Маркировки резисторов: Маркировка резисторов | Цветовая, SMD, советских резисторов.

Содержание

Декодер цветовой маркировки резисторов

Общие положения

В соответствии с ГОСТ 28883-90 и международным стандартом, сопротивление резисторов маркируется в виде цветных колец. Каждому цветному кольцу соответствует определенный цифровой код. Маркировка с тремя полосками используется для резисторов с точностью 20%, с четырьмя полосками – с точностью 5% и 10%, с пятью – с точностью до 0.005%. Шестая полоска на резистора показывает температурный коэффициент сопротивления (ТКС). Цветная маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Первая полоса при этом — ближайшая к выводу резистора. Если из-за малого размера резистора цветную маркировку нельзя сдвинуть к одному из выводов, то первый знак делается полосой с шириной приблизительно вдвое большей, чем остальные. Цветовая маркировка резисторов зарубежных производителей, которые имеют наибольшее распространение в нашей стране, состоит чаще всего из четырех цветовых колец. Сопротивление резистора определяют по первым трем кольцам. Первые два кольца — это цифры, а третье кольцо — множитель. Четвертое кольцо представляет допустимое отклонение сопротивления резистора от его номинального значения.

Цветовая маркировка резисторов с 3 полосами.

Цвет первых двух полос означает первые цифры сопротивления. Третья полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых двух цифр. Точность резисторов с 3-мя полосами — 20%.

Сопротивление резистора с тремя полосами можно найти по формуле:

R=(10A+B)10C,

где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы.

Цветовая маркировка резисторов с 4 полосами.

Цвет первых двух полос означает первые цифры сопротивления. Третья полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых двух цифр. Четвертая полоса означает точность резистора в процентах. Она может быть серебристого или золотистого цвета, что значит допуск в 10% или 5% соответственно.

Сопротивление резистора с четырьмя полосами можно найти по формуле:

R=(10A+B)10C,

где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы.

Цветовая маркировка резисторов с 5 полосами.

Цвет первых трех полос означает цифры сопротивления. Четвертая полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых трех цифр. Пятая полоса означает точность резистора в процентах.

Сопротивление резистора с пятью полосами можно найти по формуле:

R=(100A+10B+C)10D,

где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы; D – номер цвета четвертой полосы.

Цветовая маркировка резисторов с 6 полосами.

Цвет первых трех полос означает цифры сопротивления. Четвертая полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых трех цифр. Пятая полоса означает точность резистора в процентах. Шестая полоса означает температурный коэффициент сопротивления.

Сопротивление резистора с шестью полосами можно найти по формуле:

R=(100A+10B+C)10D,

где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы; D – номер цвета четвертой полосы.

Цветовая маркировка резисторов — онлайн калькулятор

Таблица маркировки резисторов калькулятор цветовой маркировки

Практически каждое более или менее сложное устройство, работающее с использованием электроэнергии, имеет в свое конструкции электрическую плату, на которой смонтированы различные элементы, обеспечивающие его функционирование. Одним из таких элементов является резистор в задачу которого входит линейные преобразования и ограничение силы тока, напряжения, поглощение энергии и рад других функций. В настоящее время номенклатура данных изделий настолько обширна и многообразна что порой сложно определить характеристики деталей по внешнему виду. Для облегчения данной задачи применяются специальные таблицы и декодеры маркировки резисторов, позволяющие практически мгновенной выяснить все параметры детали. В интернете легко можно найти даже калькуляторы цветовой маркировки резисторов, об особенностях которой мы поговорим ниже.

Особенности маркировки отдельных моделей резисторов

Как уже отмечалось форма современных резисторов может очень сильно отличаться. Если размер детали позволяет, то, как правило, сложностей не наблюдается. На корпусе можно легко считать данные определяющее номинальную величину сопротивления, рассеивания мощности и другие параметры. Отдельные типы, в частности резисторы SMD, имеют кодированную маркировку, в которой характеристики зашифрованы. Для их определения уже необходимо прибегнуть к использованию специальных таблиц или декодеров. ­­­­­­­­­­­­

Обозначение параметров резистора с помощью цветовой маркировки

К данному способу маркировки прибегают в тех случаях, когда форма и размеры резистора не позволяют нанести буквенно-цифровой код. Положительным моментом можно считать тот фактор, что в случае обозначения характеристик таким образом, параметры детали хорошо считываются при любом положении резистора.

Цветовая маркировка регламентируется ГОСТом 28883-90. Именно в данном документе четко указано что количество цветовых маркеров не может быть меньше 3 и превышать 6. Чем больше полос нанесено на корпус детали, тем точнее можно интерпретировать его параметры и характеристики. Сложность считывания информации заключается в большом количестве их вариантов. Для исключения ошибочного определения данных резистора желательно воспользоваться декодером цветовой маркировки. Для начала необходимо уяснить что обозначает каждая полоса, нанесенная на корпус детали.

Рисунок 1

Из таблицы видно, что при цветовой маркировки резистора с 3 и 4 полосами, две первые обозначают целые цифры. При нанесении 5 и 6 полосок, числу соответствуют три линии. Теперь необходимо определиться какой цвет обозначает какую цифру. Это легко сделать, обратившись к следующей таблице.

Рисунок 2

Что такое множитель и его соответствие цвету

Так как отобразить точное значение сопротивления резистора не представляется возможным в силу разного количества разрядов, было принято решение ввести дополнительный цветовой маркер для обозначения числа на которое необходимо умножить первые 2 или 3 цифры в зависимости от общего количества полос (см. рисунок 1). Эти данные представлены в таблице значений множителя.

Рисунок 3

Рассмотрим два примера.

  1. Имеется резистор, на котором нанесены три полосы в следующей последовательности: красный, зеленый и коричневый цвет. Согласно таблице, на рисунке 2 сопротивление будет 25 Ом, но при этом необходимо применить множитель 10 (см. рисунок 3). Общее значение для детали с такой маркировкой составит 250 Ом.
  2. Есть резистор с маркировкой в виде 6 полос: оранжевая, синяя, белая, черная, серая и фиолетовая. Следовательно, первые три обозначают число 369 (рис. 1 и 2), четвертая говорит о том, что множитель будет равен 1. А вот 5 и 6 указывают на погрешность данной детали в % (см. рис. 4) и температурный коэффициент в (ppm/°C) (см. рис. 5). В итоге становиться понятно, что данный резистор имеет сопротивление 369 Ом, при этом погрешность находится, а пределах +/- 0,05%, а температурный коэффициент равен 5 ppm/°C.
Таблица соответствия цветовой маркировки значению погрешности 

Рисунок 4

Таблица расшифровки маркировки температурного коэффициента

Рисунок 5

Исходя из вышеизложенного можно отметить простую особенность, чем больше цветных маркеров нанесено на корпус резистора, тем больше информации можно о нем получить

Таким образом при наличии под рукой подобных таблиц легко определить все параметры резистора маркировка которого состоит из цветных полос, нанесенных на корпус детали. Полоса с которой начинается считывание, всегда смещена к одному из краев, что позволяет избежать неправильного толкования данных. При наличии под рукой доступа к Интернету можно воспользоваться калькуляторами и декодерами цветовой маркировки резисторов, размещенных на отдельных сайтах.

Цветовая маркировка резисторов • HamRadio

Цветовая маркировка резисторов в соответствии с ГОСТ175-72 и требованиями Публикации 62 IEC (Международной Электротехнической Комиссии) цветовая маркировка наносится в виде 3, 4, 5 или 6 цветных колец. Маркировочные кольца должны быть сдвинуты к одному из выводов или ширина кольца первого знака должна быть в два раза шире других, что на практике выдерживается не всегда. Но еще есть выход из положения это онлайн-калькулятор маркировки цветных резисторов, узнать номиналы резисторов как в чип так и дип корпусах можно вот по этой ссылочке

Примеры цветовая маркировка резисторов различных фирм, отличающихся от вышеуказанной, приведены на рисунке. Вместо цветовых колец могут встречаться цветовые точки, но принцип маркировки тот же. Цветовая маркировка резисторов фирмы «PHILIPS»

Цветовая маркировка резисторов осуществляется 4, 5 или 6 цветными полосами, несущими информацию о номинале, допуске и температурном коэффициенте сопротивления (ТКС) соответственно. Дополнительную информацию несет цвет корпуса резистора и взаимное расположение полос.

Нестандартная цветовая маркировка. Маркировка фирмы CORNING GLASS WORK (CGW).

Нестандартная маркировка резисторов фирмы PANASONIC.

Помимо стандартной цветовой маркировки, приведенной на рисунке выше, многие фирмы применяют нестандартную (внутрифирменную) маркировку. Нестандартная маркировка резисторов применяется для отличия, например, резисторов, изготовленных по стандартам MIL, от стандартов промышленного и бытового назначения, указывает на огнестойкость и т.д.

Кодовая маркировка резисторов. В соответствии с ГОСТ 11076-69 и требованиями Публикаций 62 и 115-2 IEC (МЭК) первые 3 или 4 символа несут информацию о номинале резистора, определяемого по базовому значению из рядов ЕЗ…Е192, и множителе. Последний символ несет информацию о допуске, т.е. классе точности резистора. Требования ГОСТ и IEC практически совпадают с еще одним стандартом BS1852 (British Standart).

Помимо строки, определяющей номинал и допуск резистора, может наноситься дополнительная кодированная информация о типе резистора, его номинальной мощности и дате выпуска.

Например,

Резистор типа Р1-7 Мощность 2 Вт Номинал 3.6 Ом ±5% Выпущен в феврале 1980 г.

Кодовая маркировка прецизионных высокостабильных резисторов фирмы «PANASONIC»

Перемычки и резисторы с «нулевым» сопротивлением.

Многие фирмы выпускают в качестве плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и резисторы с “нулевым” сопротивлением. Резисторы выполняются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в стандартном корпусе для поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких резисторов лежат в диапазоне единиц или десятков миллиом (~ 0.005…0.05 Ом). В цилиндрических корпусах маркировка осуществляется черным кольцом посередине, в корпусах для поверхностного монтажа (0603, 0805, 1206…) маркировка обычно отсутствует либо наносится код “000” (возможно ”0”).

 

Характеристики резисторов, параметры и маркировка

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры. Раньше резисторы назывались сопротивлениями, но в соответствии с Государственным стандартом электрическим сопротивлениям, как схемным элементам, присвоено название «резисторы».

Сделано это было с целью различать «сопротивление» как изделие (радиокомпонент) и «сопротивление», как его физическое свойство, электрическую величину. Резисторы характеризуются электрическим сопротивлением.

Основной единицей электрического сопротивления в соответствии с международной системой единиц является Ом. На практике используются также производные единицы — килоом (кОм), мегаом (МОм), гигаом (ГОм), тераом (ТОм), которые связаны с основной единицей следующими соотношениями:

  • 1 кОм = 10^3 Ом,
  • 1 МОм = 10^6 Ом,
  • 1 ГОм = 10^9 Ом,
  • 1 ТОм = 10^І2 Ом.

Различают следующие виды резисторов: постоянные и переменные. Переменные еще делят на регулировочные и подстроечные. У постоянных резисторов сопротивление нельзя изменять в процессе эксплуатации.

Резисторы, с помощью которых осуществляют различные регулировки в радиоэлектронной аппаратуре изменением их сопротивления, называют переменными резисторами или потенциометрами. Те резисторы, сопротивление которых изменяют только в процессе налаживания (настройки) радиоэлектронного устройства, называют подстроечными.

Основные параметры резисторов

Резисторы характеризуются такими основными параметрами: номинальным значением сопротивления, допустимым отклонением сопротивления от номинального значения, номинальной (допустимой) мощностью рассеяния, максимальным рабочим напряжением, температурным коэффициентом сопротивления, собственными шумами и коэффициентом напряжения.

Номинальное значение сопротивления R обычно обозначено на корпусе резистора. Действительное значение сопротивления резистора может отличаться от номинального в пределах допустимого отклонения (допуска, определяемого в процентах по отношению к номинальному сопротивлению).

Маркировка резисторов

На корпусе резистора, как правило, наносится краской его тип, номинальная мощность, номинальное сопротивление, допуск и дата изготовления. Для маркировки малогабаритных резисторов используют бук-венно-цифровой код. Код состоит из цифр, обозначающих номинальное сопротивление, буквы, обозначающей единицу измерения, и буквы, указывающей допустимое отклонение сопротивления. Примеры наносимого на корпус резистора буквенного кода единиц измерения номинального сопротивления старого и нового стандартов приведены в табл. 1.

Если номинальное сопротивление выражается целым числом, то буквенный код ставится после этого числа. Если же номинальное сопротивление представляет собой десятичную дробь, то буква ставится- вместо запятой, разделяя целую и дробную части. В случае, когда десятичная дробь меньше единицы, целая часть (ноль) исключается.

При маркировке резисторов код допуска ставится после кодированного обозначения номинального сопротивления. Буквенные коды допусков приведены в табл. 2.

Например, обозначение 4К7В (или 4К7М) соответствует номинальному сопротивлению 4,7 кОм с допустимым отклонением 20%. В табл. 1 и 2 приведены буквенные коды, соответствующие как старым, так и новым стандартам, так как в настоящее время встречаются оба варианта. Номинальная мощность на малогабаритных резисторах не указывается, а определяется по размерам корпуса.

Таблица 1. Обозначение номинальной величины сопротивления на корпусах резисторов.

Полное обозначениеСокращенное обозначение на корпусе
ОбозначениеПримеры обозначенияОбозначение единиц измеренияПримеры обозначения
единиц измеренииСтароеНовоеСтароеНовое
ОмОмы

13 Ом

470 0м

RЕ

13R 470R (К47)

 

13Е 470Е (К47)
кОмкилоОмы

1 кОм

5,6 кОм

27 кОм

100 кОм

КК

1К0

5К6

27K

100К(М10)

1К0

5К6

27K

100К(М10)

МОммегаОмы470 МОм

4,7 МОм

47 МОм

М

 

М

 

М47

4М7

47 М

 

М47

4М7

47М

Таблица 2. Буквенные коды допусков сопротивлений, наносимых на корпуса резисторов.

Допуск, %±0,1±0,2±0,25±0,5±1±2±5±10±20±30
ОбозначениестароежУДРЛИСВФ
новоевСDFGJКМN

Цветовой код маркировки резисторов

Тип маркировки, при котором на корпус резистора наносится краска в виде цветных колец или точек называют цветовым кодом (см. на рис. 1). Каждому цвету соответствует определенное цифровое значение.

Цветовая маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Если маркировку нельзя разместить у одного, из выводов, то первый знак делается полосой шириной в два раза больше, чем остальные.

На резисторы с малой величиной допуска (0,1…10%), маркировка производится пятью цветовыми кольцами. Первые три кольца соответствуют численной величине сопротивления в омах, четвертое кольцо ерть множитель, а пятое кольцо — допуск (рис. 1).

Резисторы с величиной допуска 20% маркируются четырьмя цветными кольцами и на них величина допуска не наносится. Первые три кольца — численная величина сопротивления в омах, а четвертое кольцо — множитель. Иногда резисторы с допуском 20% маркируют тремя цветными кольцами.

В этом случае первые два кольца — численная величина сопротивления в омах, а третье кольцо — множитель. Незначащий ноль в третьем разряде не маркируется.

В связи с тем, что на рынке радиоаппаратуры значительное место занимают зарубежные изделия, заметим, что резисторы зарубежных фирм маркируются как цифровым, так и цветовым кодом.

При цифровой маркировке первые две цифры обозначают численную величину номинала резистора в омах, а оставшиеся представляют число нулей. Например: 150 — 15 Ом; 181 — 180 Ом; 132 — 1,3 кОм; 113—11 кОм.

Цветовая маркировка состоит обычно из четырех цветовых колец. Номинал сопротивления представляет первые три кольца, двух цифр и множителя. Четвертое кольцо содержит информацию о допустимом отклонении сопротивления от номинального значения в процентах.

Определение номиналов зарубежных резисторов по цветовому коду такое же, как и для отечественных. Таблицы цветовых кодов отечественных и зарубежных резисторов совпадают.

Многие фирмы, помимо традиционной маркировки, используют свою внутрифирменную цветовую и кодовую маркировки. Например, встречается маркировка SMD-резисторов, когда вместо цифры 8 ставится двоеточие. Так, маркировка 1:23 означает 182 кОм, a 80R6 — 80,6 Ом.

Цвет колец или точекНоминальное сопротивление, ОмМножительДопуск, %ТКС, %/ГС
1-я цифра2-я цифраЗ-я цифра4-я цифра5-я цифрап
Серебристый0601±10
Золотистый061±5
Черный01
Коричневый11110±1100
Красный22210^2±250
Оранжевый33310^315
Желтый44410^425
Зеленый55510^5±0,5
Синий66610^6±0,2510
Фиолетовый77710^7±0,15
Серый88810^8±0,05
Белый99910^91

              

Рис. 1. Цветовая маркировка отечественных и зарубежных резисторов в виде колец или точек, в зависимости от допуска и ТКЕ.

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Цветовая ? маркировка резисторов. Маркировка ? SMD резисторов цветными полосками

Автор Даниил Леонидович На чтение 6 мин. Просмотров 6.8k. Опубликовано

18 ноября Обновлено

Цветовая маркировка резисторов является неотъемлемой частью описания характеристик элементов. Любители и профессионалы прекрасно понимают, что назначение деталей сопротивления может быть различной. Сюда входит ограничение по току, рассеивание тепла и мощности, увеличение или сокращение времени заряда или полного разряда конденсаторов, разделение напряжений. Вышеописанные функции достигаются путем применения активного применения активного применения, которое является его основным свойством.

Так как определить номинал резистора на глаз невозможно, даже имея колоссальный опыт работы с электронным оборудованием, поэтому используют кодовую систему по цветам. Она помогает определить по таблице. Каждому инженеру еще на первых курсах института объясняют в каких справочниках нужно искать необходимую информацию. Для микроэлектроники существуют специальные классификаторы с описанием всех важных характеристик, которые может использовать в своей работе.

Что такое резистор

Резистор, как элемент микросхем и силовых сетей, получил свое название от английского слова «resistor». Оно же, в свою очередь, имеет латинские корни «resisto», что дословно переводят на русский как «сопротивляюсь». Из названия следует его назначение — сопротивляться потоку заряженных электронов.

Деталь относят к категории пассивных компонентов электрической цепи, где он понижает напряжение до расчетного уровня. В отличие от активных элементов, резистор не может самостоятельно усиливать сигналы. Согласно закону Ома и закону Киргофа напряжение понижается до величин, равным значениям напряжения, умноженного на существующее сопротивление.

В соответствии с ГОСТ на чертежах его изображают как прямоугольник. Для обозначения мощности резисторов на схеме используют специальную маркировку в виде линий и арабских цифр. Она помогает кратко указать тип и характеристику требуемого элемента.

Разновидности резисторов

Резисторы классифицируют по нескольким признакам.

Для дискретных элементов деление происходит по месту установки:

  • вводные. На монтажной плате их монтируют сквозь нее. Контакты таких узлов располагаются по аксиальному или радиальному принципу. На языке инженеров-электронщиков их называют ножками. Этот тип резисторов применяют уже очень давно. Их можно найти как на старом оборудовании, так и на современном. Они заменяют SMD-элементы, если их применение затруднено или абсолютно невозможно.
  • SMD. Представляют из себя компоненты электрической цепи без ножек. Выводы находятся на корпусе. Хотя назвать их таковым очень сложно, так как выступают они на поверхность незначительно. К преимуществам таких компонентов относят дешевизну, простоту сборки и экономию места на схеме.

Маркировка SMD резисторов ничем не отличается от вводных элементов. Она также определяется по полоскам и по цвету.

Классификация по изготовлению

Кроме типологии элементов по внешнему виду и месту установки, существует классификация по критериям производства.

Вводные компоненты сопротивления изготавливают:

  • проволочными. В качестве резистивного компонента выступает проволока, наматываемую на сердечник. С целью уменьшить паразитную индуктивность, применяют бифилярный тип намотки. Проволоку подбирают из материалов, имеющих низкий резистивный температурный коэффициент, в том числе с невысоким удельным сопротивлением;
  • металлопленочными. В качестве основного элемента сопротивления выступает металлическая пленка;
  • композитными
    . В состав таких элементов входят сплавы.

Внимание!

Для изготовления SMD-резисторов используют металлическую пленку. Соответственно, деление идет на тонко и толстопленночные.

Элементы также деля на постоянные и переменные. По названию можно догадаться, что нагрузка первого остается неизменным на протяжении всего времени эксплуатации. У переменных компонентов показатель сопротивления меняют с помощью специального бегунка.

Температурный коэффициент (ТКС)

Вышеописанная классификация может считаться вспомогательной, так как она лишь указывает лишь на установку и производство. Основной и полезной для инженера считают цветовая маркировку резисторов. Она как раз указывает на номинал и технические характеристики элемента. В первую очередь их делят по способности рассеивать мощность.

Ниже представлены часто используемые компоненты цепи, мощность показана в Ваттах:

  • 0,062;
  • 0,125;
  • 0,25;
  • 0,5;
  • 1;
  • 2;
  • 3;
  • 4;
  • 5;
  • 7;
  • 10;
  • 15;
  • 20;
  • 25;
  • 50;
  • 100.

Существуют также резисторы, способные рассеивать до 1 кВт мощности. Но такие элементы используются крайне редко и только в специализированном оборудовании.

Этот показатель очень важен при проектировании электронных систем. В зависимости от назначения от на схеме и условий эксплуатации способность к рассеиванию не должна стать причиной разрушения как самого элемента, так и соседних с ним узлов. Во время работы резистор должен не только разогреться, но также отдать излишки тепла во внешнюю среду.

Размеры SMD резисторов и их мощность

SMD-резисторы устанавливаются на поверхности печатной платы и обладают номиналом рассеиваемой мощности от 0,062 до 1 Вт. По своим характеристикам они уступают вводным, но и применяются они в менее агрессивных условиях. Устанавливаются они только на платы микросхем и работают с минимальными значениями вольтажа и силы тока.

Маркировка по номиналам

Резисторы производят под разные номинальные значения. Существует шесть стандартизированных рядов:

  • Е6;
  • Е12;
  • Е24;
  • Е48;
  • Е96;
  • Е192.

Цифры после литеры «Е» в названии ее ряда указывает на количество номиналов в десятичном интервале. То есть показатель умножается на десять со степенью n. Это целое число с отрицательным или положительным значением. Каждый ряд имеет свои характеристики допустимых отклонений, выраженных в процентах.

Резисторы с тремя полосками

Две первых полоски указывают на расчетное значение сопротивления. Третья полоска показывает множитель числа десять, на которое умножается первый показатель. Точность таких элементов не превышает 20%.

Резисторы с четырьмя полосками

Аналогично предыдущему элементу первые полосы означают число сопротивления, третья — множитель, четвертая — точность. Показатели, которым соответствуют цвета находятся в справочной таблице.

Резисторы с пятью полосками

В отличие от предыдущих двух изделий, на число сопротивления указывают три полоски, четвертая означает степень для множителя 10 и шестая процентную точность.

Резисторы с шестью полосками

Резисторы с шестью полосками обладают повышенной точностью: первые три полоски указывают на номинал сопротивления, четвертая представляет степень для множителя, пятая — погрешность в процентах, и шестая на тепловую мощность.

Погрешность

Маркировка с четырьмя-пятью полосами для выводных резисторов стала уже традиционной. Она указывает на точность. Чем больше полос, тем выше этот показатель. SMD-резисторы для поверхностного монтажа на плате с допусками на 2, 5 и 10 процентов обозначаются цифрами. Первый порядок цифр необходимо умножить на десять в третьей степени.

Буква «R» указывает на точку десятичной дроби. Например, маркировка R473 показывает, что 0,47 необходимо умножить на десять в третьей степени, что в сумме составит 470 Ом. Остальные две цифры и букву применяют для обозначения типоразмеров. Буква указывает на показатель степени десятки.

Резисторы являются одним из важных компонентов печатной платы. Они не только понижают напряжение и ток, а также рассеивают тепло. Каждый компонент имеет цветные полоски, соответствующие их номинальным характеристикам.

Маркировка резисторов млт расшифровка. Все о резисторах. Определение, типы резисторов и их номинал

Постоянные резисторы — это такой элемент, который присутствует практически во всей электронной аппаратуре. Резисторы обладают свойствами активного сопротивления. С их помощью можно ограничить или уменьшить ток в цепи, разделить определенное напряжение на две о более части, для отвода остаточных зарядов.

Состоит постоянный резистор из фарфоровой трубки или палочки, на которую напыленно железо или углерод. От толщины напыления зависит сопротивление резистора и от объема — мощность.

Маркировка резисторов

Буквенно-цифровая маркировка резисторов

Общий вид резисторов отечественного производства и обозначение их на схеме (рис1).

Большинство резисторов в своей радиолюбительской практике брал из старых радиоустройств. Как правило, эти устройства были старыми и в них были установлены отечественные резисторы с буквенно-цифровой маркировкой. В маркировке таких резисторов обычно присутствовали три буквы МЛТ, что означает, металлизированный лакированный теплостойкий. Цифра после этого словосочетания обозначает мощность.

Основная единица измерения сопротивления — Ом. В одном Оме 1000 кОм и 1 000 000 мОм. Буквы в маркировке служат в роли разделителей, как запятая в обычном наборе цифр. Например, сопротивление у резистора 5к3 будет 5,3 кОм, а 5м3 — 5,3 мОм. Все остальные буквы английского алфавита и обозначают Ом. Например, 8R0 — это 8,0 Ом. Отсутствие буквы вовсе означает, что цифра обозначает сопротивление в Ом. Например, 100 — это 100 Ом.

Приведу еще несколько примеров с буквой перед цифрами. К250 = 0.250 кОм и это равно 250 Ом. М100 = 0,100 мОм и это равно 100 кОм.

Цветовая маркировка резисторов

Современные изготовители радиодеталей уже практически ушли от буквенно-цифровой маркировки резисторов. На смену ей пришла цветовая маркировка резисторов.

Смысл данной маркировки в нанесении на корпус разноцветных колец, цвет которого несет свою цифру или множитель. Рассказывать и изучать, что означает каждый цвет, мы здесь не будем, я сам этого на память не знаю, и запоминать не хочется. Для определения номинала резисторов с цветовой маркировкой существует множество программ в интернете, скачать одну из них можно . Я начал использование программы больше пяти лет назад и пользуюсь до сих пор.

Так же цветовую маркировку резистора можно определить из шаблона резисторов с уже проставленными номиналами, во всяком случае на столе не помешают:



Универсальный способ определения номинала

И не забываем самый основной способ определения номинала резистора методом измерения. Правда, для определения сопротивления данным способом, необходим довольно точный прибор, китайский цифровой мультиметр вполне сойдет, а вот стрелочные тестеры врятли. При измерении не прикасайтесь к щупам мультиметра, что бы не учитывать сопротивление тела, и при измерении небольших сопротивлений отнимайте сопротивление проводов, показывается если щупы замкнуть накоротко (на большем пределе покажет нуль и сопротивление проводов не учитывается).

Мощность резистора

Резисторы различаются как по сопротивлению, так и по мощности. Основные номиналы мощности показаны на рисунке 1. На том же рисунке показано условно графическое изображение резистора на схеме. Если при сборке, какой либо схемы на ней указан резистор мощностью 1 Вт, то при сборке схемы он должен быть аналогичной или большей мощности.

Хорошо если на схемах такие обозначения есть, а что делать, если схема проектируется самостоятельно. К примеру, нужно подключить светодиод 3 Вольта и 30 миллиАмпер к источнику питания 12 В. Для ограничения тока в цепь светодиода врезается резистор. Что бы рассчитать рассеиваемую мощность резистора необходимо знать напряжение падения на резисторе, ток цепи и найти их произведение. (12-3)х0,03= 0,27 Вт. Принимаем ближайшее, большее значение мощности 0,5 Вт.

Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.

Основной задачей резисторов является создание сопротивления электрическому току. Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе. В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток. Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.

По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.

Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм , мОм и гОм .

Для большего понимания этих единиц измерения, привожу следующую расшифровку:

1кОм = 1000 Ом;

1 мОм = 1000 кОм;

1гОм = 1000 мОм;

На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.

По принципу работы, резисторы делятся на постоянные и переменные .

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.

Постоянные резисторы

Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (). Как узнать номинал резистора по цветовой маркировке, можем узнать из этой .

Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:

  1. Буква R Омах . Очень важным является позиция этой буквы. Если на резисторе надпить типа 12 R то номинал резистора будет 12Ом . Если же буква будет в начале R 12 , то сопротивление будет 0,12Ом . Также возможно обозначение типа 12 R1 , что будет означать 12,1 Ом.
  2. Буква K – означает, что номинал резистора будет измеряться в к Омах . Действуют теже правила что и для предыдущего примера. 12 K = 12кОм, K 12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква М – означает, что номинал резистора будет измеряться в м Омах . 12 М = 12мОм, М 12 = 0,12 мОм и 12М1 = 12,1мОм.

Так же на корпусе резистора обозначают такую величину как отклонение от номинала . При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала. Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.

В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.

Обозначение мощности резисторов на схеме

Переменные резисторы

Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные . С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники. Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.



Если на переменном резисторе написано что он имеет номинал 10кОм , то это означает, что он производит регулировку в пределах от 0 до 10 кОм . В среднем положении ручки его номинал будет приблизительно около 5 кОм , в крайнем или 0 или 10 кОм .

Новая деталь — резистор.

Резистор — это элемент, обладающий определенным электрическим сопротивлением. Вообще, справедливости ради, скажу так — сопротивлением обладают не только резисторы, но и все остальные элементы: лампы, двигатели, диоды, транзисторы и даже простые провода. Однако у всех остальных элементов сопротивление — это не главная характеристика, а так скажем — побочная. На самом деле, лампочка — светит, двигатель — вращается, диод — выпрямляет, транзистор — усиливает, а провод — проводит. А вот у резистора нет иной «профессии», кроме как оказывать сопротивление идущему через него току. Ну, правда, он нагревается, и его можно использовать вместо обогревателя долгими зимними вечерами. Однако — это несколько из области нестандартных применений…

На картинке изображены различные резисторы. Маленькая черненькая фичка в нижней части — это тоже резистор, только без ножек. Такие детали используются для поверхностного монтажа и носят имя SMD. Здесь мы имеем счастье наблюдать SMD-резистор.

А на схеме его в любом случае обозначают только так:

Рядом с изображением обычно указывают его порядковый номер в схеме и номинальное сопротивление (то, на которое он рассчитан). В нашем примере он 12-й по счету и его сопротивление — 15 килоом (т.е., 15 000 Ом). Буква R перед порядковым номером говорит нам о том, что это — резистор. (Для каждого вида деталей в схеме ведется свой счет.)

Итак, резистор обладает сопротивлением. Сопротивление измеряется в Омах (см. главу 2 — Закон Ома). Каждый резистор рассчитан на какое-то определенное сопротивление. Чтобы узнать это определенное сопротивление — достаточно посмотреть на корпус резистора. Оно должно быть там написано. Однако не ищите надписей вроде 215 Ом. Так уже давно никто не обозначает, потому как — длинно получается. Сейчас весь мир перешел к трехзначной маркировке. Поэтому, на резисторе можно встретить, например, такие обозначения: 1К5, К20, 10Е, М36. Или такие: 152, 201, 100, 364. Или вообще не найти никаких букв, а только странные цветные полоски. В последнем случае — не отчаивайтесь — это цветовая маркировка. Ее довольно легко читать (если знать как =)). Сейчас мы начнем разгребать все способы маркировки. Но до этого, немного вспомним кратные приставки.

Кратные приставки мы постоянно используем в повседневной жизни. Например, покупая леску толщиной 0,25 миллиметра, или отправляясь на дачу на 54-й километр, или оценивая, сколько мегабайт занимает файл и влезет ли он на винчестер объемом 10 гигабайт. Или, на худой конец, объясняя соседу, что болевой порог человеческого уха — 120 децибелл и ваш усилок никак не обеспечит такой мощи, даже если очень захочет… «Миллиметр», «километр», «мегабайт», «гигабайт», «децибелл» — все эти слова образованы из слов «метр», «байт» и «Белл» при помощи кратных приставок: «милли-«, «кило-«, «Мега-«, «Гиго-«, «деци-«. Все прекрасно знают, что в 1-м километре — 1000 метров, а в 1-м грамме — 1000 миллиграмм, а в одном гигабайте — где-то 1000 000 000 байт.-12) (триллионная)

Для обозначения сопротивления тоже используют кратные приставки. Чаще всего в схемах можно найти резисторы от нескольких десятков Ом до нескольких сотен килоом. Встречаются резисторы и по нескольку мегаом, но — редко. Итак:

1 кОм = 1000 Ом
1 МОм = 1000 кОм = 1 000 000 Ом

Несколько примеров:

1,5 кОм = 1,5*1000 = 1500 Ом
0,2 кОм = 0,2*1000 = 200 Ом
и т.д.

Теперь поехали лопатить обозначения на корпусе!

Маркировка резисторов

Маркировка — это условные обозначения, наносимые на корпус детали, по которым мы можем узнать о некоторых её свойствах. Маркировка резистора может сказать нам о самом главном его свойстве — сопротивлении.

Существует несколько различных способов маркировки резисторов.

Способ 1-й, совдеповский.

1К5, 68К, М16, 20Е, К39 и т.д.

Расшифруем:
1К5 = 1,5 кОм
68К = 68 кОм
М16 = 0,16 МОм = 160 кОм
20Е = 20 (единиц) Ом
К39 = 0,39 кОм = 390 Ом

Маркировка всегда состоит из двух цифр и одной буквы, обозначающей кратную приставку. Причем, буква ставится вместо десятичной запятой. Например, чтобы записать 1,5 кОм, надо написать 1К5. Если число 3-значное, скажем — 390 Ом, то надо выразить его с помощью 2-х знаков: 0,39 кОм. Ноль не пишем. Получается К39. Если число целое, то есть, после запятой нет знаков, буква ставится в самом конце: 68 К = 68,0 кОм

Способ 2-й, буржуазный

152, 683, 164, 200, 391.

Расшифруем:
152 = 15 00 Ом = 1,5 кОм
683 = 68 000 Ом = 68 кОм
164 = 16 0000 Ом = 160 кОм
200 = 20 Ом
391 = 39 0 Ом.

Я не случайно писал нули через пробел. Усекли фишку? Правильно! Первые две цифры — это некоторое число. Последняя — количество нулей, дописываемых после этого числа. Проще некуда!

Способ 3-й, цветовой

Не подходит для дальтоников и ленивых.
Идеалогия — как в предыдущем способе, но вместо цифр — цветные полоски. Каждой цифре соответствует свой цвет. Вот таблица соответствия (ее лучше выучить наизусть, или распечатать на цветном принтере и везде носить с собой =)):


Как читать?
Берем резистор с цветовой маркировкой. На корпусе — 4 полоски. Три находятся рядом, одна — чуть в стороне. Переворачиваем резистор так, чтобы эта одиночная полоска была справа. Далее берем таблицу и переводим цвета трех левых линий в цифры. Получается трехзначное число. Далее — см. предыдущий способ.


Вот и все! Оказывается, это так легко!!! =) Однако, если все же по каким-то причинам не удается прочесть маркировку резистора — сопротивление всегда можно померить измерительными приборами. О них мы еще поговорим.


ID: 641

Как вам эта статья?

Заработало ли это устройство у вас?

Продолжаем наш цикл справочных материалов для начинающих радиолюбителей, и в этой статье мы поговорим о резисторах , они присутствуют в любой электронной схеме, даже самой простой. Делятся они на два вида: переменные и постоянные. Распространенные постоянные резисторы, используемые в электронных схемах, имеют мощность от 0.125 до 2 Ватт. Если быть более точным, то это ряд 0.125 Вт, 0.25 Вт, 0.5 Вт, 1 Вт, 2 Вт. Конечно, есть и более мощные резисторы, например проволочные, но они редко используются в электронных схемах. На рисунке ниже изображены внешний вид и габариты резисторов, а также их обозначения на принципиальных схемах.

Из них чаще всего в электронике используются резисторы мощностью от 0.125 до 0.5 Ватт. Резисторы бывают как обычные, с допуском 5-10%, так и прецизионные с допуском 0.1-1%. Существуют и более точные резисторы, но в большинстве радиолюбительских конструкций такая точность не требуется. Если резистор может менять сопротивление — его называют переменным (или подстроечным). Фото переменных резисторов:


Переменные резисторы также бывают проволочные и непроволочные , проволочные обычно бывают рассчитаны на большую мощность. Устройство непроволочного переменного резистора можно видеть на рисунке:


Устроен резистор следующим образом, на основании из гетинакса в виде дуги нанесен слой из сажи смешанной с лаком. У этого резистора между первым и вторым контактом (на рисунке), другими словами между крайними выводами сопротивление неизменно, а между средним и крайними выводами изменяется при вращении ручки резистора. К этому слою обладающему сопротивлением прилегает подвижный контакт, соединенный с центральным выводом. Очень часто при интенсивном использовании регулятором, этот слой сажи истирается, и сопротивление резистора при вращении ручки резистора изменяется скачкообразно, становясь иногда даже больше максимального положенного по номиналу. Из-за этого износа и происходит шуршание и треск из динамиков, а иногда при сильном износе звучание пропадает совсем. Переменные резисторы бывают как одинарные, так и сдвоенные, сдвоенные обычно используются в устройствах со стерео звучанием. Также к переменным резисторам относятся подстроечные резисторы:


Они отличаются от стандартных переменных отсутствием ручки и регулируются вращением вала отвёрткой. Также переменные резисторы бывают однооборотные и многооборотные. Схематическое изображение переменного и подстроечного резистора на рисунке ниже:


На советских резисторах МЛТ был написан номинал резистора, на импортных резисторах маркировка осуществляется нанесением разноцветных колец, в первых двух кольцах закодирован номинал, третье кольцо множитель, четвёртое кольцо это допуск резистора (для обычных не прецизионных резисторов).


Встречается маркировка большим, чем четыре, количеством колец, расшифровать маркировку поможет следующий рисунок:

Иногда возникает надобность узнать номинал резистора, а по цветовой маркировке это сделать, по каким-либо причинам затруднительно. В таком случае нужно обратиться к принципиальной схеме устройства. На таких схемах номинал резистора обозначается следующим образом, например: 150 означает 150 Ом (единицы измерения не указываются), 100 К означает 100 КилоОм, 2 М означает 2 МегаОма. Иногда при сборке какой-либо схемы нужного номинала нет под рукой, но есть много резисторов других номиналов, в таком случае может помочь последовательное или параллельное соединение резисторов. Формулы подсчета всем известны из учебников физики, но если кто подзабыл, приведу здесь их:

При последовательном соединении


При параллельном соединении


В последнее время многие переходят на SMD детали, из них наиболее распространены резисторы размеров 0805 и 1206. Определить номинал SMD резистора очень просто, первые две цифры показывают сопротивление резистора, третья цифра количество нулей. Пример : нанесена маркировка 332 , это значит 33 плюс два нуля, получается 3300, то есть 3.3 КилоОма. Менее распространены в электронике, но тем не менее находят применение терморезисторы и фоторезисторы. На рисунке ниже изображено схематическое изображение терморезисторов:

У терморезисторов сопротивление зависит от температуры. Если с повышением температуры сопротивление терморезистора увеличивается, то температурный коэффициент сопротивления ТКС положительный, если же с повышением температуры сопротивление уменьшается, то ТКС отрицательный. Терморезистор изображен на фотографии ниже:


На следующем рисунке изображён фоторезистор, как его рисуют на схемах:


Он представляет собой полупроводниковый прибор, сопротивление которого меняется под действием света.


Фоторезисторы особенно широко используются в устройствах автоматики. Привожу типовую схему включения полупроводникового фотодетектора:


Обсудить статью РЕЗИСТОРЫ

Определение, типы резисторов и их номинал. Маркировка резисторов млт расшифровка

Постоянные резисторы — это такой элемент, который присутствует практически во всей электронной аппаратуре. Резисторы обладают свойствами активного сопротивления . С их помощью можно ограничить или уменьшить ток в цепи, разделить определенное напряжение на две о более части, для отвода остаточных зарядов.

Состоит постоянный резистор из фарфоровой трубки или палочки, на которую напыленно железо или углерод. От толщины напыления зависит сопротивление резистора и от объема — мощность.

Маркировка резисторов

Буквенно-цифровая маркировка резисторов

Общий вид резисторов отечественного производства и обозначение их на схеме (рис1).

Большинство резисторов в своей радиолюбительской практике брал из старых радиоустройств. Как правило, эти устройства были старыми и в них были установлены отечественные резисторы с буквенно-цифровой маркировкой. В маркировке таких резисторов обычно присутствовали три буквы МЛТ, что означает, металлизированный лакированный теплостойкий. Цифра после этого словосочетания обозначает мощность.

Основная единица измерения сопротивления — Ом. В одном Оме 1000 кОм и 1 000 000 мОм. Буквы в маркировке служат в роли разделителей, как запятая в обычном наборе цифр. Например, сопротивление у резистора 5к3 будет 5,3 кОм, а 5м3 — 5,3 мОм. Все остальные буквы английского алфавита и обозначают Ом. Например, 8R0 — это 8,0 Ом. Отсутствие буквы вовсе означает, что цифра обозначает сопротивление в Ом. Например, 100 — это 100 Ом.

Приведу еще несколько примеров с буквой перед цифрами. К250 = 0.250 кОм и это равно 250 Ом. М100 = 0,100 мОм и это равно 100 кОм.

Цветовая маркировка резисторов

Современные изготовители радиодеталей уже практически ушли от буквенно-цифровой маркировки резисторов. На смену ей пришла цветовая маркировка резисторов.

Смысл данной маркировки в нанесении на корпус разноцветных колец, цвет которого несет свою цифру или множитель. Рассказывать и изучать, что означает каждый цвет, мы здесь не будем, я сам этого на память не знаю, и запоминать не хочется. Для определения номинала резисторов с цветовой маркировкой существует множество программ в интернете, скачать одну из них можно. Я начал использование программы больше пяти лет назад и пользуюсь до сих пор.

Так же цветовую маркировку резистора можно определить из шаблона резисторов с уже проставленными номиналами, во всяком случае на столе не помешают:


Универсальный способ определения номинала

И не забываем самый основной способ определения номинала резистора методом измерения. Правда, для определения сопротивления данным способом, необходим довольно точный прибор, китайский цифровой мультиметр вполне сойдет, а вот стрелочные тестеры врятли. При измерении не прикасайтесь к щупам мультиметра, что бы не учитывать сопротивление тела, и при измерении небольших сопротивлений отнимайте сопротивление проводов, показывается если щупы замкнуть накоротко (на большем пределе покажет нуль и сопротивление проводов не учитывается).

Мощность резистора

Резисторы различаются как по сопротивлению, так и по мощности. Основные номиналы мощности показаны на рисунке 1. На том же рисунке показано условно графическое изображение резистора на схеме. Если при сборке, какой либо схемы на ней указан резистор мощностью 1 Вт, то при сборке схемы он должен быть аналогичной или большей мощности.

Хорошо если на схемах такие обозначения есть, а что делать, если схема проектируется самостоятельно. К примеру, нужно подключить светодиод 3 Вольта и 30 миллиАмпер к источнику питания 12 В. Для ограничения тока в цепь светодиода врезается резистор. Что бы рассчитать рассеиваемую мощность резистора необходимо знать напряжение падения на резисторе, ток цепи и найти их произведение. (12-3)х0,03= 0,27 Вт. Принимаем ближайшее, большее значение мощности 0,5 Вт.

Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.

Основной задачей резисторов является создание сопротивления электрическому току . Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе. В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток. Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.

По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.

Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм , мОм и гОм .

Для большего понимания этих единиц измерения, привожу следующую расшифровку:

1кОм = 1000 Ом;

1 мОм = 1000 кОм;

1гОм = 1000 мОм;

На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.

По принципу работы, резисторы делятся на постоянные и переменные .

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.

Постоянные резисторы

Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (). Как узнать номинал резистора по цветовой маркировке , можем узнать из этой.

Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:

  1. Буква R Омах . Очень важным является позиция этой буквы. Если на резисторе надпить типа 12 R то номинал резистора будет 12Ом . Если же буква будет в начале R 12 , то сопротивление будет 0,12Ом . Также возможно обозначение типа 12 R1 , что будет означать 12,1 Ом.
  2. Буква K к Омах . Действуют теже правила что и для предыдущего примера. 12 K = 12кОм, K 12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква М – означает, что номинал резистора будет измеряться в м Омах . 12 М = 12мОм, М 12 = 0,12 мОм и 12М1 = 12,1мОм.

Так же на корпусе резистора обозначают такую величину как отклонение от номинала . При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала. Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.

В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.

Обозначение мощности резисторов на схеме

Переменные резисторы

Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные . С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники. Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.



Если на переменном резисторе написано что он имеет номинал 10кОм , то это означает, что он производит регулировку в пределах от 0 до 10 кОм . В среднем положении ручки его номинал будет приблизительно около 5 кОм , в крайнем или 0 или 10 кОм .

Новая деталь — резистор.

Резистор — это элемент, обладающий определенным электрическим сопротивлением. Вообще, справедливости ради, скажу так — сопротивлением обладают не только резисторы, но и все остальные элементы: лампы, двигатели, диоды, транзисторы и даже простые провода . Однако у всех остальных элементов сопротивление — это не главная характеристика, а так скажем — побочная. На самом деле, лампочка — светит, двигатель — вращается, диод — выпрямляет, транзистор — усиливает, а провод — проводит. А вот у резистора нет иной «профессии», кроме как оказывать сопротивление идущему через него току. Ну, правда, он нагревается, и его можно использовать вместо обогревателя долгими зимними вечерами. Однако — это несколько из области нестандартных применений…

На картинке изображены различные резисторы. Маленькая черненькая фичка в нижней части — это тоже резистор, только без ножек. Такие детали используются для поверхностного монтажа и носят имя SMD. Здесь мы имеем счастье наблюдать SMD-резистор.

А на схеме его в любом случае обозначают только так:

Рядом с изображением обычно указывают его порядковый номер в схеме и номинальное сопротивление (то, на которое он рассчитан). В нашем примере он 12-й по счету и его сопротивление — 15 килоом (т.е., 15 000 Ом). Буква R перед порядковым номером говорит нам о том, что это — резистор. (Для каждого вида деталей в схеме ведется свой счет.)

Итак, резистор обладает сопротивлением. Сопротивление измеряется в Омах (см. главу 2 — Закон Ома). Каждый резистор рассчитан на какое-то определенное сопротивление. Чтобы узнать это определенное сопротивление — достаточно посмотреть на корпус резистора. Оно должно быть там написано. Однако не ищите надписей вроде 215 Ом. Так уже давно никто не обозначает, потому как — длинно получается. Сейчас весь мир перешел к трехзначной маркировке. Поэтому, на резисторе можно встретить, например, такие обозначения: 1К5, К20, 10Е, М36. Или такие: 152, 201, 100, 364. Или вообще не найти никаких букв, а только странные цветные полоски. В последнем случае — не отчаивайтесь — это цветовая маркировка. Ее довольно легко читать (если знать как =)). Сейчас мы начнем разгребать все способы маркировки. Но до этого, немного вспомним кратные приставки.

Кратные приставки мы постоянно используем в повседневной жизни. Например, покупая леску толщиной 0,25 миллиметра, или отправляясь на дачу на 54-й километр, или оценивая, сколько мегабайт занимает файл и влезет ли он на винчестер объемом 10 гигабайт. Или, на худой конец, объясняя соседу, что болевой порог человеческого уха — 120 децибелл и ваш усилок никак не обеспечит такой мощи, даже если очень захочет… «Миллиметр», «километр», «мегабайт», «гигабайт», «децибелл» — все эти слова образованы из слов «метр», «байт» и «Белл» при помощи кратных приставок: «милли-«, «кило-«, «Мега-«, «Гиго-«, «деци-«. Все прекрасно знают, что в 1-м километре — 1000 метров, а в 1-м грамме — 1000 миллиграмм, а в одном гигабайте — где-то 1000 000 000 байт. И можно, в принципе, говорить не «3 километра» а «3 тысячи метров», не «40 милиграмм» а «0,04 грамма». Однако — это долго и неудобно. Для того, собственно, и служат эти приставки — чтоб облегчить нам с вами жизнь. Они образуют из некоторой базовой виличины (метр, грамм, байт и т.д.) новую величину, которая больше или меньше базовой во сколько-то раз.-12) (триллионная)

Для обозначения сопротивления тоже используют кратные приставки. Чаще всего в схемах можно найти резисторы от нескольких десятков Ом до нескольких сотен килоом. Встречаются резисторы и по нескольку мегаом, но — редко. Итак:

1 кОм = 1000 Ом
1 МОм = 1000 кОм = 1 000 000 Ом

Несколько примеров:

1,5 кОм = 1,5*1000 = 1500 Ом
0,2 кОм = 0,2*1000 = 200 Ом
и т.д.

Теперь поехали лопатить обозначения на корпусе!

Маркировка резисторов

Маркировка — это условные обозначения , наносимые на корпус детали, по которым мы можем узнать о некоторых её свойствах. Маркировка резистора может сказать нам о самом главном его свойстве — сопротивлении.

Существует несколько различных способов маркировки резисторов.

Способ 1-й, совдеповский.

1К5, 68К, М16, 20Е, К39 и т.д.

Расшифруем:
1К5 = 1,5 кОм
68К = 68 кОм
М16 = 0,16 МОм = 160 кОм
20Е = 20 (единиц) Ом
К39 = 0,39 кОм = 390 Ом

Маркировка всегда состоит из двух цифр и одной буквы, обозначающей кратную приставку. Причем, буква ставится вместо десятичной запятой. Например, чтобы записать 1,5 кОм, надо написать 1К5. Если число 3-значное, скажем — 390 Ом, то надо выразить его с помощью 2-х знаков: 0,39 кОм. Ноль не пишем. Получается К39. Если число целое, то есть, после запятой нет знаков, буква ставится в самом конце: 68 К = 68,0 кОм

Способ 2-й, буржуазный

152, 683, 164, 200, 391.

Расшифруем:
152 = 15 00 Ом = 1,5 кОм
683 = 68 000 Ом = 68 кОм
164 = 16 0000 Ом = 160 кОм
200 = 20 Ом
391 = 39 0 Ом.

Я не случайно писал нули через пробел. Усекли фишку? Правильно! Первые две цифры — это некоторое число. Последняя — количество нулей, дописываемых после этого числа. Проще некуда!

Способ 3-й, цветовой

Не подходит для дальтоников и ленивых.
Идеалогия — как в предыдущем способе, но вместо цифр — цветные полоски. Каждой цифре соответствует свой цвет. Вот таблица соответствия (ее лучше выучить наизусть, или распечатать на цветном принтере и везде носить с собой =)):


Как читать?
Берем резистор с цветовой маркировкой. На корпусе — 4 полоски. Три находятся рядом, одна — чуть в стороне. Переворачиваем резистор так, чтобы эта одиночная полоска была справа. Далее берем таблицу и переводим цвета трех левых линий в цифры. Получается трехзначное число. Далее — см. предыдущий способ.


Вот и все! Оказывается, это так легко!!! =) Однако, если все же по каким-то причинам не удается прочесть маркировку резистора — сопротивление всегда можно померить измерительными приборами . О них мы еще поговорим.


ID: 641

Как вам эта статья?


стр. 1



стр. 2



стр. 3



стр. 4



стр. 5



стр. 6



стр. 7



стр. 8



стр. 9



стр. 10



стр. 11



стр. 12



стр. 13



стр. 14



стр.И 01.91

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на постоянные проволочные, непроволочные и фольговые резисторы, изготовляемые для народного хозяйства и экспорта.

Виды климатических исполнений — УХЛ и В по ГОСТ 15150 — -69.

Климатическое исполнение и категорию размещения резистора конкретного типа указывают в стандартах или технических условиях на резисторы конкретных типов.

Резисторы, изготовляемые для экспорта, должны соответствовать требованиям ГОСТ 23135-78 и требованиям, изложенным в соответствующих разделах настоящего стандарта.

Стандарт полностью соответствует Публикации МЭК 115-1.

1. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

1.1. Основные параметры резисторов должны соответствовать нормам, установленным в стандартах или технических условиях (ТУ) на резисторы конкретных типов по ГОСТ 24013-80 .

1.2. Условное обозначение резисторов при заказе и в конструкторской документации должно соответствовать указанному в стандартах или ТУ на резисторы конкретных типов.

Перепечатка воспрещена

Издание официальное Е

Переиздание. Март 1986 г.

© Издательство стандартов, 1987

3.2.2. Для непроволочных резисторов испытание по группе К-4, последовательности 8 и 9, не проводят для резисторов, демонтаж которых затруднен или невозможен (например, при креплении за корпус путем его приклеивания или заливки, или приклеиванием корпуса с припаиванием выводов).

3.2.3. Для непроволочных резисторов испытание по группе К-8 проводят только для резисторов, демонтаж которых затруднен или невозможен (например, при креплении резисторов за корпус путем его приклеивания или заливки, или приклеиванием корпуса с припаиванием выводов),

3.2.4. Последовательность проведения испытания резисторов конкретных типов по группе К-4 в стандартах или ТУ допускается изменять.

3.2.5. Стойкость резисторов к воздействию атмосферных конденсированных осадков (инея и росы), плесневых грибов, соляного тумана и испытание на пожарную безопасность в составе квалификационных испытаний не контролируют.

Соответствие резисторов указанным требованиям подтверждают на основе данных проверок, полученных при разработке резисторов, или результатами испытаний резисторов, проведенных до начала квалификационных испытаний.

При изменении конструкции, технологического процесса изготовления и (или) материалов, которые могут повлиять на стойкость резисторов к воздействию указанных факторов, контроль проводят в составе типовых испытаний.

3.2.6. Стойкость негерметичных резисторов к воздействию атмосферного повышенного давления и атмосферного пониженного давления в составе квалификационных испытаний не контролируют. Соответствие резисторов указанному требованию обеспечено их конструкцией.

3.2.7. Испытание резисторов на виброустойчивость, ударную устойчивость в составе квалификационных испытаний не проводят.

По конструкции и принципу работы постоянных резисторов их параметры не зависят от воздействия вибрации и ударов.

3.2.8. Испытания на проверку отсутствия резонансных частот конструкции в заданном диапазоне частот в составе квалификацй-онных испытаний не проводят. Соответствие резисторов указанному требованию обеспечено их конструкцией.

3.2.9. Испытания по группам К-1 и К-2 проводят последовательно на одной выборке резисторов.

Резисторы, прошедшие испытания по группам К-1 и К-2, используют для испытания по любой другой группе.

Испытания по группам К-3-К-9; КП-К15 для непроволочных резисторов и К-3-К-6; К8-К12 для проволочных резисторов проводят на самостоятельных выборках.

3.2.10. Выборки комплектуют по следующим правилам:

для группы испытаний К-3 — по правилам, установленным для группы П-1;

для групп испытаний К-4, К-И для непроволочных резисторов и К-4, К-8 для проволочных резисторов -по правилам, установленным для группы П-2;

для групп испытаний К-5-К-8 для непроволочных резисторов и К-5 для проволочных резисторов — по правилам, установленным для групп П-3-П-6;

для групп испытаний К-10 для непроволочных резисторов и К-7 для проволочных резисторов — по правилам, установленным для испытаний на долговечность. Испытания на долговечность являются продолжением испытаний на безотказность. Часть выборки, предназначенной для испытаний на долговечность, определяют заранее до начала испытаний на безотказность;

для групп испытаний К-9, К-12-К-15 для непроволочных резисторов и К-6, К-9 — К-12 для проволочных резисторов — от всей совокупности резисторов, предусмотренной в стандартах или ТУ на резисторы конкретных типов и находящихся в производстве.

3.2.11. Для проведения испытаний применяют следующие планы контроля:

для групп испытаний К-1 и К-2 -планы контроля, установленные для групп С-1 и С-2 соответственно;

для группы испытаний К-3 — план контроля, установленный для группы П-1;

для групп испытаний К-4-К-8, К-П-К-14 для непроволочных резисторов и К-4-К-6, К-8-К-П для проволочных резисторов — план контроля, установленный для групп П-2, П-3-П-6 для непроволочных резисторов и П-2-П-3 для проволочных резисторов;

для групп испытаний К-10 для непроволочных резисторов и К-7 для проволочных резисторов число резисторов, подлежащих испытанию, выборка (я д), допускаемое число отказов А должны

быть указаны в стандартах или ТУ на резисторы конкретных типов по ГОСТ 25359-82 . Доверительная вероятность />* = 0,6, пе-ресчетный коэффициент должен быть указан в стандартах или ТУ на резисторы конкретных типов;

для групп испытаний К-15 для непроволочных резисторов и К-12 для проволочных резисторов объем выборки п = 3, C = Q.

3.2.12. Резисторы, подвергавшиеся квалификационным испытаниям по группе К-3, допускается поставлять потребителю отдельными партиями, если параметры резисторов соответствуют нормам при приемке и поставке.

3.3. Приемо-сдаточные испытания

3.3.1 Резисторы для приемки предъявляют партиями.

3.3.2. Состав испытаний, деление состава испытаний на группы испытаний и по в пределах каждой группы должны соответствовать приведенным в табл. 4.

Таблица 4

Номера пунктов

испытаний

технических

требований

контроля

1. Проверка внешнего вида

жания маркировки

4. Проверка общего вида, габаритных, установочных и присоединительных размеров

1. Измерение сопротивления

2. Измерение уровня шумов

3. Измерение сопротивления изоля-

3.3.3. Последовательность проведения испытаний резисторов конкретных типов по группе С-2 допускается изменять.

3.3.4. Испытание по группе С-2 проводят на резисторах, прошедших испытания по группе С-1.

3.3.5. Испытания по группам С-1 и С-2 проводят по планам выборочного одноступенчатого контроля, приведенным в табл. 5 по ГОСТ 18242-72 , или сплошным контролем.

Таблица 5

Группа испытаний

Объем партии N, шт.

Приемочный уровень 1 дефектности, %

Объем выборки л, шт.

Приемочное число С х, шт.

Браковочное число шт.

нормальный

контроль

усиленный

контроль

нормальный

контроль

усиленный

контроль

нормальный

контроль

усиленный

контроль

Примечание. При объеме партий до 25 шт. по группе испытаний С-1 и 90 шт. по группе испытаний С-2 применяют сплошной контроль.

3.3.6. Изготовитель анализирует причины неудовлетворительного состояния производства и принимает меры по их устранению, если количество возвращенных партий (в том числе повторно предъявленных) равно 4 из 10.

При числе предъявленных приемке партий более 100 в месяц, это число составляет 8 из 20.

3.3.7. Резисторы должны быть перепроверены перед отгрузкой потребителю, если после их приемки истекло время, превышающее 6 мес.

Перепроверку производят по группе приемо-сдаточных испытаний С-2.

Дата перепроверки должна быть указана дополнительно на потребительской таре.

3.4. Периодические испытания

3.4.1, Состав испытаний, деление состава испытаний на группы испытаний, периодичность испытаний для каждой группы, а так* же последовательность их проведения в пределах групп должны соответствовать приведенным в табл. 6 для непроволочных резисторов и в табл. 7 — для проволочных резисторов.

3.4.2. Для непроволочных резисторов испытание по группе П-2, последовательности 8 и 9, не проводят для резисторов, демонтаж которых затруднен или невозможен (например, при креплении за корпус путем его приклеивания или заливки, или приклеиванием корпуса с припаиванием выводов).

Таблица 6

дичность

Номера пунктов

Наименование видов испытаний и по-

следовательность их проведения

технических

ния ИСПЫ-

требований

контроля

Испытание на безотказность

раз в 12 мес.

1. Определение температурного

коэффициента сопротивления

раз в 6 мес.

3. Испытание на воздействие по-

4. Испытание на воздействие повышенной рабочей температуры сре-

5. Испытание на воздействие по-

вышенной предельной температуры

6. Испытание на воздействие пониженной рабочей температуры сре-

раз в 3 мес.

1. Определение изменения сопро-

тивления от изменения напряжения

1. Испытание выводов на воздей-

растягивающей силы, изгибающей силы,

крутящего момента

2. Испытание на теплостойкость

при пайке

Продолжение табл, б

Таблица 7

Номера пунктов

Наименование видов испытаний и пс-

следовательность их проведения

технических

ния испытаний

требований

контроля

Испытание на безотказность

раз в 12 мес.

1. Испытание на теплостойкость

при пайке

2. Испытание на вибропрочность (кратковременное)

3. Испытание на воздействие ударов одиночного действия

4. Испытание выводов на воздей-

растягивающей силы; крутящего момента

5. Испытание на воздействие из-

менения температуры среды 6. Испытание на воздействие повышенной рабочей температуры сре-

7. Испытание на воздействие повышенной предельной температуры среды

8. Испытание на воздействие пониженной рабочей температуры сре-

9. Испытание на воздействие по-

ниженной предельной температуры среды

10. Испытание на воздействие по-

вышенной влажности воздуха (кратковременное)

11. Проверка электрической проч-

ГОСТ 24238-84

Продолжение табл 7

3 4 3. Для непроволочных резисторов испытание по группе П-6 проводят только для резисторов, демонтаж которых затруднен или невозможен (например, при креплении резисторов за корпус путем его приклеивания или заливки, или приклеиванием корпуса с при-паиванием выводов).

3.4.4. Последовательность проведения испытаний резисторов конкретных типов по группе П-2 допускается изменять.

3 4.5. Испытания по группам П-1 — П-6 проводят на самостоятельных выборках.

3.4 6 Правила комплектования выборки по группам испытаний П-1 — П-6 должны быть указаны в стандартах или ТУ на резисторы конкретных типов

34 7 Испытания по группе П-1 проводят в соответствии с ГОСТ 25359-82 . Объем выборки и допускаемое число отказов устанавливают в стандартах или ТУ на резисторы конкретных типов.

Испытания проводят в течение 1000 ч

Значение интенсивности отказов А и должно быть 3-10~ 6 1/ч„ Значение доверительной вероятности Р* = 0,6

3.4.8. Испытания по группам П-2-П-6 проводят по планам выборочного двухступенчатого контроля, приведенным в табл. 8

Таблица 8

[ Приемом ный уро вень де фектности

План контроля

1 я ступень

2 я ступень

объем выборки п и и т

приемочное число Ci, шт

браковоч ное число С 2 , шт

объем вы борки п 2 , шт

суммарное приемочное число С 3 , шт

суммарное браковочное число С 4 , шт.

Примечание Объем выборки с приемочным уровнем качества 1,5 °/о применяют для резисторов, предназначенных для использования в уникальной аппаратуре.

3.4.9. При получении отрицательных результатов испытаний по группе П-1 возобновление приемки и отгрузки проводят по истечении 100 ч испытаний.

3.4.10. Резисторы, подвергавшиеся периодическим испытаниям по группе П-1, допускается поставлять потребителю отдельными партиями, если параметры резисторов соответствуют нормам при приемке и поставке.

Резисторы, подвергавшиеся испытаниям по остальным группам, поставке не подлежат.

3.5. Испытания на сохраняемость

3.5.1. Испытания на сохраняемость проводят по ГОСТ 21493 -■ -76.

4. МЕТОДЫ КОНТРОЛЯ

4Л. Общие положения

4.1.1. Испытания резисторов проводят при нормальных климатических условиях, установленных ГОСТ 20.57.406-81 , если другие условия не указаны при изложении конкретных методов контроля.

Испытания проводит контролер с остротой зрения 0,8-1 для обоих глаз (при необходимости с коррекцией) и нормальным све-тоощущением при освещенности резисторов (50-100) лк.

4.1.2. Параметры-критерии годности при начальных и заключительных измерениях контролируют в одинаковых электрических режимах.

4.2. Проверка на соответствие требованиям к конструкции

4.2.1. Общий вид, габаритные, установочные и присоединительные размеры резисторов (п. 2.2.1) проверяют по ГОСТ 21395.1-75 сличением с конструкторской документацией и измерением размеров любыми средствами измерений, обеспечивающими измерение с погрешностями, не превышающими установленные ГОСТ 8.051-81.

4.2.2. Внешний вид резисторов (п. 2.2.2) проверяют по ГОСТ 21395.1-75.

4.2.3. Массу резисторов (п. 2.2.3) проверяют по ГОСТ 21395.1 —

4.2.4. Механическую прочность выводов (п. 2.2.4) проверяют по ГОСТ 20.57.406-81 испытаниями:

выводов на воздействие растягивающей силы, метод 109-1;

гибких проволочных и ленточных выводов на изгиб, методы 110-1, 110-2;

резьбовых выводов на воздействие крутящего момента, метод 113-1.

При испытании на изгиб конкретное направление изгибов указывают в стандартах или ТУ на изделия конкретных типов.

ГОСТ 24238-84

При испытании резисторов с одножильными осевыми проволочными выводами выборку резисторов после испытания на воздействие растягивающей силы делят на две равные части, одну из которых подвергают испытаниям на воздействие изгибающей силы, а вторую — на воздействие скручивания.

При начальных и заключительных проверках проводят внешний осмотр резисторов.

при заключительных проверках после каждого вида испытания отсутствуют обрывы выводов и другие механические повреждения, не нарушена герметичность;

при заключительных измерениях изменение сопротивления резисторов с допускаемым отклонением свыше 1 % соответствует норме, указанной в стандартах или ТУ на резисторы конкретных типов, выбираемой из ряда: ±2; ±5; ±10;

изменение сопротивления резисторов с допускаемым отклонением до 1 % включительно, высоковольтных, высокомегаомных, высокочастотных и импульсных резисторов соответствует норме, установленной в стандартах или ТУ на резисторы конкретных типов.

4.2.5. Определение резонансных частот конструкции (п. 2.2.7)

проводят по ГОСТ 20.57.406-81, метод 100-1 при ускорении

10-50 м*с~ 2 (1-5 g).

Диапазон частот — до 1000 Гц.

Число испытуемых резисторов — 3 шт.

Направление воздействия вибрации указывают в стандартах или ТУ на резисторы конкретных типов.

При испытании резисторы крепят за выводы тем же способом, что и при испытании на вибропрочность.

Испытания проводят без электрической нагрузки.

В процессе воздействия вибрации определяют резонансные частоты резисторов.

Индикацию резонансов определяют электретным методом.

4.2.6. Способность резисторов к пайке (п. 2.2.5) проверяют по ГОСТ 20.57.406-81 , метод 402-1 или 402-2.

Перед проверкой способности к пайке резисторы подвергает ускоренному старению одним из методов, предусмотренных ГОСТ 20.57.406-81.

Конкретный метод указывают в стандартах или ТУ на резисторы конкретных типов.

После ускоренного старения резне юры подвергают конечной стабилизации в течение времени не менее 2 ч, после чего проводят проверку способности выводов резисторов к пайке.

При испытании применяют припой марки ПОС-61 по ГОСТ 21931-76 .

Применяемый флюс должен состоять из 25 % по массовой доле канифоли (ГОСТ 19113-84) и 75% по массовой доле этилового спирта (ГОСТ 18300-72).

Метод 402-1 применяют при проверке способности выводов резисторов, предназначенных для групповой пайки.

Метод 402-1

При начальных проверках проводят внешний осмотр резисто-ров.

Испытания проводят с применением теплового экрана.

Материал, толщину экрана и способ экранирования указывают в стандартах или ТУ на резисторы конкретных типов.

Площадь отдельных несмоченных участков измеряют любыми средствами измерения, обеспечивающими измерения с погрешностью в пределах ±0,5 мм (например, циркуль разметочный ГОСТ 24472-80), суммируют и вычисляют площадь, не смоченную расплавленным припоем.

Площадь поверхности вывода (б) в процентах, покрытую сплошным слоем припоя, определяют по формуле

где 5 -суммарная площадь несмоченных участков на оцениваемой поверхности, мм 2 ;

5оцеп, -площадь оцениваемой поверхности вывода, мм 2 .

При оценке различают:

несмоченные участки в виде точек (проколов), максимальные размеры которых до 1 мм. Площадь отдельной точки принимают равной 1 мм 2 ;

несмоченные участки в виде пятен (участков). Максимальные размеры пятен — более 1 мм. Площадь пятна (участка) и совокупность несмоченных участков в виде точек и пятен, расстояние между которыми не более 2 мм, определяют как площадь описанного прямоугольника.

Метод 402-2

При начальных проверках проводят внешний осмотр резисторов.

Конкретный тип паяльника указывают в стандартах или ТУ на резисторы конкретных типов.

Время пайки 2-5 с.

Необходимость применения теплоотвода и его вид указывают в стандартах или ТУ на резисторы конкретных типов.

При заключительных проверках проводят внешний осмотр резисторов.

ГОСТ 24238-84

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Резисторы должны быть изготовлены в соответствии с требованиями настоящего стандарта, а также стандартов или ТУ на резисторы конкретных типов по рабочей конструкторской и технологической документации, утвержденной в установленном порядке.

Обозначение комплекта конструкторской документации должно быть приведено в стандартах или ТУ на резисторы конкретных типов.

Конструкция резисторов, предназначенных для использования при автоматизированной сборке (монтаже) аппаратуры, должна обеспечивать механизацию и автоматизацию процессов сборки аппаратуры, если данное требование указано в стандартах или ТУ на резисторы конкретных типов.

2.2. Требования к конструкции

2.2.1. Общий вид, габаритные, установочные и присоединительные размеры резисторов должны соответствовать указанным в стандартах или ТУ на резисторы конкретных типов.

2.2.2. Внешний вид резисторов должен соответствовать образцам внешнего вида, отобранным и утвержденным в установленном порядке.

Образцы внешнего вида хранят на предприятии-изготовителе ш потребителям не высылают.

2.2.3. Масса резисторов не должна превышать значений, установленных в стандартах или ТУ на резисторы конкретных типов.

2.2.4. Выводы резисторов, включая места их присоединения, должны выдерживать без механических повреждений воздействия растягивающей силы, направленной вдоль оси вывода, крутящего момента (для резьбовых выводов) и скручивания (для гибких одножильных осевых проволочных выводов диаметром от 0,3 до

1,2 мм. Угол поворота и допускаемое число поворотов должны соответствовать значениям, установленным в стандартах или ТУ на резисторы конкретных типов).

Конкретные значения растягивающей силы, крутящего момента и скручивания устанавливают в стандартах или ТУ на резисторы конкретных типов.

Гибкие лепестковые, ленточные и проволочные выводы резисторов должны выдерживать без механических повреждений воздействие изгибающей силы. Допускаемое число изгибов должно соответствовать значению, установленному в стандартах или ТУ на резисторы конкретных типов.

2.2.5. Выводы резисторов и контактные поверхности резисторов без выводов должны обладать способностью к пайке без дополнительного обслуживания в течение времени, выбранного из ряда:

ГОСТ 24238-84

Метод испытания на способность к пайке резисторов без выводов устанавливают в стандартах или ТУ на резисторы конкретных типов.

Теплостойкость резисторов при пайке (а. 2.2.6) проверяют по ГОСТ 20.57.406-81 , метод 403-1 или 403-2.

Конкретный метод или метод проверки резисторов без выводов указывают в стандартах или ТУ на резисторы конкретных типов.

При начальных проверках проводят внешний осмотр резисторов и измеряют сопротивление резисторов.

Температура припоя в ванне (260±5)°С.

Испытание по методу 403-1 проводят с применением теплового экрана. Материал, толщину экрана и способ экранирования указывают в стандартах или ТУ на резисторы конкретных типов. *

Общее число выводов, подвергаемых испытаниям, устанавливают в стандартах или ТУ на резисторы конкретных типов.

Продолжительность конечной стабилизации — не менее 2 ч.

При заключительных проверках проводят внешний осмотр резисторов и измерение сопротивления резисторов.

Резисторы считают выдержавшими испытания, если:

при заключительных проверках внешний вид резисторов соответствует требованиям п. 2.2.2;

изменение сопротивления резисторов соответствует значениям, установленным в стандартах или ТУ на резисторы конкретных типов, выбираемых из ряда: ±2; ±3; ±5; ±10 %.

4.2.8. Герметичность резисторов (п. 2.2.8) проверяют по ГОСТ 20.57.406-81 одним из методов, указанных в стандартах или ТУ на резисторы конкретных типов.

Проводят предварительную очистку резисторов от загрязнений способом, указанным в ТУ, и выдерживают в нормальных климатических условиях в течение времени, указанного в стандартах или ТУ на резисторы конкретных типов.

4.2.9. Коррозионную стойкость резисторов (п. 2.2.9) проверяют при испытании на воздействие повышенной влажности воздуха и соляного тумана.

4.2.10. Пожароопасность резисторов (и. 2.2.11) проверяют испытанием на способность вызывать горение и испытанием на горючесть.

Испытания резисторов на пожарную безопасность проводят в нормальных климатических условиях по ГОСТ 20.57.406-81 ,

Испытания проводят в вытяжном шкафу с использованием измерителя времени, источников питания (для испытания на способность вызывать горение) и средств измерения, обеспечивающих задание и контроль параметров режима, испытания и регистрацию признаков пожарной опасности резисторов.

Точность измерения продолжительности признаков пожарной опасности должна быть не менее ± 1 с.

12, 18 мес с даты их изготовления при соблюдении режимов и правил выполнения пайки, указанных в разд. 6.

Конкретный срок паяемости резисторов должен быть указан в стандартах или ТУ на резисторы конкретных типов.

Покрытия выводов, предназначенных для пайки, не должны иметь просветов основного металла, коррозионных поражений, отслаивания и шелушения.

При использовании покрытий выводов расстояние непокрытой части вывода от границы покрытия до корпуса резистора не должно превышать значения, установленного в стандартах или ТУ на резисторы конкретных типов.

2.2.6. Резисторы должны быть теплостойкими при пайке при условии соблюдения режимов и правил выполнения пайки, указанных в разд. 6. Минимальное расстояние от корпуса резистора до места пайки должно соответствовать значению, установленному в стандартах или ТУ на резисторы конкретных типов.

2.2.7. Резисторы не должны иметь резонансных частот в диапазоне с верхней частотой, установленной в стандартах или ТУ на резисторы конкретных типов.

2.2.8. Резисторы должны быть герметичными (только для герметичных резисторов).

2.2.9. Резисторы должны обладать коррозионной стойкостью или быть надежно защищены от коррозии.

2.2.10. Температура перегрева резисторов не должна превышать значений, установленных в стандартах или ТУ на резисторы конкретных типов.

2.2.11. Резисторы в пожаробезопасном исполнении не должны самовоспламеняться и воспламенять окружающие его элементы и материалы аппаратуры в диапазоне от 1,1 Р нсм до значения, установленного в стандартах или ТУ на резисторы конкретных типов из ряда: 5, 10, 15, 20, 25 Р ном

Резисторы должны быть трудногорючими.

2.2.12. Удельная материалоемкость резисторов не должна превышать значений, установленных в стандартах или ТУ на резисторы конкретных типов.

2.3 Требования к электрическим параметрам и режимам эксплуатации

2.3 1. Электрические параметры резисторов при режиме и поставке должны соответствовать приведенным в пп. 2.3.1.1-2.3.1.6.

2.3.1.1. Сопротивление резисторов должно соответствовать номинальному значению с учетом допускаемого отклонения, установленного в стандартах или ТУ на резисторы конкретных типов.

Номинальное значение и допускаемое отклонение сопротивления резисторов устанавливают в соответствии с ГОСТ 24013-80 .

2.3.1.2. Температурный коэффициент сопротивления (ТКС) резисторов в интервале положительных температур должен быть установлен в стандартах или ТУ на резисторы конкретных типов по ГОСТ 24013-80 .

ТКС в интервале отрицательных температур должен быть установлен в стандартах или ТУ на резисторы конкретных типов.

2.3.1.3. Уровень шумов непроволочных резисторов, кроме высокочастотных и импульсных, должен быть установлен в стандартах или ТУ на резисторы конкретных типов из ряда:

0,5; 1; 5 мкВ/В-для резисторов с допускаемым отклонением до 1 % включительно;

1; 5 мкВ/В -для резисторов с допускаемым отклонением свыше 1 %.

Для высоковольтных и высокомегаомных резисторов уровень шумов устанавливают в стандартах или ТУ на резисторы конкретных типов.

2.3.1.4. Сопротивление изоляции изолированных резисторов дол

жно быть не менее значений, установленных в стандартах или ТУ на резисторы конкретных типов, выбираемых из ряда: 100, 500,

1000, 5000, 10000 МОм.

2.3.1.5. Изолированные резисторы должны обладать электрической прочностью. Испытательное напряжение должно быть равно двойному номинальному напряжению.

2.3.1.6. Изменение сопротивления от изменения напряжения композиционных резисторов должно соответствовать нормам, установленным в стандартах или ТУ на резисторы конкретных ти-пов.

2.3.2. Электрические параметры резисторов в течение наработки (п. 2.5.1) в пределах времени, равного сроку сохраняемости (п. 2.5.2), при эксплуатации в режимах и условиях, допускаемых настоящим стандартом, а также стандартами или ТУ на резисторы конкретных типов, должны соответствовать нормам, установленным в стандартах или ТУ.

2.3.3. Электрические параметры резисторов в течение срока сохраняемости (п. 2.5.2) при хранении в условиях, допускаемых настоящим стандартом, а также стандартами или ТУ на резисторы конкретных типов, должны соответствовать нормам, установленным в стандартах или ТУ.

2.3.4. Предельно допускаемые значения электрических параметров резисторов и режимов их эксплуатации должны соответствовать приведенным в пп. 2.3.4.1-2.3.4.4.

2.3.4.1. Номинальная мощность рассеяния резисторов должна соответствовать значениям по ГОСТ 24013-80 . Конкретное значение номинальной мощности рассеяния должно быть установлено в стандартах или ТУ на резисторы конкретных типов.

2.3.4.2. Допускаемая мощность рассеяния резисторов для интервала рабочих температур и давлений должна соответствовать значениям, установленным в стандартах или ТУ на резисторы конкретных типов.

2.3.4.3. Предельное рабочее напряжение резисторов должно соответствовать значениям, установленным в стандартах или ТУ на резисторы конкретных типов по ГОСТ 24013-80 .

2.3.4.4. Резисторы должны выдерживать воздействие импульсной нагрузки. Параметры импульсной нагрузки должны быть указаны в стандартах или ТУ на резисторы конкретных типов.

2.4. Требования по стойкости к внешним воздействующим факторам

2.4.1. Резисторы должны быть стойкими к воздействию механических факторов, установленных в стандартах или ТУ на резисторы конкретных типов согласно табл. 1 по ГОСТ 25467-82 .

Примечание. Требование к стойкости при воздействии ударов многократного и одиночного действия предъявляют по прочности,

2.4.2. Резисторы должны быть стойкими к воздействию климатических факторов, установленных в стандартах или ТУ на резисторы конкретных типов по ГОСТ 25467-82 .

Для высоковольтных высокомегаомных резисторов повышенная рабочая температура должна быть установлена в стандартах или ГУ на резисторы конкретных типов из ряда: 40, 55, 70, 85, 100, 125, 155, 175, 200 °С.

2.5. Требования к надежности

2.5.1. Интенсивность отказов Я э, отнесенная к нормальным климатическим условиям по ГОСТ 20.57.406-81 , в электрических режимах, установленных в стандартах или ТУ на резисторы конкретных типов, в течение наработки t d не должна превышать значений, установленных в стандартах или ТУ на резисторы конкрет-

ных типов из ряда 5*10~ 8 ; 3-10~ 8 ; 2-10 8 1/ч и далее в соответствии с ГОСТ 25359-82 .

Значение наработки 1 Н должно соответствовать установленному в стандартах или ТУ на резисторы конкретных типов из ряда: 15000, 20000, 25000, 30000, 40000 ч и далее в соответствии с ГОСТ 25359-82.

2.5.2. 95-процентный срок сохраняемости резисторов при хранении в условиях, допускаемых настоящим стандартом, а также стандартами или ТУ на резисторы конкретных типов, должен быть не менее значений, установленных в стандартах или ТУ из ряда: 12, 15, 20, 25 лет.

3. ПРАВИЛА ПРИЕМКИ

3.1. Правила приемки резисторов — по ГОСТ 25360-82 .

Отдельные виды и группы квалификационных и периодических

испытаний, а также испытания резисторов на долговечность допускается, по согласованию со службой технического контроля не проводить, если на том же предприятии-изготовителе проводят аналогичные испытания резисторов той же конструкции специального назначения, изготовляемых по той же технологии за контролируемый период.

3.2. Квалификационные испытания

3.2.1. Состав испытаний, деление состава испытаний на группы испытаний и последовательность их проведения в пределах каждой группы должны соответствовать приведенным в табл. 2 для непро-волочных резисторов и табл. 3 — для проволочных резисторов.

Таблица 2 f

испытаний

Наименование видо* испытаний и последовательность их проведения

технических

требований

контроля

1. Проверка внешнего вида

2. Проверка разборчивости и содер-

жания маркировки

3. Проверка прочности маркировки

4. Проверка общего вида, габаритных, установочных и присоединитсль-

ных размеров

1. Измерение сопротивления

2. Измерение уровня шумов

3. Измерение сопротивления изоляции

4. Проверка электрической прочности

5. Проверка герметичности

Продолжение табл. 2

испытаний

Наименование видов испытаний и последовательность их проведения

технических

требовании

контроля

Испытание на безотказность

1. Определение температурного коэффициента сопротивления

2. Испытание на воздействие изменения температуры среды

3. Испытание на воздействие повышенной влажности воздуха (кратковременное)

4. Испытание на воздействие повышенной рабочей температуры среды

5. Испытание на воздействие повышенной предельной температуры среды

6. Испытание на воздействие пониженной рабочей температуры среды

7. Испытание на воздействие пониженной предельной температуры среды

8. Испытание на вибропрочность (кратковременное)

9. Испытание на воздействие ударов одиночного действия

10. Испытание на воздействие атмосферного пониженного давления

И. Испытание на воздействие атмосферного повышенного давления

Испытание на способность к пайке

1. Определение изменения сопротив-юния от изменения напряжения

2. Проверка импульсной нагрузкой

1. Проверка массы

2. Испытание выводов на воздействия.

растягивающей силы изгибающей силы крутящего момента 3. Испытание на теплостойкость при пайке

1. Испытание на вибропрочность (кратковременное)

2. Испытание на воздействие ударов одиночного действия

Продолжение табл. 2

Номера пунктов

испытаний

Наименование видов испытаний и последовательность их проведения

технических

требовании

контроля

Испытание на долговечность

Испытание на воздействие плесневых грибов

Испытание на воздействие соляного тумана

Испытание на пожарную безопасность

Таблица 3

Номера пунктов

вспытаний

Наименование видов испытаний и последовательность их проведения

технических

требований

контроля

1. Проверка внешнего вида

2. Проверка разборчивости и содер-

жания маркировки

3. Проверка прочности маркировки

4. Проверка общего вида, габаритных, установочных и присоединитель-

ных размеров

1. Измерение сопротивления

2. Измерение сопротивления изоля-

3. Проверка электрической прочности

Испытание на безотказность

Продолжение табл. 8

Номера пунктов

испытании

Наименование видов испытаний и последовательность их проведения

технических

требований

контроля

1. Проверка массы

2. Испытание на теплостойкость при пайке

3. Испытание на вибропрочность (кратковременное)

4. Испытание на воздействие ударов одиночного действия

5. Испытание выводов на воздействия:

растягивающей силы крутящего момента 6. Проверка герметичности

7. Определение температурного коэффициента сопротивления

8. Испытание на воздействие изменения температуры среды

9. Испытание на воздействие повышенной рабочей температуры среды

10. Испытание на воздействие повышенной предельной температуры среды

31. Испытание на воздействие пониженной рабочей температуры среды

12. Испытание на воздействие пониженной предельной температуры среды

13. Испытание на воздействие повышенной влажности воздуха (кратковременное)

14. Испытание на воздействие атмосферного пониженного давления

15. Испытание на воздействие атмосферного повышенного давления

16. Проверка электрической прочности

Испытание на способность к пайке

1. Проверка габаритных размеров тары

2. Проверка прочности упаковки

Испытание на долговечность

Испытание на воздействие повышенной влажности воздуха (длительное)

Испытание на воздействие инея и росы

Под надежностью резисторов понимается их свойство сохранять свою работоспособность (проводимость, контактирование, плавность регулирования) и параметры (сопротивление, уровень шумов и др.) в пределах установленных норм при определенных условиях эксплуатации (или испытаний) в течение заданного времени.

Надежность оценивается с помощью количественных показателей, для описания которых используются методы математической статистики. Основными параметрами, характеризующими надежность изделия электронной техники, являются вероятность безотказной работы P(t) на заданное время t и интенсивность отказов λ(t).

Вероятность безотказной работы — это вероятность того, что в определенном режиме эксплуатации (или испытаний) в течение заданного времени отказ не произойдет. Практически эта величина может быть определена по результатам испытаний резисторов на надежность как отношение числа резисторов N-n i , оставшихся исправными в интервале времени испытаний t i к общему числу резисторов N, поставленных на испытание в данном режиме: P i ≈(N-n i)/N, где n i — число отказавших резисторов за время t i .

Степень надежности резисторов в каждый данный момент времени характеризуется интенсивностью отказов, которая приближенно определяется как число отказов Δn i за промежуток времени Δt i , отнесенное к числу резисторов, оставшихся исправными к началу рассматриваемого промежутка времени: λ(t)≈Δn i /[(N-n i)*Δt i ], где n i — число отказавших резисторов к началу рассматриваемого промежутка времени. По существу, интенсивность отказов — это вероятность отказа в единицу времени.

Под отказом резистора понимается как полное нарушение его работоспособности, так и ухудшение основных параметров свыше установленных норм. В соответствии с этим отказы классифицируются на полные и условные (параметрические).

Полный отказ возникает в результате нарушения электрической или механической прочности резистора и характеризуется значительным скачкообразным изменением его основных параметров. В частности, критериями полного отказа являются перегорание (обрыв) токопроводящего элемента, поломка основания и выводов, потеря контакта между средним выводом и проводящим элементом. Условный отказ резистора может проявляться в виде ухода одного из параметров (чаще всего сопротивления) за нормы, установленные в качестве критериев годности.

Поскольку степень допустимых изменений параметров резисторов, приводящих к нарушению работоспособности электронной аппаратуры, различна и зависит от требований к конкретной электронной схеме, условные отказы не имеют единых численных критериев. В самом деле, изменение сопротивления резистора в прецизионной аппаратуре, например, на ±2% может привести к отказу, но практически не скажется на работе схем, где резисторы используются в качестве гасящих элементов.

Количественные показатели надежности резисторов, полученные на основании информации об их отказах в процессе эксплуатации электронной аппаратуры и в результате специальных испытаний статистически обоснованных выборок из выпускаемой продукции, имеют усредненный характер и являются опытными значениями. Полученная таким образом экспериментальная оценка надежности определена с некоторой заданной достоверностью, т. е. вероятностью того, что показатель, характеризующий надежность всей совокупности резисторов, находится между некоторыми предельными значениями, внутри доверительного интервала. Различаются нижняя и верхняя доверительные границы.

Определение и проверка параметра надежности резисторов в условиях производства осуществляется выборочным испытанием в режиме номинальной электрической нагрузки при максимальной рабочей температуре, при которой техническими условиями допускается рассеяние номинальной мощности. Объем выборки устанавливается в зависимости от ожидаемого (контролируемого) значений вероятности безотказной работы, заданных достоверности и ожидаемого (приемочного) числа отказавших резисторов, которые приводятся в документах на поставку (ГОСТ, ТУ). Поскольку параметр надежности определяется с достоверностью, отличной от 100%, то всегда имеется вероятность того, что будет принята партия резисторов с уровнем надежности ниже, чем контролируемое значение (риск заказчика), и будет забракована партия резисторов с равным или более высоким, по сравнению с контролируемым значением, уровнем надежности (риск поставщика).

Количественные показатели надежности резисторов одного типа, полученные по данным эксплуатации и испытаний, неодинаковы, Это обусловлено тем, что при эксплуатации аппаратуры на элементы воздействует комплекс внешних и внутренних факторов, связанных с климатическими и метеорологическими особенностями эксплуатации, реальными режимами работы систем и условиями их обслуживания, в то время как при испытаниях резисторы подвергаются воздействию номинальной электрической и тепловой нагрузок. Поэтому указываемые в технических условиях показатели надежности резисторов служат для контроля уровня производства и не рекомендуются для использования при расчете надежности аппаратуры.

Долговечность резистора — это его свойство длительно сохранять работоспособность в определенных режимах и условиях эксплуатации до разрушения или другого предельного состояния. Для определения установленной в технической документации гарантийной наработки проводят определительные испытания резисторов в заданном режиме (обычно номинальном) до наработки, при которой обеспечивается вероятность безотказной работы не ниже установленной с заданной достоверностью. Принято ограничивать продолжительность испытаний до получения минимальной вероятности безотказной работы не менее 0,8 при достоверности, равной 0,7-0,9.

Сохраняемость резисторов — это свойство сохранять заданные эксплуатационные показатели в течение и после срока хранения и транспортирования, установленного в технической документации. При воздействии климатических факторов внешней среды параметры резисторов изменяются и с течением времени могут превысить нормы, допускаемые техническими условиями. В результате процессов старения наибольшему изменению при хранении подвергаются величина сопротивления и сопротивление изоляции. Кроме того, у проволочных переменных резисторов в результате коррозии может нарушаться контакт подвижной части с обмоткой.

Количественно сохраняемость характеризуется гарантированным сроком хранения , который для большинства типов резисторов составляет 12 лет. В качестве критерия при оценке сохраняемости может быть принята допустимая вероятность отказа за гарантированный срок хранения. Сохраняемость резисторов по сравнению с другими элементами электронной аппаратуры довольно высокая. Интенсивность отказов резисторов при хранении на 2-3 порядка ниже, чем у электровакуумных и полупроводниковых приборов. При этом большее число отказов приходится, как правило, на композиционные переменные резисторы.

Наибольшее изменение параметров резисторов при хранении имеет место в первый год хранения. Дальнейшее изменение, особенно величины сопротивления непроволочных резисторов, с известной степенью точности может быть аппроксимировано прямой линией. Это обстоятельство дает возможность прогнозировать будущее состояние резисторов. К концу срока хранения изменение величины сопротивления у металлодиэлектрических резисторов не превышает 5-6%, у углеродистых резисторов 10%, у композиционных 10-15% и у проволочных резисторов 1-2. Сохранение резисторов на складах производится в заводских упаковках. Раньше упаковки изготовлялись из картона и предохраняли они в основном от механических повреждений. В настоящее время разработаны и внедряются в производство упаковки из полиэтилена и пенопласта, которые защищают от воздействия влажной среды. Для длительного хранения рекомендуется использовать металлические запаянные коробки.

1.Элементы Радиоэлектронной Аппаратуры. Выпуск 26. Стальбовский В.В., Четвертков И.И. Резисторы. Москва: Издательство «Советское радио», 1973 год.
2.Резисторы: Справочник / В. В. Дубровский, Д. М. Иванов, Н. Я. Пратусевич и др.; под ред. И. И. Четверткова и В. М. Терехова. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1991 год.

Маркировка резисторов

— буквенно-цифровые и цветовые коды

Три Преобладают методы маркировки резисторов — цветовое кодирование, кодирование числовых значений и кодирование трехзначных символов. MIL-PRF-55342 назначает номера деталей с использованием буквенно-цифрового кодирования. Допуски, температура, тип упаковки и частота отказов интегрированы в некоторые схемы нумерации.

Когда я опубликовал рекомендации по новому использованию цветовых кодов на РФ Кафе Сморгасборд особенность, я пригласил посетителей вводить.Они представлены внизу страницы.

Нет ± 20%
Серебро 0,01 ± 10%
Золото 0.1 ± 5%
Черный 0 0 0 1
Коричневый 1 1 1 10 ± 1% M = 1.0
Красный 2 2 2 100 ± 2% P = 0.1
Оранжевый 3 3 3 1000 (= 1 КБ) R = 0,01
Желтый 4 4 4 10к S = 0,001
Зеленый 5 5 5 100 тыс.
Синий 6 6 6 1000 К
фиолетовый 7 7 7
Серый 8 8 8
Белый 9 9 9
6-2-3 — Серебристый
62 * 10 3 Ом, 10%
62 * 1000 Ом, 10%
62 кОм, 10%
1 — 9 — 6 — 0 — Красный
196 * 10 0 Ом, 0.1% сбоев Скорость
196 * 1 Ом, частота отказов 0,1%
196 Ом, частота отказов 0,1%

Вы также можете найти резисторы, помеченные 4 полосами для сопротивления, где первые 3 полосы имеют значение. цифры, а 4-я полоса — множитель. Пример: Резистор 20,5 Ом с допуском 1% будет отмечен как красный, черный, зеленый, золотой, коричневый. Вот такой удобный денди преобразователь цветовой полосы резистора из Digi-Key.

4 — 4 — 2 — 2
442 * 10 2 Ом
442 * 100 Ом
44200 Ом
44,2 кОм

01 100
02 102
03 105
04 107
05 110
06 113
07 115
08 118
09 121
10 124
11 127
12 130
13 133
14 137
15 140
16 143
17 147
18 150
19 154
20 158
2 162
22 165
23 169
24 174
25 178
26 182
27 187
28 191
29 196
30 200
31 205
32 210
33 215
34 221
35 226
36 232
37 237
38 243
39 249
40 255
41 261
42 267
43 274 ​​
44 280
45 287
46 294
47 301
48 309
49 316
50 324
51 332
52 340
53 348
54 357
55 365
56 374
57 383
58 392
59 402
60 412
61 422
62 432
63 442
64 453
65 464
66 475
67 487
68 499
69 511
70 523
71 536
72 549
73 562
74 576
75 590
76 604
77 619
78 634
79 649
80 665
81 681
82 698
83 715
84 732
85 750
86 768
87 787
88 806
89 825
90 845
91 866
92 887
93 909
94 931
95 953
96 976
01 100
02 110
03 120
04 130
05 150
06 160
07 180
08 200
09 220
10 240
11 270
12 300
13 330
14 360
15 390
16 430
17 470
18 510
19 560
20 620
21 680
22 750
23 820
24 910
25 100
26 110
27 120
28 130
29 150
30 160
31 180
32 200
33 220
34 240
35 270
36 300
37 330
38 360
39 390
40 430
41 470
42 510
43 560
44 620
45 680
46 750
47 820
48 910
49 100
50 120
51 150
52 180
53 220
54 270
55 330
56 390
57 470
58 560
59 680
60 820

Здесь это кафе РФ ответы посетителей на приглашение, которое я сделал для предлагаемого использования цветовой код, или для разных версий мнемоники, используемой для запоминания отношений числа и цвета.

Хорошо, поскольку люди просили политически некорректную мнемонику, которой меня учили в школе по электричеству. профессиональные классы, вот он:

Плохие парни насилуют наших девушек, но Вайолет охотно дает
также Плохие парни насилуют наших девушек за стенами Сада Победы


Используется ли мнемоника, не относящаяся к ПК, связана с YL по имени Вайолет? Мнемоника бойскаута I узнал еще тогда, когда было «Лучше будь прав, или твое большое большое предприятие идет на запад — получи немного сейчас».Очень ранняя форма ПК я думаю.

Кевин А., Вирджиния

Примечание: Get Some Now относится к толерантности — золото = 5%, серебро = 10%, нет = 20%


Привет Кирт,

Действительно, цветовые коды исчезнут. Однако, будучи дальтоником, мне все равно. Возможно, вы захотите узнать мнемоника цветового кода на голландском языке:

Zij Bracht Rozen Op Gerrits Graf Bij Vies Grauw Weer.

черный = zwart
коричневый = bruin
красный = rood
оранжевый = oranje
желтый = geel
зеленый = groen
синий = голубой
фиолетовый = фиолетовый
серый = grijs
белый = остроумие

(Примерный перевод: она принесла розы на могилу Герритса в грязно-серую погоду)

Мне любопытна английская версия, которая считается политически некорректной.

С уважением, Хьюго К., Нидерланды.


Попробуйте это: плохое пиво портит наши молодые кишки, но водка идет хорошо — купите сейчас

Troy Z., MT


Yo Kirt:

Я уверен, что я не первый, кто указывает, что черный ящик должен быть коричневым для вашего номера телефона. Я узнал цветовой код в 9 лет … не слишком часто встречаться с собой. Раньше я мог читать цвет конденсатора и индуктора коды, но я забыл их!

Я видел полное отсутствие навыков аналоговой инженерии у недавних сотрудников.Если у него нет клавиатуры, то что? это???? Даже на уровне компонентов цифровые навыки плохие. Также шокирует отсутствие навыков устранения неполадок. Сломанный? Замени все это дело! Сообществу инженеров нужна старомодная программа наставников / учеников, прежде чем старые парни уходят на пенсию; как я!

Rfcafe.com навсегда!

Увидимся, Нил


Bye Bye, Rosie, Off You Go, Бристоль Виа Грейт Вестерн.

Чистый и легкий для запоминания железнодорожным любителем.

Джо Б., старший инженер проекта


Мы можем обозначить цветом номера социального страхования …………… .. НЕТ!

73, Иоанна


Привет Кирт,

Ваша точка зрения на цветовую кодировку хорошо понята. Мне 41 год, и я был не слишком далеко в своей карьере, когда она « исчезла » по мере того, как технология SMT взяла верх. Недавно я снова столкнулся с ним и увидел, что он жив и здоров с указанием цвета провода, особенно с военными стандартами (MIL-STD-681).

Я поймал себя на том, что повторяю эту старую политически некорректную мнемонику (плохие
парней …) снова. 😉

С уважением, Рой А.

Arrgghh! Детали без номеров !. Как вы помните, недавно я написал… | Клайв «Макс» Максфилд | Supplyframe

Как вы помните, я недавно написал колонку Что это значит? Тайваньская компания Yageo купит американскую компанию Kemet! Между собой, Ягео и Кемет создают широкий спектр дискретных компонентов, включая резисторы, конденсаторы (например,g., тантал, алюминий, многослойная керамика, пленка, бумага, полимерный электролит, суперконденсаторы), сетевые фильтры переменного тока, сердечники и фильтры электромагнитных помех, глушители изгиба, электромеханические устройства (реле), металлокомпозитные индукторы, ферритовые изделия и трансформаторы / магнетизм.

Если резисторы SMT на ваших печатных платах не имеют маркировки, это делает осмотр еще более проблематичным (Источник изображения: отказано по запросу владельца изображения)

Причина, по которой я упоминаю это здесь, заключается в том, что я только что получил электронное письмо от друга, которого мы Позвоню Кермиту.Кермит работает в компании, которую мы назовем Hoppier Enterprises (он не хочет, чтобы я упоминал его настоящее имя или компанию, опасаясь репрессий). В своем электронном письме Кермит сказал следующее:

Привет, Макс, помните, несколько лет назад вы писали колонку о том, что сотрудники Yageo решили прекратить наносить маркировку на свои SMD-резисторы? В конце концов, возник общественный резонанс, и они отменили свое решение. Я только что получил известие, что Vishay перестала наносить маркировку на свои резисторы. Недавно мы получили несколько сотен печатных плат с немаркированными резисторами на них, поэтому мы не можем полностью их проверить.Вы что-нибудь слышали об этом? Становится ли это тенденцией, с которой нам просто придется жить? Как другие компании проводят контроль качества (КК) своих печатных плат?

Я помню тот столбец: Начало конца для маркировки компонентов SMT? Насколько я помню, в то время (примерно с 2013 по 2014 год) был большой протест, не в последнюю очередь из-за того, что Yageo сохранила те же номера деталей — они просто перестали наносить метки на детали. Как говорит Кермит, это вызвало общественный резонанс, и Ягео в конце концов отменил свое решение.

К сожалению, похоже, что у нас есть игра в Whac-A-Mole, потому что люди из Vishay действительно подняли головы, чтобы сказать, что они перестали добавлять маркировку значений сопротивления на толстопленочные резисторы SMD, начиная с 0603 до 2512 размера.

Хуже того, парни и девушки из Vishay идут тем же путем, что и ребята из Yageo; то есть, даже если они больше не маркируют компоненты, они сохраняют те же номера деталей. Чтобы увидеть уведомление об изменении продукта на веб-сайте Vishay, вам потребуется учетная запись Vishay, но вы можете получить к ней доступ на сайте Digi-Key.

Теперь очевидно, что отсутствие маркировки значений компонентов на деталях будет настоящей проблемой, если вы создаете хобби-проекты или разовые прототипы. Однако вы можете подумать, что отсутствие маркировки компонентов является меньшей проблемой в условиях полномасштабного производства и производства, в которых автоматические машины заполняют компоненты на платах.

На самом деле, отсутствие маркировки компонентов создает проблемы для всех. Представьте, что вы только что получили 1000 печатных плат.Отсутствие маркировки компонентов снижает ценность даже первого визуального осмотра.

Хуже того, значения компонентов могут измениться с новыми версиями платы, и в этом случае устранение неисправностей неисправных плат становится еще большей проблемой, потому что вы больше не можете смотреть на резистор, чтобы убедиться, что он имеет желаемое значение.

Если вы занимаетесь проектированием, сборкой, производством или распространением плат — и если вы покупаете детали у Vishay — я думаю, что сейчас самое подходящее время, чтобы высказать свое мнение по этой теме.Если мы не сможем убедить Vishay отменить свое решение, то, вероятно, скоро другие поставщики, такие как Yageo и Kemet (как было), последуют их примеру.

Что скажешь? Как вы думаете, это проблема, или вам все равно?

Коды резисторов SMD | SMT для поверхностного монтажа

1 SMD Резистор Коды | SMT Поверхность Крепление | Маркировка Значения Стр. 1. (). LinkedIn () Twitter () Лента новостей ().Информационный бюллетень (/ newsletter /) Google+ (). Искать ЭЛЕКТРОНИКА И РАДИОКОМПОНЕНТЫ (). Поверхность Крепление SMD Резистор Коды и Маркировка — подробная информация о SMD или SMT резисторе Маркировка и Коды с системами, используемыми для обозначения резистора и значений — в том числе EIA SMD Резистор маркировка /. схема кодирования. В ЭТОЙ СЕКЦИИ. Обзор SMT (/ info / data /).Пакеты компонентов SMD (/ info / data /). SMD Резистор (/ info / data / Resistor / smd_). SMD Резистор Маркировка (/ info / data / Resistor / smd_). MELF SMD Resistor (/ info / data / Resistor / smd_). Конденсатор SMD (/ info / data /). Quad Flat Package, QFP (/ info / data /). BGA, шариковая сетка (/ info / data /). SMD PLCC (/ info / data /). Хотя не все резисторы SMD или резисторы SMT имеют свои значения , некоторые из них имеют, и ввиду нехватки места системы SMD Resistor code не всегда могут обеспечить очевидную индикацию значения резистора .

2 Поверхность Крепление Резистор код системы в основном используются для обслуживания, ремонта и поиска неисправностей. Во время производства резисторы хранятся либо в намотанных лентах, либо в бункерах, используемых в машинах Surface Mount . SMD резистор Маркировка может использоваться в качестве проверки, чтобы убедиться, что установлены правильные значения , но обычно катушки или бункеры будут иметь соответствующую маркировку и код.Типовая Поверхность Крепление Резистор код SMD Резистор код системы Многие резисторы SMD не имеют маркировки для обозначения их номинала. Для этих устройств, когда они распакованы и извлечены из упаковки, очень трудно определить их стоимость. Соответственно, резисторы SMD обычно используются в барабанах или других упаковках, где нет возможности смешивания различных значений . На многих резисторах нанесена маркировка .Используются три системы: Трехзначная система кодирования SMD Резистор Четырехзначная система кодирования SMD Резистор EIA96 SMD Система кодирования резистора Трехзначная система кодирования SMT Резистор Система Трехзначная система кодирования резистора SMT это тот, который обычно используется для резисторов со стандартным допуском.

3 Как видно из названия, этот SMD резистор в маркировке система использует три цифры. Первые две цифры в коде обозначают значащие цифры, а третья — множитель.Это то же самое, что и цветные кольца, используемые для проводных резисторов, за исключением того, что вместо цветов используются реальные числа. Следовательно, резистор SMD с цифрами 472 будет иметь сопротивление 47 x 10 2 Ом, или. Однако будьте осторожны с резисторами, обозначенными цифрами, например, 100. Это не 100 Ом, но это точно соответствует схеме, и это 8:17:17. SMD Резистор Коды | SMT Поверхность Крепление | Маркировка Значения Стр. 2.Следовательно, резистор SMD с цифрами 472 будет иметь сопротивление 47 x 10 2 Ом, или. Однако будьте осторожны с резисторами, обозначенными цифрами, например 100. Это не 100 Ом, но оно точно соответствует схеме и составляет 10 x 10 0 или 10 x 1 = 10. Трехзначный SMD Резистор код Если используются значения сопротивления менее десяти Ом, буква «R» используется для обозначения положения десятичной точки.

4 Например, резистор со значением 4R7 будет.4 рисунок SMT Резистор код системы Четырехзначный или четырехзначный SMT резистор маркировка схемы используется для маркировки резисторов SMD с высоким допуском. Его формат очень похож на трехзначную схему изготовления резистора SMT , но расширен, чтобы дать большее количество значащих цифр, необходимых для резисторов с более высокими допусками. В этой схеме кодирования первые три числа будут указывать значащие цифры, а четвертое — множитель.Следовательно, резистор SMD с цифрами 4702 будет иметь сопротивление 470 x 10 2 Ом, или 47 кОм. Четырехзначный SMD резистор код Резисторы с значениями менее 100 Ом обозначаются буквой «R», как и раньше, для обозначения положения десятичной точки. EIA96 SMD Резистор код система A далее Поверхность Крепление Резистор код схема или SMD Схема кодирования резистора начала использоваться, и она нацелена на 1% допуск резисторов SMD, использующих резистор серии EIA96 или E-96 .

5 Поскольку используются резисторы с более высоким допуском, требуются дополнительные значения. Однако небольшой размер резисторов SMT затрудняет чтение цифр. Соответственно, новая система стремится решить эту проблему. Используя только три цифры, фактические символы могут быть больше, чем символы четырехзначной системы, которые в противном случае потребовались бы. В схеме кодирования резистора EIA SMD используется трехзначный код : первые 2 числа обозначают 3 значащие цифры значения резистора .Третий символ — это буква, обозначающая множитель. Таким образом, этот SMD. Резистор схему маркировки не следует путать со схемой 3 обозначений , поскольку буквы будут различать ее, хотя буква R может использоваться в обеих системах. Для создания системы была взята серия резисторов E-96 , и каждое значение или набор значащих цифр были последовательно пронумерованы. Поскольку в серии E-96 всего 96 значений , для нумерации каждого значения необходимы только две цифры, и в результате это разумный способ уменьшить количество требуемых символов.

6 EIA SMD Резистор код Детали схемы EIA SMT код приведены в таблице ниже: EIA SMD Резистор код СХЕМА. код МНОЖИТЕЛЬ. Z Y или R X или S A 1. B или H 10. C 100. D 1 000. E 10 000. F 100 000. EIA SMT Резистор код схема умножителей EIA SMD резистор код СХЕМА МНОЖИТЕЛЕЙ. код SIG РИС. код SIG РИС. код SIG РИС. код SIG РИС.01100 25 178 49 316 73 562. 02 102 26 182 50 324 74 576. 03 105 27 187 51 332 75 590. 04 107 28 191 52 340 76 604. 05 110 29 196 53 348 77 619. 8:17:17 . SMD Резистор Коды | SMT Поверхность Крепление | Маркировка Значения Страница 3. 06 113 30 200 54 357 78 634. 07 115 31 205 55 365 79 649. 08 118 32 210 56 374 80 665. 09 121 33 215 57 383 81 681. 10 124 34 221 58 392 82 698. 11 127 35 226 59 402 83715. 12 130 36 232 60 412 84 732.13 133 37 237 61 422 85 750. 14 137 38 243 62 432 8 6 768 15 140 39 249 63 442 87 787. 16 143 40 255 64 453 88 806. 17 147 4 261 65 464 89 825.1 150 42 267 66 475 90 845.19 154 43 274 67 487

.20 158 44 280 68 499 92 887. 

7 21 162 45 287 69 511 93 909. 22 165 46 294 70 523 94 931. 23 169 47 301 71 536 95 953. 24 174 48 309 72 549 96 976. EIA SMT Резистор код значащие цифры схемы Например, резистор с маркировкой 68X можно разделить на два элемента.68 относится к значащим цифрам 499, а X относится к множителю. Следовательно, указанное значение равно 499 x =. Автор Ян Пул (). << Предыдущая (/ info / data / Резистор / smd_) | Далее >> (/ info / data / Resistor / smd_.). Поделиться Tweet 4 Дай в скупно Хотите еще этого? Подпишитесь на нашу рассылку новостей (/ newsletter /). БОЛЬШЕ ЦЕПЕЙ. Типы конденсаторов (/ info / data /). Диоды (/ info / data / semicond /). SMD Резистор (/ info / data / Resistor / smd_).Индукторы (/ info / data /). Кристаллы кварца (/ info / data /). Резисторы (/ info / data /). Технология SMD (/ info / data /). Переключатели (/ info / data /) Электронные компоненты (/ info / data /). Последние новости Компания Conrad представит на складе все конденсаторы W rth Elektronik (/ news / distribution-supply /. 8:17:17. SMD Resistor Codes | SMT Surface Mount | Marking Values ​​ Page 4 .)

8 Сработал термистор защиты цепи 277 В (/ news / electronics- components / 277-v-circuit-protection-термистор-разблокирован-5781).Оптимизированная доставка многоэкранного видео в реальном времени на Android STB (/ news / broadcast-technology / optimized-delivery-of-live-multiscreen-video-5780). IPETRONIK представляет модульные регистраторы данных третьего поколения (/ news / test-measurement / ipetronik-discoverals-third-generation-modular-data-5777) .. Больше новостей (). Ознакомьтесь с нашими электронными книгами по отличной цене (). РЕКОМЕНДУЕМЫЙ БЕЛЫЙ БУМАГА (/.). Объяснение тестирования VoLTE (http: //. Whitepapers / volte-testing -olated-20). Загрузите эту бесплатную электронную книгу, чтобы узнать, как тестирование решает проблемы использования вашего VoLTE.сети, мобильные устройства с поддержкой VoLTE и новые услуги для быстрого и эффективного вывода на рынок. Дополнительные технические документы (/.). КУРСЫ ОБУЧЕНИЯ (/ ОБУЧЕНИЕ-ОБУЧЕНИЕ-КУРСЫ /). Сертифицированный Informa LTE. Радиопланирование и. Профессиональная оптимизация (5-дневный учебный курс) (/ обучение-тренинг-курсы /. Id = радиотехника /. Informa -certed-lte- radio-Planning-56).

9 Эта программа сертификации охватывает принципы и выполнение планирования и оптимизации радиосвязи LTE. Дополнительные учебные курсы (/. Learning-training-курсы /).ИЗБРАННАЯ КНИГА (/ КНИЖНЫЙ МАГАЗИН / ЛУЧШИЕ-). Руководство по управлению конфигурацией программного обеспечения Alexis Leon При любой разработке программного обеспечения абсолютно необходимо хорошо читать .. (/ bookstore / Feature-). СОЕДИНЕННЫЕ ШТАТЫ АМЕРИКИ. Книжный магазин Великобритании, книжный магазин (/ bookstore / bookshop- (/ bookstore / bookshop-).). 8:17:17. SMD Резистор Коды | SMT Поверхность Крепление | Маркировка Значения Стр. 5. Предстоящие события Национальная неделя электроники 2015 (/ event /. National-electronics-week-2015-9).ES Live 2015 (/ event / es-live-2015-33). Международный симпозиум IEEE MTT-S по микроволновому излучению (/ event / ieee-mtt-s- international-микроволновой-симпозиум-29). Всемирный саммит малых клеток 2015 (/ event /. Small-cells-world-summit-2015-23). Курс "Введение в радар" (/ event /. Introduction-to-radar-course-51). Mobile World Congress Shanghai (/ event /. Mobile-world-congress-shanghai-32) .. Другие мероприятия (выставки /).

10 популярных статей Практическое проектирование печатных плат с использованием DesignSpark PCB (/ article / circuit-design / Practical-pcb-design-using-designspark-pcb-143).Безопасность и проектирование микроконтроллеров (/. Articles / processing-embedded / security-amp-microcontroller-design-144). Унификация подключения к Интернету вещей. упрощение; & безопасность (/ статьи /. беспроводные технологии / iot-подключение-унификация-упрощение-amp-безопасность-139). Агрегация операторов связи. Как протестировать ключевой компонент для LTE Advanced (/ статьи /. Сотовые-телекоммуникации / агрегация операторов связи-как-тест-79). Рынок электронных компонентов в 2015 году вырастет (/ article / distribution-supply /. Electronic-components-market-to-grow-in-133).. Еще статьи (). КАНАЛЫ РАЗДЕЛОВ САЙТА. О нас (/ rec- Новости () Производство антенн и силового вещания (/. Информация / о- Статьи (/ распространение (/ info / management (/ technology (/ info / info / производство /).)) Антенны /) info / power- broadcast /) Спутники (/ info /. Политика конфиденциальности (/ rec- Cellular Telecoms management /) Embedded (/ info / satellite /).))

Цветовой код резистора

для инженеров

Эта таблица поможет вам управлять цветовым кодом резистора, чтобы не сжечь схему из-за неправильного резистора.

Прямо под этим изображением находится небольшой учебник, который поможет вам в том же. Повеселись!

Таблица цветов резистора

Начало работы

Доступны резисторы

с различными значениями сопротивления от долей Ом (Ом) до миллионов Ом.

Значения сопротивления, допуска и номинальной мощности обычно печатаются на корпусе резистора в виде цифр или букв, если корпус резистора достаточно большой, чтобы прочитать отпечаток, например, резисторы большой мощности.В большинстве случаев, когда резистор небольшой, например углеродистый или пленочный на 1/4 Вт, эти характеристики будут иметь цветовую маркировку. Эти цветные окрашенные полосы образуют систему идентификации, известную как цветовой код резистора.

Международная схема цветовой кодировки резистора была разработана много лет назад как простой и быстрый способ определения омической величины резистора независимо от его размера или состояния. Он состоит из набора отдельных цветных колец или полос в спектральном порядке, представляющих каждую цифру номинала резисторов.

Маркировка цветового кода резистора всегда считывается по одной полосе, начиная слева направо, при этом полоса допуска большей ширины, ориентированная вправо, указывает ее допуск. Путем сопоставления цвета первой полосы с соответствующим ей номером в столбце цифр цветовой диаграммы ниже идентифицируется первая цифра, которая представляет собой первую цифру значения сопротивления.

Что такое коды допусков?

Цвета на резисторе, такие как коричневый, красный, зеленый, синий и фиолетовый, используются как коды допусков только для 5-полосных резисторов.Пустая (20%) «полоса» используется только с «4-полосным» кодом (3 цветных полосы + пустая «полоса»).

Пример: 1

На этом изображении вы видите его цвет Желто-Фиолетовый-Оранжевый-Золотой. Это соответствует 47 кОм с допуском +/- 5%.

Пример: 2

Здесь у нас есть резистор, окрашенный в цвет зеленый-красный-золотой-серебристый, , который составляет 5,2 Ом с допуском +/- 10%.

Пример: 3

Резистор цвета Белый-Фиолетовый-Черный должен быть 97 Ом с допуском +/- 20%.Когда вы видите только три цветные полосы на резисторе, вы знаете, что на самом деле это 4-полосный код с пустой (20%) полосой допуска.

Пример: 4

Резистор цвета Оранжевый-Оранжевый-Черный-Коричнево-фиолетовый будет иметь сопротивление 3,3 кОм с допуском +/- 0,1%.

Пример: 5

Резистор, окрашенный в цвет Коричнево-зеленый-серый-серебристо-красный , будет иметь сопротивление 1,58 Ом с допуском +/- 2%.

Пример: 6

Резистор цвета синий-коричневый-зеленый-серебристо-синий будет равен 6.15 Ом с допуском +/- 0,25%.

Цветовой код резистора Видео

ЦВЕТОВЫЕ КОДЫ РЕЗИСТОРА

ЦВЕТОВЫЕ КОДЫ РЕЗИСТОРА
Цветовые коды резистора RMA и гибкого резистора
A
Первая
Рисунок
B
Второй
Рисунок
C
Количество нулей
после второй цифры
D
Допуск
(+/-)
 Черный...0 
 Черный ... 0 
 Черный ... нет 
 Золото ........ 5% 
 Коричневый ... 1 
 Коричневый ... 1 
 Коричневый ... 1
 
 Серебро ..... 10% 
 Красный ..... 2 
 Красный ..... 2 
 Красный ..... 2
 
 Нет Цвет ... 20% 
 Оранжевый..3 
 Оранжевый..3 
 Оранжевый..3 
 
 Желтый..4 
 Желтый..4 
 Желтый..4 
 
 Зеленый ... 5 
 Зеленый ... 5 
 Зеленый ... 5 
 
 Синий .... 6 
 Синий .... 6 
 Синий.... 6 
 
 Фиолетовый..7 
 Фиолетовый..7 
 Фиолетовый..7 
 
918 Серый ... 8
 Серый .... 8 
 Серый .... 8 
 
 Белый ... 9 
 Белый ... 9 
 Белый. ..9 
 

Основа системы цветовой кодировки резисторов RMA Основа системы цветового кода резистора RMA заключается в том, что все значения сопротивления (в омах) может быть обозначена системой из трех цветов, нанесенных на резистор в виде узких полосок, точек или в виде цвета корпуса.В процент отклонения от значения сопротивления может быть обозначен четвертым полоса цвета.

Различные производители приняли несколько различных удобных устройств для маркировка этих цветных полос и точек на резисторах, но на той же основе система применяется ко всем из них. Система выглядит следующим образом:

(1) отображается первая цифра значения сопротивления в омах одним из цветов.
(2) вторая цифра представлена ​​другим цветом.
(3) количество нулей после второй цифры представлено третий цвет.
(4) процентное отклонение указанного значения сопротивления составляет представлен четвертым цветом. Золото = 5%, Серебро = 10%, и резисторы номиналом 20% не имеют цветной полосы.
Компоновки, используемые в коммерческих целях для маркировки цветных точек и Полосы на литых постоянных резисторах
Рисунки 1 и 2
(1)
первая цифра значения сопротивления в Ом обозначается корпусом цвета (А) резистора.
(2) вторая цифра обозначается цветом единицы конец (В) резистора.
(3) число нулей после второй цифры обозначается цветом точки (C) — Рисунок 1 или полосы (C) — Рисунок 2, в центре резистора. Когда нет центральной точки или полосы существует, предполагается, что точка или полоса того же цвета, что и тело и количество нулей судят по этому цвету.
(4) % допуска значения сопротивления составляет обозначается другой цветной полосой (D) (золотой или серебряной) на другой конец резистора. При отсутствии полосы допуска значение допуска предполагается равным +/- 20%.
Цветовая кодировка резисторов гибкого типа Гибкие тканевые резисторы с проволочной обмоткой также имеют кодировку RMA тремя идентифицирующие цвета, такие же, как у литых резисторов. Методика идентификация выглядит следующим образом:
Рисунок 3
(1)
корпус цвет (A) представляет первую цифру значение сопротивления в Ом.
(2) самая толстая нить (тройная нить) цвет (B) представляет собой второе число .
(3) тончайшая нить (однониточная) цвет (C) представляет число нулей после двух цифр.
Если толстая или тонкая нить отсутствует, предполагается, что она есть, того же цвета, что и тело.

Рисунки 4 и 5
Последовательное расположение цветных полос, показанное на рисунках 4 и 5, является более поздним система маркировки, широко используемая на литых резисторах, особенно на тех, которые предусмотрены с косичками осевого типа.В схеме маркировки, показанной на рисунке 4 три (или четыре) полосы расположены рядом с полосой (A). с указанием первой значащей цифры значения сопротивления.
Расположение ремешка, показанное на рисунке 5, отличается только положением группы. Здесь три полосы расположены не по центру резистора с начальная полоса (A), ближайшая к центру. Это действительно то же самое расположение, как на рисунке 4, с полосами, смещенными вправо так, чтобы полоса допуска (D) находится в конце.Полоса читается так же, как на рисунке 4, последовательно — слева направо.

Рисунок 6
Некоторые литые резисторы выглядят как маленькие узкие слюдяные конденсаторы. Эти обычно RMA имеет цветовую маркировку с помощью трех цветных точек как показано на рисунке 6. Эти точки читаются в последовательности A-B-C в таким же образом, как описано для маркировки на Рисунке 4.


Буква K обычно используется для обозначения килограммов (тысяч) Ом, а M — для обозначения мег (миллионов). Ом.Пример: 1K = 1000 Ом — 1,5M = 1500000 Ом. Имейте в виду, что на некоторых ранних На схемах буква M может иногда использоваться для обозначения значения 1000.
Почему некоторые радиопроизводители использовали нечетную стоимость Резисторы Вы когда-нибудь задумывались, почему производители используют резисторы нечетных номиналов? Ценности например, 51 000 вместо 50 000 или 99 000 вместо 100 000.
Некоторые из крупных производителей, например Philco, использовали пары ртути. освещение на их сборочных заводах. Некоторые цвета сложно различить при голубовато-зеленом свете этих ламп.Чтобы преодолеть это трудности, эти производители использовали резисторы нечетных номиналов. Например, черный в зелено-черно-оранжевом цвете резистора 50 000 Ом не ясно различим в этом свете. Поэтому вместо использования резистор на 50 000 Ом, вместо него использовался модуль на 51 000 Ом, поскольку каждый из цвета кода (зеленый — коричневый — зеленый) для этого значения будут отображаться достаточно хорошо. Точно так же резисторы на 99000 Ом были использованы вместо 100000 Ом и т. Д.
Практически во всех случаях, когда такие резисторы с нечетным номиналом встречаются в комплекте, может быть удовлетворительно заменено следующее более высокое или более низкое «четное» значение.

Почему резисторы имеют цветовую маркировку?

Одна из первых вещей, которую вы узнаете в электронике, — это как определять номинал резистора. Резисторы в сквозном отверстии имеют цветовую маркировку, и с этого обычно начинают работать новички. Но почему они так отмечены? Как красные знаки остановки и желтые линии посреди дороги, кажется, что так было всегда, хотя на самом деле это не так.

До 1920-х годов компоненты маркировались так, как хотелось бы производителю. Затем, в 1924 году, 50 производителей радио в Чикаго создали торговую группу. Идея заключалась в том, чтобы разделить патенты между участниками. Почти сразу же название было изменено с «Ассоциированные производители радиооборудования» на «Ассоциацию производителей радиооборудования» или RMA. С течением времени будет еще несколько изменений названия, пока, наконец, она не станет EIA или Electronic Industries Alliance. ОВОС фактически больше не существует.Он распался на несколько отдельных подразделений, но это уже другая история.

Это рассказ о том, как цветные полосы попали на каждый резистор в сквозном отверстии от всех производителей в мире.

точек, затем полосы

Ésistances anciennes annees 50 Франсуа Коллар, CC-BY-SA 4.0

К концу 1920-х годов RMA устанавливало стандарты, и одним из них был стандарт RMA для цветного кодирования. Проблема заключалась в том, что маркировать мелкие компоненты сложно, особенно в 1920-х годах.

Решением были цветные полосы, но не совсем в том виде, в котором мы их знаем сегодня. Стандарт по цветовой гамме был таким же, но корпус резистора выполнял роль первой полосы. Затем были бы две или три других полосы, чтобы показать остальную ценность. В некоторых случаях третья полоса на самом деле была точкой. Таким образом, основная часть резистора будет первого цвета полосы. «Кончик» резистора будет второй полосой, а точка — множителем. Радиоприемники, использующие эту схему, начали появляться в 1930 году. Вот таблица цветовых кодов из ежегодника Radio Today за 1941 год:

В рекламе резисторов в том журнале было указано, что они имеют цветовую маркировку RMA.Код вскоре распространился на конденсаторы (конденсаторы, говоря современным языком).

Точка, как и текст на цилиндрической части, может быть скрыта от просмотра в зависимости от положения резистора. В конце концов, все перешли на группы.

Цвета соответствуют видимому спектру (помните ROY G BIV?). Тем не менее, RMA не включил индиго, потому что, очевидно, многие люди не различают синий, индиго и фиолетовый как три разных цвета; во всяком случае, индиго — это действительно третичный цвет, и Ньютон включил его, очевидно, из-за своего интереса к оккультизму.Остается четыре слота, поэтому темные цвета представляют нижнюю часть (черный и коричневый), а яркие цвета — верхнюю (серый и белый).

Конечно, для дальтоника все это не было забавным. Считывание резистора с помощью счетчика или моста из цепи, безусловно, было ответом. А вот считывать один в цепи — другое дело.

Происхождение ценностей серии E

В 1952 году Международная электротехническая комиссия (IEC, еще одна группа стандартов) определила серию E, которая определяет, какие номиналы резисторов входят в комплект, чтобы вы могли получить равные интервалы в логарифмической шкале для резисторов.Если это звучит сбивающе с толку, рассмотрим пример.

Серия E12 рассчитана на резисторы 10%, и значения на ней дают вам 12 значений на декаду. Базовые значения:

.
 1, 1,2, 1,5, 1,8, 2,2, 2,7, 3,3., 3,9, 4,7, 5,6, 6,8, 8,2 

Вот почему вы можете получить, скажем, резистор 4,7 кОм или 47 кОм, но не резистор 40 кОм.

Однако следует учитывать допуск. Резистор 10% 39 кОм может быть отключен на 3,9 кОм, если ошибка подтолкнет сопротивление вверх, оно составит 42,9 кОм, что сделает резистор 40 кОм ненужным.То есть, резистор на 39 кОм вполне может быть резистором на 40 кОм. С другой стороны, резистор с низким сопротивлением 47 кОм может иметь значение 42,3 кОм, что меньше, чем у резистора с высоким значением 39 кОм.

Как и следовало ожидать, количество значений увеличивается с уменьшением допуска. Например, при 2% вы будете использовать E48, который имеет 48 значений за декаду (если вы догадались, E96 — стандарт, используемый для 1%, имеет 96 значений, вы будете правы). Используя E48, значения около 40 K составляют 38,3 K и 40,2 K. Это 39,06 на высокой стороне и 39,2 на низкой стороне.

В следующий раз

В следующий раз, когда вы возьмете в руки резистор и прочтете с него код, вы сможете вспомнить историю, которая стоит за всем этим. Наследие цветных полос переносится в область поверхностного монтажа не в виде цвета, а в виде трех цифр, представляющих первые два числа и множитель для номинала резистора. В наши дни многие электронные устройства, такие как беспроводные модули и литиевые батареи, включают в себя матрицу данных (что-то вроде QR-кода). Честно говоря, я удивлен, что все компоненты — для сквозного монтажа и поверхностного монтажа — не имеют какой-либо формы микроматрицы данных, которая позволяет вам направить на них свой телефон и просмотреть их полное техническое описание.Возможно, однажды.

резисторов специального назначения | CTS

Резисторы специального назначения

Резисторные цепи и RC-цепочки

CTS Резисторные сети и RC-заделки — это недорогие резистивные решения для стандартных и заказных топологий схем, включая изолированные и различные конфигурации с шинами. Наши массивы чип-резисторов помогают сэкономить место и снизить затраты на сборку, поскольку их размещают меньше, чем у дискретных компонентов.Эти массивы безвыводных резисторов для поверхностного монтажа имеют низкий профиль и могут использоваться в картах PCMCIA. Соответствующие RoHS массивы толстопленочных чипов резисторов могут поставляться со значениями сопротивления от 10 Ом до 1 МОм, поддерживая диапазон рабочих температур от -55 до + 125 ° C с допусками резисторов от ± 0,5% до ± 5% и отслеживая Температурный коэффициент сопротивления (TCR) до ± 100 ppm / ⁰C и шаг контакта от 0,025 дюйма до

Доступны в различных конфигурациях корпусов, содержащих до 48 резисторов и 64 контакта с плотностью до 750 резисторов на квадратный дюйм, они хорошо подходят для памяти и логических схем в картах PCI и LVPECL, оконечных модулях ввода-вывода FPGA, и интерфейсы разъема / объединительной платы высокой плотности.

Резисторы считывания тока

Токочувствительные резисторы

CTS хорошо подходят для контроля тока, ограничения тока и управления двигателем, в том числе в источниках питания, инверторах и жестких дисках компьютеров, и были разработаны для работы в приложениях с ведущими усилителями измерения тока. Доступны в виде металлических пластин и толстопленочных резисторов, эти маломощные резисторы доступны с допусками до ± 1% и значениями сопротивления до 0,00025 Ом.Они обладают значениями сопротивления с высокой точностью, которые остаются неизменными даже в широком диапазоне рабочих температур от -55 до + 180 ° C (для резисторов с металлическими пластинами). Они представляют собой компоненты для поверхностного монтажа различных размеров и соответствуют требованиям RoHS.

Резисторные цепи и RC-оконечные устройства

Резисторы считывания тока

Сверхвысокое сопротивление

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *