Как перевести микрофарады в нанофарады. Почему это важно для радиоэлектроники. Какие еще единицы используются для измерения емкости конденсаторов. Как правильно читать маркировку конденсаторов.
Что такое электрическая емкость и в каких единицах она измеряется
Электрическая емкость — это способность проводника накапливать электрический заряд. Основная единица измерения емкости в системе СИ — фарад (Ф). Однако фарад — это очень большая величина, поэтому на практике чаще используются дольные единицы:
- Микрофарад (мкФ) — 10-6 Ф
- Нанофарад (нФ) — 10-9 Ф
- Пикофарад (пФ) — 10-12 Ф
Для перевода между этими единицами используются следующие соотношения:
- 1 мкФ = 1000 нФ
- 1 нФ = 1000 пФ
Как перевести микрофарады в нанофарады
Чтобы перевести микрофарады в нанофарады, нужно умножить значение в микрофарадах на 1000:
1 мкФ = 1000 нФ
Например:
- 0,1 мкФ = 100 нФ
- 2,2 мкФ = 2200 нФ
- 10 мкФ = 10000 нФ
А для перевода нанофарад в микрофарады нужно разделить значение на 1000:

1000 нФ = 1 мкФ
Почему важно уметь переводить единицы емкости
Умение переводить единицы измерения емкости важно по нескольким причинам:
- В схемах и документации могут использоваться разные единицы
- Маркировка на конденсаторах часто дается в одних единицах, а номинал нужен в других
- При замене компонентов нужно правильно подобрать аналог
- В расчетах удобнее оперировать значениями в одинаковых единицах
Зная правила перевода, можно легко оперировать любыми значениями емкости.
Маркировка емкости на конденсаторах
На корпусах конденсаторов емкость может маркироваться разными способами:
- Прямое указание значения и единиц измерения (например, 100 нФ)
- Кодированная запись из 3-4 цифр
- Буквенно-цифровой код
Рассмотрим основные варианты маркировки:
Маркировка тремя цифрами
При такой маркировке первые две цифры означают значащие цифры, а третья — множитель. Емкость указывается в пикофарадах.
Например:
- 104 = 10 * 104 пФ = 100000 пФ = 100 нФ = 0,1 мкФ
- 473 = 47 * 103 пФ = 47000 пФ = 47 нФ = 0,047 мкФ
Маркировка четырьмя цифрами
Аналогична трехзначной, но использует три значащие цифры:

- 1502 = 15 * 102 пФ = 1500 пФ = 1,5 нФ
- 3301 = 330 * 101 пФ = 3300 пФ = 3,3 нФ
Буквенно-цифровая маркировка
Использует буквы для обозначения десятичной точки и единиц измерения:
- 4n7 = 4,7 нФ
- 10p = 10 пФ
- 2u2 = 2,2 мкФ
Как правильно читать маркировку конденсаторов
Чтобы правильно определить емкость конденсатора по маркировке, следуйте этим шагам:
- Определите тип маркировки (прямое указание, код из цифр, буквенно-цифровой код)
- Для кодов из цифр преобразуйте значение в пикофарады
- При необходимости переведите пикофарады в нужные единицы (нФ или мкФ)
- Для буквенно-цифровых кодов определите положение десятичной точки и единицы измерения
- Проверьте полученное значение на соответствие стандартному ряду номиналов
Помните, что реальная емкость может отличаться от номинальной в пределах допуска.
Стандартные ряды номиналов конденсаторов
Конденсаторы выпускаются со стандартизированными значениями емкости. Наиболее распространены ряды E6, E12 и E24:
- E6: 1.0, 1.5, 2.2, 3.3, 4.7, 6.8
- E12: E6 + 1.2, 1.8, 2.7, 3.9, 5.6, 8.2
- E24: E12 + 1.1, 1.3, 1.6, 2.0, 2.4, 3.0, 3.6, 4.3, 5.1, 6.2, 7.5, 9.1
Эти базовые значения умножаются на степени 10 для получения всего диапазона номиналов. Зная эти ряды, легче правильно интерпретировать маркировку.

Практическое применение знаний о единицах емкости
Умение работать с разными единицами измерения емкости и правильно читать маркировку конденсаторов пригодится в следующих ситуациях:
- Чтение и понимание электрических схем
- Подбор компонентов для ремонта электронной техники
- Разработка собственных электронных устройств
- Расчеты в радиотехнике (например, частоты резонансных контуров)
- Выбор подходящих конденсаторов для замены в устройствах
Эти знания особенно важны для радиолюбителей, инженеров-электронщиков и специалистов по ремонту электроники.
Заблуждения, связанные с единицами измерения емкости
Существует несколько распространенных заблуждений, связанных с единицами измерения емкости:
- Путаница между микрофарадами и нанофарадами. Важно помнить, что 1 мкФ = 1000 нФ.
- Неверная интерпретация маркировки. Например, «104» часто ошибочно читают как 104 пФ вместо правильных 100 нФ.
- Игнорирование допусков. Реальная емкость может отличаться от номинальной в пределах указанного допуска.
- Пренебрежение паразитными емкостями. В высокочастотных схемах даже небольшие паразитные емкости могут иметь значение.
- Забывание о зависимости емкости от напряжения. У некоторых типов конденсаторов (особенно керамических) емкость может существенно меняться при изменении приложенного напряжения.
Понимание этих нюансов поможет избежать ошибок при работе с электронными компонентами.

что это такое и для чего он нужен
Что такое конденсатор?
Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.
Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).
Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.
Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.
Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.
Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.
Принцип работы конденсаторов
При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.
В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.
Характеристики и свойства
К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:
- Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
- Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
- Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
- Полярность. При неверном подключении произойдет пробой и выход из строя.
- Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
- Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
- Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.
Виды конденсаторов
Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.
Физические величины, используемые в маркировке емкости керамических конденсаторов
Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.
Таблица единиц емкости, применяемых для бытовых керамических конденсаторов
Наименование единицы | Варианты обозначений | Степень по отношению к Фараду | |
Микрофарад | Microfarad | мкФ, µF, uF, mF | 10-6F |
Нанофарад | Nanofarad | нФ, nF | 10-9F |
Пикофарад | Picofarad | пФ, pF, mmF, uuF | 10-12F |
Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф).
Способы маркировки емкости конденсатора
На деталях советского производства, чаще всего имеющих довольно большую площадь поверхности, наносились числовые значения емкости, ее единица измерения и номинальное напряжение в вольтах. Например, 23 пФ, то есть 23 пикофарада.
Расшифровка маркировки обозначений современных керамических конденсаторов отечественного и зарубежного производства – мероприятие более сложное.
Какие параметры могут быть указаны в маркировке
Для конденсаторов важны три параметра:
- ёмкость;
- номинальное (рабочее) напряжение;
- допуск по отклонению ёмкости.
С первыми двумя всё ясно. Вот только стоит заметить, что на некоторых конденсаторах номинальное напряжение может быть не указано. Если предполагается высокое напряжение, надо смотреть в данных производителя.
Ёмкость
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили- , микро- , нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10-3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10-6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10-9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10-12 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Номинальное напряжение
Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.
Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.
Дата выпуска
Согласно «ГОСТ 30668-2000 Изделия электронной техники. Маркировка», указываются буквы и цифры, обозначающие год и месяц выпуска.
Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.
1990 | A |
1991 | B |
1992 | C |
1993 | D |
1994 | E |
1995 | F |
1996 | H |
1997 | I |
1998 | K |
1999 | L |
2000 | M |
2001 | N |
2002 | P |
2003 | R |
2004 | S |
2005 | T |
2006 | U |
2007 | V |
2008 | W |
2009 | X |
2010 | A |
2011 | B |
2012 | C |
2013 | D |
2014 | E |
2015 | F |
2016 | H |
2017 | I |
2018 | K |
2019 | L |
Расположение маркировки на корпусе
Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.
По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.
Таблица маркировки конденсаторов
Емкость конденсаторов может измеряться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF) и обозначаеться специальным кодом. Данная таблица поможет вам разобраться в маркировке обозначений при различных измерительных номиналах и подобрать нужные аналоги для замены. Существует универсальный измерительный прибор для радиокомпонентов. Может измерять индуктивности, ESR и потери электролитических конденсаторов. Проверяет и транзисторы (включая MOSFET), диоды, стабилитроны, кварцы. Тип деталей определяется автоматически и выводит значения на дисплей. В этом обзоре ESR тестер я описывал этот прибор.
1uF | 1000nF | 1000000pF | 105 |
0.82uF | 820nF | 820000pF | 824 |
0.8uF | 800nF | 800000pF | 804 |
0.7uF | 700nF | 700000pF | 704 |
0.68uF | 680nF | 680000pF | 624 |
0.6uF | 600nF | 600000pF | 604 |
0.56uF | 560nF | 560000pF | 564 |
0.5uF | 500nF | 500000pF | 504 |
0.47uF | 470nF | 470000pF | 474 |
0.4uF | 400nF | 400000pF | 404 |
0.39uF | 390nF | 390000pF | 394 |
0.33uF | 330nF | 330000pF | 334 |
0.3uF | 300nF | 300000pF | 304 |
0.27uF | 270nF | 270000pF | 274 |
0.25uF | 250nF | 250000pF | 254 |
0.22uF | 220nF | 220000pF | 224 |
0.2uF | 200nF | 200000pF | 204 |
0.18uF | 180nF | 180000pF | 184 |
0.15uF | 150nF | 150000pF | 154 |
0.12uF | 120nF | 120000pF | 124 |
0.1uF | 100nF | 100000pF | 104 |
0.082uF | 82nF | 82000pF | 823 |
0.08uF | 80nF | 80000pF | 803 |
0.07uF | 70nF | 70000pF | 703 |
0.068uF | 68nF | 68000pF | 683 |
0.06uF | 60nF | 60000pF | 603 |
0.056uF | 56nF | 56000pF | 563 |
0.05uF | 50nF | 50000pF | 503 |
0.047uF | 47nF | 47000pF | 473 |
0.04uF | 40nF | 40000pF | 403 |
0.039uF | 39nF | 39000pF | 393 |
0.033uF | 33nF | 33000pF | 333 |
0.03uF | 30nF | 30000pF | 303 |
0.027uF | 27nF | 27000pF | 273 |
0.025uF | 25nF | 25000pF | 253 |
0.022uF | 22nF | 22000pF | 223 |
0.02uF | 20nF | 20000pF | 203 |
0.018uF | 18nF | 18000pF | 183 |
0.015uF | 15nF | 15000pF | 153 |
0.012uF | 12nF | 12000pF | 123 |
0.01uF | 10nF | 10000pF | 103 |
0.0082uF | 8.2nF | 8200pF | 822 |
0.008uF | 8nF | 8000pF | 802 |
0.007uF | 7nF | 7000pF | 702 |
0.0068uF | 6.8nF | 6800pF | 682 |
0.006uF | 6nF | 6000pF | 602 |
0.0056uF | 5.6nF | 5600pF | 562 |
0.005uF | 5nF | 5000pF | 502 |
0.0047uF | 4.7nF | 4700pF | 472 |
0.004uF | 4nF | 4000pF | 402 |
0.0039uF | 3.9nF | 3900pF | 392 |
0.0033uF | 3.3nF | 3300pF | 332 |
0.003uF | 3nF | 3000pF | 302 |
0.0027uF | 2.7nF | 2700pF | 272 |
0.0025uF | 2.5nF | 2500pF | 252 |
0.0022uF | 2.2nF | 2200pF | 222 |
0.002uF | 2nF | 2000pF | 202 |
0.0018uF | 1.8nF | 1800pF | 182 |
0.0015uF | 1.5nF | 1500pF | 152 |
0.0012uF | 1.2nF | 1200pF | 122 |
0.001uF | 1nF | 1000pF | 102 |
0.00082uF | 0.82nF | 820pF | 821 |
0.0008uF | 0.8nF | 800pF | 801 |
0.0007uF | 0.7nF | 700pF | 701 |
0.00068uF | 0.68nF | 680pF | 681 |
0.0006uF | 0.6nF | 600pF | 621 |
0.00056uF | 0.56nF | 560pF | 561 |
0.0005uF | 0.5nF | 500pF | 52 |
0.00047uF | 0.47nF | 470pF | 471 |
0.0004uF | 0.4nF | 400pF | 401 |
0.00039uF | 0.39nF | 390pF | 391 |
0.00033uF | 0.33nF | 330pF | 331 |
0.0003uF | 0.3nF | 300pF | 301 |
0.00027uF | 0.27nF | 270pF | 271 |
0.00025uF | 0.25nF | 250pF | 251 |
0.00022uF | 0.22nF | 220pF | 221 |
0.0002uF | 0.2nF | 200pF | 201 |
0.00018uF | 0.18nF | 180pF | 181 |
0.00015uF | 0.15nF | 150pF | 151 |
0.00012uF | 0.12nF | 120pF | 121 |
0.0001uF | 0.1nF | 100pF | 101 |
0.000082uF | 0.082nF | 82pF | 820 |
0.00008uF | 0.08nF | 80pF | 800 |
0.00007uF | 0.07nF | 70pF | 700 |
0.000068uF | 0.068nF | 68pF | 680 |
0.00006uF | 0.06nF | 60pF | 600 |
0.000056uF | 0.056nF | 56pF | 560 |
0.00005uF | 0.05nF | 50pF | 500 |
0.000047uF | 0.047nF | 47pF | 470 |
0.00004uF | 0.04nF | 40pF | 400 |
0.000039uF | 0.039nF | 39pF | 390 |
0.000033uF | 0.033nF | 33pF | 330 |
0.00003uF | 0.03nF | 30pF | 300 |
0.000027uF | 0.027nF | 27pF | 270 |
0.000025uF | 0.025nF | 25pF | 250 |
0.000022uF | 0.022nF | 22pF | 220 |
0.00002uF | 0.02nF | 20pF | 200 |
0.000018uF | 0.018nF | 18pF | 180 |
0.000015uF | 0.015nF | 15pF | 150 |
0.000012uF | 0.012nF | 12pF | 120 |
0.00001uF | 0.01nF | 10pF | 100 |
0.000008uF | 0.008nF | 8pF | 080 |
0.000007uF | 0.007nF | 7pF | 070 |
0.000006uF | 0.006nF | 6pF | 060 |
0.000005uF | 0.005nF | 5pF | 050 |
0.000004uF | 0.004nF | 4pF | 040 |
0.000003uF | 0.003nF | 3pF | 030 |
0.000002uF | 0.002nF | 2pF | 020 |
0.000001uF | 0.001nF | 1pF |
100_Нанофарад_в_микрофарадах
1. Маркировка тремя цифрами.
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Маркировка четырьмя цифрами.
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.
3. Буквенно-цифровая маркировка.
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы.
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы.
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
Фарад | |
---|---|
Ф, F | |
Величина | электрическая ёмкость |
Система | СИ |
Тип | производная |
Фара́д (русское обозначение: Ф; международное обозначение: F; прежнее название — фара́да) — единица измерения электрической ёмкости в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея [1] . 1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт :
Через основные единицы системы СИ фарад выражается следующим образом:
В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной (Ф). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада. Например, обозначение единицы измерения абсолютной диэлектрической проницаемости «фарад на метр» записывается как Ф/м.
В Международную систему единиц фарад введён решением XI Генеральной конференции по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом [2] .
Фарад — очень большая ёмкость для уединённого проводника: ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца (ёмкость же шара размером с Землю, используемого как уединённый проводник, составляла бы около 710 микрофарад).
Содержание
Область применения [ править | править код ]
В фарадах измеряют электрическую ёмкость проводников, то есть их способность накапливать электрический заряд. Например, в фарадах (и производных единицах) измеряют: ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов. Промышленные конденсаторы имеют номиналы, измеряемые в микро-, нано- и пикофарадах и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад. Ёмкость т. н. ионисторов (супер-конденсаторов с двойным электрическим слоем) может достигать многих килофарад.
Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).
Эквивалентное представление [ править | править код ]
Фарад может быть выражен через основные единицы системы СИ как:
Таким образом, его значение равно:
Ф = Кл·В −1 = А·с·В −1 = Дж·В −2 = Вт·с·В −2 = Н·м·В −2 = Кл 2 ·Дж −1 = Кл 2 ·Н −1 ·м −1 = с 2 ·Кл 2 ·кг −1 ·м −2 = с 4 ·А 2 ·кг −1 ·м −2 = с·Ом −1 = Ом −1 ·Гц −1 = с 2 ·Гн −1 ,
где Ф — фарад , А — ампер , В — вольт , Кл — кулон , Дж − джоуль , м — метр , Н — ньютон , с — секунда , Вт — ватт , кг — килограмм , Ом — ом , Гц — герц , Гн — генри .
Кратные и дольные единицы [ править | править код ]
Образуются с помощью стандартных приставок СИ.
С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘254 микрофарад’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микрофарад’ или ‘мкФ’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Ёмкость’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’96 мкФ в нФ‘ или ’58 мкФ сколько нФ‘ или ’48 микрофарад -> нанофарад‘ или ’52 мкФ = нФ‘ или ’83 микрофарад в нФ‘ или ’97 мкФ в нанофарад‘ или ’47 микрофарад сколько нанофарад‘.3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.
Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 1,852 623 439 931 3 × 10 26 . В этой форме представление числа разделяется на экспоненту, здесь 26, и фактическое число, здесь 1,852 623 439 931 3. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 1,852 623 439 931 3E+26. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 185 262 343 993 130 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.
Сколько нанофарад в 1 микрофарад?
1 микрофарад [мкФ] = 1 000 нанофарад [нФ] — Калькулятор измерений, который, среди прочего, может использоваться для преобразования микрофарад в нанофарад.
Маркировка конденсаторов | SOUNDLOAD.RU
Маркировка конденсаторов
- Маркировка тремя цифрами.
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
- Маркировка четырьмя цифрами.
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.
- Буквенно-цифровая маркировка.
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ
- Планарные керамические конденсаторы.
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
- Планарные электролитические конденсаторы.
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
, по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
буква | e | G | J | A | C | D | E | V | H (T для танталовых) |
напряжение | 2,5 В | 4 В | 6,3 В | 10 В | 16 В | 20 В | 25 В | 35 В | 50 В |
Похожее
Маркировка конденсаторов
1. Маркировка тремя цифрами .
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ |
Обозначение пикофарад на конденсаторах
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
1. Кодировка 3-мя цифрами
Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.
* Иногда последний ноль не указывают.
2. Кодировка 4-мя цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).
3. Маркировка ёмкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
4. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандар-
тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.
С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.
Зачем нужна маркировка?
Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:
- данные о ёмкости конденсатора – главной характеристике элемента;
- сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
- данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
- процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
- дату выпуска.
Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.
Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.
Маркировка отечественных конденсаторов
Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.
Ёмкость
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Номинальное напряжение
Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.
Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.
Дата выпуска
Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.
“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц – двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).
4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”
Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.
Год | Код |
---|---|
1990 | A |
1991 | B |
1992 | C |
1993 | D |
1994 | E |
1995 | F |
1996 | H |
1997 | I |
1998 | K |
1999 | L |
2000 | M |
2001 | N |
2002 | P |
2003 | R |
2004 | S |
2005 | T |
2006 | U |
2007 | V |
2008 | W |
2009 | X |
2010 | A |
2011 | B |
2012 | C |
2013 | D |
2014 | E |
2015 | F |
2016 | H |
2017 | I |
2018 | K |
2019 | L |
Расположение маркировки на корпусе
Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.
По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.
Цветовая маркировка отечественных радиоэлементов
При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.
На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.
Приводим для вас пример как обозначается тот или иной элемент – емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.
Маркировка конденсаторов импортного производства
На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.
Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.
Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.
Цветовая маркировка импортных конденсаторов
Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.
Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.
Маркировка smd компонентов
Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.
Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.
Заключение
Как вы уже догадались, маркировка данных предметов имеет весьма широкий вариант. Особенно большое количество маркировок имеют конденсаторы, которые были произведены за границей. Довольно часто встречаются изделия не большого размера, параметры, которых можно определить с помощью специальных измерений.
1. Маркировка тремя цифрами.
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Маркировка четырьмя цифрами.
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.
3. Буквенно-цифровая маркировка.
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы.
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы.
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
буква | e | G | J | A | C | D | E | V | H (T для танталовых) |
напряжение | 2,5 В | 4 В | 6,3 В | 10 В | 16 В | 20 В | 25 В | 35 В | 50 В |
Кодовая маркировка, дополнение
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
А. Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Код | Емкость [пФ] | Емкость [нФ] | Емкость [мкФ] |
109 | 1,0 | 0,001 | 0,000001 |
159 | 1,5 | 0,0015 | 0,000001 |
229 | 2,2 | 0,0022 | 0,000001 |
339 | 3,3 | 0,0033 | 0,000001 |
479 | 4,7 | 0,0047 | 0,000001 |
689 | 6,8 | 0,0068 | 0,000001 |
100* | 10 | 0,01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0,022 | 0,000022 |
330 | 33 | 0,033 | 0,000033 |
470 | 47 | 0,047 | 0,000047 |
680 | 68 | 0,068 | 0,000068 |
101 | 100 | 0,1 | 0,0001 |
151 | 150 | 0,15 | 0,00015 |
221 | 220 | 0,22 | 0,00022 |
331 | 330 | 0,33 | 0,00033 |
471 | 470 | 0,47 | 0,00047 |
681 | 680 | 0,68 | 0,00068 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1,5 | 0,0015 |
222 | 2200 | 2,2 | 0,0022 |
332 | 3300 | 3,3 | 0,0033 |
472 | 4700 | 4,7 | 0,0047 |
682 | 6800 | 6,8 | 0,0068 |
103 | 10000 | 10 | 0,01 |
153 | 15000 | 15 | 0,015 |
223 | 22000 | 22 | 0,022 |
333 | 33000 | 33 | 0,033 |
473 | 47000 | 47 | 0,047 |
683 | 68000 | 68 | 0,068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0,15 |
224 | 220000 | 220 | 0,22 |
334 | 330000 | 330 | 0,33 |
474 | 470000 | 470 | 0,47 |
684 | 680000 | 680 | 0,68 |
105 | 1000000 | 1000 | 1,0 |
* Иногда последний ноль не указывают.
В. Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Код | Емкость[пФ] | Емкость[нФ] | Емкость[мкФ] |
1622 | 16200 | 16,2 | 0,0162 |
4753 | 475000 | 475 | 0,475 |
С. Маркировка емкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
Код | Емкость [мкФ] |
R1 | 0,1 |
R47 | 0,47 |
1 | 1,0 |
4R7 | 4,7 |
10 | 10 |
100 | 100 |
D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Код | Емкость |
p10 | 0,1 пФ |
Ip5 | 1,5 пФ |
332p | 332 пФ |
1НО или 1nО | 1,0 нФ |
15Н или 15n | 15 нФ |
33h3 или 33n2 | 33,2 нФ |
590H или 590n | 590 нФ |
m15 | 0,15мкФ |
1m5 | 1,5 мкФ |
33m2 | 33,2 мкФ |
330m | 330 мкФ |
1mO | 1 мФ или 1000 мкФ |
10m | 10 мФ |
Кодовая маркировка электролетических конденсаторов для поверхностного монтажа
Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования
А. Маркировка 2 или 3 символами
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Код | Емкость [мкФ] | Напряжение [В] |
А6 | 1,0 | 16/35 |
А7 | 10 | 4 |
АА7 | 10 | 10 |
АЕ7 | 15 | 10 |
AJ6 | 2,2 | 10 |
AJ7 | 22 | 10 |
AN6 | 3,3 | 10 |
AN7 | 33 | 10 |
AS6 | 4,7 | 10 |
AW6 | 6,8 | 10 |
СА7 | 10 | 16 |
СЕ6 | 1,5 | 16 |
СЕ7 | 15 | 16 |
CJ6 | 2,2 | 16 |
CN6 | 3,3 | 16 |
CS6 | 4,7 | 16 |
CW6 | 6,8 | 16 |
DA6 | 1,0 | 20 |
DA7 | 10 | 20 |
DE6 | 1,5 | 20 |
DJ6 | 2,2 | 20 |
DN6 | 3,3 | 20 |
DS6 | 4,7 | 20 |
DW6 | 6,8 | 20 |
Е6 | 1,5 | 10/25 |
ЕА6 | 1,0 | 25 |
ЕЕ6 | 1,5 | 25 |
EJ6 | 2,2 | 25 |
EN6 | 3,3 | 25 |
ES6 | 4,7 | 25 |
EW5 | 0,68 | 25 |
GA7 | 10 | 4 |
GE7 | 15 | 4 |
GJ7 | 22 | 4 |
GN7 | 33 | 4 |
GS6 | 4,7 | 4 |
GS7 | 47 | 4 |
GW6 | 6,8 | 4 |
GW7 | 68 | 4 |
J6 | 2,2 | 6,3/7/20 |
JA7 | 10 | 6,3/7 |
JE7 | 15 | 6,3/7 |
JJ7 | 22 | 6,3/7 |
JN6 | 3,3 | 6,3/7 |
JN7 | 33 | 6,3/7 |
JS6 | 4,7 | 6,3/7 |
JS7 | 47 | 6,3/7 |
JW6 | 6,8 | 6,3/7 |
N5 | 0,33 | 35 |
N6 | 3,3 | 4/16 |
S5 | 0,47 | 25/35 |
VA6 | 1,0 | 35 |
VE6 | 1,5 | 35 |
VJ6 | 2,2 | 35 |
VN6 | 3,3 | 35 |
VS5 | 0,47 | 35 |
VW5 | 0,68 | 35 |
W5 | 0,68 | 20/35 |
В. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
С. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
Маркировка конденсаторов – виды и описание расшифровок
Огромное разнообразие конденсаторов позволяет использовать их практически в любой схеме. Для правильного подбора параметров электрической сети необходимо четко владеть знаниями маркировки конденсаторов, которые имеют ключевое значение. Сложность возникает из-за того, что она разнится в большом количестве случаев – на нее влияет производитель, страна-экспортер, вид и параметры самого конденсатора, и даже его размеры.
В данной статье рассмотрим основные параметры конденсаторов, которые влияют на их маркировку, а также научимся правильно читать значения, нанесенные производителем даже на самые крохотные изделия.
Параметры конденсаторов
Эти устройства предназначены для накопления электрического заряда. Емкость измеряется в специальных единицах, именуемых фарадами (Ф, или F). Однако 1 фарад – колоссальная величина, которая не используется в радиотехнике. Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. Единица обозначается как мкФ практически на всех типах конденсаторов. В теоретических расчетах иногда можно увидеть миллифарад (мФ, mF), что равняется фараду, деленному на тысячу. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10-9 и 10-12 фарад. Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.
Таблица значений фарадТипы маркировок
На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.
- Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы. Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.
- Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.
Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:
- первые две цифры обозначают первые две цифры емкости;
- третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
- такие конденсаторы всегда измеряются в пикофарадах.
Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.
Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка .55 равна 0.55 микрофарад.
Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.
- Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.
- Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом:
- первые два цвета означают емкость в пикофарадах;
- третий цвет показывает количество нулей, которые необходимо дописать;
- четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
Цвет | Значение |
Черный | 0 |
Коричневый | 1 |
Красный | 2 |
Оранжевый | 3 |
Желтый | 4 |
Зеленый | 5 |
Голубой | 6 |
Фиолетовый | 7 |
Серый | 8 |
Белый | 9 |
- Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5.1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.
Заключение
Чем меньше конденсатор, тем более компактной записи он требует. Однако современное производство способно нанести на корпус достаточно маленькие значения, расшифровка которых выполняется вышеописанными способами. Внимательно проверяйте полученные значения во избежание поломки собранной электрической цепи.
Таблица преобразования конденсаторов— AI Synthesis
В конце концов, в своем путешествии по созданию синтезатора DIY вы столкнетесь с ситуацией, когда вам придется конвертировать между мкФ, нФ и пФ.
Бумажные и электролитические конденсаторы обычно выражаются в мкФ (микрофарадах). Слюдяные конденсаторы обычно выражаются в пФ (пикофарадах). Между пФ и мкФ находится нФ, которая составляет одну-одну тысячу мкФ. Преобразование назад и вперед между мкФ,
нФ и пФ сбивает с толку, поэтому ниже приведена таблица преобразования конденсаторов.
Таблица преобразования
мкФ | нФ | пФ |
---|---|---|
1 мкФ | 1000 нФ | 1000000пФ |
0,82 мкФ | 820 нФ | 820000пФ |
0,8 мкФ | 800 нФ | 800000 пФ |
0,7 мкФ | 700 нФ | 700000 пФ |
0,68 мкФ | 680 нФ | 680000пФ |
0.6 мкФ | 600 нФ | 600000 пФ |
0,56 мкФ | 560 нФ | 560000пФ |
0,5 мкФ | 500 нФ | 500000 пФ |
0,47 мкФ | 470нФ | 470000pF |
0,4 мкФ | 400 нФ | 400000 пФ |
0,39 мкФ | 390 нФ | 3пФ |
0,33 мкФ | 330 нФ | 330000пФ |
0.3 мкФ | 300 нФ | 300000 пФ |
0,27 мкФ | 270 нФ | 270000пФ |
0,25 мкФ | 250 нФ | 250000 пФ |
0,22 мкФ | 220 нФ | 220000пФ |
0,2 мкФ | 200 нФ | 200000пФ |
0,18 мкФ | 180 нФ | 180000пФ |
0,15 мкФ | 150 нФ | 150000 пФ |
0.12 мкФ | 120 нФ | 120000 пФ |
0,1 мкФ | 100 нФ | 100000 пФ |
0,082 мкФ | 82 нФ | 82000пФ |
0,08 мкФ | 80 нФ | 80000пФ |
0,07 мкФ | 70 нФ | 70000пФ |
0,068 мкФ | 68 нФ | 68000пФ |
0,06 мкФ | 60 нФ | 60000 пФ |
0.056 мкФ | 56 нФ | 56000пФ |
0,05 мкФ | 50 нФ | 50000пФ |
0,047 мкФ | 47 нФ | 47000 пФ |
0,04 мкФ | 40 нФ | 40000 пФ |
0,039 мкФ | 39 нФ | 39000 пФ |
0,033 мкФ | 33 нФ | 33000пФ |
0,03 мкФ | 30 нФ | 30000 пФ |
0.027 мкФ | 27 нФ | 27000 пФ |
0,025 мкФ | 25 нФ | 25000 пФ |
0,022 мкФ | 22 нФ | 22000 пФ |
0,02 мкФ | 20 нФ | 20000пФ |
0,018 мкФ | 18 нФ | 18000 пФ |
0,015 мкФ | 15 нФ | 15000 пФ |
0,012 мкФ | 12 нФ | 12000 пФ |
0.01 мкФ | 10 нФ | 10000 пФ |
0,0082 мкФ | 8,2 нФ | 8200пФ |
0,008 мкФ | 8 нФ | 8000пФ |
0,007 мкФ | 7 нФ | 7000пФ |
0,0068 мкФ | 6,8 нФ | 6800пФ |
0,006 мкФ | 6 нФ | 6000 пФ |
0,0056 мкФ | 5,6 нФ | 5600пФ |
0.005 мкФ | 5 нФ | 5000 пФ |
0,0047 мкФ | 4,7 нФ | 4700пФ |
0,004 мкФ | 4 нФ | 4000 пФ |
0,0039 мкФ | 3,9 нФ | 3900пФ |
0,0033 мкФ | 3,3 нФ | 3300пФ |
0,003 мкФ | 3 нФ | 3000 пФ |
0,0027 мкФ | 2,7 нФ | 2700пФ |
0.0025 мкФ | 2,5 нФ | 2500 пФ |
0,0022 мкФ | 2,2 нФ | 2200 пФ |
0,002 мкФ | 2 нФ | 2000 пФ |
0,0018 мкФ | 1,8 нФ | 1800 пФ |
0,0015 мкФ | 1,5 нФ | 1500 пФ |
0,0012 мкФ | 1,2 нФ | 1200 пФ |
0,001 мкФ | 1 нФ | 1000 пФ |
0.00082 мкФ | 0,82 нФ | 820пФ |
0,0008 мкФ | 0,8 нФ | 800 пФ |
0,0007 мкФ | 0,7 нФ | 700 пФ |
0,00068 мкФ | 0,68 нФ | 680пФ |
0,0006 мкФ | 0,6 нФ | 600 пФ |
0,00056 мкФ | 0,56 нФ | 560пФ |
0,0005 мкФ | 0.5нФ | 500 пФ |
0,00047 мкФ | 0,47 нФ | 470пФ |
0,0004 мкФ | 0,4 нФ | 400 пФ |
0,00039 мкФ | 0,39 нФ | 390пФ |
0,00033 мкФ | 0,33 нФ | 330 пФ |
0,0003 мкФ | 0,3 нФ | 300 пФ |
0,00027 мкФ | 0,27 нФ | 270 пФ |
0.00025 мкФ | 0,25 нФ | 250 пФ |
0,00022 мкФ | 0,22 нФ | 220 пФ |
0,0002 мкФ | 0,2 нФ | 200 пФ |
0,00018 мкФ | 0,18 нФ | 180 пФ |
0,00015 мкФ | 0,15 нФ | 150 пФ |
0,00012 мкФ | 0,12 нФ | 120 пФ |
0,0001 мкФ | 0.1 нФ | 100 пФ |
0,000082 мкФ | 0,082 нФ | 82пФ |
0,00008 мкФ | 0,08 нФ | 80 пФ |
0,00007 мкФ | 0,07 нФ | 70 пФ |
0,000068 мкФ | 0,068 нФ | 68 пФ |
0,00006 мкФ | 0,06 нФ | 60 пФ |
0,000056 мкФ | 0,056 нФ | 56 пФ |
0.00005 мкФ | 0,05 нФ | 50 пФ |
0,000047 мкФ | 0,047 нФ | 47 пФ |
0,00004 мкФ | 0,04 нФ | 40 пФ |
0,000039 мкФ | 0,039 нФ | 39 пФ |
0,000033 мкФ | 0,033 нФ | 33пФ |
0,00003 мкФ | 0,03 нФ | 30 пФ |
0,000027 мкФ | 0.027nF | 27 пФ |
0,000025 мкФ | 0,025 нФ | 25 пФ |
0,000022 мкФ | 0,022 нФ | 22 пФ |
0,00002 мкФ | 0,02 нФ | 20 пФ |
0,000018 мкФ | 0,018 нФ | 18 пФ |
0,000015 мкФ | 0,015 нФ | 15 пФ |
0,000012 мкФ | 0,012 нФ | 12 пФ |
0.00001 мкФ | 0,01 нФ | 10 пФ |
0,0000082 мкФ | 0,0082 нФ | 8,2 пФ |
0,000008 мкФ | 0,008 нФ | 8 пФ |
0,000007 мкФ | 0,007 нФ | 7 пФ |
0,0000068 мкФ / MFD 0,0068 нФ | 6,8 пФ | |
0,000006 мкФ | 0,006 нФ | 6 пФ |
0,0000056 мкФ | 0.0056nF | 5,6 пФ |
0,000005 мкФ | 0,005 нФ | 5 пФ |
0,0000047 мкФ | 0,0047 нФ | 4,7 пФ |
0,000004 мкФ | 0,004 нФ | 4 пФ |
0,0000039 мкФ | 0,0039 нФ | 3,9 пФ |
0,0000033 мкФ | 0,0033 нФ | 3,3 пФ |
0,000003 мкФ | 0,003 нФ | 3пФ |
0.0000027 мкФ | 0,0027 нФ | 2,7 пФ |
0,0000025 мкФ | 0,0025 нФ | 2,5 пФ |
0,0000022 мкФ | 0,0022 нФ | 2,2 пФ |
0,000002 мкФ | 0,002 нФ | 2пФ |
0,0000018 мкФ | 0,0018 нФ | 1,8 пФ |
0,0000015 мкФ | 0,0015 нФ | 1,5 пФ |
0.0000012 мкФ | 0,0012 нФ | 1,2 пФ |
0,000001 мкФ | 0,001 нФ | 1 пФ |
Преобразование uf в нанофарады — Перевод единиц измерения
›› Перевести микрофарады в нанофарады
Пожалуйста, включите Javascript использовать конвертер величин
›› Дополнительная информация в конвертере величин
Сколько мкф в 1 нанофараде?
Ответ — 0.001.
Мы предполагаем, что вы конвертируете микрофарад и нанофарад .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
мкФ или
нанофарад
Производная единица в системе СИ для емкости — фарад.
1 фарад равен 1000000 мкф, или 1000000000 нанофарад.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать микрофарады в нанофарады.
Введите свои числа в форму, чтобы преобразовать единицы!
›› Таблица преобразования uf в нанофарад
1 мкф в нанофарад = 1000 нанофарад
2 мкФ в нанофарад = 2000 нанофарад
3 мкФ в нанофарад = 3000 нанофарад
4 мкФ в нанофарад = 4000 нанофарад
5 мкФ в нанофарад = 5000 нанофарад
6 мкФ в нанофарад = 6000 нанофарад
7 мкФ в нанофарад = 7000 нанофарад
8 мкф в нанофарад = 8000 нанофарад
9 мкф в нанофарад = 9000 нанофарад
10 мкФ в нанофарад = 10000 нанофарад
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из нанофарад в мкф, или введите любые две единицы ниже:
›› Преобразование общей емкости
мкФ к кулону / вольт
мкФ к секунде / ом
мкф к электростатическому блоку
мкФ к мегафараду
мкф к статфараду
мкф к декафараду
мкф к фараду
мкф к электромагнитному блоку
мкФ к амперам
мкф к электромагнитному блоку
мкФ к амперам
мкф / вольт
›› Определение: микрофарад
Префикс SI «micro» представляет собой коэффициент 10 -6 , или в экспоненциальной записи 1E-6.
Итак, 1 мкФ = 10 -6 фарад.
›› Определение: Нанофарад
Префикс SI «nano» представляет собой коэффициент 10 -9 , или в экспоненциальной записи 1E-9.
Итак, 1 нанофарад = 10 -9 фарад.
›› Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных.Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
Таблица преобразования значений стандартных конденсаторовпФ — нФ
Вот моя полная таблица преобразования для всех стандартных номиналов конденсаторов. Эта диаграмма позволяет конвертировать между пикофарадами, нанофарадами и микрофарадами.Со всеми значениями, перечисленными здесь, вам не нужно будет использовать калькулятор.
пикофарад | нанофарад | микрофарад | ||
1,0 пФ | 0,0010 нФ | 0,0000010 мкФ | ||
1,1 пФ | 0,0011 0,0011 нФ 11 | 1,1 пФ | 0,0012 нФ | 0,0000012 мкФ |
1,3 пФ | 0.0013 нФ | 0,0000013 мкФ | ||
1,5 пФ | 0,0015 нФ | 0,0000015 мкФ | ||
1,6 пФ | 0,0016 нФ | 0,0000016 мкФ | ||
1,8 пФ | 0,0018 нФ | 0,0000017 мкФ | ||
2,0 пФ | 0,0020 нФ | 0,0000020 мкФ | ||
2,2 пФ | 0,0022 нФ | 0,0000022 мкФ | ||
2,4 пФ | 0,0024 нФ | 0.0000024 мкФ | ||
2,7 пФ | 0,0027 нФ | 0,0000027 мкФ | ||
3,0 пФ | 0,0030 нФ | 0,0000030 мкФ | ||
3,3 пФ | 0,0033 нФ | 0,0000033 мкФ | ||
0,0036 нФ | 0,0000036 мкФ | |||
3,9 пФ | 0,0039 нФ | 0,0000039 мкФ | ||
4,3 пФ | 0,0043 нФ | 0,0000043 мкФ | ||
4.7 пФ | 0,0047 нФ | 0,0000047 мкФ | ||
5,1 пФ | 0,0051 нФ | 0,0000051 мкФ | ||
5,6 пФ | 0,0056 нФ | 0,0000056 мкФ | ||
6,2 пФ | 0,0021 62 нФ 0,0000062 мкФ | |||
6,8 пФ | 0,0068 нФ | 0,0000068 мкФ | ||
7,5 пФ | 0,0075 нФ | 0,0000075 мкФ | ||
8,2 пФ | 0.0082 нФ | 0,0000082 мкФ | ||
9,1 пФ | 0,0091 нФ | 0,0000091 мкФ | ||
10 пФ | 0,010 нФ | 0,000010 мкФ | ||
11 пФ 0,011 нФ | 0,000011 мкФ | |||
12 пФ | 0,012 нФ | 0,000012 мкФ | ||
13 пФ | 0,013 нФ | 0,000013 мкФ | ||
15 пФ | 0.015 нФ | 0,000015 мкФ | ||
16 пФ | 0,016 нФ | 0,000016 мкФ | ||
18 пФ | 0,018 нФ | 0,000018 мкФ | ||
20 пФ | 0,020 нФ | 0,000020 мкФ | ||
22 пФ | 0,022 нФ | 0,000022 мкФ | ||
24 пФ | 0,024 нФ | 0,000024 мкФ | ||
27 пФ | 0,027 нФ | 0.000027 мкФ | ||
30 пФ | 0,030 нФ | 0,000030 мкФ | ||
33 пФ | 0,033 нФ | 0,000033 мкФ | ||
36 пФ | 0,036 нФ | 0,000036 мкФ | ||
39 | 0,039 нФ | 0,000039 мкФ | ||
43 пФ | 0,043 нФ | 0,000043 мкФ | ||
47 пФ | 0,047 нФ | 0,000047 мкФ | ||
51 пФ | 0.051 нФ | 0,000051 мкФ | ||
56 пФ | 0,056 нФ | 0,000056 мкФ | ||
62 пФ | 0,062 нФ | 0,000062 мкФ | ||
68 пФ | 0,068 нФ | 0,000068 мкФ | ||
75 пФ | 0,075 нФ | 0,000075 мкФ | ||
82 пФ | 0,082 нФ | 0,000082 мкФ | ||
91 пФ | 0,091 нФ | 0.000091 мкФ | ||
100 пФ | 0,10 нФ | 0,00010 мкФ | ||
110 пФ | 0,11 нФ | 0,00011 мкФ | ||
120 пФ | 0,12 нФ | 0,12 нФ 0,00012 мкФ | ||
130 пФ | 0,13 нФ | 0,00013 мкФ | ||
150 пФ | 0,15 нФ | 0,00015 мкФ | ||
160 пФ | 0.16 нФ | 0,00016 мкФ | ||
180 пФ | 0,18 нФ | 0,00018 мкФ | ||
200 пФ | 0,20 нФ | 0,00020 мкФ | ||
220 пФ | 0,22 нФ | 0,00017 мкФ | ||
240 пФ | 0,24 нФ | 0,00024 мкФ | ||
270 пФ | 0,27 нФ | 0,00027 мкФ | ||
300 пФ | 0,30 нФ | 0,00030 мкФ | ||
330 пФ | 0.33 нФ | 0,00033 мкФ | ||
360 пФ | 0,36 нФ | 0,00036 мкФ | ||
390 пФ | 0,39 нФ | 0,00039 мкФ | ||
430 пФ | 0,43 нФ | 0,00043 | ||
470 пФ | 0,47 нФ | 0,00047 мкФ | ||
510 пФ | 0,51 нФ | 0,00051 мкФ | ||
560 пФ | 0,56 нФ | 0,00056 мкФ | ||
620 пФ | ||||
620 пФ62 нФ | 0,00062 мкФ | |||
680 пФ | 0,68 нФ | 0,00068 мкФ | ||
750 пФ | 0,75 нФ | 0,00075 мкФ | ||
820 пФ | 0,82 нФ | 0,00082 | ||
910 пФ | 0,91 нФ | 0,00091 мкФ | ||
1000 пФ | 1,0 нФ | 0,0010 мкФ | ||
1100 пФ | 1.1 нФ | 0,0011 мкФ | ||
1200 пФ | 1,2 нФ | 0,0012 мкФ | ||
1300 пФ | 1,3 нФ | 0,0013 мкФ | ||
1500 пФ | 1,5 нФ | 0,0015 мкФ | ||
1600 пФ | 1,6 нФ | 0,0016 мкФ | ||
1800 пФ | 1,8 нФ | 0,0018 мкФ | ||
2000 пФ | 2,0 нФ | 0,0020 мкФ | ||
2200 пФ | 2.2 нФ | 0,0022 мкФ | ||
2400 пФ | 2,4 нФ | 0,0024 мкФ | ||
2700 пФ | 2,7 нФ | 0,0027 мкФ | ||
3000 пФ | 3,0 нФ | 0,0030 мкФ | ||
3300 пФ | 3,3 нФ | 0,0033 мкФ | ||
3600 пФ | 3,6 нФ | 0,0036 мкФ | ||
3900 пФ | 3,9 нФ | 0,0039 мкФ | ||
4300 пФ | 4.3 нФ | 0,0043 мкФ | ||
4700 пФ | 4,7 нФ | 0,0047 мкФ | ||
5100 пФ | 5,1 нФ | 0,0051 мкФ | ||
5600 пФ | 5,6 нФ | 0,0056 мкФ | ||
6200 пФ | 6,2 нФ | 0,0062 мкФ | ||
6800 пФ | 6,8 нФ | 0,0068 мкФ | ||
7500 пФ | 7,5 нФ | 0,0075 мкФ | ||
8200 пФ | 8.2 нФ | 0,0082 мкФ | ||
9100 пФ | 9,1 нФ | 0,0091 мкФ | ||
10000 пФ | 10 нФ | 0,010 мкФ | ||
11000 пФ | 900 11 нФ0,011 мкФ | |||
12000 пФ | 12 нФ | 0,012 мкФ | ||
13000 пФ | 13 нФ | 0,013 мкФ | ||
15000 пФ | 15 нФ | 0.015 мкФ | ||
16000 пФ | 16 нФ | 0,016 мкФ | ||
18000 пФ | 18 нФ | 0,018 мкФ | ||
20000 пФ | 20 нФ | 0,020 мкФ | ||
22000 пФ | 22 нФ | 0,022 мкФ | ||
24000 пФ | 24 нФ | 0,024 мкФ | ||
27000 пФ | 27 нФ | 0,027 мкФ | ||
30000 пФ | 30 нФ | 0.030 мкФ | ||
33000 пФ | 33 нФ | 0,033 мкФ | ||
36000 пФ | 36 нФ | 0,036 мкФ | ||
39000 пФ | 39 нФ | 0,039 мкФ | ||
43000 пФ | 43 нФ | 0,043 мкФ | ||
47000 пФ | 47 нФ | 0,047 мкФ | ||
51000 пФ | 51 нФ | 0,051 мкФ | ||
56000 пФ | 56 нФ | 0.056 мкФ | ||
62000 пФ | 62 нФ | 0,062 мкФ | ||
68000 пФ | 68 нФ | 0,068 мкФ | ||
75000 пФ | 75 нФ | 0,075 мкФ | ||
82000 пФ | 82 нФ | 0,082 мкФ | ||
пФ | 91 нФ | 0,091 мкФ | ||
100000 пФ | 100 нФ | 0.10 мкФ | ||
110000 пФ | 110 нФ | 0,11 мкФ | ||
120000 пФ | 120 нФ | 0,12 мкФ | ||
130000 пФ | 130 нФ | 0,13 мкФ | ||
150000 пФ | 150 нФ | 0,15 мкФ | ||
160000 пФ | 160 нФ | 0,16 мкФ | ||
180000 пФ | 180 нФ | 0,18 мкФ | ||
200000 пФ | 200 нФ | 0.20 мкФ | ||
220000 пФ | 220 нФ | 0,22 мкФ | ||
240000 пФ | 240 нФ | 0,24 мкФ | ||
270000 пФ | 270 нФ | 0,27 мкФ | ||
300000 пФ | 300 нФ | 0,30 мкФ | ||
330000 пФ | 330 нФ | 0,33 мкФ | ||
360000 пФ | 360 нФ | 0,36 мкФ | ||
3пФ | 390 нФ | 0.39 мкФ | ||
430000 пФ | 430 нФ | 0,43 мкФ | ||
470000 пФ | 470 нФ | 0,47 мкФ | ||
510000 пФ | 510 нФ | 0,51 мкФ | ||
56 | 560 нФ | 0,56 мкФ | ||
620000 пФ | 620 нФ | 0,62 мкФ | ||
680000 пФ | 680 нФ | 0,68 мкФ | ||
750000 пФ | 750 нФ | 0.75 мкФ | ||
820000 пФ | 820 нФ | 0,82 мкФ | ||
0 пФ | 910 нФ | 0,91 мкФ | ||
1000000 пФ | 1000 нФ 1,0 мкФ | |||
1100000 пФ | 1100 нФ | 1,1 мкФ | ||
1200000 пФ | 1200 нФ | 1,2 мкФ | ||
1300000 пФ | 1300 нФ | 1.3 мкФ | ||
1500000 пФ | 1500 нФ | 1,5 мкФ | ||
1600000 пФ | 1600 нФ | 1,6 мкФ | ||
1800000 пФ | 1800 нФ | 1,8 мкФ | ||
2000000 пФ | 2000 нФ | 2,0 мкФ | ||
2200000 пФ | 2200 нФ | 2,2 мкФ | ||
2400000 пФ | 2400 нФ | 2,4 мкФ | ||
2700000 пФ | 2700 нФ | 2.7 мкФ | ||
3000000 пФ | 3000 нФ | 3,0 мкФ | ||
3300000 пФ | 3300 нФ | 3,3 мкФ | ||
3600000 пФ | 3600 нФ | 3,6 мкФ | ||
30 пФ | 3900 нФ | 3,9 мкФ | ||
4300000 пФ | 4300 нФ | 4,3 мкФ | ||
4700000 пФ | 4700 нФ | 4,7 мкФ | ||
5100000 пФ | 5100 нФ | 1 мкФ|||
5600000 пФ | 5600 нФ | 5,6 мкФ | ||
6200000 пФ | 6200 нФ | 6,2 мкФ | ||
6800000 пФ | 6800 нФ | 6,8 мкФ | ||
7500 нФ | 7,5 мкФ | |||
8200000 пФ | 8200 нФ | 8,2 мкФ | ||
00 пФ | 9100 нФ | 9,1 мкФ |
Выбор емкости конденсатора может быть настоящей головной болью для большинства любители и инженеры.»Какие стандартные значения?» это то, о чем я иногда спрашиваю себя.
Еще хуже, когда вам приходится ходить по магазинам в поисках нужного вам значения, потому что некоторые магазины могут указывать его в пФ, в то время как другие используют нФ, поэтому вы в конечном итоге конвертируете между пикофарадами, нанофарадами и микрофарадами, чтобы выяснить, то же самое.
Что ж, не бойтесь больше, потому что Пит здесь, и я решил сделать полную диаграмму для серии E24. Ни в одной поисковой системе не было сайта с такой диаграммой, показывающей каждую ценность вместе с конверсией.На вычисления у меня ушло много времени, так что будем надеяться, что кто-то сочтет это полезным.
«конденсатор мкФ в нФ במחיר המשתלם ביותר — ים נהדרים לקניית конденсатор мкФ в нФ מחנויות של конденсатор мкФ в нФ ב- AliExpress
מבצעים חמים ב- конденсатор uf to nf: העסקאות והנחות המקוונות הטובות ביותר עם ביקורות של לקוחות אמיתיים.
ות טובות! תה נמצא במקום הנכון עבור конденсатор от мкФ до нф.עכשיו אתה כבר יודע את זה, מה שאתה מחפש, אתה בטוח למצוא את זה aliexpress. אנחנו ממש יש אלפי מוצרים מעולים בכל קטגוריות המוצרים. ין אם אתה מחפש high-end תוויות ו זול, רכישות בכמות גדולה, אנו מבטיחים כי זה כאן aliexpress. תוכלו למצוא חנויות רשמיות עבור שמות מותגים לצד מוכרים הנחה עצמאית קטנה, כולם מציעים משלוח מהיר ואמיר.
ולם לא יוכה על בחירה, איכות ומחיר.כל יום תוכלו למצוא הצעות חדשות, מקוונות בלבד, הנחות בחנויות והזדמנות לשמור עוד יותר על ידי איסוף קופונים. י ייתכן שיהיה עליך לפעול מהר כמו זה העליון конденсатор uf to nf מוגדר להיות אחד המבוקשים ביותר המבוקשים ביותר בתוך זמן קצר. תחשוב כמה י אתה חברים יהיה כאשר אתה אומר להם שיש לך конденсатор uf к nf על aliexpress. עם ירים הנמוכים ביותר באינטרנט, מחירי משלוח זול ואפשרויות אוסף מקומי, תה יכול לעשות חיסכון גדול עוד יותר.
תה עדיין נמצא בשני מוחות לגבי конденсатор uf to nf וחושבים על ירת מוצר דומה, ‘אלכס’ הוא מקום מצוין להשוות מחירים ומוכרים.ו נעזור לך להבין אם זה שווה ת תוספת עבור גירסת high-end או אם אתה מקבל רק עסקה טובה על ידי מקבל ת הפריט זול יותר. Номер и, אם אתה רק רוצה לטפל בעצמך ו להתיז על הגרסה היקרה ביותר, תמיד יהיה תמיד לוודא שאתה יכול לקבל את המחיר הטוב ביותר עבור הכסף שלך, אפילו לתת לך לדעת מתי אתה תהיה טוב יותר מחכה קידום להתחיל, ואת החיסכון שאתה יכול לצפות לעשות.
Aliexpress וקח גאווה ולוודא כי תמיד יש לך בחירה מושכלת כאשר אתה קונה מאחד מאות חנויות ומוכרים על הפלטפורמה שלנו.כל ות ומוכר מדורגות עבור שירות לקוחות, יר ואיכות על ידי לקוחות אמיתיים. וסף אתה יכול למצוא את החנות או דירוגי המוכר הפרט, כמו גם להשוות מחירים, הנחוח והנחות מציעה על ותו וצר על יי רוי רות וצר על יאי רוי רי ר כל רכישה מדורגת בכוכבים ולעתים קרובות יש הערות שנותרו על ידי לקוחות קודמים המתארים את חוויית העסקה שלהם, כך ת י וי. בקיצור, תה לא צריך לקחת את המילה שלנו על זה — רק להקשיב למיליוני לקוחות מאושרים שלנו.
וגם, ת חדש י aliexpress, ו מאפשרים לך על סוד.רק לפני שתלחץ על ‘קנה עכשיו’ בתהליך העסקה, הקדש רגע כדי לבדוק את הקופונים — ותחסוך עוד יותר. תה יכול למצוא קופונים החנות, ופונים aliexpress או שאתה יכול לאסוף קופונים כל יום על ידי משחק ים על יקציה aliexpress. וכפי שרוב המפיצים שלנו מציעים משלוח חינם — אנחנו חושבים שתסכים לכך שאתה מקבל את זה конденсатор uf к nf באחד המחירים הטובים ביותר באינטרנט.
תמיד יש לנו את הטכנולוגיה העדכנית ביותר, ת המגמות החדשות ביותר, ואת התוויות המדוברות ביותר.