техническая спецификация CAPC2012X080_EIA_0805-31_METRIC_2012_200x120x080_with_marking 3D модель | Техническая спецификация CAPC2012X085-EIA-0805-33-METRIC-2012-200x120x085x050-wm1 Бесплатная 3D модель | Техническая спецификация

Посты навигации

Страница 1 Страница 2 … Стр.10 Следующая страница Поделиться: LinkedIn | Google+ | Facebook | Twitter

3D-модели печатной платы

  • Home
  • 3D Продукты / Цены
  • 3D CAD-моделей по категориям
  • Следы Altium
  • Учебники
  • Отзывы
  • Карьера
  • Контакт
  • Около
  • Политика конфиденциальности
  • FAQ
  • Логин

Учебники

  • Программные инструменты 2D и 3D CAD (12)
  • Altium Designer (14)
  • Двигатели и драйверы постоянного тока (6)
  • Стандарты IPC (5)
  • Другое (3)
  • Дизайн печатной платы (5)

файлов 3D CAD по типам файлов

  • 3D-моделей STEP (4636)
    • Бесплатно (1,580)
    • членство (3,056)
  • Свободный след Altium (1,108)

3D CAD-модели по типу крепления

  • Крепление без печатной платы (82)
  • Крепление на панель (15)
  • Прессовая посадка (2)
  • Монтаж на поверхность (1,845)
  • сквозное отверстие (2,692)

3D CAD-модели по электрическому типу

  • Антенны (5)
  • Батареи (6)
  • держатели батарей (8)
  • Футболка диагональная (1)
  • Стойки проставок для плат (32)
  • Ящики (7)
  • Конденсаторы (481)
    • CAP Разное (8)
    • CAPAE SM (22)
    • CAPC (59)
    • CAPMP (18)
    • CAPPRD BL (106)
    • CAPPRD V (122)
    • CAPRB V (71)
    • CAPRR V (75)
  • Соединители Межблочные (2,861)
    • Штифт для связывания банановых наконечников (5)
    • Ствол — Аудиоразъемы (10)
    • Ствол — Разъемы питания (2)
    • Card Edge Con Edgeboard (1)
    • Коаксиальные соединители (RF) (6)
    • Разъемы D-Sub
    • (2)
    • Дисплеи (6)
    • FFC FPC плоский гибкий Con (59)
    • Гнездо для карты памяти CN PC (4)
    • Модульные гнезда CN
    • (1)
    • Modular Con Jack Магнитный (3)
    • Rect Con B to B Arrays Edge (6)
    • Rect Con HDR, розетка (243)
    • Rect Con HDR мужской (2263)
    • Термоблочный барьер (79)
    • Термоблок HDR Plug Soc (141)
    • Провод клеммного блока к плате (12)
    • Разъемы HDMI
    • USB DVI (18)
  • Кристаллы (33)
    • CR угловая подбарабанья, 2 штифта (5)
    • CR HC-49 HC-51 UM1 / 4/5 (17)
    • CR HC-49 SM (8)
    • CR J-Свинец XTALJ (1)
    • CR Боковая подбарабанья 2 штифта (2)
  • Диоды (69)
    • Диоды Axial Hor (10)
    • Диоды Axial Vert (4)
    • Диодный мостовой выпрямитель (9)
    • Диоды Чип DIOC (2)
    • Диоды JEDEC DO-218 (5)
    • Диоды MELF DIOMELF (10)
    • Диоды Разное (1)
    • Диоды литые DIOM (14)
    • Small Outl

4 типа конденсаторов для фильтрации приложений в импульсных системах питания — Блог о пассивных компонентах

источник: блог Capacitor Faks

Саймон Ндириту из General Dielectrics объясняет некоторые основные рекомендации по выбору конденсаторной технологии в импульсных источниках питания.

Введение

Импульсные системы питания (SMPS) широко используются в современных электронных системах. Они популярны в основном благодаря своей впечатляющей эффективности, небольшому весу и небольшому объему. Надежность источника питания во многом определяет срок службы электронной системы. В случае персональных компьютеров 90% отказов можно отнести к проблемам, связанным с SMPS. Таким образом, ожидается, что системы электроснабжения будут обеспечивать высокую надежность.

Конденсаторы являются важными компонентами импульсной системы питания.Как входной, так и выходной каскады системы SMPS имеют конденсаторы. На входе используются выпрямитель и конденсатор для преобразования переменного напряжения в постоянное. Выходной каскад состоит из LC-фильтра, комбинации конденсатора и катушки индуктивности, которая удаляет шум и пульсации напряжения.

Типичная система импульсного источника питания имеет следующие ключевые компоненты: входной выпрямитель, входной фильтр, силовые переключатели, силовой трансформатор, выходной выпрямитель, выходные фильтры и схему управления.Входные и выходные фильтрующие конденсаторы ИИП выбираются в зависимости от требований к электрическим характеристикам. Эти конденсаторы в значительной степени определяют надежность системы SMPS.

Выбор конденсаторов для фильтрации ИИП

Ключевые факторы, которые следует учитывать при выборе конденсатора для приложений фильтрации SMPS, включают эквивалентное последовательное сопротивление (ESR), эквивалентную последовательную индуктивность (ESL), плотность емкости, температурные характеристики, диэлектрическую постоянную, характеристики напряжения, частотные характеристики и стоимость.Типы конденсаторов, которые обычно используются для входной и выходной фильтрации в импульсных системах питания, включают алюминиевые электролитические, танталовые, керамические и пленочные конденсаторы.

Алюминиевые электролитические конденсаторы
В течение долгого времени проектировщики энергосистем использовали алюминиевые электролитические конденсаторы для входной и выходной фильтрации в импульсных системах питания. Эти конденсаторы обладают превосходной емкостью на единицу объема и недороги. Высокое значение CV алюминиевых электролитических конденсаторов достигается путем нанесения тонких слоев диэлектрического материала на протравленную алюминиевую металлическую фольгу.Превосходная плотность емкости и относительно низкая стоимость этих конденсаторов делают их популярным выбором для приложений фильтрации в SMPS.

С другой стороны, алюминиевые электролитические конденсаторы имеют высокое эквивалентное последовательное сопротивление. Конструкция этих конденсаторов является основной причиной такого высокого ESR. Такое высокое значение ESR является серьезной проблемой для высокочастотных приложений. Кроме того, на характеристики алюминиевых электролитических конденсаторов существенно влияет воздействие высоких температур.

Испарение электролита сокращает срок службы алюминиевых электролитических конденсаторов. Кроме того, эти конденсаторы имеют полярность, и неправильное их подключение может вызвать сбой. Кроме того, в условиях перенапряжения алюминиевый электролитический конденсатор может взорваться.

Танталовые конденсаторы
Танталовые конденсаторы обладают высокой емкостью и обычно используются в приложениях фильтрации SMPS. Танталовый конденсатор имеет высокопористый анод, который обеспечивает большую площадь диэлектрической поверхности и, следовательно, чрезвычайно высокую плотность CV.По сравнению с алюминиевыми электролитическими конденсаторами, эти конденсаторы обладают лучшими характеристиками для фильтрации приложений в импульсных системах питания. Тем не менее, стоимость производства этих конденсаторов выше, чем у алюминиевых электролитических конденсаторов.

На высоких частотах танталовые конденсаторы демонстрируют относительно высокое эквивалентное последовательное сопротивление и значительную потерю емкости. Для некоторых приложений фильтрации требуются конденсаторы с высоким номинальным напряжением. Танталовые конденсаторы менее эффективны для таких применений.Кроме того, производительность танталовых конденсаторов значительно ухудшается, если они подвергаются многократным циклам зарядки / разрядки. Кроме того, эти конденсаторы имеют высокие токи утечки и могут содержать токсичные компоненты.

Керамические конденсаторы
Для изготовления керамических конденсаторов доступны различные диэлектрические материалы. Выбор материала во многом зависит от желаемых эксплуатационных характеристик. Впечатляющие рабочие характеристики керамических конденсаторов делают их подходящим вариантом для входной и выходной фильтрации в системах SMPS.И керамический диск, и многослойные керамические конденсаторы (MLCC) используются в фильтрации SMPS. Хотя керамические дисковые конденсаторы стабильны в широком диапазоне температур и подходят для приложений, требующих высоких значений напряжения, многие производители перешли на многослойные керамические конденсаторы из-за их плотности CV.

Многослойные керамические конденсаторы способны достигать высоких уровней емкости. Возможность высоких уровней емкости является одним из факторов, делающих эти конденсаторы подходящим вариантом для входной и выходной фильтрации в системах SMPS.Большинство керамических конденсаторов для фильтров SMPS основано на диэлектрических материалах класса II. По сравнению с диэлектрическими материалами класса I материалы класса II имеют более высокую диэлектрическую проницаемость. Свойства диэлектрического материала X7R класса II делают его одним из широко используемых материалов для создания конденсаторов для фильтрации импульсного источника питания. Хотя материалы класса II имеют более высокую диэлектрическую проницаемость, они демонстрируют снижение диэлектрической проницаемости при воздействии постоянного напряжения и старении.

По сравнению с алюминиевыми электролитическими конденсаторами, танталовыми конденсаторами и пленочными конденсаторами многослойные керамические конденсаторы имеют более низкое эквивалентное последовательное сопротивление. Это свойство помогает минимизировать потери мощности в фильтрах SMPS. Кроме того, низкое последовательное последовательное сопротивление (ESR) помогает снизить пульсации выходного напряжения, и это делает многослойные керамические конденсаторы лучшим вариантом для выходной фильтрации в импульсных источниках питания. По сравнению с другими конденсаторами, используемыми для фильтрации SMPS, многослойные керамические конденсаторы обеспечивают лучший ESL. Они также лучше справляются с пульсациями тока.Более того, MLCC бывают разных физических форматов и имеют широкий диапазон температурных характеристик, обычно до 250oC. Это свойство делает их подходящим вариантом для фильтрации SMPS в автомобильной, военной, скважинной и других областях применения при высоких температурах.

Процесс изготовления керамических конденсаторов предусматривает их обжиг при высоких температурах. Обожженный керамический материал прочен на сжатие, но слаб при растяжении. Таким образом, воздействие на эти конденсаторы механических нагрузок может привести к отказу компонентов.Кроме того, конструкция керамических конденсаторов увеличивает их восприимчивость к тепловому удару. Поэтому важно учитывать условия эксплуатации при выборе конденсатора для приложений фильтрации SMPS. Кроме того, по сравнению с алюминиевыми электролитическими и танталовыми конденсаторами MLCC имеют более низкую плотность CV.

Пленочные конденсаторы
Пленочные / фольговые и металлизированные пленочные конденсаторы обладают впечатляющими свойствами самовосстановления. В большинстве пленочных конденсаторов используется диэлектрический материал из полипропилена или полиэстера.Полиэстер легко доступен и имеет высокую диэлектрическую проницаемость. С другой стороны, полипропилен имеет относительно низкий коэффициент рассеяния. Пленочные конденсаторы на основе полиэфира в основном используются в приложениях, где требуется высокий объемный КПД, в то время как конденсаторы на основе полипропилена в основном используются для приложений с высоким постоянным током и высоким напряжением / высокой частотой переменного тока. Конструкция пленочных конденсаторов позволяет им выдерживать экстремальные переходные процессы, что делает их лучшим вариантом для фильтрации SMPS в сильноточных приложениях.Кроме того, пленочные конденсаторы легкие, небольшие по размеру и относительно недорогие в производстве.

Хотя пленочные конденсаторы обладают впечатляющими характеристиками, которые делают их подходящим вариантом для многих приложений фильтрации SMPS, у них есть ограничения. Начнем с того, что эти конденсаторы имеют более высокое ESR и ESL по сравнению с керамическими конденсаторами. Кроме того, пленочные конденсаторы не подходят для работы при высоких температурах. Хотя некоторые пленочные конденсаторы рассчитаны на 125 ° C, большинство из них не подходят для температур выше 105 ° C.В приложениях переменного тока пленочные конденсаторы могут выйти из строя, если они подвергаются перенапряжению. Этот сбой вызван коронным разрядом.

Заключение

Производительность и надежность импульсной системы питания во многом определяется входными и выходными фильтрующими конденсаторами. Типы конденсаторов, которые обычно используются для фильтрации в SMPS, включают алюминиевые электролитические конденсаторы, танталовые конденсаторы, пленочные конденсаторы и керамические конденсаторы. Тип и количество конденсаторов, которые будут использоваться для конкретного применения, в основном зависят от условий эксплуатации источника питания.Выбор подходящих фильтрующих конденсаторов помогает максимально повысить надежность импульсной системы питания.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *