Подключение реле к микроконтроллеру. Подключение реле и силовой нагрузки к микроконтроллеру: полное руководство

Как правильно подключить реле к микроконтроллеру. Какие схемы использовать для управления мощной нагрузкой постоянного и переменного тока. Какие компоненты выбрать для различных задач.

Содержание

Способы подключения нагрузки к микроконтроллеру

При разработке устройств на базе микроконтроллеров часто возникает задача управления мощной нагрузкой. Выходы микроконтроллера обычно могут обеспечить ток не более 20-40 мА, чего недостаточно для прямого управления силовыми устройствами. Рассмотрим основные способы подключения нагрузки к микроконтроллеру:

  • Через биполярный транзистор
  • Через полевой транзистор (MOSFET)
  • Через электромагнитное реле
  • Через твердотельное реле
  • Через драйвер электродвигателя

Выбор конкретного способа зависит от типа нагрузки, требуемой мощности, напряжения питания и других факторов. Рассмотрим подробнее каждый из вариантов.

Управление нагрузкой через биполярный транзистор

Биполярный транзистор — простой и недорогой способ управления нагрузкой малой и средней мощности. Типовая схема включения выглядит следующим образом:


[Схема подключения нагрузки через биполярный транзистор]

Принцип работы:

  1. При подаче высокого уровня на базу транзистор открывается
  2. Через коллектор-эмиттерный переход начинает протекать ток
  3. Нагрузка, подключенная к коллектору, получает питание

Ключевые моменты при использовании биполярного транзистора:

  • Выбирайте транзистор с запасом по току коллектора (в 1.5-2 раза больше тока нагрузки)
  • Резистор базы рассчитывается по формуле: R = (Uвх — 0.7) / (Iк / h21э)
  • Для больших токов используйте составные транзисторы (пара Дарлингтона)
  • При коммутации индуктивной нагрузки обязательно ставьте защитный диод

Управление через полевой транзистор (MOSFET)

Полевые транзисторы имеют ряд преимуществ перед биполярными:

  • Управляются напряжением, а не током
  • Имеют очень малое сопротивление в открытом состоянии
  • Способны коммутировать большие токи
  • Высокое быстродействие

Типовая схема включения MOSFET транзистора:

[Схема подключения нагрузки через MOSFET]

Основные моменты при использовании MOSFET:


  • Выбирайте транзистор с подходящим пороговым напряжением затвора
  • Используйте резистор 10-100 кОм для подтяжки затвора к земле
  • При больших токах обеспечьте хороший теплоотвод
  • Для индуктивной нагрузки ставьте защитный диод

Управление через электромагнитное реле

Электромагнитное реле позволяет коммутировать как постоянный, так и переменный ток большой мощности. Основные преимущества:

  • Полная гальваническая развязка управляющей и силовой цепи
  • Возможность коммутации высокого напряжения
  • Простота подключения

Схема подключения реле к микроконтроллеру:

[Схема подключения электромагнитного реле]

Важные моменты при использовании реле:

  • Обязательно используйте защитный диод параллельно обмотке реле
  • Выбирайте реле с подходящим напряжением обмотки (обычно 5 или 12В)
  • Учитывайте максимальный ток и напряжение контактов реле
  • Для больших токов нагрузки используйте контактор

Управление через твердотельное реле

Твердотельное реле (SSR) сочетает преимущества электромагнитного реле и полупроводниковых ключей:


  • Отсутствие подвижных частей
  • Высокая скорость переключения
  • Возможность коммутации больших токов
  • Длительный срок службы

Схема подключения твердотельного реле:

[Схема подключения твердотельного реле]

Основные моменты при использовании SSR:

  • Выбирайте реле с подходящим управляющим напряжением
  • Обеспечьте хороший теплоотвод при больших токах нагрузки
  • Учитывайте падение напряжения на открытом ключе (обычно 1-2В)
  • Для коммутации переменного тока используйте реле с детектором нуля

Особенности управления различными типами нагрузки

При выборе схемы управления важно учитывать тип нагрузки:

Резистивная нагрузка (лампы накаливания, нагреватели)

  • Можно использовать любой из рассмотренных способов
  • Учитывайте большой пусковой ток ламп накаливания

Индуктивная нагрузка (электродвигатели, соленоиды)

  • Обязательно используйте защитный диод
  • Учитывайте большой пусковой ток
  • Для мощных двигателей применяйте специализированные драйверы

Емкостная нагрузка (импульсные блоки питания)

  • Учитывайте большой пусковой ток
  • Используйте устройства с ограничением тока (например, NTC-термистор)

Выбор компонентов для управления нагрузкой

При разработке схемы управления нагрузкой важно правильно выбрать компоненты. Вот несколько рекомендаций:


Биполярные транзисторы

  • Для малых токов (до 100 мА): BC547, 2N3904
  • Для средних токов (до 1А): BD139, TIP31
  • Составные транзисторы: TIP120, TIP122

MOSFET транзисторы

  • Для малых токов (до 2А): IRLML2502, AO3400
  • Для средних токов (до 10А): IRLZ44N, IRF540N
  • Для больших токов (свыше 10А): IRFP260N, IPP060N06N

Электромагнитные реле

  • Для малых токов (до 5А): SRD-05VDC-SL-C, JQC-3FF-S-Z
  • Для средних токов (до 10А): SRD-12VDC-SL-C, HF115F
  • Для больших токов (свыше 10А): использовать контакторы

Твердотельные реле

  • Для малых токов (до 5А): G3MB-202P, CPC1510G
  • Для средних токов (до 25А): SSR-25DA, G3NA-220B
  • Для больших токов (свыше 25А): SSR-40DA, G3PE-535B

Типовые ошибки при подключении нагрузки

При разработке схем управления нагрузкой начинающие разработчики часто допускают следующие ошибки:

  • Подключение нагрузки напрямую к выводу микроконтроллера
  • Неправильный расчет резистора базы транзистора
  • Отсутствие защитного диода при коммутации индуктивной нагрузки
  • Выбор компонентов без запаса по току и напряжению
  • Отсутствие теплоотвода у силовых элементов

Чтобы избежать этих ошибок, тщательно рассчитывайте все элементы схемы и учитывайте реальные условия работы устройства.


Заключение

Правильный выбор схемы управления нагрузкой — важный этап разработки устройства на базе микроконтроллера. Рассмотренные способы позволяют решить большинство типовых задач. При разработке собственных устройств:

  • Тщательно анализируйте параметры нагрузки
  • Выбирайте компоненты с запасом по току и напряжению
  • Не забывайте про защитные элементы схемы
  • Обеспечивайте хороший теплоотвод для силовых элементов
  • Тестируйте работу устройства в реальных условиях

Следуя этим рекомендациям, вы сможете создавать надежные и эффективные устройства управления различными типами нагрузки.


Управление мощной нагрузкой постоянного тока. Часть 1

О какой нагрузке идет речь? Да о любой — релюшки, лампочки, соленоиды, двигатели, сразу несколько светодиодов или сверхмощный силовой светодиод-прожектор. Короче, все что потребляет больше 15мА и/или требует напряжения питания больше 5 вольт.

Вот взять, например, реле. Пусть это будет BS-115C. Ток обмотки порядка 80мА, напряжение обмотки 12 вольт. Максимальное напряжение контактов 250В и 10А.

Подключение реле к микроконтроллеру это задача которая возникала практически у каждого. Одна проблема — микроконтроллер не может обеспечить мощность необходимую для нормальной работы катушки. Максимальный ток который может пропустить через себя выход контроллера редко превышает 20мА и это еще считается круто — мощный выход. Обычно не более 10мА. Да напряжение у нас тут не выше 5 вольт, а релюшке требуется целых 12. Бывают, конечно, реле и на пять вольт, но тока жрут больше раза в два. В общем, куда реле не целуй — везде жопа. Что делать?

Первое что приходит на ум — поставить транзистор. Верное решение — транзистор можно подобрать на сотни миллиампер, а то и на амперы. Если не хватает одного транзистора, то их можно включать каскадами, когда слабый открывает более сильный.

Поскольку у нас принято, что 1 это включено, а 0 выключено (это логично, хотя и противоречит моей давней привычке, пришедшей еще с архитектуры AT89C51), то 1 у нас будет подавать питание, а 0 снимать нагрузку. Возьмем биполярный транзистор. Реле требуется 80мА, поэтому ищем транзистор с коллекторным током более 80мА. В импортных даташитах этот параметр называется I

c, в наших Iк. Первое что пришло на ум — КТ315 — шедевральный совковый транзистор который применялся практически везде 🙂 Оранжевенький такой. Стоит не более одного рубля. Также прокатит КТ3107 с любым буквенным индексом или импортный BC546 (а также BC547, BC548, BC549). У транзистора, в первую очередь, надо определить назначение выводов. Где у него коллектор, где база, а где эмиттер. Сделать это лучше всего по даташиту или справочнику. Вот, например, кусок из даташита:

Обратите внимание на коллекторный ток — Ic = 100мА (Нам подоходит!) и маркировку выводов.

Цоколевка нашего КТ315 определяется так

Если смотреть на его лицевую сторону, та что с надписями, и держать ножками вниз, то выводы, слева направо: Эмиттер, Колектор, База.

Берем транзистор и подключаем его по такой схеме:

Коллектор к нагрузке, эмиттер, тот что со стрелочкой, на землю. А базу на выход контроллера.

Транзистор это усилитель тока, то есть если мы пропустим через цепь База-Эмиттер ток, то через цепь Колектор-Эмиттер сможет пройти ток равный входному, помноженному на коэффициент усиления hfe.
hfe для этого транзистора составляет несколько сотен. Что то около 300, точно не помню.

Максимальное напряжение вывода микроконтроллера при подаче в порт единицы = 5 вольт (падением напряжения в 0.7 вольт на База-Эмиттерном переходе тут можно пренебречь). Сопротивление в базовой цепи равно 10000 Ом. Значит ток, по закону Ома, будет равен 5/10000=0.0005А или 0.5мА — совершенно незначительный ток от которого контроллер даже не вспотеет. А на выходе в этот момент времени будет I

c=Ibe*hfe=0.0005*300 = 0.150А. 150мА больше чем чем 100мА, но это всего лишь означает, что транзистор откроется нараспашку и выдаст максимум что может. А значит наша релюха получит питание сполна.

Все счастливы, все довольны? А вот нет, есть тут западло. В реле же в качестве исполнительного элемента используется катушка. А катушка имеет неслабую индуктивность, так что резко оборвать ток в ней невозможно. Если это попытаться сделать, то потенциальная энергия, накопленная в электромагнитом поле, вылезет в другом месте. При нулевом токе обрыва, этим местом будет напряжение — при резком прерывании тока, на катушке будет мощный всплеск напряжения, в сотни вольт. Если ток обрывается механическим контактом, то будет воздушный пробой — искра. А если обрывать транзистором, то его просто напросто угробит.

Надо что то делать, куда то девать энергию катушки. Не проблема, замкнм ее на себя же, поставив диод. При нормальной работе диод включен встречно напряжению и ток через него не идет. А при выключении напряжение на индуктивности будет уже в другую сторону и пройдет через диод.

Правда эти игры с бросками напряжения гадским образом сказываются на стабильности питающей сети устройства, поэтому имеет смысл возле катушек между плюсом и минусом питания вкрутить электролитический конденсатор на сотню другую микрофарад. Он примет на себя большую часть пульсации.

Красота! Но можно сделать еще лучше — снизить потребление. У реле довольно большой ток срывания с места, а вот ток удержания якоря меньше раза в три. Кому как, а меня давит жаба кормить катушку больше чем она того заслуживает. Это ведь и нагрев и энергозатраты и много еще чего. Берем и вставляем в цепь еще и полярный конденсатор на десяток другой микрофарад с резистором. Что теперь получается:

При открытии транзистора конденсатор С2 еще не заряжен, а значит в момент его заряда он представляет собой почти короткое замыкание и ток через катушку идет без ограничений. Недолго, но этого хватает для срыва якоря реле с места. Потом конденсатор зарядится и превратится в обрыв. А реле будет питаться через резистор ограничивающий ток. Резистор и конденсатор следует подбирать таким образом, чтобы реле четко срабатывало.
После закрытия транзистора конденсатор разряжается через резистор. Из этого следует встречное западло — если сразу же попытаться реле включить, когда конденсатор еще не разрядился, то тока на рывок может и не хватить. Так что тут надо думать с какой скоростью у нас будет щелкать реле. Кондер, конечно, разрядится за доли секунды, но иногда и этого много.

Добавим еще один апгрейд.
При размыкании реле энергия магнитного поля стравливается через диод, только вот при этом в катушке продолжает течь ток, а значит она продолжает держать якорь. Увеличивается время между снятием сигнала управления и отпаданием контактной группы. Западло. Надо сделать препятствие протеканию тока, но такое, чтобы не убило транзистор. Воткнем стабилитрон с напряжением открывания ниже предельного напряжения пробоя транзистора.
Из куска даташита видно, что предельное напряжение Коллектор-База (Collector-Base voltage) для BC549 составляет 30 вольт. Вкручиваем стабилитрон на 27 вольт — Profit!

В итоге, мы обеспечиваем бросок напряжения на катушке, но он контроллируемый и ниже критической точки пробоя. Тем самым мы значительно (в разы!) снижаем задержку на выключение.

Вот теперь можно довольно потянуться и начать мучительно чесать репу на предмет того как же весь этот хлам разместить на печатной плате… Приходится искать компромиссы и оставлять только то, что нужно в данной схеме. Но это уже инженерное чутье и приходит с опытом.

Разумеется вместо реле можно воткнуть и лампочку и соленоид и даже моторчик, если по току проходит. Реле взято как пример. Ну и, естественно, для лампочки не потребуется весь диодно-конденсаторный обвес.

Пока хватит. В следующий раз расскажу про Дарлингтоновские сборки и MOSFET ключи.

062-Как подключить к микроконтроллеру нагрузку? — GetChip.net

В следующих статьях будут устройства, которые должны управлять внешней нагрузкой. Под внешней нагрузкой я понимаю все, что прицеплено к ножкам микроконтроллера – светодиоды, лампочки, реле, двигатели, исполнительные устройства … ну Вы поняли. И как бы не была заезжена данная тема, но, чтобы избежать повторений в следующих статьях, я все-же рискну быть не оригинальным — Вы уж меня простите :). Я кратенько, в рекомендательной форме, покажу наиболее распространенные способы подключения нагрузки (если Вы  что-то захотите добавить – буду только рад).
Сразу договоримся, что речь идет о цифровом сигнале (микроконтроллер все-таки цифровое устройство) и не будем отходить от общей логики: 1-включено, 0-выключено. Начнем.

 

1 НАГРУЗКА ПОСТОЯННОГО ТОКА.
Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто (и наиболее часто) подключается к микроконтроллеру.

1.1 Подключение нагрузки через резистор.
Самый простой и, наверно, чаще всего используемый способ, если речь идет о светодиодах.

Резистор нужен для того, чтобы ограничить ток протекающий, через ножку микроконтроллера до допустимых 20мА. Его называют балластным или гасящим. Примерно рассчитать величину резистора можно зная сопротивление нагрузки Rн.

Rгасящий = (5v / 0.02A) – Rн = 250 – Rн [Om]

Как видно, даже в самом худшем случае, когда сопротивление нагрузки равно нулю достаточно 250 Ом для того, что бы ток не превысил 20мА. А значит, если неохота чего-то там считать — ставьте 300 Ом и Вы защитите порт от перегрузки. Достоинство способа очевидно – простота.

1.2 Подключение нагрузки при помощи биполярного транзистора.
Если так случилась, что Ваша нагрузка потребляет более 20мА, то, ясное дело, резистор тут не поможет. Нужно как-то увеличить (читай усилить) ток. Что применяют для усиления сигнала? Правильно. Транзистор!

Для усиления удобней применять n-p-n транзистор, включенный по схеме ОЭ. При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае транзистор будет работать в режиме насыщения. Транзистор может быть любой n-p-n транзистор. Коэффициент усиления, практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение которым запитывается нагрузка). Еще имеет значение рассеиваемая мощность — чтоб не перегрелся.

Из распространенных и легко доступных можно заюзать BC546, BC547, BC548, BC549 с любыми буквами (100мА), да и тот-же КТ315 сойдет (это у кого со старых запасов остались).
BC547.pdf (10358 Загрузок)

1.3 Подключение нагрузки при помощи полевого транзистора.
Ну а если ток нашей нагрузки лежит в пределах десятка ампер? Биполярный транзистор применить не получиться, так как токи управления таким транзистором велики и скорей всего превысят 20мА. Выходом может служить или составной транзистор (читать ниже) или полевой транзистор (он же МОП, он же MOSFET). Полевой транзистор просто замечательная штука, так как он управляется не током, а потенциалом на затворе. Это делает возможным микроскопическим током на затворе управлять большими токами нагрузки.

Для нас подойдет любой n-канальный полевой транзистор. Выбираем, как и биполярный, по току, напряжению и рассеиваемой мощности.

При включении полевого транзистора нужно учесть ряд моментов:
— так как затвор, фактически, является конденсатором, то в моменты переключения транзистора через него текут большие токи (кратковременно). Для того чтобы ограничить эти токи в затвор ставиться ограничивающий резистор.
— транзистор управляется малыми токами и если выход микроконтроллера, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения ножку микроконтроллера нужно «прижать» к земле резистором порядка 10кОм.
У полевого транзистора на фоне всех его положительных качеств есть недостаток. Платой за управление малым током является медлительность транзистора. ШИМ, конечно, он потянет, но на превышение допустимой частоты он Вам ответит перегревом.

Для применения можно порекомендовать мощные транзисторы IRF630, IRF640. Их часто используют и поэтому их легко достать.
IRF640.pdf (17423 Загрузки)

1.4 Подключение нагрузки при помощи составного транзистора Дарлингтона.
Альтернативой применения полевого транзистора при сильноточной нагрузке является применение составного транзистора Дарлингтона. Внешне это такой-же транзистор, как скажем, биполярный, но внутри для управления мощным выходным транзистором используется предварительная усилительная схема. Это позволяет малыми токами управлять мощной нагрузкой. Применение транзистора Дарлингтона не так интересно, как применение сборки таких транзисторов. Есть такая замечательная микросхема как ULN2003. В ее составе аж 7 транзисторов Дарлингтона, причем каждый можно нагрузить током до 500мА, причем их можно включать параллельно для увеличения тока.

Микросхема очень легко подключается к микроконтроллеру (просто ножка к ножке) имеет удобную разводку (вход напротив выхода) и не требует дополнительной обвязки. В результате такой удачной конструкции ULN2003 широко используется в радиолюбительской практике. Соответственно достать ее не составит труда.
ULN2003.pdf (19112 Загрузок)

 

2 НАГРУЗКА ПЕРЕМЕННОГО ТОКА.
Если Вам нужно управлять устройствами переменного тока (чаще всего 220v), то тут все сложней, но не на много.

2.1 Подключение нагрузки при помощи реле.
Самым простым и, наверное, самым надежным есть подключение при помощи реле. Катушка реле, сама собой, является сильноточной нагрузкой, поэтому напрямую к микроконтроллеру ее не включишь. Реле можно подключить через транзистор полевой или биполярный или через туже ULN2003, если нужно несколько каналов.

Достоинства такого способа большой коммутируемый ток (зависит от выбранного реле), гальваническая развязка. Недостатки: ограниченная скорость/частота включения и механический износ деталей.
Что-то рекомендовать для применения не имеет смысла — реле много, выбирайте по нужным параметрам и цене.

2.2 Подключение нагрузки при помощи симистора (триака).
Если нужно управлять мощной нагрузкой переменного тока а особенно если нужно управлять мощностью выдаваемой на нагрузку (димеры), то Вам просто не обойтись без применения симистора (или триака). Симистор открывается коротким импульсом тока через управляющий электрод (причем как для отрицательной, так и для положительной полуволны  напряжения). Закрывается симистор сам, в момент отсутствия напряжения на нем (при переходе напряжения через ноль). Вот тут начинаются сложности. Микроконтроллер должен контролировать момент перехода через ноль напряжения и в точно определенный момент подавать импульс для открытия симистора — это постоянная занятость контроллера. Еще одна сложность это отсутствие гальванической развязки у симистора. Приходится ее делать на отдельных элементах усложняя схему.


Хотя современные симисторы управляются довольно малым током и их можно подключить напрямую (через ограничительный резистор) к микроконтроллеру, из соображений безопасности приходится их включать через оптические развязывающие приборы. Причем это касается не только цепей управления симистором, но и цепей контроля нуля.

Довольно неоднозначный способ подключения нагрузки. Так как с одной стороны требует активного участия микроконтроллера и относительно сложного схемотехнического решения. С другой стороны позволяет очень гибко манипулировать нагрузкой. Еще один недостаток применения симисторов — большое количество цифрового шума, создаваемого при их работе — нужны цепи подавления.

Симисторы довольно широко используются, а в некоторых областях просто незаменимы, поэтому достать их не составляет каких либо проблем. Очень часто в радиолюбительстве применяют симисторы  типа BT138.
BT138.pdf (6463 Загрузки)

2.3 Подключение нагрузки при помощи твердотельного реле.
С недавних пор у радиолюбителей появилась очень замечательная штука — твердотельные реле. Представляют они из себя оптические приборы (еще их называют оптореле), с одной стороны, в общем случае, стоит светодиод, а с другой полевой транзистор со светочувствительным затвором. Управляется эта штука малым током, а манипулировать может значительной нагрузкой.

Подключать твердотельное реле к микроконтроллеру очень просто — как светодиод — через резистор.
Достоинства налицо: малые размеры, отсутствие механического износа, возможность манипулировать большим током и напряжением и самое главное оптическая развязка от опасного напряжения. Нагрузка может быть как постоянного, так и переменного тока в зависимости от конструкции реле. Из недостатков следует отметить относительную медлительность (чаще всего для коммутации используется полевик) и довольно значительную стоимость реле.

Если не гнаться за завышенными характеристиками можно подобрать себе прибор по приемлемой цене. Например, реле CPC1030N управляется током от 2мА, при этом способно коммутировать нагрузку переменного и постоянного тока 120мА и 350v (очень полезная для радиолюбителей вещь!)
CPC1030N.pdf (14244 Загрузки)

 

(Visited 144 187 times, 3 visits today)

Как подключить реле к микроконтроллеру

Самый простой способ подключить реле к микроконтроллеру — это использовать обычный NPN транзистор. Параметры данного транзистора подбираются исходя из рабочего напряжения реле и тока. Величина тока реле зависит от типа реле. Как правило, чем больше реле, тем больше нужен ток.

Если взять типовое реле малого размера с коммутацией от 2…4 А, то как правило для его переключения необходим ток в районе 60 мА.

Весьма легко определить необходимый ток, зная сопротивление катушки. По закону Ома:

I = V / R

Например, если у нас есть реле на 5 В с сопротивлением катушки 100 Ом, мы можем рассчитать потребляемый ток:

I = 5 В / 100 Ом = 50 мА

Ток 50 мА слишком высок, и поэтому мы не можем подключить реле непосредственно к выходу микросхемы (CMOS или TTL), а также к микроконтроллеру.

Поэтому необходимо использовать транзистор в режиме ключа, который может обеспечить необходимый ток для реле.

Для правильной работы транзистора необходимо подобрать оптимальный ток базы, который задается путем подключения резистора между базой и выходом микроконтроллера. Расчет данного сопротивления рассмотрим на примере.

Предположим, что мы используем транзистор BC547, этот транзистор имеет статический коэффициент усиления (hFE) 100 или более. Поэтому для получения необходимого выходного тока в 50 мА (ток коллектора), ток базы транзистора должен составлять:

Iб = Iк / hFE => Iб = 0,05A/100 = 0,0005 A

По закону Ома:

R = (V — Vбэ) / Iб => (5В — 0,6 В) / 0,0005A = 8800 Ом

Чтобы обеспечить достаточный (надежный) выходной ток для реле, мы можем уменьшить полученное сопротивление в два с лишним раза, при этом выходной ток микроконтроллера останется на безопасном уровне.

R = 8800 Ом / 2,5 = 3520 Ом => возьмем 3,3 кОм

Как видно на рисунке добавлен диод 1N4001, подключенный параллельно катушке, но в обратном направлении. Это делается для того, чтобы погасить всплеск ЭДС самоиндукции катушки реле (в момент ее отключения), который может повредить транзистор.

Для наглядности можно подключить светодиод (с соответствующим сопротивлением), который будет указывать на работу реле.

В случае, если необходимо подключить более мощное реле, то придется использовать более мощный транзистор. Как известно мощные транзисторы обладают малым коэффициентом усиления, поэтому здесь желательно использовать дополнительный маломощный транзистор. В связке они образуют так называемый транзистор Дарлингтона, обладающий высоким коэффициентом усиления.

В этом случае ток базы будет следующим:

Iб = Iк / (hFET1 * hFET2)

Наконец, если нужно подключить несколько реле, то есть более элегантное решение, состоящее из использования интегральной микросхемы ULN2003 (или других моделей того же семейства). Микросхема ULN2003 состоит из 7 групп транзисторов, подключенных в конфигурации «Дарлингтон», имеет входные резисторы, а также защитные диоды.

источник

Управление мощной нагрузкой с Arduino

Управление нагрузкой с Arduino


Как вы уже знаете из урока о питании, Ардуино (микроконтроллер) является логическим устройством, то есть по своей сути может только раздавать сигналы другим устройствам. Это касается в первую очередь управления нагрузкой: от пина МК можно запитать максимум светодиод или простенький модуль/микросхему с током потребления не более 20 мА (максимум 40 мА, но на таком токе напряжение просядет и стабильная работа не гарантируется). Если вам захочется управлять светодиодной лентой, электромагнитным клапаном, моторчиком или сетевым обогревателем – понадобится промежуточное устройство, такое как реле или транзистор. Давайте обо всем по порядку.

“Универсальное” электромагнитное реле


Электромагнитное реле является по сути управляемым механическим выключателем: подали на него ток – оно замкнуло контакты, сняли ток – разомкнуло. Контакты являются именно контактами: металлическими “пятаками”, которые прижимаются друг к другу. Именно поэтому такое реле может управлять как нагрузкой постоянного, так и переменного тока. 

Сама катушка реле является неслабой индуктивной нагрузкой, что приводит к дополнительным проблемам (читай ниже), поэтому для управления “голым” реле нам понадобится дополнительная силовая и защитная цепь.

После изучения данного урока вы сами сможете её составить (транзистор и диод), а сейчас мы поговорим о модулях реле: готовая плата, на которой стоит само реле, а также цепи коммутации, защиты и даже оптическая развязка. Такие модули бывают “семейными” – с несколькими реле на борту. Спасибо китайцам за это! Купить можно на Aliexpress, также смотрите варианты у меня в каталоге ссылок на Али.

Такое реле сделано специально для удобного управления с микроконтроллера: пины питания VCC (Vin, 5V) и GND подключаются к питанию, а далее реле управляется логическим сигналом, поданным на пин IN. С другой стороны стоит клеммник для подключения проводов, обычно контакты подписаны как NO, NC и COM. Это общепринятые названия пинов кнопок, переключателей и реле:

  • COM – Common, общий. Реле является переключающим, и пин COM является общим.
  • NO – Normal Open, нормально открытый. При неактивном реле данный контакт не соединён с COM. При активации реле он замыкается с COM.
  • NC – Normal Closed, нормально закрытый. При неактивном реле данный контакт соединён с COM. При активации реле он размыкается с COM.

Подключение нагрузки через реле думаю для всех является очевидным:

Важный момент: катушка реле в активном режиме потребляет около 60 мА, то есть подключать больше одного модуля реле при питании платы от USB не рекомендуется – уже появятся просадки по напряжению и помехи:

Такие модули реле бывают двух типов: низкого и высокого уровня. Реле низкого уровня переключается при наличии низкого сигнала (GND) на управляющем пине digitalWrite(pin, LOW). Реле высокого уровня соответственно срабатывает от высокого уровня digitalWrite(pin, HIGH). Какого типа вам досталось реле можно определить экспериментально, а можно прочитать на странице товара или на самой плате. Также существуют модули с выбором уровня:

На плате, справа от надписи High/Low trigger есть перемычка, при помощи которой происходит переключение уровня.

Электромагнитное реле имеет ряд недостатков перед остальными рассмотренными ниже способами, вы должны их знать и учитывать:

  • Ограниченное количество переключений: механический контакт изнашивается, особенно при большой и/или индуктивной нагрузке.
  • Противно щёлкает!
  • При большой нагрузке реле может “залипнуть”, поэтому для больших токов нужно использовать более мощные реле, которые придётся включать при помощи… маленьких реле. Или транзисторов.
  • Необходимы дополнительные цепи для управления реле, так как катушка является индуктивной нагрузкой, и нагрузкой самой по себе слишком большой для пина МК (решается использованием китайского модуля реле).
  • Очень большие наводки на всю линию питания при коммутации индуктивной нагрузки.
  • Относительно долгое переключение (невозможно поставить детектор нуля, читай ниже), при управлении индуктивными цепями переменного тока можно попасть на большой индуктивный выброс, необходимо ставить искрогасящие цепи.

При помощи реле можно плавно управлять сильно инерционной нагрузкой, такой как большой обогреватель. Для этого нужно использовать сверхнизкочастотный ШИМ сигнал, у меня есть готовая библиотека. Не забываем, что реле противно щёлкает и изнашивается, поэтому для таких целей лучше подходит твердотельное реле, о котором мы поговорим ниже.

Постоянный ток

Транзистор


Самый компактный способ управлять нагрузкой постоянного тока – транзистор. Транзисторы бывают биполярные и полевые (MOSFET, полевик, ключ). Биполярные уже морально и физически устарели, имеют много характеристик и требуют дополнительного изучения темы, поэтому мы рассмотрим только полевые транзисторы. Схема типовая и выглядит вот так:Или вот так, конкретно для корпуса to220. Также на этой схеме плата Ардуино питается от внешнего источника в пин Vin:Полевики бывают и в других корпусах, для подключения по первой принципиальной схеме нужно загуглить распиновку (pinout) на свой конкретный транзистор. Но в основном там всё обстоит вот так:Что за резисторы? Резистор на 100 Ом (можно ставить в диапазоне 100-500 Ом) выполняет защитную функцию: затвор полевика представляет собой конденсатор, в момент открытия затвора конденсатор начнёт заряжаться и в цепи пойдёт большой ток (практически короткое замыкание), который может повредить пин Ардуино. Резистор просто ограничивает ток в цепи пин-затвор и спасает пин от скачков тока. В целом можно его не ставить, но когда-нибудь оно обязательно сломается =)

Резистор на 10 кОм (можно ставить в диапазоне 5-50 кОм) выполняет подтягивающую функцию для затвора. Если случится так, что плата Ардуино выключена или сигнальный провод от неё отвалился – на затвор будут приходить случайные наводки и он может случайно открыться. Если в этот момент будет подключен источник питания – нагрузка тоже включится! Восстание машин начнётся именно с этого момента. Подтягивающий к GND резистор позволяет “прижать” затвор, чтобы он не открылся сам по себе. Имеет смысл ставить его прямо на корпус транзистора, если монтаж производится навесом:Я привёл схему, в которой используется N-канальный полевой транзистор, который управляет линией GND. Существуют также P-канальные мосфеты, они управляют линией питания. Такие транзисторы в целом дороже, реже встречаются и имеют высокий порог напряжения открытия, т.е. для их работы придётся ставить ещё один транзистор (биполярный) и с его помощью подавать более высокий сигнал от внешнего источника на затвор P-канального полевика. Поэтому в 99% случаев просто используют более удобные N-канальные ключи.

Как выбрать транзистор для своей задачи? Первым делом смотрим на напряжение открытия транзистора (как читать график в даташите – см. видео урок ниже), 100% подойдёт транзистор с пометкой Logic Level в описании или даташите: такие мосфеты точно будут работать на полную катушку от пина МК. Само собой ток и напряжение должны соответствовать (взяты с запасом) для нагрузки, которую будет коммутировать мосфет. Есть ещё параметр сопротивление открытого канала, на этом сопротивлении будет падать напряжение и превращаться в тепло. Для мощных нагрузок нужно рассматривать полевики с низким сопротивлением канала, чтобы сильно не грелись. Приведу свой список мосфетов в двух основных корпусах: выводной to220 и dpack для поверхностного монтажа, в нём “Ток при 3V” и “Ток при 5V” означает максимальный ток через транзистор (на нагрузку) в Амперах при управлении логическим сигналом 3 и 5 Вольт. Максимальное напряжение для нагрузки смотрите у конкретного транзистора, но у всех оно выше 24V. “R” – сопротивление открытого канала в миллиомах (10^-3 Ом). Также полевики отсортированы по увеличению цены в российских магазинах =)

МаркировкаR, мОмТок при 3VТок при 5V
IRF3704ZPBF7.910120
IRLB8743PBF3.220>100
IRL2203NPBF730>100
IRLB8748PBF4.810>100
IRL8113PBF640>100
IRL3803PBF620>100
IRLB3813PBF1.9520>100
IRL3502PBF7>100>100
IRL2505PBF820>100
IRF3711PBF680>100
IRL3713PBF320>100
IRF3709ZPBF6.340>100
AUIRL3705N6.520>100
IRLB3034PBF1.7>100>100
IRF3711ZPBF620>100
МаркировкаR, мОмТок при 3VТок при 5V
STD17NF03LT450540
IRLR024NPBF65420
IRLR024NPBF40540
IRLR8726PBF610110
IRFR1205PBF2710
IRFR4105PBF4510
IRLR7807ZPBF1210100
IRFR024NPBF758
IRLR7821TRPBF1011100
STD60N3LH5830160
IRLR3103TRPBF1911100
IRLR8113TRPBF640110
IRLR8256PBF610110
IRLR2905ZPBF13100
IRLR2905PBF272090

Для слаботочных цепей мне нравится использовать полевик 2n7000 (купить мешок) – тянет до 400 мА. Корпус – компактный выводной to-92.

Также у друзей-китайцев есть удобные готовые модули с мосфетами и всей необходимой обвязкой:

Ну и самый важный момент: на полевой транзистор можно подавать ШИМ сигнал для “плавного” управления нагрузкой: плавно менять скорость вращения мотора, яркость светодиодной ленты, мощность обогревателя и прочее прочее!

Внимание! При управлении индуктивной нагрузкой (клапан, мотор, электромагнит, соленоид) обязательно нужен диод! См. последнюю главу.

Твердотельное реле DC


Более простой вариант – твердотельное реле (Solid State Relay, SSR) для постоянного тока (DC), найти можно на том же Aliexpress по запросу SSR DC. Внимательно смотрим на маркировку: под выходными клеммами должно быть написано VDC, т.е. постоянное напряжение. Твердотельное реле имеет стандартный корпус для моделей постоянного и переменного тока, поэтому нужно читать что написано и не перепутать. Также в маркировке после слова SSR обычно указан ток в Амперах, т.е. SSR-25 это реле на 25 Ампер. Максимальное напряжение указано под выходными клеммами.

Твердотельное реле подключается напрямую к Arduino, пин “-” к GND, “+” к любому цифровому пину. Выход реле ставится в разрыв цепи питания нагрузки, как выключатель. Важно не перепутать плюс и минус, потому что внутри реле представляет собой полевой транзистор на радиаторе =)

Внимание! При управлении индуктивной нагрузкой (клапан, мотор, электромагнит, соленоид) обязательно нужен диод! См. последнюю главу.

Переменный ток

Симистор


Симистор – радиоэлемент, похожий на транзистор, но может работать на переменном токе. Высокое напряжение – штука опасная, поэтому для управления симистором используется оптопара с симисторным выходом (например MOC302x). Простейшая схема подключения выглядит вот так:Здесь стоят резисторы: 220 Ом – для ограничения тока на светодиод оптопары (можно ставить с номиналом вплоть до 1 кОм). И резистор между оптопарой и симистором: 220-470 Ом с мощностью 1-2 Вт (будет греться). Распиновка компонентов:У китайцев есть готовые модули с симистором и всей обвязкой. Кстати да, симистор греется под нагрузкой! Наличие радиатора обязательно, начиная с 200 Ватт нагрузки.Для плавного управления нагрузкой переменного тока задача сильно усложняется: нужно ловить момент переключения напряжения, засекать время и выключать симистор, отсекая часть синусоиды. Схема для такой поделки может выглядеть вот так:Также готовый модуль можно купить на Али. Выглядит он вот так и имеет пины питания, пин контроля симистора и вывод детектора нуля. Как со всем этим работать – смотрите видос:

Твердотельное реле AC


Твердотельное реле для переменного тока (SSR AC) выглядит и подключается точно так же, как твердотельное для постоянного. Единственное отличие в том, что нет полярности:

По сравнению с электромагнитным реле работает бесшумно, а также имеет неограниченный ресурс переключений. Но есть и минус: твердотельные реле основаны на полупроводниковых симисторах и греются под нагрузкой. Нижняя часть корпуса представляет собой толстую алюминиевую пластину. При большой нагрузке (несколько киловатт) желательно брать SSR с хорошим запасом по току и/или крепить на радиатор. Вот такие дела.

Также существуют твердотелки чуть другого формата в виде Ардуино-модулей:

Такие модули бывают низкого и высокого уровня (High/Low level trigger), подключаются точно так же как модули реле: к питанию GND-VCC и отдельно пин на управление. Сами SSRки здесь стоят маленькие и слабые: всего 2А (в районе 500 Ватт). Но для управления например освещением этого более чем достаточно.

При помощи реле можно плавно управлять сильно инерционной нагрузкой, такой как большой обогреватель. Для этого нужно использовать сверхнизкочастотный ШИМ сигнал, у меня есть готовая библиотека.

Искрогасящие цепи


При размыкании контактов в цепи питания индуктивной нагрузки происходит так называемый индуктивный выброс, который резко подбрасывает напряжение в цепи вплоть до того, что между контактами реле или выключателя может проскочить электрическая дуга (искра). В дуге нет ничего хорошего – она выжигает частички металла контактов, из за чего они изнашиваются и со временем приходят в негодность. Также такой скачок в цепи провоцирует электромагнитный выброс, который может навести в электронном устройстве сильные помехи и привести к сбоям или даже поломке! Самое опасное, что индуктивной нагрузкой может являться сам провод: вы наверняка видели, как искрит обычный выключатель света в комнате. Лампочка – не индуктивная нагрузка, но идущий к ней провод имеет индуктивность.

Для постоянного тока


Для защиты от выбросов в цепи постоянного тока используют обыкновенный диод, установленный встречно-параллельно нагрузке и максимально близко к ней. Диод просто закоротит на себя выброс, и все дела:

Где VD – защитный диод, U1 – выключатель, а R и L олицетворяют индуктивную нагрузку.

Диод нужно ОБЯЗАТЕЛЬНО ставить при управлении индуктивной нагрузкой (электромотор, соленоид, клапан, электромагнит, катушка реле) при помощи транзистора. То есть вот так:

При управлении ШИМ сигналом рекомендуется ставить быстрые диоды (диоды Шоттки) на соответствующее напряжение и ток.

Для переменного тока


В цепях переменного тока есть два важных момента: сама искрогасящая (шунтирующая, или снабберная) цепь и момент выключения нагрузки. Напряжение в сети является синусоидой, которая 100 раз в секунду пересекает значение 0. Если выключить нагрузку в тот момент, когда напряжение в сети равно нулю – это сильно уменьшит выброс. Для этих целей проще всего использовать твердотельные реле (SSR) с детектором нуля (Zero-Crossing Detector). Такие реле сами отключат нагрузку в нужный момент.

Что касается искрогасящих цепей – теорию по расчёту можно посмотреть вот в этой статье, а для большинства применений подойдёт резистор 39 Ом 0.5 Вт и конденсатор 0.1 мкФ 400V, установленные вот по такой схеме:

Важные страницы


Схемы подключения ключа с реле к выходу микроконтроллера или индикатора

Для индикации уровня сигнала или постоянного напряжения, тока частоиспользуют поликомпараторные микросхемы вроде AN6884, КА2284, ВА6124 или многие другие аналогичные. Такая микросхема представляет собой набор компараторов, с выходами на светодиоды, а так же измерительную схему и схему предварительного усиления, детектора.

На рисунке 1 показана типовая схема включения микросхем AN6884, КА2284, ВА6124. Деталей минимум, и получаем пятипороговый индикатор уровня. Светодиоды работают по принципу «градусника», то есть, если их расположить последовательно в линию и признать это все как непрерывную линию, то чем больше сигнал, тем длиннее линия (тем больше светодиодов горит).

Но, бывают случае, когда необходимо не только визуально определить уровень сигнала, но и предпринять какие-то меры, если уровень сигнала достиг некоторого уровня. Например, при зажигании светодиода HL5 нужно чтобы включилось электромагнитное реле и своими контактами включило некую нагрузку или устройство.

Схема подключения реле

На рисунке 2 показано как можно подключить обмотку реле. Но сначала обратите внимание на рисунок 1 — все светодиоды подключены к выходам микросхемы непосредственно, без каких-либо токоограничительных резисторов. Хотя, в литературе встречаются схемы и с токоограничительными резисторами.

На самом деле в токоограничительных резисторах, касательно микросхем AN6884, КА2284, ВА6124 и их аналогов, нет никакой необходимости, потому что внутри микросхемы, на каждом выходе есть схема ограничения тока. Поэтому, напряжение между выходом и положительной шиной питания не бывает больше прямого напряжения падения на светодиоде.

Типовая схема включения микросхем AN6884, КА2284, ВА6124

Рис. 1. Типовая схема включения микросхем AN6884, КА2284, ВА6124.

Схема подключения реле к каналу индикатора сигнала

Рис. 2. Схема подключения реле к каналу индикатора сигнала.

Но такого небольшого напряжения недостаточно ни для обмотки реле, а зачастую и даже для открывания транзисторного ключа. Однако, повысить напряжение между выходом и шиной питания можно просто включением дополнительного токоограничительного резистора (R2 на рисунке 2). Благодаря ему напряжение на промежутке от выхода микросхемы до шины питания увеличивается. Изменяя сопротивление этого резистора можно выставить необходимое напряжение.

На рисунке 2 показана схема управления обмоткой реле — его включением, при включении светодиода HL5. При включении HL5 напряжение на выводе 1 относительно общего минуса падает, но относительно шины питания увеличивается. Достигает уровня, достаточного для открывания транзистора VT1. Он открывается, и вслед за ним открывается более мощный транзистор VT2. А в его коллекторной цепи включена обмотка реле К1.

Напряжение питания реле может отличаться от напряжения питания микросхемы. Точно таким же образом, можно соединить реле и с любым другим выходом микросхемы типа AN6884, КА2284, ВА6124, и даже сделать пять реле по числу выходов.

Затем это надо? Причин может быть множество. Например, при превышении уровня громкости нужно отключить источник звука, либо включить сигнализацию.

Или нужно реагировать на превышение тока в нагрузке. Или можно сделать переключатель, состоящий из переменного резистора и этой схемы. При вращении ручки переменного резистора будет меняться напряжение на входе микросхемы, а на её выходах будут включаться реле.

Снятие сигнала с индикатора

Если нужно управлять не реле, а каким-то цифровым устройством, например, при превышении некоего уровня сигнала подавать логическую единицу на вход микроконтроллера или сигнализатора, можно собрать схему, показанную на рисунке 3. Здесь также для примера взят вариант со светодиодом HL5, хотя, конечно, можно и с любого другого выхода микросхемы.

Схема получения логического сигнала с сегмента индикатора

Рис.3. Схема получения логического сигнала с сегмента индикатора.

При зажигании HL5 напряжение на базе VT1 относительного его же эмиттера увеличивается, транзистор открывается и на его коллекторе напряжение увеличивается до уровня логической единицы, соответственно напряжению питания микросхемы.

Подключение с опто-развязкой

Рис. 4. Подключение с опто-развязкой.

Ну и последний вариант, — использовать оптопару. Можно любую оптопару, как с мощным симистором для управления каким-то нагревателем (так называемое, «твердотельное реле»), так и маломощную транзисторную, для передачи команды на другую схему.

В любом случае, два варианта, либо светодиод оптопары включить последовательно индикаторному светодиоду, как показано на рисунке 4, либо вместо него, как на рисунке не показано, но можно догадаться, но только если в индикации нет никакой необходимости.

Каравкин В. РК-2016-04.

Безопасное подключение устройств к микроконтроллеру

В этой статье рассматриваются важные драйверы и правильные схемы, необходимые для безопасного подключения внешних устройств к вводу/выводу MCU (микроконтроллер, англ. — Microcontroller Unit, MCU).

Введение

Как только у вас возникнет идея для проекта, очень заманчиво перейти прямо к подключению Arduino к схемам и устройствам, таким как светодиоды, реле и динамики. Однако делать это без правильной схемы может оказаться фатальным для вашего микроконтроллера.

Многие устройства ввода/вывода потребляют много тока (> 100 мА), которые большинство микроконтроллеров не могут обеспечить в безопасном режиме, а когда они пытаются обеспечить такое количество тока, они часто ломаются. Здесь нам на помощь приходят специальные схемы, которые называются «драйверы» (англ. — drivers). Драйверы — это схемы, которые могут принимать небольшой слабый сигнал от микроконтроллера, а затем использовать этот сигнал для управления каким-либо энергопотребляющим устройством.

Для правильной работы микроконтроллеров с внешними устройствами иногда требуются специальные схемы. Эти внешние устройства включают:

  • Цепи драйвера
  • Схемы защиты входа
  • Схемы защиты выхода
  • Цепи изоляции

Итак, давайте посмотрим на некоторые из этих схем и на то как они работают!

Простой светодиодный (LED) драйвер

Эта простая схема удобна для управления светодиодами с высоким энергопотреблением с помощью микроконтроллеров, где выход микроконтроллера подключен к «IN».

Пример простого светодиодного драйвераПример простого светодиодного драйвера

Когда микроконтроллер выводит 0, транзистор Q1 отключается, а также светодиод D1. Когда микроконтроллер выводит 1, транзистор включается, и поэтому D1 также включается. Значение R1 зависит от выходного напряжения вашего микроконтроллера, но значения между 1KΩ ~ 10KΩ часто работают хорошо. Значение R2 зависит от размера нагрузки, которую вы питаете, и эта схема подходит для питания устройств до 1А и не более.

Простой релейный драйвер

Устройствам, которые потребляют более 1 А тока и будут включаться и выключаться раз в несколько секунд, лучше подойдут реле.

Хотя реле достаточно просты (небольшой электромагнит, который привлекает металлический рычаг для замыкания схемы), они не могут управляться непосредственно микроконтроллером.

Для обычных реле требуются токи около 60 мА ~ 100 мА, что слишком много для большинства микроконтроллеров, поэтому реле требуют схему с использованием управления транзистором (как показано выше). Однако вместо резистора, который необходимо использовать для ограничения тока, требуется обратный диод защиты (D1).

Когда микроконтроллер (подключенный к «IN»), выдает 1, тогда включается транзистор Q1. Это включает реле RL1, и в результате загорается лампа (R2). Если микроконтроллер выводит 0, то транзистор Q1 отключается, что отключает реле, и поэтому лампа выключается.

Реле очень часто встречаются в схемах, требующих переключения цепей электропитания переменного тока, и доступны для переключения 230В и 13А (подходит для тостеров, чайников, компьютеров и пылесосов).

Пример простого релейного драйвераПример простого релейного драйвера

Кнопки

При подключении кнопки к микроконтроллеру могут иногда возникнуть простые проблемы. Первая (и самая раздражающая проблема) возникает в виде отскока, когда кнопка посылает много сигналов при нажатии и отпускании.

Кнопки обычно представляют собой кусок металла, который при контакте соприкасается с каким-то другим металлом, но когда кнопки вступают в контакт, они часто отскакивают (хотя они чаще всего крошечные). Этот отскок означает, что кнопка соединяется и отключается несколько раз, прежде чем зафиксироваться, а в итоге — результат, который ненадолго выглядит случайным. Поскольку микроконтроллеры очень быстрые, они могут поймать этот отскок и выполнять события нажатия кнопки несколько раз. Чтобы избавиться от отскока, можно использовать схему ниже. Схема, показанная здесь, представляет собой очень тривиальную схему, которая хорошо работает и проста в построении.

Пример простого релейного драйвера

Защита входа: напряжение

Не все устройства ввода будут дружественными к вашему микроконтроллеру, а некоторые источники могут даже нанести ущерб. Если у вас есть источники входного сигнала, которые поступают из окружающей среды (например, датчик напряжения, датчик дождя, человеческий контакт) или источники входного сигнала, которые могут вывести напряжения, превышающие то, что может обрабатывать микроконтроллер (например, цепи индуктора), тогда вам потребуется включать некоторую защиту ввода напряжения. Схема, показанная ниже, использует 5V стабилитронов для ограничения входных напряжений, так что входное напряжение не может превышать 5 В и ниже 0 В. Резистор 100R используется для предотвращения слишком большого тока, когда диод Зенера захватывает входное напряжение.

Пример защиты ввода напряженияПример защиты ввода напряжения

Защита ввода/вывода: ток

Входы и выходы микроконтроллеров иногда могут быть защищены от слишком большого тока. Если устройство, такое как светодиод, потребляет меньше тока, чем максимальный выходной ток от микроконтроллера, тогда светодиод может быть напрямую подключен к микроконтроллеру. Тем не менее, последовательный резистор будет по-прежнему необходим, как показано ниже, а общие значения последовательных резисторов для светодиодов включают в себя 470 Ом, 1 кОм и даже 2,2 кОм. Серии резисторов также полезны для входных контактов в редких случаях, когда неисправны контакты микроконтроллеров или входное устройство испытывает всплеск выходного тока.

Пример использования резисторов для защиты токаПример использования резисторов для защиты тока

Преобразователи уровня

В прошлом большинство сигналов в цепи работало бы на одном и том же напряжении, и это напряжение обычно составляло 5 В. Однако с увеличением технологических возможностей современной электроники снижается напряжение на новых устройствах. Из-за этого многие схемы включают смешанные сигналы, в которых более старые части могут работать при напряжении 5 В, в то время как более новые части работают при напряжении 3,3 В.

Хотя многие радиолюбители предпочли бы использовать один уровень напряжения, правда состоит в том, что более старые 5-вольтовые части могут не работать на 3,3 В, в то время как более новые устройства 3,3 В не могут работать при более высоком напряжении 5 В. Если устройство 5V и устройство 3.3V хотят общаться, то требуется сдвиг уровня, который преобразует один сигнал напряжения в другой. Некоторые устройства с напряжением 3,3 В имеют 5 В «толерантность», что означает, что сигнал 5 В может напрямую подключаться к сигналу 3,3 В, но большинство устройств 5 В не могут переносить 3.3 В. Чтобы охватить оба варианта, приведенные ниже схемы показывают преобразование от 5 до 3,3 В и наоборот.

Примеры преобразователей уровняПримеры преобразователей уровня

Изоляция: Оптоизолятор

Иногда схема, с которой должен взаимодействовать микроконтроллер, может представлять слишком много проблем, таких как электростатический разряд (ESD), широкие колебания напряжения и непредсказуемость. В таких ситуациях мы можем использовать устройство, называемое оптоизолятором, которое позволяет двум цепям общаться, не будучи физически соединенными друг с другом с помощью проводов.

Оптоизоляторы взаимодействуют с использованием света, когда одна цепь излучает свет, который затем обнаруживается другой схемой. Это означает, что оптоизоляторы не используются для аналоговой связи (например, уровни напряжения), но вместо этого для цифровой связи, где выход включен или выключен. Оптоизоляторы могут использоваться как для входов, так и для выходов на микроконтроллеры, где входы или выходы могут быть потенциально опасны для микроконтроллера. Интересно, что оптоизоляторы также могут использоваться для смещения уровня!

Пример использования optoisolation для защиты вашего микроконтроллераПример использования optoisolation для защиты вашего микроконтроллера

062-Как подключить к микроконтроллеру нагрузку? — Страница 38748 — GetChip.net

В следующих статьях будут устройства, которые должны управлять внешней нагрузкой. Под внешней нагрузкой я понимаю все, что прицеплено к ножкам микроконтроллера – светодиоды, лампочки, реле, двигатели, исполнительные устройства … ну Вы поняли. И как бы не была заезжена данная тема, но, чтобы избежать повторений в следующих статьях, я все-же рискну быть не оригинальным — Вы уж меня простите :). Я кратенько, в рекомендательной форме, покажу наиболее распространенные способы подключения нагрузки (если Вы  что-то захотите добавить – буду только рад).
Сразу договоримся, что речь идет о цифровом сигнале (микроконтроллер все-таки цифровое устройство) и не будем отходить от общей логики: 1-включено, 0-выключено. Начнем.

 

1 НАГРУЗКА ПОСТОЯННОГО ТОКА.
Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто (и наиболее часто) подключается к микроконтроллеру.

1.1 Подключение нагрузки через резистор.
Самый простой и, наверно, чаще всего используемый способ, если речь идет о светодиодах.

Резистор нужен для того, чтобы ограничить ток протекающий, через ножку микроконтроллера до допустимых 20мА. Его называют балластным или гасящим. Примерно рассчитать величину резистора можно зная сопротивление нагрузки Rн.

Rгасящий = (5v / 0.02A) – Rн = 250 – Rн [Om]

Как видно, даже в самом худшем случае, когда сопротивление нагрузки равно нулю достаточно 250 Ом для того, что бы ток не превысил 20мА. А значит, если неохота чего-то там считать — ставьте 300 Ом и Вы защитите порт от перегрузки. Достоинство способа очевидно – простота.

1.2 Подключение нагрузки при помощи биполярного транзистора.
Если так случилась, что Ваша нагрузка потребляет более 20мА, то, ясное дело, резистор тут не поможет. Нужно как-то увеличить (читай усилить) ток. Что применяют для усиления сигнала? Правильно. Транзистор!

Для усиления удобней применять n-p-n транзистор, включенный по схеме ОЭ. При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае транзистор будет работать в режиме насыщения. Транзистор может быть любой n-p-n транзистор. Коэффициент усиления, практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение которым запитывается нагрузка). Еще имеет значение рассеиваемая мощность — чтоб не перегрелся.

Из распространенных и легко доступных можно заюзать BC546, BC547, BC548, BC549 с любыми буквами (100мА), да и тот-же КТ315 сойдет (это у кого со старых запасов остались).
BC547.pdf (10358 Загрузок)

1.3 Подключение нагрузки при помощи полевого транзистора.
Ну а если ток нашей нагрузки лежит в пределах десятка ампер? Биполярный транзистор применить не получиться, так как токи управления таким транзистором велики и скорей всего превысят 20мА. Выходом может служить или составной транзистор (читать ниже) или полевой транзистор (он же МОП, он же MOSFET). Полевой транзистор просто замечательная штука, так как он управляется не током, а потенциалом на затворе. Это делает возможным микроскопическим током на затворе управлять большими токами нагрузки.

Для нас подойдет любой n-канальный полевой транзистор. Выбираем, как и биполярный, по току, напряжению и рассеиваемой мощности.

При включении полевого транзистора нужно учесть ряд моментов:
— так как затвор, фактически, является конденсатором, то в моменты переключения транзистора через него текут большие токи (кратковременно). Для того чтобы ограничить эти токи в затвор ставиться ограничивающий резистор.
— транзистор управляется малыми токами и если выход микроконтроллера, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения ножку микроконтроллера нужно «прижать» к земле резистором порядка 10кОм.
У полевого транзистора на фоне всех его положительных качеств есть недостаток. Платой за управление малым током является медлительность транзистора. ШИМ, конечно, он потянет, но на превышение допустимой частоты он Вам ответит перегревом.

Для применения можно порекомендовать мощные транзисторы IRF630, IRF640. Их часто используют и поэтому их легко достать.
IRF640.pdf (17423 Загрузки)

1.4 Подключение нагрузки при помощи составного транзистора Дарлингтона.
Альтернативой применения полевого транзистора при сильноточной нагрузке является применение составного транзистора Дарлингтона. Внешне это такой-же транзистор, как скажем, биполярный, но внутри для управления мощным выходным транзистором используется предварительная усилительная схема. Это позволяет малыми токами управлять мощной нагрузкой. Применение транзистора Дарлингтона не так интересно, как применение сборки таких транзисторов. Есть такая замечательная микросхема как ULN2003. В ее составе аж 7 транзисторов Дарлингтона, причем каждый можно нагрузить током до 500мА, причем их можно включать параллельно для увеличения тока.

Микросхема очень легко подключается к микроконтроллеру (просто ножка к ножке) имеет удобную разводку (вход напротив выхода) и не требует дополнительной обвязки. В результате такой удачной конструкции ULN2003 широко используется в радиолюбительской практике. Соответственно достать ее не составит труда.
ULN2003.pdf (19112 Загрузок)

 

2 НАГРУЗКА ПЕРЕМЕННОГО ТОКА.
Если Вам нужно управлять устройствами переменного тока (чаще всего 220v), то тут все сложней, но не на много.

2.1 Подключение нагрузки при помощи реле.
Самым простым и, наверное, самым надежным есть подключение при помощи реле. Катушка реле, сама собой, является сильноточной нагрузкой, поэтому напрямую к микроконтроллеру ее не включишь. Реле можно подключить через транзистор полевой или биполярный или через туже ULN2003, если нужно несколько каналов.

Достоинства такого способа большой коммутируемый ток (зависит от выбранного реле), гальваническая развязка. Недостатки: ограниченная скорость/частота включения и механический износ деталей.
Что-то рекомендовать для применения не имеет смысла — реле много, выбирайте по нужным параметрам и цене.

2.2 Подключение нагрузки при помощи симистора (триака).
Если нужно управлять мощной нагрузкой переменного тока а особенно если нужно управлять мощностью выдаваемой на нагрузку (димеры), то Вам просто не обойтись без применения симистора (или триака). Симистор открывается коротким импульсом тока через управляющий электрод (причем как для отрицательной, так и для положительной полуволны  напряжения). Закрывается симистор сам, в момент отсутствия напряжения на нем (при переходе напряжения через ноль). Вот тут начинаются сложности. Микроконтроллер должен контролировать момент перехода через ноль напряжения и в точно определенный момент подавать импульс для открытия симистора — это постоянная занятость контроллера. Еще одна сложность это отсутствие гальванической развязки у симистора. Приходится ее делать на отдельных элементах усложняя схему.


Хотя современные симисторы управляются довольно малым током и их можно подключить напрямую (через ограничительный резистор) к микроконтроллеру, из соображений безопасности приходится их включать через оптические развязывающие приборы. Причем это касается не только цепей управления симистором, но и цепей контроля нуля.

Довольно неоднозначный способ подключения нагрузки. Так как с одной стороны требует активного участия микроконтроллера и относительно сложного схемотехнического решения. С другой стороны позволяет очень гибко манипулировать нагрузкой. Еще один недостаток применения симисторов — большое количество цифрового шума, создаваемого при их работе — нужны цепи подавления.

Симисторы довольно широко используются, а в некоторых областях просто незаменимы, поэтому достать их не составляет каких либо проблем. Очень часто в радиолюбительстве применяют симисторы  типа BT138.
BT138.pdf (6463 Загрузки)

2.3 Подключение нагрузки при помощи твердотельного реле.
С недавних пор у радиолюбителей появилась очень замечательная штука — твердотельные реле. Представляют они из себя оптические приборы (еще их называют оптореле), с одной стороны, в общем случае, стоит светодиод, а с другой полевой транзистор со светочувствительным затвором. Управляется эта штука малым током, а манипулировать может значительной нагрузкой.

Подключать твердотельное реле к микроконтроллеру очень просто — как светодиод — через резистор.
Достоинства налицо: малые размеры, отсутствие механического износа, возможность манипулировать большим током и напряжением и самое главное оптическая развязка от опасного напряжения. Нагрузка может быть как постоянного, так и переменного тока в зависимости от конструкции реле. Из недостатков следует отметить относительную медлительность (чаще всего для коммутации используется полевик) и довольно значительную стоимость реле.

Если не гнаться за завышенными характеристиками можно подобрать себе прибор по приемлемой цене. Например, реле CPC1030N управляется током от 2мА, при этом способно коммутировать нагрузку переменного и постоянного тока 120мА и 350v (очень полезная для радиолюбителей вещь!)
CPC1030N.pdf (14244 Загрузки)

 

(Visited 144 187 times, 3 visits today)

Реле, управляемое с помощью SMS, с микроконтроллером PIC

Рис. 1: Управление доступом с помощью SMS-сообщений Boom Gate

Системы с дистанционным управлением и мониторингом становятся все более популярными в наши дни. Устройства с интеллектуальным управлением, такие как торговые автоматы по SMS, станции оплаты парковочных билетов, домашняя автоматизация, средства контроля доступа, становятся частью нашей повседневной жизни.

В этом проекте мы узнаем, как управлять реле с помощью SMS.Это реле можно использовать во многих приложениях для включения или выключения устройств, таких как электрическая лампочка, или открытия защитных ворот стрелы, как в этом примере. Контроль доступа может быть реализован в квартирах или жилых комплексах, когда посетитель подходит к воротам, он / она может позвонить посетителю, который может отправить SMS: «ОТКРЫТЬ» на номер мобильного телефона ворот, получив это сообщение от Модуль GSM, PIC активирует реле, чтобы открыть ворота, а затем автоматически закроет ворота после короткой задержки или после того, как автомобиль въехал в жилой комплекс (инфракрасные лучевые детекторы могут использоваться, чтобы определить, проехал ли автомобиль через ворота. ).

В этом проекте мы собираемся использовать модем GSM, микроконтроллер PIC и реле.

GSM-модем — это беспроводной модем, который работает с беспроводной сетью GSM. GSM расшифровывается как Глобальная система мобильной связи, эта архитектура используется для мобильной связи в большинстве стран мира.

Беспроводной модем действует в основном как традиционный модем с коммутируемым доступом, основное отличие состоит в том, что модем с коммутируемым доступом отправляет и принимает данные по фиксированной телефонной линии, а беспроводной модем отправляет и принимает данные с помощью радиоволн.Помимо коммутируемого соединения, GSM-модем также может использоваться для отправки и получения SMS, что также является одной из ключевых функций GSM-модема.

Чтобы узнать больше о взаимодействии GSM-модема с микроконтроллерами PIC, прочтите статью:

Взаимодействие GSM / GPRS-модема с микроконтроллером PIC

Чтобы узнать больше о взаимодействии реле с микроконтроллерами PIC, прочтите статью:

Взаимодействие реле с микроконтроллером PIC

Принципиальная схема

Рисунок 2: Реле, управляемое SMS с микроконтроллером PIC

Купите GSM-модем, PIC, плату разработки, реле и аксессуары в нашем интернет-магазине

.

DIY Relay Boxes для управления питанием 120 В с помощью микроконтроллера

Для одного из моих недавних проектов мне понадобился способ управления некоторыми лампами, питающимися от бытовой розетки на 120 В. Вместо того, чтобы реконструировать некоторые коммерческие «умные розетки» для этой задачи, я решил попробовать сделать это по старинке, встраивая реле в электрические коробки.

План

Волшебное устройство в центре этих ящиков — реле. Реле — это, по сути, электромагнитный переключатель, который позволяет мне управлять большим количеством энергии высокого напряжения (10 А при 120 В), используя небольшое количество энергии низкого напряжения (~ 5 мА при 3.3В). Кроме того, реле сохраняет обе системы электрически изолированными, что значительно снижает вероятность случайного перехода любого высокого напряжения.

Я купил недорогой релейный выход на Amazon и протестировал его, используя Arduino Uno и «мигающий» скетч. Хотя я мог бы просто соединить эту плату реле с удлинителем, я хотел построить что-то более надежное (и более безопасное lot ). Я подумал, что было бы неплохо интегрировать реле в электрическую коробку, чтобы я мог подключить его и сразу приступить к управлению, не обходя на цыпочках оголенную проводку.

Заявление об ограничении ответственности

Прежде чем идти дальше, я действительно должен подчеркнуть следующее: СЕТЕВОЕ ПИТАНИЕ НЕВЕРОЯТНО ОПАСНО. Это не ваш друг, и если вы не будете осторожны, он может убить вас. Хотя я считаю, что сделал все, что мог, чтобы сделать его безопасным в использовании, я не являюсь сертифицированным электриком.

Эти боксы строятся для определенной цели и будут использоваться временно и в контролируемой среде.Если вы нашли этот пост в поисках более постоянного решения, я настоятельно рекомендую изучить розетки с контролем Wi-Fi и другие технологии «умного дома», сертифицированные UL.

Я пишу этот пост, чтобы задокументировать то, что я построил. Эта информация не проверялась, и конструкция не была сертифицирована как безопасная. Если вы используете любую из этих сведений для создания собственных релейных блоков, вы делаете это на свой страх и риск. Поэтому я не собираюсь предоставлять какие-либо файлы для 3D-печатных дизайнов, которые я использовал.Я не хочу нести ответственность за то, что кому-то больно.

Электричество опасно. Будьте умны, будьте осторожны.

Сбор материалов

Имея примерное представление о том, что мне нужно, я начал искать строительные материалы.

Я хотел, чтобы все было маленьким и прочным, поэтому я выбрал металлический одноканальный электрический шкаф («удобный ящик»). Стальная конструкция должна сделать ее более устойчивой к ударам с течением времени, а также обеспечить путь заземления, делающий всю систему более безопасной.Если один из горячих проводов каким-то образом отсоединяется от платы реле, он должен безопасно закоротить на коробку и отключить автоматический выключатель.

По сравнению с пластмассовой электрической коробкой, металлическая коробка также позволяет мне использовать кабельный зажим для надежного крепления удлинителя. Он также меньше прогибается, что снижает вероятность поломки приклеенных креплений.

Релейная плата и детали микроконтроллера уже были у меня в руках, так что остальные расходные материалы представляли собой обычную домашнюю проводку.Я купил дуплексную розетку, пластиковую лицевую панель и дополнительный черный многожильный провод 14-го калибра для подключения к реле.

После тщательного удаления заусенцев с коробки напильником и наждачной бумагой пришло время приступить к работе.

Добавление микроконтроллера Access

Хотя этот проект предназначен для переключения питания 120 В, вся проводка для этого будет добавлена ​​только в самом конце. Во-первых, мне нужно позаботиться о настройке управления реле с помощью микроконтроллера.

Для реле требуется три пина от микроконтроллера:

  • Сигнал: 0 В — 5 В сигнал, указывающий, активно реле или нет. Активный высокий.
  • Питание: Питание + 5В.
  • Земля: Нерегулируемое заземление 0 В.

На разъеме реле они предусмотрены в виде трех прямоугольных штифтов с шагом 0,1 дюйма на задней панели. Из соображений безопасности я не хотел, чтобы из коробки торчали штыри, которые потенциально могут быть заряжены до 120 В.Я бы предпочел гнездовую розетку, которая безопаснее и меньше гнется.

Я использую обычную 3-контактную розетку DuPont без поляризации. Я использую его в основном потому, что он у меня есть под рукой, но его шаг 0,1 дюйма делает его идеальным для взаимодействия с этими вездесущими тестовыми перемычками. Было бы лучше использовать поляризованный разъем, но, поскольку я единственный, кто использует эти коробки, меня это не слишком беспокоит.

Изготовление крепления

У меня было несколько идей, как подключить розетку к коробке, но в конце концов я остановился на этой: крепление, напечатанное на 3D-принтере, в тандеме с куском перфорированной платы.

Я начал с того, что вырезал в боковой части коробки отверстие для 3-контактного разъема. Важно, чтобы это крепление располагалось низко в коробке и не мешало попаданию в основную розетку. Само отверстие было проделано путем просверливания пары небольших отверстий, а затем его квадратной формы с помощью набора надфилей, пока гнездо не с трудом подходило.

Крепление для розетки было разработано в CAD и напечатано из черного ABS. Для готового крепления требуются две гайки M2, которые я вставил сзади и затянул крепежными винтами.Добавление здесь стальных гаек позволяет избежать нарезания крошечных ниток в пластике.

Для этого слайд-шоу требуется JavaScript.

Поскольку задняя сторона крепления покрыта эпоксидной смолой к электрической коробке, я вставил винты на глубину и добавил немного невысыхающей пластилиновой глины. Это защитит гайки, пока деталь покрыта эпоксидной смолой.

После черновой обработки коробки наждачной бумагой с зернистостью 60 я использовал 5-минутную эпоксидную смолу, чтобы прикрепить крепление к коробке.

The Perf Connection

Установив крепление для розетки, пришло время построить косичку.Я начал с того, что отрезал перфокарт по размеру: 9 отверстий в ширину и 3 отверстия в высоту. Это было сделано парой прямых ножниц, а края зачищены наждачной бумагой. (Стекловолокно, как всегда, мерзкая штука. Наденьте респиратор!)

Перфорированная плита, обрезанная по размеру и просверленная.

Затем были просверлены монтажные отверстия (расстояние 0,6 дюйма) под винты M2 с помощью электродрели и сверла 3/32 дюйма. 3-контактный разъем был припаян к одной стороне, а затем были добавлены три многожильных провода: входящий со стороны разъема и изгибающийся, чтобы коснуться припаянных контактов на обратной стороне платы.Они были соединены с контактами розетки с помощью здоровой порции припоя.

Использование здесь перфорированной платы дает мне надежную точку крепления и позволяет направлять соединительные провода вниз, экономя драгоценное пространство. Это также означает, что при необходимости я могу заменить весь пигтейл — чего не было бы, если бы я установил розетку непосредственно на электрическую коробку. (Мне нравится строить такие вещи по модульному принципу. Это упрощает замену детали, если что-то пойдет не так, вместо того, чтобы начинать все с нуля.)

Подключение косички

Поскольку эта проводка должна была быть смешана с проводкой переменного тока от удлинителя, мне пришлось проявить немного творчества с цветовым кодированием. В США мы используем черный для горячего, белый для нейтрали и зеленый для заземления при питании переменного тока. Соответственно, я использую красный для + 5 В, синий для сигнального провода и зеленый для заземления.

Комплектный 3-х проводный разъем. Включено обильное нанесение жидкой изоленты.

Также стоит отметить, что я скрутил провода, чтобы изменить порядок оголенного внешнего разъема.В то время как порядок контактов в разрыве реле — сигнал / питание / земля, я изменил внешний разъем на питание / сигнал / заземление. Это более стандартизированный порядок, по крайней мере, тот, с которым я более знаком.

После обрезки проводов до нужной длины я добавил соответствующий 3-контактный разъем к другой стороне, без промежуточной платы. Это для подключения к существующим контактам на плате реле, которые я согнул вверх с помощью плоскогубцев для экономии места. Пигтейл был обработан небольшой термоусадкой.

Монтаж реле

Само реле будет размещено на основании электрической коробки, также в собственном индивидуальном 3D-печатном креплении. К счастью, в релейный выход уже встроены монтажные отверстия. Они рассчитаны на болты M2,5, но достаточно велики, чтобы вместить имеющиеся у меня болты M3.

Я напечатал свое нестандартное крепление из черного АБС-пластика и проделал отверстия насквозь. Хотя я не доверяю пластику, напечатанному на 3D-принтере с резьбой M2, кажется, что он отлично выдерживает резьбу M3.Особенно с 4-мя болтами, удерживающими такую ​​легкую деталь.

Перед нанесением эпоксидной краски на крепление реле к коробке я также добавил небольшой кусок белого стирола толщиной 0,030 дюйма, чтобы закрыть монтажные отверстия на задней стороне коробки. Он был прикреплен двумя небольшими отрезками двусторонней ленты 3M. Это в основном для защиты от мусора.

Как и в случае трехконтактного разъема, место для крепления было подготовлено наждачной бумагой зернистостью 60, а отверстия для болтов на нижней стороне были покрыты крошечным кусочком пластилиновой глины.Он был покрыт эпоксидной смолой около дна коробки с левой стороны, сразу после того, как скругленные края стали плоскими.

Все системы GO!

С прикрепленным держателем реле я прикрутил 3-контактный разъем двумя болтами M2-6 и прикрепил реле 4 болтами M3-5. Затем я проверил соединение реле, убедившись, что все по-прежнему работает так, как задумано.

Уплотнение низковольтной электроники

Установив 3-контактный разъем и установив реле, я могу завершить установку низкого напряжения, запечатав всю открытую электронику.

Если все подключено правильно и надежно, в этом нет необходимости. Но согласно закону нашего хорошего друга Мерфи, делая все возможное, чтобы разделить низкое и высокое напряжение, сохранит этот проект в безопасности. Никогда не забывайте: высокое напряжение опасно.

Для начала я покрыл заднюю часть 3-контактной перфорированной платы здоровым слоем жидкой изоленты. Я использовал полные 4 слоя, чтобы защитить эти открытые контакты от посторонних глаз с напряжением 120 В.После того, как перфокарта была прикручена болтами, я также покрыл внешнюю сторону соединения несколькими слоями изоленты.

Саму плату реле было легче опломбировать. Для сквозных соединений на левой стороне было намотано несколько небольших кусочков изоленты, обернутых вокруг нижней стороны платы. Они зажаты держателем, который должен надежно удерживать их на месте. Нижняя сторона платы полностью закрыта креплением и не требует дополнительного покрытия.

Единственный низковольтный компонент, который все еще открыт, — это светодиод SMD на задней стороне коммутационного разъема, который я оставил открытым в качестве индикатора.Это должно быть безопасно, так как он находится на задней стороне реле, и единственный провод переменного тока удаленно поблизости — это заземление переменного тока.

Опасно, опасность: высокое напряжение!

Низковольтная электроника закончена и собрана в электрическом ящике. Пришло время добавить высоковольтные компоненты.

Хвост удлинителя

Сначала идет провод от электрической коробки к розетке. Первоначально я намеревался отрезать удлинитель, но у меня остались некоторые кабели от установки новых светильников в гараже, которые отлично работали.Они были примерно 3 фута, многожильные и имели провод заземления.

После снятия оболочки с кабеля я вытащил верхний прорыв в распределительной коробке и зажал шнур на месте. Это оставило около 6 дюймов провода, сидящего в коробке для каждого подключения, что более чем много.

Подключение реле

Первые провода переменного тока, которые необходимо установить, — это черные «горячие» провода, которые обеспечивают источник тока 120 В. Они будут проходить через реле, и переключая соединение с розетками, вы можете контролировать, получает ли устройство питание.

Этот релейный выход подключается через переходник с винтовыми клеммами. Центральная стойка является источником, левая стойка является «нормально закрытой» (NC), а правая стойка — «нормально открытой» (NO). Когда реле обесточено, клеммы источника и закрытые соединены. Когда реле переключается, источник и открытые клеммы соединяются.

Я отрезал два куска черного многожильного провода (14 AWG) ~ 5 дюймов или около того и обнажил концы. Они вместе с черным проводом от удлинителя были слегка скручены и залужены тонким слоем припоя.Этот припой удерживает жилы вместе и предотвращает их растекание при затягивании винтовых клемм.

Вставив соответствующие провода, я затянул винтовые клеммы и потянул каждую из них, чтобы убедиться, что она надежно закреплена. Затем я осторожно наложил небольшую стяжку вокруг трех горячих проводов, которая должна удерживать их вместе на случай, если один из них каким-то образом выйдет из винтовой клеммы. В качестве меры предосторожности я добавил несколько слоев изоленты поверх винтовых клемм.

Выходные соединения

Со всем остальным на месте пора было подключить розетку!

Прежде всего мне нужно было установить «дуплексное» соединение между двумя выводами горячего терминала. Это позволяет мне запитать каждую розетку отдельно и, следовательно, изменить их поведение. Я собираюсь оставить верхний выпуск как «нормально закрытый» (NC), а нижний выпуск как «нормально открытый» (NO). Пара бокорезов быстро справилась с этим мостом.

Релейный блок полностью подключен, ожидает окончательной сборки.

В остальном проводка была простой: белый — серебристый, зеленый — зеленый, черный — латунный. Все провода имеют достаточную длину, чтобы вывести розетку из корпуса на несколько дюймов, при этом они не пересекаются друг с другом, когда они находятся в собранном виде в коробке. Закрепив провода, я на всякий случай обмотал розетку двумя слоями изоленты.

Обратите внимание, что я специально решил не добавлять дополнительную заземляющую проводку. Это связано с тем, что провод источника от удлинителя скручен, и я был обеспокоен тем, что затяжка выходного винта на двух многожильных проводах будет не такой надежной.Металл коробки прочно заземлен через розетку.

С учетом того, как я спроектировал блок реле, между реле и задней частью розетки остается зазор всего в 1 мм или около того. Убедился, что при сборке ничего не защемлено, но плотно прилегает точно!

Тестирование

Перед тем, как взять это на тест-драйв, я приложил все усилия, чтобы убедиться, что соединения надежны и не закорочены.

Я измерил целостность цепи между всеми проводами и их конечными точками, а также между всеми комбинациями потенциальных соединений, включая переменный ток и постоянный ток.Подключив его в первый раз, я также использовал тестер цепей переменного тока, чтобы трижды проверить правильность моих подключений и то, что я все-таки переключаю горячий провод.

(При тестировании непрерывности у меня чуть не случился сердечный приступ, когда я измерил очень сильное соединение между горячим портом NC и заземлением. Оказалось, что косичка удлинительного шнура намоталась вокруг, а горячая вилка касалась внешней стороны коробки. Плюсы заземления!)

К счастью, все эти тесты прошли без ошибок, и я смог продолжить.Я подключил две светодиодные лампы мощностью 60 Вт и с ликованием наблюдал, как они переключаются взад и вперед, как на железнодорожном переезде. Миссия выполнена!

Последние штрихи

Когда электрические компоненты закончены, самое время поставить переднюю панель и назвать этот проект завершенным. Но не раньше, чем добавить пару последних штрихов, просто чтобы немного отполировать эти коробки.

Светодиодный индикатор

На коммутационной плате реле, которую я использую, есть ярко-красный светодиод, который загорается при переключении реле, и по прихоти я подумал, что было бы круто увидеть этот светодиодный индикатор через лицевую панель.

Диффузор на тыльной стороне лицевой панели.

Я просверлил небольшое (1/8 ″) отверстие в углу пластины над светодиодом. Сзади я приклеил небольшой кусок прозрачного стирола толщиной 0,030 дюйма в качестве диффузора. Его обработали абразивом 800, чтобы придать ему легкую глазури.

В результате красный светодиод хорошо виден снаружи и ярко загорается, давая мне понять, что нижняя розетка активна.

Этикетки с тиснением

Полностью придерживаясь эстетики сумасшедшего ученого, я недавно приобрел винтажную машину для тиснения Dymo.Итак, в качестве последнего шага эти коробки прошли полную обработку этикеток: классический белый на красном:

  • Розетки имеют метки «NC» и «NO» на лицевой панели, которые сообщают вам, на какую розетку подается питание при переключении реле.
  • Доступный для микроконтроллера разъем на боковой стороне коробки помечен «VIN SIG GND», сокращенно для V, oltage In , Sig nal и G rou и .
  • Каждая коробка имеет пронумерованную этикетку по верхнему краю для идентификации.

Вся документация в мире бесполезна, если у вас нет ее под рукой. Как бы мне ни хотелось думать, что я точно помню, какой провод куда идет, а какая розетка какая, никогда не помешает иметь удобную ссылку.

Заключение

Коробки реле собраны и работают! Общая стоимость каждой коробки составила ~ 15 долларов, не включая расходы на разные расходные материалы (например, эпоксидную смолу и изоленту). В основном это была цена розетки (6 долларов) и реле (5 долларов).80). Это делает их дешевле, чем коммерческое решение, но, вероятно, недостаточно дешево, чтобы оправдать время на их создание или риски, связанные с решением DIY.

Хотя я сделал все возможное, чтобы убедиться, что они максимально безопасны, они определенно предназначены только для временного использования, и я все равно буду отключать их, прежде чем перемещать их или подключать / отключать устройства. И даже несмотря на то, что реле рассчитано на 10 А, а провода калибра 16 — на большее, я также снижаю номинальные параметры сборки до абсолютного максимума 5 А в качестве предохранительного буфера.Как бы я ни был уверен в безопасности их конструкции, не помешает быть излишне осторожным.

Для проекта, который я имел в виду, я переключаю только некоторые маломощные светодиодные лампы (~ 0,1 А), что означает, что эти релейные коробки, вероятно, излишни. Но их было интересно делать, и они являются полезным инструментом в наборе инструментов. После того, как я закончу проект, для которого я использую их, я обязательно напишу следующий пост, показывающий их в действии. До скорого!


Список деталей

Как обычно, я изо всех сил старался связывать вещи во всем посте, когда я их упоминаю.Но на всякий случай, если вам нужна сокращенная версия, вот список деталей:

Электрический шкаф:
Подключение реле + микроконтроллера:

Для полного раскрытия информации обратите внимание, что некоторые из приведенных выше ссылок являются реферальными ссылками Amazon, которые помогают финансировать контент на этом сайте. Спасибо за Вашу поддержку!

В этот список не входят различные расходные материалы, такие как эпоксидная смола или пластик, хотя большинство этих продуктов я использовал только потому, что они были у меня под рукой. Опять же, некоторые из них связаны по всему посту по мере их использования.

.

UDP Управление и мониторинг с помощью микроконтроллера PIC

Посмотреть видео Учебник, часть 1:

Ethernet является ведущим проводным стандартом для сетей, поскольку он позволяет подключать очень большое количество компьютеров, микроконтроллеров и других компьютеров. базируемое оборудование друг к другу.

В этом проекте мы узнаем, как управлять любым устройством, таким как светодиод, реле, лампочка или двигатель, подключенный к микроконтроллеру PIC, из удаленного места с помощью специализированного программного обеспечения графического интерфейса пользователя (GUI), разработанного с помощью С #.

Несколько клиентских компьютеров из разных мест можно использовать для управления полевыми устройствами из любого места. Связь между клиентским компьютером и микроконтроллером осуществляется по протоколу UDP. С помощью маршрутизатора, подключенного к Интернету, этими устройствами можно управлять или контролировать их в любой точке мира в режиме реального времени.

Этот проект может быть использован в качестве основы для проекта последнего года обучения для студентов, изучающих электронные и компьютерные науки.

Controlling devices from the internet

Рис. 1: Управление и мониторинг устройств с помощью графического пользовательского интерфейса ПК

В этом проекте программное обеспечение графического интерфейса ПК разработано с помощью C # для управления двигателем и лампочкой, подключенной к микроконтроллеру PIC с помощью реле.Мы также будем периодически считывать температуру, отображать ее графически на экране и строить график изменений температуры в реальном времени.

Благодаря программному обеспечению с графическим интерфейсом, в отличие от простого веб-браузера, как мы узнали из проекта «Управление и мониторинг через веб-интерфейс с помощью микроконтроллера PIC», у нас будет больше гибкости при разработке программного обеспечения с графическим интерфейсом. Мы могли бы легко создать своего рода программное обеспечение SCADA, напрямую взаимодействуя с такими устройствами, как датчики, клапаны, насосы, двигатели и многое другое, через программное обеспечение человеко-машинного интерфейса (HMI).

Также легко записывать события в файл журнала, отправлять уведомления по электронной почте или SMS или подавать звуковые сигналы.

TCP против UDP

Ряд клиентских компьютеров из разных мест можно использовать для управления полевыми устройствами из любого места. В проекте веб-управления и мониторинга с помощью микроконтроллера PIC мы продемонстрировали, как использовать протокол TCP с mikroC для управления устройствами, подключенными к микроконтроллеру PIC, в этом примере мы узнаем, как использовать протокол UDP.Вот несколько различий между этими двумя протоколами:

  • Протокол TCP обеспечивает надежную упорядоченную доставку пакетов. Он использует обнаружение ошибок, повторную передачу и подтверждения. Типичные приложения TCP включают электронную почту и просмотр веб-страниц.
  • Протокол UDP не заботится о получении каждого пакета. Это обеспечивает более быструю передачу. Типичные приложения UDP включают VoIP и потоковую передачу музыки.
  • TCP строго используется для передачи точка-точка или одноадресной передачи.
  • UDP может использоваться для одноадресной передачи (один к одному), многоадресной передачи (один ко многим) и широковещательной передачи (один ко всем)
.

Web Control and Monitoring with PIC Microcontroller

Посмотреть видео Учебная часть 1:

Ethernet является ведущим проводным стандартом для сетей, поскольку он позволяет подключать очень большое количество компьютеров, микроконтроллеров и других компьютеров. базируемое оборудование друг к другу.

В этом проекте мы собираемся научиться управлять любым устройством, таким как светодиод, реле, лампочка, двигатель и т. Д., Подключенными к микроконтроллеру PIC из удаленного места с помощью веб-браузера.Оператор может использовать компьютер, планшет или даже мобильный телефон для управления устройством в удаленном месте. С помощью маршрутизатора, подключенного к Интернету, этим устройством можно управлять из любой точки мира в режиме реального времени.

Этот проект можно использовать в качестве основы для проекта последнего года обучения для студентов инженерных специальностей.

Подключение к микроконтроллеру с помощью веб-браузера — самый простой и надежный способ установления связи, и, прежде всего, нет необходимости разрабатывать специальный графический интерфейс пользователя. программное обеспечение на ПК или мобильном телефоне в этом отношении, поскольку все операционные системы ПК уже имеют встроенный веб-браузер, или можно загрузить один из других бесплатных веб-браузеров, например, Google chrome или Mozilla firefox .Этот метод основан на HTTP (HTTP — сокращение от HyperText Transfer Protocol). Этот метод не только обеспечивает простой способ связи ПК с микроконтроллером, но и упрощает настройку устройства. Каждый раз, когда новый продукт должен быть подключен к Ethernet, основные конфигурации, такие как IP-адрес, маска подсети, DNS, шлюз, имя и другие технические параметры, могут быть настроены с помощью веб-браузера вместо использования команд Telnet или DIP-переключателей. У всех уже есть веб-браузер, так что это не требует дополнительных затрат на разработку.Давайте сравним другие альтернативы. Вы можете предоставить порт RS-232 для конфигурации, но тогда вам придется либо предоставить собственный графический интерфейс, либо объяснить кому-то, как настроить программу Hyperterminal с правильной скоростью передачи, стартовыми битами, стоповыми битами, и паритет. USB мог бы быть другим вариантом, но обычно означал бы специальную программу для работы на любой платформе (Windows, Linux…), которая может быть у клиента.

Controlling devices from the internet

Рисунок 1: Управление устройствами из Интернета

HTTP предоставляет стандарт для веб-браузеров и серверов для связи и передачи данных в Интернете.Целью протокола HTTP является обеспечение передачи файлов HTML между браузером на клиенте (в данном случае клиент — это ПК или смартфон) и веб-сервером, на котором находятся данные, в этом случае сервер будет быть микроконтроллером. Клиент и сервер могут обмениваться сообщениями запроса, допустим, пользователь хочет включить светодиод, подключенный к микроконтроллеру, клиент вводит URL-адрес сервера, а затем отправляет запрос серверу на включение светодиода.

Предполагается, что URL-адрес сервера — 192.168.0.5 , а затем, введя следующую команду в адресной строке браузера ПК, установит связь с микроконтроллером: http://192.168.0.5

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *