Режимы работы электрических цепей: Режимы работы электрической цепи

Содержание

Режимы работы электрических цепей — Студопедия

Электрическая цепь в зависимости от значения сопротивления нагрузки R может работать в различных характерных режимах:

· номинальном;

· согласованном;

· холостого хода;

· короткого замыкания.

Номинальный режим - это расчетный режим, при котором элементы цепи (источники, приемники, линия электропередачи) работают в условиях, соответствующих проектным данным и параметрам.

Изоляция источника, линии электропередачи, приемников рассчитана на определенное напряжение, называемое номинальным. Превышение этого напряжения приводит к пробою изоляции, увеличению токов в цепи и другим аварийным последствиям.

Тепловой режим источников или приемников энергии рассчитан на выделение в них определенного количества тепла, то есть на определенную мощность, а последняя зависит от квадрата тока RI2, rI2.

Расчетный по тепловому режиму ток называется номинальным.

Номинальное значение мощности для источника электрической энергии - это наибольшая мощность, которую источник при нормальных условиях работы может отдать во внешнюю цепь без опасности пробоя изоляции и превышения допустимой температуры нагрева.

Для приемников электрической энергии типа двигателей - это мощность, которую могут развивать на валу при нормальных условиях работы. Для остальных приемников электрической энергии (нагревательные и осветительные приборы) - это их мощность при номинальном режиме. Номинальные значения напряжений, токов и мощностей указывают в паспортах изделий.


Согласованный режим работы - это режим, в котором работает электрическая цепь (источник и приемник), когда сопротивление нагрузки R равна внутреннему сопротивлению источника r. Этот режим характеризуется передачей от данного источника к приемнику максимально возможной мощности. Однако в согласованном режиме К.П.Д. h = 0,5 - низкий и для мощных цепей работа в согласованном режиме экономически невыгодна. Согласованный режим применяется, главным образом, в маломощных цепях, если К.П.Д. не имеет существенного значения, а требуется получить в приемнике возможно большую мощность.

Режим холостого хода и короткого замыкания. Эти режимы являются предельными режимами работы электрической цепи.

В режиме холостого хода внешняя цепь разомкнута и ток равен нулю. Так как ток равен нулю, то падение напряжения на внутреннем сопротивлении источника так же равно нулю (rI = 0) и напряжение на выводах источника равно ЭДС (e = U). Из этих соотношений вытекает метод измерения ЭДС (2.7) источника: при разомкнутой внешней цепи вольтметром, сопротивление которого можно считать бесконечно большим, измеряют напряжение на его выводах.


В режиме короткого замыкания выводы источника соединены между собой, например, сопротивление нагрузки замкнуто проводником с нулевым сопротивлением. Напряжение на приемнике при этом равно нулю.

Сопротивление всей цепи равно внутреннему сопротивлению источника, и ток короткого замыкания в цепи равен:

Iк.з. = e / r.

(2.14)

Он достигает максимально возможного значения для данного источника и может вызывать перегрев источника и даже его повреждение. Для защиты источников электрической энергии и питающих цепей от токов короткого замыкания в маломощных цепях устанавливают плавкие предохранители, в более мощных цепях - отключающие автоматические выключатели, а высоковольтных цепях - специальные высоковольтные выключатели.

Электрическая цепь, режимы её работы — Студопедия.Нет

Электрическая цепь

Совокупность устройств, образующих путь электрического тока, называется
электрической цепью.    Простейшая электрическая цепь состоит из следующих

основных элементов:

- источник электроэнергии, характеризуется наличием ЭДС Е;                                  - приёмник электроэнергии, характеризуется сопротивлением R;                                      - соединительные провода;                                                                                 - выключатель К для размыкания и замыкания цепи.
Все элементы электрической цепи можно подразделить на две категории:

- Элементы электрической цепи, в которых преобразование энергии
осуществляется при наличии электродвижущей силы,  называются
активными.Они характеризуются ЭДС Е (В) и внутренним сопротивлением г
(Ом).

- Элементы электрической цепи, в которых электроэнергия преобразуется в
тепло, называются

пассивными.Они характеризуются сопротивлением R
 (Ом) и проводимостью G (См).

 

Схема электрической цепи- это графическое изображение электрической цепи,
содержащее условные обозначения её элементов и их соединений.

 

Для схем электрических цепей применяют следующие понятия:

1. Ветвь- это участок электрической цепи, по которому проходит один и тот же
ток и который состоит из последовательно соединённых элементов.

2. Узел- место соединения трёх и более ветвей.

3. Контур- любой замкнутый путь, проходящий по нескольким ветвям.

Например, для данной цепи с двумя источниками
электроэнергии:
Число узлов m=2
Число ветвей n=3
Число контуров к=3

 

Режимы работы электрических цепей

Номинальный режим

Токи, напряжения и мощности, на которые элементы электрической цепи
рассчитаны заводами - изготовителями для нормальной работы, называются

номинальными величинами,их указывают в паспорте.

Режим работы, при котором действительные параметры элементов соответствуют их номинальным значениям, называется номинальным.


2) Рабочий режим

Если в электрической цепи действительные характеристики режима отличаются от
номинальных значений, но отклонения находятся в допустимых пределах, такой
режим называется рабочим.

 

 

В замкнутой электрической цепи ЭДС источника равна сумме напряжений на отдельных участках цепи:                                                   E = Ir +IR

 где:  Е - электродвижущая сила источника (В)

      I r =Ur - падение напряжения внутри источника (В)

       IR = Uh - напряжение на нагрузке (В)

       R        - сопротивление нагрузки (Ом)

       r         - внутреннее сопротивление источника (Ом)

Отсюда следует, что напряжение на зажимах источника энергии меньше его ЭДС из-за

внутреннего падения напряжения: Uh = Е -I r

Из уравнения напряжений выразим закон Ома для замкнутой цепи:

Режим холостого хода

Режим электрической цепи или её элементов, при котором ток в них равен нулю,
называется режимом холостого хода.Это соответствует размыканию цепи,
В режиме холостого хода R = , I = 0, напряжение на внешних зажимах источника
равно его ЭДС: U = Е.

 

Режим короткого замыкания

Режим электрической цепи, при котором накоротко замкнут участок с несколькими

элементами   через  проводник с малым   сопротивлением, называется  коротким

Замыканием.

В режиме короткого замыкания R = 0, I = ,U = 0,

Согласны ли вы с утверждениями:

 

1. Совокупность устройств, образующих путь электрического тока, называется электрической цепью.

2. Простейшая электрическая цепь состоит из источника электроэнергии, приёмника электроэнергии,
  и соединительных проводов.

3. Схема электрической цепи - это графическое изображение электрической цепи, содержащее
  условные обозначения её элементов.

4. Участок электрической цепи, по которому проходит один и тот же ток и который состоит из
  последовательно соединённых элементов, называется контуром.

5. Узел - место соединения двух и более ветвей.

6. Режим работы, при котором U, I, P соответствуют паспортным значениям, называется рабочим.

7. Если в электрической цепи действительные характеристики режима отличаются от номинальных
 значений, но отклонения находятся в допустимых пределах, такой режим называется номинальным.

8. В замкнутой электрической цепи ЭДС источника равна сумме напряжений на отдельных
  участках цепи.

9. Напряжение на зажимах источника энергии больше его ЭДС из-за внутреннего падения
   напряжения.

10. В режиме короткого замыкания R = 0,I =

, U = 0.

 

 

Режимы работы электрической цепи

 

Известно, что электрическая цепь – это совокупность определённых устройств, которые обеспечивают постоянное, непрерывное прохождение электрического тока. Работа цепи невозможна, если в ней отсутствуют какие-либо элементы; в обязательном порядке должны присутствовать как источники энергии, так и её проводники, а приёмники, как правило, - это основные устройства, образующие данную цепь.

Если учесть, что в электрической цепи встречаются различные элементы, которые делятся на три основные группы: источники энергии, проводники тока и приёмники, т. е., те элементы, которые питаются от тока и преобразуют энергию в другие её виды, то можно предположить, что существует и различные режимы работы электрических цепей.

Основные режимы работы электрических цепей

Как уже было сказано ранее, любая электрическая цепь может иметь довольно сложную структуру, зависящую от количества элементов в ней и её разветвлённости. Всё это приводит к тому, что цепь может работать в различных режимах.

Выделяют три основных режима работы: нагрузочный (или согласованный), режим короткого замыкания, а также режим холостого хода. Они отличаются друг от друга нагрузкой на электрическую цепь. Также можно выделить номинальный режим работы. В этом режиме работы все устройства в цепи работают при условиях, указанных для них как оптимальные. Эти характеристики прописываются производителем в паспортных данных при изготовлении устройства на заводе.

Нагрузочный, или согласованный режим работы. Если к источнику энергии в электрической цепи подключается какой-либо приёмник, то он обладает неким сопротивлением. Таким приёмником может быть любое устройство, например электрическая лампочка.

Если есть напряжение, то действует закон Ома, таким образом, ЭДС источника получается из суммы напряжений внешнего участка цепи и на внутреннем сопротивлении источника. Падение напряжение во внешней цепи будет равным напряжению на зажимах источника. Оно зависит от нагрузочного тока: чем меньше сопротивление нагрузки, тем больше ток и, соответственно, меньше напряжение на зажимах источника питания цепи.

Другими словами можно сказать, что нагрузочный или согласованный режим работы представляет собой режим, при котором происходит передача нагрузки повышенной мощности от источника. В этом режиме сопротивление нагрузки равно внутреннему сопротивлению источника, при этом расходуется максимальная мощность.

Однако, такой режим не рекомендуется использовать, так как при длительном превышении номинальных значений устройства могут выйти из строя.

Режим работы холостого хода. Этот режим работы электрической цепи характеризует разомкнутое её состояние – ток отсутствует, и все элементы отключены от источника питания.

В таком состоянии цепи внутреннее падение напряжение равно нулю, а напряжение на зажимах источника питание совпадает с ЭДС источника.

Т. е., можно сказать, что режим холостого хода характеризует электрическую цепь, когда она находится в разомкнутом состоянии, а сопротивление нагрузки отсутствует полностью или отключено. Такое состояние цепи можно использовать для измерения ЭДС источника питания.

Режим короткого замыкания. Этот режим работы считается аварийным, электрическая цепь не может работать нормально. Короткое замыкание возникает при соединении двух различных точек цепи, разница потенциалов которых отличается. Такое состояние не предусмотрено изготовителем устройства и нарушает его нормальную работу.

В этом режиме работы зажимы источника энергии замкнуты проводником («закорочены»), при этом его сопротивление близко к нулю. Часто, короткое замыкание происходит в тех случаях, когда соединяются два провода, которые связывают между собой источник и приёмник в цепи, как правило, их сопротивление незначительно, так что его можно назвать нулевым.

При возникновении режима короткого замыкания, ток в цепи значительно превышает номинальные значения (из-за отсутствия сопротивления). Это может привести в непригодное состояние источник энергии и приёмники в электрической цепи. В некоторых случаях это является результатом неправильных действий со стороны персонала, работающего с электротехническим оборудованием.

4.2 Электрические цепи Электрическая цепь и ее элементы

Электрическая цепь это совокупность устройств, предназначенных для генерирования, передачи, преобразования и использования электрической энергии, процессы в которых могут быть описаны с помощью понятий об электрическом токе, напряжении и ЭДС

2.2 Электрическая цепь (Адрес Блок 4) - это совокупность устройств, предназначенных для генерирования, передачи, преобразования и использования электрической энергии, процессы в которых могут быть описаны с помощью понятий об электрическом токе, напряжении и ЭДС

Вернуться к тексту

В состав электрических цепей (2.2)входит также коммутационная и защитная аппаратура. В состав электрических цепей могут включаться электрические приборы для измерения силы тока, напряжения и мощности.

При описании электрических цепей используют следующие понятия: ветвь электрической цепи, узел электрической цепи, контур, двухполюсник, четырехполюсник.

Ветвь электрической цепи- это участок, элементы которого соединены последовательно. Ток во всех элементах один и тот же.

2.3 Ветвь электрической цепи (Адрес Блок 4) - участок, элементы которого соединены последовательно.

Вернуться к тексту

Узел электрической цепи - это точка соединения трех и болееветвей электрической цепи (2.3).

2.4 Узел электрической цепи (Адрес Блок 4) - это точка соединения трех и более ветвей.

Вернуться к тексту

Контур - это любой путь вдоль ветвей электрической цепи, начинающийся и заканчивающийся в одной и той же точке.

2.5 Контур (Адрес Блок 4) - это любой путь вдоль ветвей электрической цепи, начинающийся и заканчивающийся в одной и той же точке.

Двухполюсник - это часть электрической цепи с двумя выделенными выводами.

Четырехполюсник - часть электрической цепи с двумя парами выводов.

Режимы работы электрических цепей

Электрическая цепь в зависимости от значения сопротивления нагрузки R может работать в различных характерных режимах:

  • номинальном;

  • согласованном;

  • холостого хода;

  • короткого замыкания.

Номинальный режим- это расчетный режим, при котором элементы цепи (источники, приемники, линия электропередачи) работают в условиях, соответствующих проектным данным и параметрам.

Изоляция источника, линии электропередачи, приемников рассчитана на определенное напряжение, называемое номинальным. Превышение этого напряжения приводит к пробою изоляции, увеличению токов в цепи и другим аварийным последствиям.

Тепловой режим источников или приемников энергии рассчитан на выделение в них определенного количества тепла, то есть на определенную мощность, а последняя зависит от квадрата тока RI2, rI2.

Расчетный по тепловому режиму ток называется номинальным.

Номинальное значение мощности для источника электрической энергии - это наибольшая мощность, которую источник при нормальных условиях работы может отдать во внешнюю цепь без опасности пробоя изоляции и превышения допустимой температуры нагрева.

Для приемников электрической энергии типа двигателей - это мощность, которую могут развивать на валу при нормальных условиях работы. Для остальных приемников электрической энергии (нагревательные и осветительные приборы) - это их мощность при номинальном режиме. Номинальные значения напряжений, токов и мощностей указывают в паспортах изделий.

Согласованный режим работы- это режим, в котором работает электрическая цепь (источник и приемник), когда сопротивление нагрузки R равна внутреннему сопротивлению источника r. Этот режим характеризуется передачей от данного источника к приемнику максимально возможной мощности. Однако в согласованном режиме К.П.Д.= 0,5 - низкий и для мощных цепей работа в согласованном режиме экономически невыгодна. Согласованный режим применяется, главным образом, в маломощных цепях, если К.П.Д. не имеет существенного значения, а требуется получить в приемнике возможно большую мощность.

Режим холостого хода и короткого замыкания.Эти режимы являются предельными режимами работы электрической цепи.

В режиме холостого хода внешняя цепь разомкнута и ток равен нулю. Так как ток равен нулю, то падение напряжения на внутреннем сопротивлении источника так же равно нулю (rI = 0) и напряжение на выводах источника равно ЭДС (= U). Из этих соотношений вытекает метод измеренияЭДС (2.7)источника: при разомкнутой внешней цепи вольтметром, сопротивление которого можно считать бесконечно большим, измеряют напряжение на его выводах.

В режиме короткого замыкания выводы источника соединены между собой, например, сопротивление нагрузки замкнуто проводником с нулевым сопротивлением. Напряжение на приемнике при этом равно нулю.

Сопротивление всей цепи равно внутреннему сопротивлению источника, и ток короткого замыкания в цепи равен:

Iк.з. = / r.

(2.14)

Он достигает максимально возможного значения для данного источника и может вызывать перегрев источника и даже его повреждение. Для защиты источников электрической энергии и питающих цепей от токов короткого замыкания в маломощных цепях устанавливают плавкие предохранители, в более мощных цепях - отключающие автоматические выключатели, а высоковольтных цепях - специальные высоковольтные выключатели.

Характеристика электрических сетей

Совокупность объектов и устройств, обеспечивающих постоянный и непрерывный путь для движения электрического тока можно назвать электрической цепью.

Напряжение и сила тока - это неотъемлемые элементы каждой электрической цепи. Такие явления, наряду с прочими магнитными и электрическими явлениями, изучает наука, называемая электротехникой. Еще одной целью этой науки является поиск возможности практических применений, а не только теоретического изучения.

Если учесть, что в электрической цепи имеются разные элементы, то можно сказать, что существует несколько режимов работы цепи. Эти элементы подразделены на три основных вида - это источники энергии, проводники и приёмники, т.е. первые элементы служат для выработки электроэнергии, приёмники преобразуют электроэнергию в другие ее виды, а проводники передают энергию от источников к приёмникам. Все элементы цепи - источники тока, проводники и приёмники - это устройства, без которых невозможно существование электрической цепи. При отсутствии одного из этих элементов работа цепи просто невозможна. В зависимости от того какое строение и какие элементы в цепи содержатся, все электрические цепи бывают линейные и нелинейные. При этом каждую цепь можно изобразить в схеме, что позволяет сделать работу с цепями более удобной.

Три режима работы электрических цепей

Как уже говорилось выше, электрическая цепь несет в себе сложнейшую структуру и имеет в составе множество различных элементов и разветвлённостей. К тому же в цепях действуют определенные законы, а для того, чтобы охарактеризовать цепь используют такие понятия как ток, сопротивление, электродвижущая сила и т.д. Все это способствует тому, что цепь может работать в разных режимах.

Выделяют три режима работы цепи:

  • короткого замыкания
  • нагрузочный режим (согласованный)
  • режим холостого хода.

Основное отличие между этими режимами - это уровень нагрузки на электрическую цепь. Стоит отметить, что электрическая цепь имеет еще один режим работы, называемый номинальным. При таком режиме все элементы цепи работают по оптимальным для них условиям. Эти условия указываются в паспортных данных заводом-изготовителем.

Согласованный (нагрузочный) режим работы

Любой приемник, подключенный к источнику электроэнергии в цепи, обладает определенным сопротивлением. Наглядным примером такого приёмника может быть электрическая лампочка. При наличии напряжения начинает действовать закон Ома. При этом электродвижущая сила источника тока складывается из суммы напряжения на внешних участках цепи и внутреннего сопротивления источника. Когда падает напряжение внешней цепи, это оказывает влияние на изменении напряжения на зажимах источника. А само падение напряжения зависит от сопротивления и силы тока. Иными словами, согласованный (нагрузочный) режим работы электрической цепи - это процесс передачи нагрузки, при котором мощность превышает номинальные показатели. Но использование такого режима нерационально, ведь при длительном превышении установленных заводом значений, приборы могут попросту прийти в негодность.

Режим работы холостого хода

В таком режиме работы электрическая цепь находится в незамкнутом состоянии. Попросту говоря, в цепи отсутствует электрический ток, следовательно, каждый элемент цепи не подключен к источнику тока. При таком положении падение напряжения во внутренней цепи равно нулю, а ЭДС источника равно напряжению на зажимах источника питания. Иными словами, при режиме холостого хода в цепи, не подключенной к электрическому току, отсутствует сопротивление нагрузки.

Режим короткого замыкания

Это тот режим работы, который смело можно назвать аварийным, т.к. обеспечение нормальной работы цепи при таком режиме становится невозможным, ведь ток короткого замыкания показывает высокие значения, которые превышают номинальные в несколько раз. Короткое замыкание появляется, когда происходит соединение двух разных точек электрической цепи, у которых отличается разница потенциалов. При таком положении цепи нарушается ее нормальная работа. При режиме короткого замыкания зажимы в источнике питания замыкаются проводником, сопротивление у которого равняется нулю. Зачастую такой режим возникает в тот момент, когда соединяются два провода, связывающие между собой источник питания и приёмник цепи. Их сопротивление, в основном, ничтожно мало, поэтому его можно приравнять к нулю. Из-за отсутствия сопротивления при режиме короткого замыкания ток превышает номинальные показатели в несколько раз. За счет этого источники питания и приёмники электрической цепи могут прийти в негодность. В ряде случаев это может возникнуть при неправильном обращении с электрическим оборудованием обслуживающего его персонала.

РЕЖИМЫ РАБОТЫ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ. — Студопедия

Электрической цепи могут работать в различных режимах. Режимы работы характеризуются значениями тока и напряжения.
Режимов может быть довольно много, так как, и ток и напряжение могут принимать любые значения
Рассмотрим наиболее характерные режимы работы электрической цепи с источником э.д.с., к которому подключен электроприемник с регулируемым сопротивлением .

Пусть источник характеризуется постоянной э.д.с. Е и внутренним сопротивлением Rе = const.
Ток в цепи изменяется при изменении сопротивления электроприемника, который является линейным элементом.

По второму закону Кирхгофа можно записать
E = RнI+RеI
, где RнI=U- напряжение на зажимах приёмника, т.е. напряжение на зажимах внешней цепи;
RеI- падение напряжения внутри источника э.д.с.
Так как приемник присоединен непосредственно к зажимам источника э.д.с., то напряжение Uодновременно является напряжением и на его зажимах.
Из уравнения E = RнI+RеI получаем, что U = Е-RеI.
Это уравнение, описывающее зависимость напряжения внешней цепи от тока в ней, является уравнением внешней характеристики источника э.д.с.

При условии Е = соnstи Rе = const зависимость напряжения и тока является линейной.

Подобные режимы удобнее всего рассматривать, пользуясь внешней характеристикой.
1.Режим холостого хода - это режим, при котором ток в цепи I = 0, что имеет место при разрыве цепи.
Как следует из уравнения E = RнI+RеI, при холостом ходе напряжение на зажимах источника э. д. с. U = Е.

Поэтому вольтметр - прибор с очень большим сопротивлением, будучи включенным в такую цепь, измеряет
э.д.с. источника.


На внешней характеристике точка холостого хода обозначена Х.

2. Номинальный режим будет тогда, когда источник э.д.с. или любой другой элемент цепи работает при значениях тока, напряжения и мощности,
указанных в паспорте данного электротехнического устройства.

Номинальные значения тока Iном, напряжения Uном и мощности Рном соответствуют самым выгодным условиям работы устройства с точки зрения экономичности, надежности, долговечности и т.п.
На внешней характеристике точка, соответствующая номинальному режиму, обозначена Н.

3.Режим короткого замыкания - это режим, когда сопротивление приемника равно нулю, что соответствует соединению разнопотенциальных зажимов источника э.д.с. проводником с нулевым сопротивлением.
Из уравнения E = RнI+RеI следует,
что ток в цепи в любом из режимов I = E / (Rн + Rе).


При коротком замыкании цепи, когда Rн = 0, ток достигает максимального значения Iкз = E / Rе, ограниченного внутренним сопротивлением источника э.д.с.,
а напряжение на зажимах источника э.д.с.U = RнI = 0.
Значению тока Iкз и напряжению U = 0соответствует точка кз на внешней характеристике источника э.д.с.

Ток короткого замыкания может достигать больших значений, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным режимом.

4.Согласованный режим источника э.д.с. и внешней цепи имеет место, когда сопротивление внешней цепиRн = Rе.

В согласованном режиме ток в цепи Iсог = E / ( Rc + Re ) = 0.5Iкз т.е. в два раза меньше тока короткого замыкания.
Э.д.с. источника Е уравновешивается двумя равными по значению падениями напряжения, обусловленными сопротивлением внешней цепи и внутренним сопротивлением, т.е. U = 0,5Е.
Точка, соответствующая согласованному режиму, на внешней характеристике обозначена С.

Электрические цепи. Виды и составные части. Режимы работы

Различные элементы, соединенные проводниками электрического тока между собой, образуют электрические цепи. Перечень компонентов цепи может быть довольно большим. Существуют разные виды элементов цепи электрического тока: пассивные и активные, линейные и нелинейные и много других. Всю классификацию перечислить очень трудно.

Виды и составные части

Для работы цепи необходимо наличие соединительных проводников, потребителей, источника питания, выключателя. Контур цепи должен быть замкнут. Это является обязательным условием работы электрической цепи. Иначе ток в цепи протекать не будет. Не все контуры считаются электрическими цепями. Например, контуры зануления или заземления ими не признаются, так как в обычном режиме в них нет тока. Однако, по принципу действия они также являются электрическими цепями, так как в аварийных случаях в них протекает ток. Контур заземления и зануления замыкается с помощью грунта.

 
Внутренние и внешние электрические цепи

Для создания упорядоченного движения электронов, нужно наличие разности потенциалов между каким-либо участком цепи. Это обеспечивается при подключении напряжения в виде источника питания. Он называется внутренней электрической цепью. Остальные компоненты цепи образуют внешнюю цепь. Для задания движения зарядов в источнике питания против направления поля требуется приложить сторонние силы.

Такими силами могут выступать:
  • Выход вторичной обмотки трансформатора.
  • Батарея (гальванический источник).
  • Обмотка генератора.

Напряжение в цепи может быть, как постоянным, так и переменным, в зависимости от свойств источника питания. По этому признаку в электротехнике электрические цепи разделяют на контуры цепей. Такое объяснение вида цепи упрощенное, так как закон изменения движения электронов намного сложнее.

Кроме упорядоченного движения, электроны задействованы в хаотичном тепловом движении. Чем выше температура материала, тем больше скорость хаотичного движения носителей заряда. Однако, такой вид движения не участвует в создании электрического тока.

От источника питания зависит и род тока, то есть свойства внешней цепи. Батарея элементов выдает постоянное напряжение, а разные обмотки генераторов или трансформаторов выдают переменное напряжение. Это зависит от внутренних процессов в источнике питания.

Внешние силы, создающие движение электронов, называются электродвижущими силами, которые характеризуются работой, выполненной источником для перемещения единицы заряда, измеряется в вольтах.

Практически в расчетах цепей применяют два класса источников питания:
  1. Источники напряжения.
  2. Источники тока.

В реальности такие идеальные источники не существуют, но практически их пытаются имитировать. В бытовой сети мы имеем напряжение 220 вольт с определенными нормированными отклонениями. Это является источником напряжения, так как норма дана именно на этот параметр. Значение тока не играет большой роли. На электростанции круглосуточно поддерживается постоянная величина напряжения, независимо от запросов.

Источник тока действует по-другому. Он поддерживает определенный закон движения электронов, а величина напряжения не имеет значения. В пример можно привести сварочный аппарат. Для нормального хода сварки необходимо поддерживать постоянное значение тока. Эту функцию выполняет инверторный электронный блок.

Сеть питания может быть, как переменной, так и постоянной. Это не играет большой роли. Важнее выдержать, например, параметр ЭДС.

Обозначения компонентов электрической цепи

Выключатель

Это устройство позволяет соединить потребитель с источником питания. При пользовании выключателем, на его контактах образуется искра. Она возникает из-за наличия емкостного сопротивления. Чтобы избежать искрения, в электрическую цепь добавляются дроссели, а в выключатель устанавливают контакты специального вида. Электрические цепи могут иметь и другие решения для предотвращения возникновения искры.

Проводники

Электрические провода чаще всего производят из алюминия или меди. Это объясняется низким удельным сопротивлением этих металлов, хотя стоимость их в последнее время повышается. На проводах при работе выделяется тепло, которое зависит от двух параметров:

  1. Электрического тока.
  2. Сопротивления участка цепи.

Электрический ток определяется необходимостью потребителя, поэтому изменять можно только удельное сопротивление, которое должно быть как можно ниже. Все металлы при уменьшении температуры уменьшают сопротивление, в результате чего снижаются потери энергии. Если взять полупроводники, то среди них есть образцы с отрицательным и с положительным температурным коэффициентом сопротивления. Если сравнивать абсолютные значения сопротивления, то у металлов оно намного меньше.

Потребители

Все остальные компоненты электрической цепи, кроме перечисленных выше, считаются потребителями. Полезной нагрузкой является простая лампа накаливания, электродвигатель, нагревательное устройство. Параметры цепи слишком зависят от потребителей. Электрические цепи имеют обмотки трансформаторов, которые обладают большим индуктивным сопротивлением. Это отрицательно влияет на передачу электричества от источника.

Направление кроме тока может изменять и мощность. При этом энергия циркулирует в одну и в другую сторону. Такая мощность называется реактивной, и не выполняет полезной работы. Однако, она нагревает проводники и изменяет форму электрического сигнала. Поэтому в промышленных условиях целесообразно к электродвигателям параллельно подключать конденсаторы, которые будут компенсировать сопротивление с индуктивностью. В результате реактивная мощность замкнется внутри двигателя, и не выделит чрезмерного тепла в проводах.

Индуктивные потребители имеют важное свойство: они расходуют электроэнергию, которая превращается в магнитное поле и передается дальше.

В электронике существует множество разнообразных потребителей, которые можно разделить на классы:
  • Активные потребители. Для своего функционирования им требуется наличие электрической энергии. От основной сети они практически не работают. К ним относятся транзисторы, микросхемы, тиристоры и много других видов, являющихся своеобразными электронными ключами. Электродвигатели имеют отличие в том, что работают непосредственно из сети питания.
  • Пассивные потребители не нуждаются во внешнем источнике питания. Они пропускают через себя электрический ток особым образом. Например, полупроводники (тиристоры) начинают пропускать ток только при достижении определенной величины напряжения. Значит, они являются пассивными потребителями, и имеют нелинейные свойства пропускания тока. К таким же видам можно причислить диоды, пропускающие ток только в одну сторону. Другими словами, они имеют свойства вентиля. Также пассивными потребителями являются различные дроссели, конденсаторы, сопротивления. При наличии этих компонентов электрические цепи обретают необычные свойства. Например, контуры резонанса, состоящие из катушек и емкостей, применяют в виде фильтров для разной частоты волн.
Режимы электрической цепи

При подключении разного числа потребителей к источнику питания изменяется мощность, напряжение и ток, вследствие чего возникают различные режимы работы в цепи, и соответственно, компонентов, включенных в нее. Практически можно представить схему цепи в виде пассивного и активного двухполюсника. Это электрические цепи, соединенные с внешней частью двумя выводами с разной полярностью.

Особенностью активного двухполюсника является наличие источника электрического тока, у пассивного двухполюсника его нет. Популярными стали схемы замещения пассивных и активных элементов во время работы. Вид режима работы определяется свойствами элементов цепи.

Холостой ход

Это режим при отключенной нагрузке от питания при помощи ключа. В этом случае ток в цепи равен нулю. Напряжение достигает уровня ЭДС. Элементы цепи не работают.

Короткое замыкание

В этом случае выключатель на схеме замкнут, сопротивление равно нулю, соответственно, напряжение также равно нулю.

При применении двух рассмотренных режимов определяются свойства активного двухполюсника. При изменении тока в некоторых границах, зависящих от элемента цепи, нижняя граница всегда равна нулю. Этот элемент цепи начинает выдавать энергию в цепь. Также нужно знать, что если напряжение ниже нуля, это значит, что резисторами активного двухполюсника расходуется энергия источника, связанного по цепи, а также резерв самого прибора.

Номинальный режим

Такой режим необходим для создания технических свойств всей цепи и отдельных компонентов. В этом режиме свойства близки к величинам, указанным на компоненте, или в инструкции. Нужно учесть, что каждый прибор имеет свои параметры. Однако, три главных показателя есть у всех устройств – это напряжение, мощность и номинальный ток. Все компоненты электрических цепей также имеют эти показатели.

Согласованный режим

Этот режим применяется для создания наибольшей передачи активной мощности, передаваемой источником питания к потребителю. Когда производится работа в этом режиме, необходимо быть осторожным, во избежание выхода из строя части цепи.

Основные элементы цепи

Они применяются в сложных устройствах для проверки работоспособности:
  • Ветвь. Это участок цепи с током одинаковой величины. Ветвь может иметь несколько последовательно соединенных элементов.
  • Узел. Это место соединения нескольких ветвей.
  • Контур. Это любой замкнутый участок цепи, имеющий несколько ветвей.
Похожие темы:

9 основных правил определения размеров электрических цепей

Определение размеров и расчет сети

В принципе, сам процесс определения размеров прост для понимания и может быть выполнен с использованием простых средств. Его сложность заключается в получении технических данных о продуктах и ​​системах , которые можно найти в различных технических стандартах и ​​правилах, с одной стороны, и в многочисленных каталогах продуктов, с другой.

9 basic rules for dimensioning of electric circuits 9 основных правил расчета электрических цепей (на фото: КРУ среднего напряжения SIEMENS 24кВ типа 8DJH; кредит: smartenergo.net)

Важным аспектом в этом контексте является перекрестная манипуляция с размерами компонентов в зависимости от их технических данных, например, нижеупомянутое наследование минимального времени отключения по току нестационарной цепи нагрузки другим стационарным цепям нагрузки или распределительным цепям. .

Другим аспектом является взаимное влияние определения размеров и расчета сети (короткое замыкание) , например, при использовании устройств ограничения тока короткого замыкания.

Сложность еще больше увеличивается из-за национальных стандартов, правил и различных методов установки, применяемых к двум областям измерения.По причинам минимизации рисков и экономии времени ряд инжиниринговых компаний обычно используют передовое программное обеспечение для расчетов (такое как SIMARIS design) для выполнения процессов определения размеров и проверки в электроэнергетических системах.

Следующие девять основных правил и стандартов определения размеров в основном применимы ко всем типам цепей //

  1. Цепи питания
  2. Цепи распределения
  3. Норма номинального тока
  4. Правило тока отключения
  5. Энергия короткого замыкания
  6. Короткое замыкание время
  7. Конечные цепи
  8. Допустимое падение напряжения
  9. Защита от поражения электрическим током

1.Цепи питания

Особо высокие требования предъявляются к выбору цепей питания. Это начинается с рейтинга источников питания . Источники питания рассчитываются в соответствии с максимальным ожидаемым током нагрузки для энергосистемы, желаемой величиной резервной мощности и степенью надежности питания, необходимой в случае неисправности (перегрузки / короткого замыкания).

Условия нагрузки во всей энергосистеме устанавливаются на основе баланса энергии.

Резервная мощность и эксплуатационная безопасность в непосредственной близости от системы электроснабжения обычно устанавливаются путем создания соответствующих резервов, например, //

  • Обеспечение дополнительных источников питания (трансформатор, генератор, ИБП)
  • Оценка источников питания в соответствии с принципом отказа, n- или (n-1) резервирование: применение принципа (n – 1) означает, что два из трех блоков питания в принципе способны непрерывно обеспечивать полную нагрузку для энергосистемы без каких-либо проблем, если один отказ источника питания
  • Номинальные параметры тех источников питания, которые могут временно работать в условиях перегрузки (например, с использованием вентилируемых трансформаторов)

Независимо от установленных токов нагрузки, определение параметров любого дополнительного компонента в цепи питания ориентировано на номинальные значения мощности источников, сконфигурированных режимов работы системы и всех связанных состояний переключения в непосредственной близости от системы питания.

Как правило, коммутационные / защитные устройства должны быть выбраны таким образом , чтобы можно было передать запланированный максимум мощности . Кроме того, необходимо определить различные условия минимального / максимального тока короткого замыкания в непосредственной близости от системы питания, которые зависят от состояния переключения.

Busbar trunking systems connected to LV switchgear Системы шинопроводов, подключенные к низковольтному распределительному устройству (фото предоставлено Siemens)

При расчете параметров соединительных линий (кабельная или шинопроводная система) необходимо учитывать соответствующие понижающие коэффициенты, которые зависят от количества систем, проложенных параллельно, и тип установки.

При номинальных характеристиках устройств особое внимание следует уделять их номинальной отключающей способности при коротком замыкании. Вам также следует выбрать подходящий выключатель (воздушный автоматический выключатель или автоматический выключатель в литом корпусе) с высококачественным отключающим устройством и регулируемыми настройками, так как этот компонент является важной основой для достижения наилучшей возможной селективности по отношению ко всем входящим и выходящим потокам. устройств.

Вернуться к Правилам определения размеров ↑


2. Схема распределения

Расчет кабельных трасс и устройств соответствует максимальным токам нагрузки, ожидаемым на этом уровне распределения.

Как правило:

I bmax = Σ установленная мощность · коэффициент одновременности

Коммутационное / защитное устройство и соединительная линия должны быть согласованы с точки зрения защиты от перегрузки и короткого замыкания . Чтобы обеспечить защиту от перегрузки, вы должны также соблюдать стандартные стандартные (не) токи отключения, относящиеся к применяемому устройству.

Проверки, основанной только на номинальном токе устройства или заданном значении I r , недостаточно .

Вернуться к Правилам определения размеров ↑

Для обеспечения защиты от перегрузки //

необходимо соблюдать следующие основные правила. 3. Правило номинального тока

Нерегулируемое защитное оборудование //

I B ≤ I n ≤ I z

Номинальный ток In выбранного устройства должен находиться между установленным максимальным током нагрузки I B и максимально допустимым током нагрузки I z выбранной среды передачи ( система кабельных или шинопроводов).

Регулируемое защитное оборудование //

I B ≤ I r ≤ I z

Значение настройки устройства отключения перегрузки Ir выбранного устройства должно находиться в пределах установленного максимального тока нагрузки I B и максимально допустимый ток нагрузки I z выбранной среды передачи.

Вернуться к правилам определения размеров ↑


4. Правило тока отключения

I 2 ≤ 1.45 · I z

Максимально допустимый ток нагрузки I z выбранной среды передачи должен быть на выше высокого испытательного тока I 2 / 1,45 выбранного устройства . Высокий испытательный ток I 2 стандартизирован и варьируется в зависимости от типа и характеристик применяемого защитного оборудования.

Вернуться к правилам определения размеров ↑

Для обеспечения защиты от короткого замыкания необходимо соблюдать следующие основные правила //

5.Энергия короткого замыкания

K 2 S 2 ≥ I 2 t

( K = коэффициент материала; S = поперечное сечение)

Количество энергии, которое высвобождается с момента когда происходит короткое замыкание, до тех пор, пока оно не будет устранено автоматически, оно должно в любое время быть меньше, чем энергия, которую передающая среда может нести как максимум, прежде чем будет нанесен непоправимый ущерб.

Согласно IEC 60364-4-43 (VDE 0100-430) это основное правило действительно до диапазона времени макс.5 с . Ниже времени отключения от короткого замыкания, равного 100 мс , необходимо учитывать пропускаемую энергию защитного устройства (см. Данные производителя устройства).

При использовании устройств с расцепителем необходимо проверить соблюдение этого правила на всей характеристической кривой устройства. Простая проверка в диапазоне приложенного максимального тока короткого замыкания (I kmax ) не всегда достаточна, в частности, при использовании расцепителей с выдержкой времени.

Вернуться к правилам определения размеров ↑


6. Время короткого замыкания

t a (I kmin ) ≤ 5 с

Результирующее время отключения по току выбранного защитного оборудования должно гарантировать, что расчетное значение минимальный ток короткого замыкания I кмин на конце линии передачи или защищенной линии автоматически сбрасывается не позднее, чем через 5 с.

Защита от перегрузки и короткого замыкания не обязательно должна обеспечиваться одним и тем же устройством.При необходимости эти две цели защиты могут быть достигнуты с помощью комбинации устройств.

Можно также рассмотреть возможность использования отдельных коммутационных / защитных устройств , то есть в начале и в конце кабельной трассы. Как правило, устройства, установленные на конце кабельной трассы, могут обеспечить защиту от перегрузки только для этой линии.

Вернуться к Правилам определения размеров ↑


7. Конечные цепи

Метод координации защиты от перегрузки и короткого замыкания практически идентичен для распределительных и конечных цепей.Помимо защиты от перегрузки и короткого замыкания, для всех цепей также важна защита человеческой жизни.

Вернуться к Правилам определения размеров ↑


8. Допустимое падение напряжения

Для определения размеров кабеля необходимо учитывать максимально допустимое падение напряжения. Это означает, что цепочка: падение напряжения - диаметр кабеля - радиусы изгиба - требования к пространству также влияет на размер помещения и затраты, которые необходимо учитывать при планировании.

Вернуться к Правилам определения размеров ↑


9.Защита от поражения электрическим током

t a (I k1 min ) ≤ t a доп.

Если происходит однофазное замыкание на землю (I k1 мин ), результирующее время отключения по току t a для выбранного защитного оборудования должно быть меньше максимально допустимого времени отключения t a доп. . что требуется для этой цепи согласно IEC 60364-4-41 (VDE 0100-410) для обеспечения защиты людей.

Поскольку требуемое максимальное время отключения по току изменяется в зависимости от номинального напряжения сети и типа подключенной нагрузки (стационарные и нестационарные нагрузки), требования защиты относительно минимального времени отключения ta доп. могут быть перенесены с одной цепи нагрузки на другие цепи. В качестве альтернативы, эта цель защиты также может быть достигнута путем соблюдения максимального напряжения прикосновения.

Dependency of personal protection on power supply systems Рисунок 1 - Зависимость индивидуальной защиты от систем электроснабжения

В зависимости от системы электроснабжения определенная защита должна быть построена, как показано на рисунке 1 выше.

Поскольку конечные цепи часто характеризуются длинными линиями питания, на их размеры часто сильно влияет максимально допустимое падение напряжения. Что касается выбора коммутационных / защитных устройств, важно помнить, что длинные соединительные линии характеризуются высоким импедансом и, следовательно, сильным затуханием расчетных токов короткого замыкания.

В зависимости от режима работы системы (муфта разомкнута, муфта замкнута) и питающей среды (трансформатор или генератор), защитное оборудование и его настройки должны быть сконфигурированы для наихудшего случая, касающегося токов короткого замыкания.В отличие от цепей питания или распределения, в которых большое внимание уделяется выбору высококачественного отключающего устройства, конечные цепи удовлетворяются отключающим устройством с характеристикой LI для защиты от перегрузки и мгновенного короткого замыкания.

Вернуться к Правилам определения размеров ↑

Ссылка // Планирование распределения электроэнергии - Технические принципы // SIEMENS

.

Электрические цепи

Эта основная идея исследована через:

Противоположные взгляды студентов и ученых

Ежедневный опыт студентов

Two students with several batteries, light globe & connecting wires. Студенты имеют большой опыт использования бытовой техники, в работе которой используются электрические цепи (фонарики, мобильные телефоны, плееры iPod). Скорее всего, у них появилось ощущение, что вам нужно включить аккумулятор или выключатель питания, чтобы все «работало», и что батареи могут «разрядиться».Они склонны думать об электрических цепях как о том, что они называют «током», «энергией», «электричеством» или «напряжением», причем все эти названия они часто используют как синонимы. Это неудивительно, учитывая, что все эти ярлыки часто используются в повседневном языке с неясным значением. Какой бы ярлык ни использовали учащиеся, они, скорее всего, увидят в электрических цепях «поток» и что-то, что «хранится», «расходуется» или и то, и другое. Некоторые повседневные выражения, например о «зарядке батарей», также могут быть источником концептуальной путаницы для студентов.

В частности, учащиеся часто считают, что ток равен напряжению, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, например свет или тепло.

Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

В частности, студенты часто считают, что ток равен напряжению, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, например свет. или тепло.

Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

Четыре модели простых схем
  • «униполярная модель» - точка зрения, согласно которой на самом деле нужен только один провод между батареей и лампочкой, чтобы в цепи был ток.
Unipolar model of current movement around a circuit
  • «модель сталкивающихся токов» - представление о том, что ток «течет» с обеих клемм батареи и «сталкивается» в лампочке.
Clashing currents model of current movement around a circuit
  • «модель потребляемого тока» - представление о том, что ток «расходуется» по мере «обхода» цепи, поэтому ток, «текущий к» лампочке, больше, чем ток, «уходящий» от нее обратно к лампочке. аккумулятор.
Current consumed model of current movement around a circuit
  • «научная модель» - точка зрения, согласно которой ток одинаков в обоих проводах.
Current is the same in all parts of the circuit

Ежедневный опыт учащихся с электрическими цепями часто приводит к путанице в мышлении. Учащиеся, которые знают, что вы можете получить удар электрическим током, если дотронетесь до клемм пустой розетки бытового освещения, если выключатель включен, поэтому иногда считают, что в розетке есть ток, независимо от того, касаются ли они ее. (Точно так же они могут полагать, что есть ток в любых проводах, подключенных к батарее или розетке, независимо от того, замкнут ли переключатель.)

Некоторые студенты думают, что пластиковая изоляция проводов, используемых в электрических цепях, содержит и направляет электрический ток так же, как водопроводные трубы удерживают и регулируют поток воды.

Исследования: Осборн (1980), Осборн и Фрейберг (1985), Шипстоун (1985), Шипстоун и Ганстон (1985), Уайт и Ганстон (1980)

Научная точка зрения

Термин «электричество» (например, «химия») ) относится к области науки.

Модели играют важную роль, помогая нам понять то, что мы не можем видеть, и поэтому они особенно полезны при попытке разобраться в электрических цепях.Модели ценятся как за их объяснительную способность, так и за их способность к прогнозированию. Однако у моделей также есть ограничения.

Модель, используемая сегодня учеными для электрических цепей, использует идею о том, что все вещества содержат электрически заряженные частицы (см. Макроскопические свойства в сравнении с микроскопическими). Согласно этой модели, электрические проводники, такие как металлы, содержат заряженные частицы, которые могут относительно легко перемещаться от атома к атому, тогда как в плохих проводниках, изоляторах, таких как керамика, заряженные частицы перемещать гораздо труднее.

В научной модели электрический ток - это общее движение заряженных частиц в одном направлении. Причина этого движения - источник энергии, такой как батарея, который выталкивает заряженные частицы. Заряженные частицы могут двигаться только тогда, когда существует полный проводящий путь (называемый «контуром» или «петлей») от одного вывода батареи к другому.

Простая электрическая цепь может состоять из батареи (или другого источника энергии), лампочки (или другого устройства, использующего энергию) и проводящих проводов, соединяющих две клеммы батареи с двумя концами лампочки.В научной модели такой простой схемы движущиеся заряженные частицы, которые уже присутствуют в проводах и в нити накала лампочки, являются электронами.

Электроны заряжены отрицательно. Батарея отталкивает электроны в цепи от отрицательной клеммы и притягивает их к положительной клемме (см. Электростатика - бесконтактная сила). Любой отдельный электрон перемещается только на небольшое расстояние. (Эти идеи получили дальнейшее развитие в основной идее «Разобраться в напряжении»).Хотя фактическое направление движения электронов - от отрицательного к положительному полюсу батареи, по историческим причинам обычно описывают направление тока как от положительного к отрицательному полюсу (так называемый `` обычный ток ').

Энергия батареи хранится в виде химической энергии (см. Главную идею преобразования энергии). Когда он подключен к полной цепи, электроны перемещаются, и энергия передается от батареи к компонентам цепи.Большая часть энергии передается световому шару (или другому пользователю энергии), где она преобразуется в тепло и свет или какую-либо другую форму энергии (например, звук в iPod). В соединительных проводах очень небольшое количество преобразуется в тепло.

Напряжение батареи говорит нам, сколько энергии она передает компонентам схемы. Это также говорит нам кое-что о том, как сильно батарея толкает электроны в цепи: чем больше напряжение, тем сильнее толчок (см. Используя энергию).

Критические идеи обучения

  • Электрический ток - это общее движение заряженных частиц в одном направлении.
  • Для получения электрического тока необходима непрерывная цепь от одного вывода аккумулятора к другому.
  • Электрический ток в цепи передает энергию от батареи к компонентам цепи. В этом процессе ток не «расходуется».
  • В большинстве схем движущиеся заряженные частицы представляют собой отрицательно заряженные электроны, которые всегда присутствуют в проводах и других компонентах схемы.
  • Батарея выталкивает электроны в цепь.

Исследование: Loughran, Berry & Mulhall (2006)

Количественные подходы к обучению (например, с использованием закона Ома) могут препятствовать развитию концептуального понимания, и их лучше избегать на этом уровне.

Язык, на котором говорят учителя, очень важен. Использование слова «электричество» следует ограничить, поскольку его значение неоднозначно. Говоря о «текущем» токе вместо движения заряженных частиц, можно усилить неверное представление о том, что ток - это то же самое, что и электрический заряд; поскольку «заряд» - это свойство веществ, например масса, лучше относиться к «заряженным частицам», чем к «зарядам».

Current is the same in all parts of the circuit Идея фокусировки Введение в научный язык дает дополнительную информацию о развитии научного языка со студентами.

Использование моделей, метафор и аналогий жизненно важно для развития понимания учащимися электрических цепей, потому что для объяснения того, что мы наблюдаем в цепи (например, зажигание лампочки), необходимо использовать научные идеи о вещах, которые мы не можем видеть, например об энергии. и электроны. Поскольку все модели / метафоры / аналогии имеют свои ограничения, важно использовать их множество.Не менее важно четко понимать сходства и различия между любой используемой моделью / метафорой / аналогией и рассматриваемым явлением. Общее ограничение физических моделей (в том числе приведенных ниже) состоит в том, что они подразумевают, что любой конкретный электрон перемещается по цепи.

Current is the same in all parts of the circuit Изучите взаимосвязь между идеями об электричестве и преимуществами и ограничениями моделей в Карты развития концепции - Электричество и магнетизм и модели

Вот некоторые полезные модели и аналогии:

  • the bicycle chain analogy аналогия с велосипедной цепью - это полезно для развития идеи потока энергии, для отличия этого потока энергии от тока и для демонстрации постоянства тока в данной цепи.Движение велосипедной цепи аналогично движению тока в замкнутой цепи. Движущаяся цепь передает энергию от педали (то есть «аккумулятор») к заднему колесу (то есть «компоненты схемы»), где энергия преобразуется. Эта модель имеет лишь ограниченную полезность и требует от учащегося осознать, что заднее колесо является компонентом, выполняющим преобразование энергии.
  • модель мармелада - это помогает развить идею о том, что движение электронов в цепи сопровождается передачей энергии.Студенты играют роль «электронов» в цепи. Каждый из них собирает фиксированное количество мармеладов, представляющих энергию, когда они проходят через «батарею», и отдают эту «энергию», когда достигают / проходят через «лампочку». Эти студенческие «электроны» затем возвращаются в «батарею» для получения дополнительной «энергии», что предполагает получение большего количества мармеладов.

Diagram showing students role playing charge carriers

Еще одно описание этого вида деятельности представлено в виньетке PEEL. Ролевая игра с мармеладом. Эта модель может быть очень мощной, но важным ограничением является представление энергии как субстанции, а не как изобретенной человеческой конструкции.

  • модель троса - эта модель помогает объяснить, почему в электрической цепи происходит нагрев. Студенты образуют круг и свободно держат непрерывную петлю из тонкой веревки горизонтально. Один ученик действует как «батарея» и тянет веревку так, чтобы она скользила через руки других учеников, «компоненты схемы». Студенты чувствуют, как их пальцы становятся более горячими, поскольку энергия преобразуется, когда веревка тянется студенческой батареей

Current is the same in all parts of the circuit Для получения дополнительной информации о развитии идей об энергии см. Фокусную идею Использование энергии.

  • модель водяного контура - это часто используется в учебниках, и на первый взгляд кажется моделью, которая легко понятна учащимся; однако важно, чтобы учителя знали о его ограничениях.

В этой модели насос представляет батарею, турбину - лампочку, а водопроводные трубы - соединительные провода. Важно указать учащимся, что этот водяной контур на самом деле отличается от бытового водоснабжения, потому что в противном случае они могут, опираясь на свой повседневный опыт, сделать неправильный вывод, например, что электрический ток может вытекать из проводов контура таким же образом, как и вода может вытечь из труб.

the water circuit model

Исследования: Лафран, Берри и Малхолл (2006)

Преподавательская деятельность

Открытое обсуждение через общий опыт

Students shine a torch on different materials and objects Действие POE (прогнозировать-наблюдать-объяснять) - полезный способ начать обсуждение. Дайте учащимся батарейку, лампочку фонарика (или другую лампочку с нитью накала) и соединительный провод. Попросите их угадать, как следует подключить цепь, чтобы лампочка загорелась. Примечание: НЕ предоставляйте патрон лампы. Это должно спровоцировать дискуссию о необходимости создания полного контура для тока и о пути тока в лампочке.Это задание можно расширить, поощряя студентов использовать другие материалы вместо проводов.

Бросьте вызов существующим идеям

Ряд POE (Прогноз-Наблюдение-Объяснение) можно построить, изменив элементы существующей схемы и попросив учащихся сделать прогноз и обоснование этого прогноза. Например, попросите учащихся предсказать изменения, которые могут произойти в яркости лампочки, когда она подключена к батареям с разным напряжением.

Разъяснение и обобщение идей для / путем общения с другими

Попросите студентов изучить модели и аналогии для электрических цепей, представленных выше.Студенты должны оценить каждую модель на предмет ее полезности для разъяснения представлений об электрических цепях. Студентов также следует побуждать определять ограничения моделей.

Сосредоточьте внимание студентов на недооцененной детали

Попросите студентов изучить работу фонаря и нарисовать рисунок, чтобы показать путь тока, когда выключатель замкнут. Студенты должны обсудить или написать о том, что, по их мнению, происходит.

Поощряйте студентов определять явления, которые не объясняются (представленной в настоящее время) научной моделью или идеей.

Попросите учащихся перечислить особенности электрической цепи, которые объясняются конкретной моделью / метафорой / аналогией, и особенности, которые не объясняются.

Содействовать размышлению и разъяснению существующих идей

Попросите студентов нарисовать концептуальную карту, используя такие термины, как «батарея», «электроны», «энергия», «соединительные провода», «лампочка», «электрический ток».

.

ЭЛЕКТРОТЕХНИКА

E E 205 Введение в формирование сигнала (4) QSR
Представляет аналоговые схемы, связывающие датчики с цифровыми системами. / включает в себя соединение, ослабление, усиление, дискретизацию, фильтрацию, согласование, элементы управления, законы Кирхгофа, источники, резисторы, операционные усилители, конденсаторы, катушки индуктивности, PSice и MATLAB. Предназначен для специалистов, не связанных с EE. Предпосылка: MATH 126 или MATH 136; PHYS 122. Предлагается: W.
Подробная информация о курсе в MyPlan: E E 205

E E 215 Основы электротехники (4) NW
Введение в электротехнику.Основные концепции схем и систем. Математические модели компонентов. Законы Кирхгофа. Резисторы, источники, конденсаторы, катушки индуктивности и операционные усилители. Решение линейных дифференциальных уравнений первого и второго порядка, связанных с основными схемами. Предварительное условие: MATH 136 или MATH 126 и MATH 307 или AMATH 351, любой из которых может приниматься одновременно; PHYS 122. Предлагается: AWSpS.
Подробная информация о курсе в MyPlan: E E 215

E E 235 Линейные системы с непрерывным временем (5)
Введение в анализ сигналов с непрерывным временем.Основные сигналы, включая импульсы, импульсы и единичные шаги. Периодические сигналы. Свертка сигналов. Ряды и преобразования Фурье в дискретном и непрерывном времени. Компьютерная лаборатория. Предварительное условие: MATH 136, MATH 307 или AMATH 351, любой из которых может приниматься одновременно; PHYS 122; либо CSE 142, либо CSE 143, любой из которых может приниматься одновременно. Предлагается: AWSp.
Подробная информация о курсе в MyPlan: EE 235

EE 332 Devices and Circuits II (5)
Характеристики биполярных транзисторов, большие и малосигнальные модели для биполярных и полевых транзисторов, применения в линейных схемах, включая низкие и высокие частотный анализ дифференциальных усилителей, источников тока, каскадов усиления и выходных каскадов, внутренней схемы операционных усилителей, конфигураций операционных усилителей, стабильности и компенсации операционных усилителей.Еженедельная лаборатория. Предпосылка: 1.0 в E E 331. Предлагается: ASp.
Подробная информация о курсе в MyPlan: E E 332

E E 351 Энергетические системы (5)
Развивает понимание современных энергетических систем посредством теории и анализа системы и ее компонентов. Обсуждения генерации, передачи и использования дополняются темами окружающей среды и энергоресурсов, а также электромеханического преобразования, силовой электроники, электробезопасности, возобновляемых источников энергии и отключений электроэнергии.Предпосылка: 1.0 в E E 233. Предлагается: ASp.
Подробная информация о курсе в MyPlan: EE 351

EE 371 Дизайн цифровых схем и систем (5)
Предоставляет теоретические знания и практический опыт работы с инструментами и методами моделирования сложных цифровых систем с описанием оборудования Verilog язык, поддержание целостности сигнала, управление энергопотреблением и обеспечение надежной внутри- и межсистемной связи. Предпосылка: E E 205 или E E 215; либо E E 271, либо CSE 369.Предлагается: совместно с CSE 371.
Подробная информация о курсе в MyPlan: EE 371

EE 398 Введение в профессиональные вопросы (1)
Охватывает темы, представляющие интерес для студентов, планирующих свой образовательный и профессиональный путь, включая заработную плату, ценность продвинутых степени, общественные ожидания инженеров-профессионалов, корпоративное предприятие, этические дилеммы, патенты и коммерческие тайны, аутсорсинг и мировой рынок. Предлагается: AWSp.
Подробная информация о курсе в MyPlan: E E 398

E E 414 Инновации в области инженерии в здравоохранении (4) Eric J.Сейбел, Джонатан Д. Познер
Рассказывает о роли инноваций и инженерии в разработке медицинских устройств и медицинских технологий, применимых как в медицинской практике, так и в инженерии, ориентированной на здравоохранение. Может служить первым курсом в последовательности проектов старшего дизайнера, связанных с медициной. Обсуждает медицинскую практику, выявление клинических потребностей, правила FDA, страховое возмещение, интеллектуальную собственность и процесс проектирования медицинских устройств. Предлагается: совместно с M E 414; A.
См. Подробности курса в MyPlan: E E 414

E E 417 Современные беспроводные коммуникации (4)
Введение в беспроводные сети как приложение основных теорем коммуникации.Изучает методы модуляции для цифровой связи, пространство сигнала, оптимальную конструкцию приемника, характеристики ошибок, кодирование с контролем ошибок для обеспечения высокой надежности, многолучевое замирание и его эффекты, анализ бюджета РЧ-линии, системы WiFi и Wimax. Предварительные требования: E E 416 Предлагается: W.
Подробная информация о курсе в MyPlan: E E 417

E E 419 Введение в компьютерные сети связи (4) Sumit Roy
Архитектура и протоколы компьютерных сетей. Уровни OSI и анализ производительности.Среда передачи, коммутация, арбитраж множественного доступа. Сетевая маршрутизация, контроль перегрузки, контроль потока. Транспортные протоколы, реальное время, многоадресная рассылка, сетевая безопасность. Предпосылка: CSE 143; либо STAT 390, STAT 391, либо IND E 315. Предлагается: Sp.
Подробная информация о курсе в MyPlan: EE 419

EE 421 Квантовая механика для инженеров (3) M. Anantram
Освещает основы теории квантовой механики в контексте современных примеров технологической важности, включающих 1D, 2D и 3D наноматериалы.Развивает качественное и количественное понимание принципов квантования, зонной структуры, плотности состояний и золотого правила Ферми (оптическое поглощение, электронно-примесное / фононное рассеяние). Предварительное условие: MATH 307 или AMATH 351; рекомендуется: Исчисление с помощью дифференциальных уравнений. Предлагается: W.
Подробная информация о курсе в MyPlan: E E 421

E E 423 Введение в синтетическую биологию (3)
Изучение математического моделирования транскрипции, трансляции, регуляции и метаболизма в клетке; методы компьютерного проектирования для синтетической биологии; реализация законов обработки информации, логики и обратной связи с генетическими регуляторными сетями; модульность, согласование импеданса и изоляция в биохимических цепях; и методы оценки параметров.Предварительное условие: MATH 136, MATH 307 или AMATH 351; и либо MATH 308, либо AMATH 352, либо CSE 311 Предлагается: совместно с BIOEN 423 / CSE 486; A.
Подробная информация о курсе в MyPlan: E E 423

E E 424 Продвинутые системы и синтетическая биология (3) H. Kueh
Охватывает передовые концепции системной и синтетической биологии. Включает в себя кинетику, моделирование, стехиометрию, теорию управления, метаболические системы, сигналы и мотивы. Все темы противопоставляются задачам синтетической биологии.Предпосылка: либо BIOEN 401, BIOEN 423, E E 423, либо CSE 486. Предлагается: совместно с BIOEN 424 / CSE 487; Sp.
Подробная информация о курсе в MyPlan: E E 424

E E 425 Лабораторные методы в синтетической биологии (4)
Конструирует и создает трансгенные бактерии, используя промоторы и гены, взятые из различных организмов. Использует методы конструирования, включая рекомбинацию, синтез генов и выделение генов. Оценивает дизайн с использованием секвенирования, флуоресцентных анализов, анализов активности ферментов и исследований отдельных клеток с использованием покадровой микроскопии.Предпосылка: BIOEN 423, E E 423 или CSE 486; либо CHEM 142, CHEM 144, либо CHEM 145. Предлагается: совместно с BIOEN 425 / CSE 488; W.
См. Подробности курса в MyPlan: EE 425

EE 438 Проект проектирования приборов Capstone (5) R. DARLING
Коллективное проектирование для разработки электронной системы контрольно-измерительных приборов и создания и проверки прототипа с использованием современной печатной схемы бортовая техника. Команды разрабатывают требования к дизайну; исследовать компромиссы для миниатюризации, интеграции, производительности и стоимости; и рассмотреть варианты использования, режимы отказа, технологичность и тестируемость.Включает обширную лабораторию. Предпосылка: E E 433 или E E 436. Предлагается: Sp.
Подробная информация о курсе в MyPlan: E E 438

E E 442 Цифровые сигналы и фильтрация (3)
Методы и методы цифровой обработки сигналов. Обзор теорем выборки, аналого-цифровых и аналого-цифровых преобразователей. Демодуляция квадратурной выборкой. Методы Z-преобразования, системные функции, линейные системы, инвариантные относительно сдвига, разностные уравнения. Графики потоков сигналов для цифровых сетей, канонические формы. Дизайн цифровых фильтров, практические соображения, БИХ и КИХ фильтры.Цифровые преобразования Фурье и методы БПФ. Предварительное условие: 1.0 в EE 341. Предлагается: W.
Подробная информация о курсе в MyPlan: EE 442

EE 443 Разработка и применение цифровой обработки сигналов (5)
Применение изученных теорий / алгоритмов и доступных компьютерных технологий для создания современных изображений и проблемы с обработкой речи. Двумерные сигналы и системы. Преобразование изображений, улучшение, восстановление, кодирование. Характеристики речевых сигналов, кодирование речи с линейным предсказанием (LPC), обнаружение основного тона и синтез речи LPC, распознавание речи, устройства для обработки сигналов.Предпосылка: 1.0 в E E 442. Предлагается: Sp.
См. Подробности курса в MyPlan: E E 443

E E 448 Системы, средства управления и робототехника Capstone (4-)
Опыт в проектировании систем управления в небольших группах разработчиков. Включает планирование и управление проектом, отчетность и техническую коммуникацию. Студенческие команды проектируют, внедряют, тестируют и отчитываются о результатах своих проектов. Включает лекции по выбранным темам, например, по управлению проектами, интеллектуальной собственности и некоторым темам управления.Предварительное условие: E E 447. Предлагается: W.
Подробная информация о курсе в MyPlan: E E 448

E E 449 Системы, средства управления и робототехника Capstone (-4)
Глубокий опыт проектирования систем управления в небольших проектных группах. Включает планирование и управление проектом, отчетность и техническую коммуникацию. Студенческие команды проектируют, внедряют, тестируют и отчитываются о результатах своих проектов. Включает лекции по выбранным темам, например, по управлению проектами, интеллектуальной собственности и некоторым темам управления.Предпосылка: E E 448. Предлагается: Sp.
Подробная информация о курсе в MyPlan: EE 449

EE 451 Энергия ветра (4)
Охватывает работу и моделирование ветровой энергии, статистику ветра, ветряные генераторы и преобразователи, ветроэнергетические системы, проблемы для развития ветроэнергетики, влияние энергия ветра в энергосистеме, а также существующие и потенциальные решения по интеграции энергии ветра. Предпосылка: E E 351. Предлагается: Sp, нечетные годы.
Подробная информация о курсе в MyPlan: EE 451

EE 460 Neural Engineering (3) Azadeh Yazdan-Shahmorad, Chet T Moritz
Знакомство с нейронной инженерией: обзор нейробиологии, запись и стимуляция нервной системы, сигнал обработка, машинное обучение, питание и связь с нейронными устройствами, инвазивные и неинвазивные интерфейсы мозг-машина, спинномозговые интерфейсы, интеллектуальные протезы, стимуляторы глубокого мозга, кохлеарные имплантаты и нейроэтика.Большой упор на первичную литературу. Необходимое условие: БИОЛ 130, БИОЛ 162 или БИОЛ 220; и одно из следующих: MATH 308, AMATH 301 или AMATH 352. Предлагается: совместно с BIOEN 460; A.
Подробная информация о курсе в MyPlan: EE 460

EE 464 Антенны: анализ и проектирование (4)
Основы антенн, анализа, синтеза и автоматизированного проектирования, а также приложений в области связи, дистанционного зондирования и радаров . Диаграмма направленности, направленность, импеданс, проволочные антенны, решетки, численные методы анализа, рупорные антенны, микрополосковые антенны и рефлекторные антенны.Предпосылка: 1.0 in E E 361. Предлагается: Sp.
Подробная информация о курсе в MyPlan: E E 464

E E 475 Embedded Systems Capstone (5)
Опыт разработки Capstone. Прототип значительного проекта, сочетающего оборудование, программное обеспечение и средства связи. Сосредоточен на встраиваемых процессорах, устройствах с программируемой логикой и новых платформах для разработки цифровых систем. Предоставляет обширный опыт в разработке, проектировании и управлении современными встраиваемыми системами. Предварительное условие: E E 271 или CSE 369; либо CSE 466, E E 472, либо CSE 474 / E E 474.Предлагается: совместно с CSE 475; AWSp.
Подробная информация о курсе в MyPlan: E E 475

E E 476 Введение в очень крупномасштабную интегрированную архитектуру (5) Visvesh S Sathe
Введение в разработку цифровых СБИС в первую очередь. Интегрированная логическая конструкция CMOS. Логическая задержка CMOS и анализ мощности. Введение в схему IC-маски, определение размеров затвора, строительные блоки СБИС (сумматоры, умножители, счетчики, переключатели и т. Д.), Дизайн для тестируемости и памяти. Проекты включают некоторую компоновку и в основном схематическое проектирование транзисторов и затворов.Предпосылка: E E 215; и либо E E 271, либо CSE 369; рекомендуется: базовая теория схем и базовый опыт цифрового проектирования. Предлагается: A.
Подробности курса можно найти в MyPlan: E E 476

E E 485 Введение в фотонику (4)
Введение в оптические принципы и явления. Темы включают электромагнитную теорию света, интерференцию, дифракцию, поляризацию, фотонную оптику, принципы работы лазера, оптику гауссова луча, полупроводниковую оптику, полупроводниковые фотонные устройства.Предварительные требования: EE 361 или PHYS 123. Предлагается: W.
Подробная информация о курсе в MyPlan: EE 485

EE 486 Основы технологии интегральных схем (3)
Физика, химия и технология обработки, включая напыление, распыление, эпитаксиальное рост, диффузия, ионная имплантация, лазерный отжиг, окисление, химическое осаждение из газовой фазы, фоторезисты. Рекомендации по проектированию биполярных и МОП-устройств, материалов и характеристик процесса. Будущие тенденции. Предварительное условие: EE 331 или MSE 351.Предлагается: совместно с MSE 486; AW.
Подробная информация о курсе в MyPlan: EE 486

EE 496 Engineering Entrepreneurial Systems and Design (2) P. ARABSHAHI, J. SAHR
Основы методов системной инженерии, жизненный цикл системы, управление проектами и планирование, исследования в сфере торговли , снижение рисков, управление конфигурацией, бюджетирование, закупки, прототипирование, технические обзоры и связанные инструменты; жизненный цикл стартапа, интеллектуальная собственность, коммерческая тайна, патенты, финансирование стартапа, регистрация, бизнес-план, исследование рынка, роли должностных лиц.Предлагается: A.
Подробная информация о курсе в MyPlan: EE 496

EE 503 Моделирование MEMS (4)
Микроэлектромеханические системы (MEMS), включая моделирование с сосредоточенными параметрами, сопряженные переменные мощности, электростатические и магнитные приводы, линейные преобразователи, линейная система динамика, оптимизация конструкции и термический анализ. Темы численного моделирования включают электро (квази) статические, механические, электромеханические, магнито (квази) статические и жидкостные явления; параметрический анализ, визуализация многомерных решений; и проверка результатов.
Подробная информация о курсе в MyPlan: EE 503

EE 505 Вероятность и случайные процессы (4)
Основы инженерного анализа случайных процессов: основы теории множеств, основные аксиомы вероятностных моделей, условные вероятности и независимость, дискретные и непрерывные случайные величины, множественные случайные величины, последовательности случайных величин, предельные теоремы, модели случайных процессов, шум, стационарность и эргодичность, гауссовские процессы, спектральные плотности мощности.Предварительное условие: статус выпускника и понимание вероятности на уровне EE 416.
Подробная информация о курсе в MyPlan: EE 505

EE 508 Стохастические процессы в инженерии (3) A. GHATE
Теоретические основы без меры. Введение в стохастик. процессы. Темы включают пуассоновские процессы, процессы обновления, марковские и полумарковские процессы, броуновское движение и мартингалы, с приложениями к проблемам в очередях, управлении цепочками поставок, обработке сигналов, контроле и коммуникациях.Предпосылка: E E 505. Предлагается: совместно с IND E 508; W.
См. Подробности курса в MyPlan: E E 508

E E 511 Введение в статистическое обучение (4)
Охватывает классификацию и оценку векторных наблюдений, включая как параметрические, так и непараметрические подходы. Включает классификацию с функциями правдоподобия и общими дискриминантными функциями, оценку плотности, контролируемое и неконтролируемое обучение, сокращение функций, выбор модели и оценку производительности.Предварительное условие: EE 505 или CSE 515.
Просмотр сведений о курсе в MyPlan: EE 511

EE 512 Графические модели в распознавании образов (4)
Байесовские сети, марковские случайные поля, факторные графики, марковские свойства, стандартные модели как графические модели, теория графов (например, морализация и триангуляция), вероятностный вывод (включая распространение веры Перла, Хугина и Шафера-Шеноя), тройки соединений, динамические байесовские сети (включая скрытые модели Маркова), изучение новых моделей, модели на практике.Предпосылка: E E 508; EE 511.
Просмотрите сведения о курсе в MyPlan: EE 512

EE 514 Теория информации I (4)
Включает энтропию, взаимную информацию, теорему кодирования источника Шеннона, сжатие данных до предела энтропии, метод типов, кодирование Хаффмана, Крафт неравенство, арифметическое кодирование, сложность Колмогорова, связь с пропускной способностью канала (кодирование канала), теория кодирования, введение в современные методы статистического кодирования, дифференциальная энтропия и гауссовские каналы.Предварительное условие: EE 505.
Просмотр сведений о курсе в MyPlan: EE 514

EE 515 Information Theory II (4)
Включает передовые современные методы статистического кодирования (статистическое кодирование), расширенные коды и графики, исходное кодирование с ошибками (искажение скорости) ), чередующиеся принципы минимизации, канальное кодирование с ошибками, теория сетевой информации, кодирование с множественным описанием и теория информации в других областях, включая распознавание образов, биоинформатику, обработку естественного языка и информатику.Предварительное условие: EE 514.
Просмотреть подробности курса в MyPlan: EE 515

EE 517 Обработка языка в непрерывном пространстве (4)
Введение в технологию человеческого языка с углубленным изучением статистических моделей языка и приложений в непрерывном пространстве к задачам обработки естественного языка. Охватываемые методы включают низкоранговые распределительные представления, нейронные сети и логарифмические билинейные статистические модели, которые используются для языкового моделирования, оценки сходства, классификации и перевода / генерации.Предварительное условие: E E 505.
Подробная информация о курсе в MyPlan: E E 517

E E 519 Стохастический анализ данных физических систем (4)
Компьютерные системы для сбора и обработки стохастических сигналов. Вычисление типовых дескрипторов таких случайных процессов, как корреляционные функции, спектральные плотности, плотности вероятностей. Интерпретация статистических измерений, выполненных на различных физических системах (например, электрических, механических, акустических, ядерных). Лекция плюс лаборатория.Предварительное условие: E E 505.
Просмотрите подробности курса в MyPlan: E E 519

E E 520 Спектральный анализ временных рядов (4)
Оценка спектральных плотностей для одного и нескольких временных рядов. Непараметрическая оценка спектральной плотности, кросс-спектральной плотности и когерентности для стационарных временных рядов, реальных и сложных спектральных методов. Биспектр. Методы цифровой фильтрации. Наложение, предварительное отбеливание. Выбор лаговых окон и окон данных. Использование быстрого преобразования Фурье.Предварительное условие: один из STAT 342, STAT 390, STAT 481, STAT 509 / CS и SS 509 / ECON 580 или IND E 315. Предлагается: совместно со STAT 520.
Подробная информация о курсе в MyPlan: EE 520

EE 521 Quantum Mechanics для инженеров (4)
Охватывает основы теории квантовой механики в контексте современных примеров технологической важности, включающих 1D, 2D и 3D наноматериалы. Развивает качественное и количественное понимание принципов квантования, зонной структуры, плотности состояний и золотого правила Ферми (оптическое поглощение, электронно-примесное / фононное рассеяние).Предварительные требования: MATH 307 или AMATH 351.
Подробная информация о курсе в MyPlan: E E 521

E E 523 Введение в синтетическую биологию (3)
Изучение математического моделирования транскрипции, трансляции, регуляции и метаболизма в клетке; методы компьютерного проектирования для синтетической биологии; реализация законов обработки информации, логики и обратной связи с генетическими регуляторными сетями; модульность, согласование импеданса и изоляция в биохимических цепях; и методы оценки параметров.Предварительные требования: MATH 136 или MATH 307, AMATH 351, или CSE 311 и MATH 308 или AMATH 352. Предлагается: совместно с BIOEN 523 / CSE 586 / MOLENG 525.
Подробности курса в MyPlan: EE 523

EE 524 Advanced Системная и синтетическая биология (3)
Охватывает передовые концепции системной и синтетической биологии. Включает в себя кинетику, моделирование, стехиометрию, теорию управления, метаболические системы, сигналы и мотивы. Все темы противопоставляются задачам синтетической биологии. Предварительное условие: BIOEN 523, E E 523 или CSE 586.Предлагается: совместно с BIOEN 524 / CSE 587; Sp.
См. Подробности курса в MyPlan: E E 524

E E 527 Microfabrication (4)
Принципы и методы производства устройств микроэлектроники и интегральных схем. Включает лабораторные методы чистых помещений и химическую безопасность, фотолитографию, влажное и сухое травление, окисление и диффузию, металлизацию и осаждение диэлектрика, системы сжатого газа, вакуумные системы, системы термической обработки, плазменные системы и метрологию.Обширная лаборатория с ограниченным набором. Рекомендуется: не может быть засчитан, если кредит получен за EE P 527.
Подробности курса можно посмотреть в MyPlan: E E 527

E E 530 Вейвлеты: анализ данных, алгоритмы и теория (3)
Обзор спектрального анализа. Теория непрерывных и дискретных всплесков. Анализ множественного разрешения. Вычисление дискретного вейвлет-преобразования. Масштабный анализ. Вейвлет-пакеты. Статистические свойства выделения и сглаживания вейвлет-сигналов.Оценка дисперсии вейвлета. Пререквизиты: немного теории Фурье и линейной алгебры; MATH 390 / STAT 390, ECON 481 или STAT 481, STAT 509 / CS и SS 509 / ECON 580, STAT 513 или IND E 315. Предлагается: совместно со STAT 530; Sp.
См. Подробности курса в MyPlan: E E 530

E E 535 Прикладная нанофотоника (4) Арка Маджумдар
Концепции оптики в длинноволновой среде с масштабной структурой. Темы включают фотонные кристаллы, диэлектрические и металлические оптические резонаторы и метафотонные устройства.Введение в квантовую электродинамику резонатора. Учащиеся узнают о наноразмерных фотонных устройствах с помощью обзора литературы, решения проблем и численного моделирования. Предварительные требования: E E 361, PHYS 321 или эквивалентный курс или опыт работы с нанофотоникой. Предлагается: Sp.
Подробная информация о курсе в MyPlan: EE 535

EE 547 Теория линейных систем (4)
Линейность, линеаризация, конечномерность, изменяющиеся во времени и неизменные во времени линейные системы, взаимосвязь линейных систем, функциональные / структурные описания линейные системы, нули и обратимость системы, устойчивость линейных систем, нормы системы, переход состояний, матричные экспоненты, управляемость и наблюдаемость, теория реализаций.Не может быть использован в качестве кредита, если кредит получен для EE P 547. Предлагается: совместно с AA 547 / ME 547.
Подробности курса можно посмотреть в MyPlan: EE 547

EE 548 Linear Multivariable Control (3)
Введение в системы MIMO, последовательное сравнение дизайна с одним контуром, теорема Ляпунова об устойчивости, дизайн контроллера с полной обратной связью, дизайн наблюдателя, постановка задачи LQR, дизайн, анализ устойчивости и проектирование слежения. Конструкция LQG, принцип разделения, устойчивость и надежность.Предварительное условие: AA 547 / EE 547 / ME 547. Предлагается: совместно с AA 548 / ME 548.
Подробная информация о курсе в MyPlan: EE 548

EE 550 Нелинейное оптимальное управление (3)
Расчет вариаций для динамических систем, определение задачи динамической оптимизации, ограничения и множители Лагранжа, принцип максимума Понтрягина, необходимые условия оптимальности, уравнение Гамильтона-Якоби-Беллмана, особые дуговые задачи, вычислительная техника для решения необходимых условий.Предлагается: совместно с AA 550 / ME 550.
Подробная информация о курсе в MyPlan: EE 550

EE 560 Neural Engineering (3) Azadeh Yazdan-Shahmorad, Chet T. Moritz
Знакомство с нейронной инженерией: обзор нейробиология, запись и стимуляция нервной системы, обработка сигналов, машинное обучение, питание и связь с нейронными устройствами, инвазивные и неинвазивные интерфейсы мозг-машина, спинномозговые интерфейсы, интеллектуальные протезы, стимуляторы глубокого мозга, кохлеарные имплантаты и нейроэтика.Большой упор на первичную литературу. Предлагается: совместно с BIOEN 560; A.
Подробная информация о курсе в MyPlan: E E 560

E E 563 Субмодульные функции, оптимизация и приложения (4) J. Bilmes
Субмодульность и супермодульность. Определения, свойства, операции, которые сохраняют субмодулярность, варианты, некоторые специальные субмодулярные функции, вычислительные свойства, матроиды и решетки, полиэдральные свойства, полудифференциалы, выпуклые / вогнутые расширения, ограниченная и неограниченная минимизация и максимизация, а также обобщения субмодулярности и использования в машинном обучении.Предпосылка: E E 510 / A A 510 / CHEM E 510 / M E 510. Предлагается: Sp, даже годы.
Подробная информация о курсе в MyPlan: E E 563

E E 575 Радиолокационное дистанционное зондирование (4)
Представляет радиолокационное дистанционное зондирование. Охватывает основы радиолокационных систем, моностатических и бистатических топологий, радиолокационное уравнение, диаграмму дальности и времени; функция неоднозначности, сжатие импульсов, элементарная теория оценки и обнаружения, оценка спектра для недостаточно распространенных и перекрывающихся целей; интерферометрия, визуализация источников; и разница во времени прибытия, синтез апертуры (SAR и ISAR).
Подробная информация о курсе в MyPlan: E E 575

E E 578 Convex Optimization (4)
Основы выпуклого анализа: выпуклые множества, функции и задачи оптимизации. Теория оптимизации: метод наименьших квадратов, линейное, квадратичное, геометрическое и полуопределенное программирование. Выпуклое моделирование. Теория двойственности. Условия оптимальности и ККТ. Приложения в обработке сигналов, статистике, машинном обучении, управляющих коммуникациях и проектировании инженерных систем. Предпосылка: A A 510, CHEM E 510, E E 510 или M E 510.Предлагается: совместно с A A 578 / CSE 578 / M E 578; W.
Подробная информация о курсе в MyPlan: EE 578

EE 594 Robust Control (3)
Базовые основы линейного анализа и теории управления, реализация и редукция модели, сбалансированная реализация и усечение, задача стабилизации, взаимно простые факторизации, параметризация Youla , матричные неравенства, H-бесконечность и управление h3, лемма KYP, неопределенные системы, робастный h3, интегральные квадратичные ограничения, линейный синтез с изменяющимся параметром, приложения робастного управления.Предпосылка: A A 547 / E E 547 / M E 547. Предлагается: совместно с A A 594 / M E 594; Сп, нечетные годы.
Просмотрите подробности курса в MyPlan: EE 594

EE 595 Расширенные темы в теории коммуникации (1-5, макс. 16)
Расширение EE 507, EE 508, EE 518, EE 519, EE 520. Материал различается год, охватывающий такие темы, как: теория обнаружения, теория принятия решений, теория игр, адаптивные коммуникационные системы, нелинейные случайные процессы.
Подробная информация о курсе в MyPlan: E E 595

E E 597 Networked Dynamics Systems (3)
Предоставляет обзор теоретико-графовых методов, которые используются для изучения динамических систем, которые координируют свои состояния по сети обмена сигналами.Темы включают модели сетей, свойства сетей, динамику по сетям, управление формациями, биологические сети, наблюдаемость, управляемость и показатели эффективности по сетям. Предварительное условие: A A 547 / E E 547 / M E 547. Предлагается: совместно с A A 597 / M E 597.
Подробная информация о курсе в MyPlan: E E 597

.

Как найти количество узлов, ветвей, петель и сеток в цепи?

Что такое узел, ответвление, петля и сетка в электрической цепи?

Решая и анализируя электрические схемы и сети, мы должны знать около узлов, ответвлений, петель и сетей в электрической цепи и сети. Во-первых, мы должны знать об узлах, ветвях, петлях и сетках и их роли в электрической цепи. Затем мы можем определить точное количество ветвей, узлов, петель и сеток.

Для этого найдите все эти термины один за другим, выполнив следующие простые шаги.

Рассмотрим следующую простую электрическую схему на рис. 1, которая содержит 7 компонентов или элементов.

What are Nodes, Branches, Loops & Mesh in Electric Circuits? What are Nodes, Branches, Loops & Mesh in Electric Circuits? Рис. 1. Что такое узлы, ответвления, петли и сетка в электрических цепях?

Узел

Точка или соединение, в котором встречаются два или более элемента схемы (резистор, конденсатор, индуктор и т. Д.), Называется узлом . Другими словами, точка соединения между двумя или более ветвями называется узлом.

Поиск узлов в электрических цепях

После перерисовки вышеуказанной схемы она становится такой же, как и эквивалентная схема ниже. Теперь вы можете легко найти общее количество узлов, как показано на рис. 2 ниже, где 6 узлов .

Finding Nodes in Electric Circuits Finding Nodes in Electric Circuits Рис. 2: Поиск узлов в электрических цепях

Ветвь

Та часть или участок цепи, который находится между двумя соединениями, называется ветвью. В ответвлении могут быть соединены один или несколько элементов, и у них есть два вывода.Это может быть любой компонент с двумя клеммами, такой как источник напряжения, источник тока, резистор и т. Д.

Поиск ответвлений в электрических цепях

Схема на Рисунке 3 имеет семь ветвей , а именно источник напряжения «V» и секс-резисторы.

Finding Branches in Electric Circuits Finding Branches in Electric Circuits Рис. 3: Поиск ответвлений в электрических цепях

Петля

Замкнутый путь в цепи, в которой может быть более двух сеток, известен как петля, т.е. в петле может быть много сеток, но сетка не содержит ни одной петли.Проще говоря, это замкнутый путь в цепи.

Поиск петель в электрических цепях

Петли можно найти с помощью следующей фундаментальной теоремы о топологии цепей и сетей

l = b - n + 1

Следовательно, на рис. 4 3 петель .

Finding Loops in Electric Circuits Finding Loops in Electric Circuits Рис. 4: Поиск петель в электрических цепях

Сетка

Замкнутый контур, в котором нет других петель, или путь, который не содержится на других путях, называется сеткой

Поиск сеток в электрических цепях
Finding Meshes in Electric circuits Finding Meshes in Electric circuits Рис. 5: Поиск сеток в электрических цепях
На рис. 5 показано двух сеток.

Полезно знать: Петля может быть сеткой, но сетка не может быть петлей .

Общая схема с 6 узлами, 7 ветвями, 3 петлями и 2 сетками , показанная на рис. 6.

A circuit with 6 Nodes, 7 Branches, 3 Loops, and 2 Meshes A circuit with 6 Nodes, 7 Branches, 3 Loops, and 2 Meshes Рис. 6: Схема с 6 узлами, 7 ветвями, 3 петлями и 2 сетками

Связанные сообщения:

.

Отправить ответ

avatar
  Подписаться  
Уведомление о