Что такое обрыв нуля в электросети. Какие последствия возникают при обрыве нулевого провода в трехфазной и однофазной сети. Как защитить электрооборудование от перекоса фаз и скачков напряжения при обрыве нуля. Какие меры безопасности необходимо соблюдать при работе с электропроводкой.
Что такое обрыв нулевого провода и почему он опасен
Обрыв нулевого провода — это аварийная ситуация в электросети, при которой происходит нарушение целостности нейтрального проводника. Это может привести к серьезным последствиям как для электрооборудования, так и для безопасности людей.
Основные причины обрыва нуля:
- Механические повреждения кабеля
- Коррозия и старение проводки
- Неправильный монтаж и слабые контакты
- Перегрузка сети и короткие замыкания
При обрыве нулевого провода нарушается баланс напряжений в сети, что может привести к следующим опасным последствиям:
- Перекос фаз и скачки напряжения
- Выход из строя электроприборов
- Риск поражения электрическим током
- Возникновение пожара из-за перегрева проводки
Поэтому очень важно вовремя выявлять и устранять обрывы нулевого провода, а также принимать меры для защиты электросети.

Последствия обрыва нуля в трехфазной сети
В трехфазной сети обрыв нулевого провода приводит к особенно серьезным последствиям. Рассмотрим, что происходит в этом случае:
- Нарушается симметрия напряжений между фазами
- Возникает перекос фаз — на одних фазах напряжение падает, на других возрастает
- Напряжение может достигать опасных значений — до 380 В вместо 220 В
- Однофазные потребители получают нестабильное напряжение
Такой режим работы крайне опасен для электрооборудования. При повышенном напряжении электроприборы могут выйти из строя. А при пониженном — работать некорректно или вообще не включаться.
Особенно чувствительны к перекосу фаз:
- Электродвигатели
- Компьютерная и офисная техника
- Бытовые электроприборы
- Осветительные приборы
Кроме того, при обрыве нуля возникает риск поражения электрическим током, так как на корпусах приборов может появиться опасный потенциал.
Обрыв нулевого провода в однофазной сети
В однофазной сети последствия обрыва нуля несколько отличаются от трехфазной, но также представляют серьезную опасность:

- Прекращается подача электроэнергии к потребителям
- На фазном проводе сохраняется потенциал 220 В
- Возникает риск поражения током через корпуса приборов
- Возможно повреждение электроники при восстановлении подачи электричества
Особую опасность представляет ситуация, когда нулевой рабочий и защитный проводники объединены (система TN-C). В этом случае при обрыве нуля теряется защитное заземление и возрастает риск поражения током.
Поэтому даже в однофазных сетях крайне важно обеспечить надежность нулевого проводника и применять устройства защитного отключения (УЗО).
Как определить обрыв нулевого провода
Своевременное выявление обрыва нуля позволяет избежать серьезных последствий. Основные признаки, указывающие на проблемы с нулевым проводом:
- Нестабильная работа электроприборов
- Мерцание или слишком яркое свечение ламп
- Сгорание электроники
- Срабатывание УЗО или автоматов защиты
- Наличие напряжения на корпусах приборов
Для точного определения обрыва нуля необходимо провести измерения специальными приборами:

- Мультиметром замерить напряжение между фазой и нулем, а также между нулем и землей
- Проверить целостность нулевого проводника тестером
- Измерить токи в фазных и нулевом проводах токоизмерительными клещами
При обнаружении признаков обрыва нуля следует немедленно обесточить электроустановку и вызвать квалифицированного электрика для устранения неисправности.
Способы защиты от обрыва нулевого провода
Для предотвращения аварийных ситуаций, связанных с обрывом нуля, рекомендуется применять следующие меры защиты:
- Использование качественных материалов при монтаже проводки
- Регулярный контроль состояния электропроводки
- Установка устройств защиты от перенапряжения (УЗП)
- Применение реле контроля фаз в трехфазных сетях
- Использование стабилизаторов напряжения
- Дублирование нулевого провода (резервный нуль)
Особенно эффективным средством защиты является применение специальных устройств защитного отключения при обрыве нуля. Они моментально отключают питание при нарушении целостности нулевого проводника.

Для особо ответственных потребителей рекомендуется устанавливать источники бесперебойного питания (ИБП), которые защищают оборудование от любых проблем в электросети.
Правила безопасности при работе с нулевым проводом
При выполнении работ с электропроводкой необходимо строго соблюдать правила электробезопасности:
- Перед началом работ полностью обесточить электроустановку
- Проверить отсутствие напряжения на всех проводах
- Использовать инструменты с изолированными ручками
- Применять средства индивидуальной защиты (диэлектрические перчатки, коврики)
- Не работать в одиночку при высоком напряжении
- Выполнять подключение нулевого провода в последнюю очередь
Особое внимание следует уделять проверке надежности контактов нулевого провода. Ослабленные соединения могут привести к локальному перегреву и обрыву нуля.
При любых сомнениях в своей квалификации лучше обратиться к профессиональным электрикам для диагностики и ремонта электропроводки.
Нормативные требования к нулевым проводникам
Правила устройства электроустановок (ПУЭ) устанавливают следующие основные требования к нулевым проводникам:

- Сечение нулевого провода должно быть не менее сечения фазного
- Нулевой провод должен быть изолированным по всей длине
- Запрещается использовать нулевой провод в качестве фазного
- Нулевой провод нельзя разрывать выключателями и предохранителями
- В системе TN-C совмещенный нулевой провод должен иметь двойную изоляцию
Кроме того, нормативы регламентируют цветовую маркировку проводов:
- Нулевой рабочий — голубой
- Нулевой защитный — желто-зеленый
- Фазные — любые цвета, кроме голубого и желто-зеленого
Соблюдение этих требований позволяет повысить надежность электроснабжения и безопасность эксплуатации электроустановок.
Для чего применяют нейтральный провод: понятие нулевой провод
Нулевой провод — это провод, использующийся для выравнивания напряжения в фазах. В случае его отсутствия или повреждения могут сгореть подключенные к фазе приборы и даже может начаться пожар. Поэтому необходимо знать принципы работы с ним.
Что такое нулевой провод?
При работе с электричеством особого внимания требует нулевой провод. Что это такое, не всегда известно людям, не связанным профессионально с электросетями, и зачастую у них появляется ошибочное заблуждение, что нейтральный кабель – это только заземление. На самом деле, нейтральный проводник соединяет нейтрали установок в трехфазных цепях. Когда на каждую фазу из трех подается разная нагрузка, появляется смещение нейтрали, вызывающее нарушение симметрии напряжений, то есть, нарушение симметрий нагрузки приводит к тому, что у одних потребители будут получать пониженное напряжение, а другие же повышенное.
При пониженном подключенная электроаппаратура начинает работать неправильно, а при сильно возросшем, любая электроника ломается от перегрузки и может возникнуть пожар. Уравнивание обеспечивает баланс между повышенным и пониженным напряжением. В этом и заключается роль нулевого провода в электрической цепи.
Принцип работы нулевого провода
Данный проводник, соединяя нейтрали электроустановок с разной нагрузкой, балансирует линии с повышенным напряжением и линии с пониженным. Повышенность и пониженность является следствием того, что на каждой из них работают потребители с разной мощностью потребления.
Чем опасно повреждение нулевого провода?
Во-первых, о последствиях обрыва нуля должны знать все, кто работает с высоковольтными электросетями, так как обрыв может привести не только к уничтожению дорогостоящего оборудования, пожарам, но и к смертям пользователей этим оборудованием. Он обеспечивает равность разниц потенциалов в линиях с разной нагрузкой. Теперь представьте, что равности нет. На одной, например, будет 340 Вольт, а на другой всего 100 Вольт. А значит, на линии с большей разницей потенциалов сгорит аппаратура, к ней подключённая. А еще не забывайте, что изоляция тоже может быть пробита.
Причинами повреждения нейтрального соединения могут быть:
- механическое повреждение человеком или природными условиями,
- короткое замыкание, которое привело к отгоранию,
- плохое подключение,
- старость проводки.
Задачи и назначение нулевого провода
Главная задача – уравнивание напряжений в фазах. Разница потенциалов в каждой из фаз должна быть одинаковой. Конечно, это не значит, что благодаря ему будет абсолютное равное напряжение во всех трех фазах. Нет, разница потенциалов будет незначительно отличаться из-за сопротивления самой нейтралки, но останется в пределах нормы.
Повторное заземление нулевого провода
Повторное заземление – заземление, повторяющееся по всей длине нейтрального кабеля. Если вы повторно заземлили нулевой защитный проводник цепи, то понижается вероятность удара разрядом тока, появившуюся вследствие отрыва нейтрального кабеля и соединения фазы с корпусом после того места, где произошел обрыв, однако не исключит полностью опасность, т. е. не приведет к тем же безопасным условиям, которые были до разрыва.
Что такое заземление и нейтральный провод
Нейтральный проводник также балансирует потенциалы в нескольких фазах. Согласно ПУЭ, задача нейтрали — обеспечивать током потребителей. Ее необходимо соединять с глухо заземленной нейтралкой трансформатора. В частных домах и квартирах, где используются однофазные электросети, для работы оборудования должно быть два кабеля: фазовый и нулевой. «Ноль» соединяется с «землей», и на нем потенциал должен равняться 0. Подключается к «земле» с помощью контура заземления. Соответственно должно отсутствовать напряжение. При нарушении связи с ней во время работы оборудования оно будет под таким же напряжением, как и на фазе, соответственно – 220. На современных схемах он обозначается буквой N, а в советских документах, уже устаревших, использовалась цифра 0. Согласно ПУЭ, кабель необходимо покрыть изоляцией синего цвета.
Заземляющий проводник, согласно ПУЭ, нужен с целью безопасности. В нормальных условиях на нем отсутствует напряженность, и работает он как проводник, только если повреждена изоляция проводящего фазу или ноль. Соответственно, заземление нужно, чтобы при поломке не возникло дополнительных проблем. К примеру, когда у вас пробита защита холодильника, а сам холодильник не заземлен, прикосновение к нему будет равносильно прикосновению к фазе 220 В. А если холодильник заземлен, то током не ударит, так как потенциал уйдет в землю.
Защитный проводник обозначается буквами «PE». Согласно правилу, его изоляция должна быть окрашена в желтые и зеленые полосы. Если на схеме есть обозначение «PEN», значит, нейтральный и защитный провода совмещаются в один. Подобный кабель должен быть окрашен в голубой цвет с желтыми и зелеными полосами на концах.
Чтобы уравнять разные напряжения, все концы фазных обмоток соединяются в узел, который и называется нейтральной точкой, для чего применяют нейтральный провод при соединении в «звезду». Схема «звезда» с нейтралью применяется на практике, т.к. в ней при произвольной нагрузке отсутствует перекос фаз по напряжению, т.е. все фазные напряжения равны.
Если учесть все изложенное выше, то наверняка вы поняли критическую важность нейтрального кабель, уравнивающего напряжения в нескольких фазах, ведь его отсутствие грозит серьезными проблемами – от повреждения и потери оборудования до пожаров и даже риска смертельного поражения током человека.
назначение фазного и нулевого провода
Определение 1
Нулевой провод в общем случае — это провод, по которому происходит возвращение остаточного тока по замкнутому контуру.
Не смотря на название, нулевой провод может обладать потенциалом в некоторые моменты времени. На схемах нулевой провод обычно обозначают буквой $N$.
Блок: 1/5 | Кол-во символов: 284
Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/naznachenie_nulevogo_provoda/
Что такое фаза и ноль
Попробуем разобраться, что такое ноль в электричестве и чем он отличается от фазы и земли. Фазные проводники используются для подачи электроэнергии. В трехфазной сети три токоподающих провода и один нулевой (нейтральный). Передаваемый ток сдвигается по фазе на 120 градусов, поэтому в цепи достаточно одного нуля. Фазовый проводник имеет напряжение 220 В, пара «фаза-фаза» – 380 В. Ноль не имеет напряжения.
Фазы генератора и фазы нагрузки соединяются между собой линейными проводниками. Нулевые точки генератора и нагрузки соединяются между собой рабочим нулем. По линейным проводам ток движется от генератора к нагрузке, по нулевым – в обратном направлении. Фазные и линейные напряжения равны независимо от способа подключения. Земля (заземляющий провод) также как и ноль не имеет напряжения. Он выполняет защитную функцию.
Блок: 2/4 | Кол-во символов: 849
Источник: https://MadEnergy.ru/stati/chto-takoe-faza-i-nol-v-elektrichestve.html
Роль нулевого провода
Зачем же нужен нулевой провод в трехфазной цепи? Назначение нулевого провода в трехфазных цепях следующее: нулевой провод используется для выравнивания фазных напряжений.
Определение 2
Фазное напряжение — это напряжение между нулём и фазным проводом.
Если нагрузка на каждом из фазных проводов одинаковая (то есть одинаковая потребляемая мощность у каждого из потребителей фазного тока от фазных проводов 1-3) — то система будет оставаться рабочей даже в случае обрыва нулевого провода, так как в каждый момент времени разница потенциалов между нулевым и любым из фазных проводов будет одинаковой.
Блок: 2/5 | Кол-во символов: 624
Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/naznachenie_nulevogo_provoda/
Обозначение
Шина для раздачи нулевых проводов.
Нулевой рабочий провод обозначается буквой N. Если нулевой рабочий провод одновременно выполняет функцию нулевого защитного провода (в системе заземления TN-C), то он обозначается как PEN. Согласно ПУЭ цвет нулевого рабочего провода должен быть голубым или бело-голубым. Такая же расцветка принята в Европе. В США цвет нулевого рабочего провода может быть серым или белым.
Блок: 3/7 | Кол-во символов: 421
Источник: https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%82%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4
Для чего нужен заземляющий кабель?
Заземление предусмотрено во всех современных электрических бытовых устройствах. Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.
На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.
Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.
Блок: 3/5 | Кол-во символов: 1002
Источник: https://YaElectrik.ru/elektroprovodka/faza-i-nol-v-elektrike
Назначение
При соединении обмоток генератора и приёмника электроэнергии по схеме «звезда» фазное напряжение зависит от подключаемой к каждой фазе нагрузки. В случае подключения, например, трёхфазного двигателя, нагрузка будет симметричной, и напряжение между нейтральными точками генератора и двигателя будет равно нулю. Однако, в случае, если к каждой фазе подключается разная нагрузка, в системе возникнет так называемое напряжение смещения нейтрали, которое вызовет несимметрию напряжений нагрузки. На практике это может привести к тому, что часть потребителей будет иметь пониженное напряжение, а часть повышенное. Пониженное напряжение приводит к некорректной работе подключённых электроустановок, а повышенное может, кроме этого, привести к повреждению электрооборудования или возникновению пожара.
Соединение нейтральных точек генератора и приёмника электроэнергии нейтральным проводом позволяет снизить напряжение смещения нейтрали практически до нуля и выровнять фазные напряжения на приёмнике электроэнергии. Небольшое напряжение будет обусловлено только сопротивлением нулевого провода.
Блок: 2/7 | Кол-во символов: 1101
Источник: https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%82%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4
Схемы подключения нейтрального провода и заземления
Теперь вы знаете как отличить нулевой провод от заземления и понимаете, что и то, и другое является соединением с землей. Теперь можно рассмотреть возможные схемы подключения нейтрального провода и заземления. Все они четко оговорены в п.1.7.3 ПУЭ. Мы рассмотрим только схемы с глухозаземленной нейтралью которые применяются в наших электрических сетях.
На фото представлена система ТТ
Итак:
- Прежде всего рассмотрим систему ТТ в которой нейтральный провод подключен к заземлению трансформатора, а заземление к независимому источнику. Этот метод применяется очень редко, да и цена монтажа такой системы является наиболее высокой.
- Значительно чаще используются системы типа ТN в которых используются PEN проводники. То есть на всем протяжении или на отдельных участках нулевой и защитный проводники проложены одним проводом, либо подключаются к одной точке заземления.
Система TN-S
- Наиболее оптимальной в данном случае в вопросах электробезопасности является система TN-S. В ней нулевой и защитный проводники подключены к единой точке заземления, но на всей протяженности выполнены отдельными проводниками.
Система TN-C
- Значительно чаще можно встретить систему TN-C, которую достаточно просто реализовать своими руками. В ней нейтральный провод и заземление выполнены одним проводом по всей длине. Но это наименее безопасный вариант с точки зрения электробезопасности.
Система TN-C-S
- И последним возможным вариантом является система TN-C-S. Как понятно из названия она совмещает в себе две предыдущие системы. То есть на одном участке выполнена совместная прокладка нейтрали и заземления, а на втором участке они разделены.
Блок: 3/5 | Кол-во символов: 1677
Источник: https://Elektrik-a.su/kabeli-i-provoda/zazemleniya/zazemlenie-i-nulevoj-provod-482
Чем опасно повреждение нулевого провода?
Во-первых, о последствиях обрыва нуля должны знать все, кто работает с высоковольтными электросетями, так как обрыв может привести не только к уничтожению дорогостоящего оборудования, пожарам, но и к смертям пользователей этим оборудованием. Он обеспечивает равность разниц потенциалов в линиях с разной нагрузкой. Теперь представьте, что равности нет. На одной, например, будет 340 Вольт, а на другой всего 100 Вольт. А значит, на линии с большей разницей потенциалов сгорит аппаратура, к ней подключённая. А еще не забывайте, что изоляция тоже может быть пробита.
Причинами повреждения нейтрального соединения могут быть:
- механическое повреждение человеком или природными условиями,
- короткое замыкание, которое привело к отгоранию,
- плохое подключение,
- старость проводки.
Блок: 4/7 | Кол-во символов: 815
Источник: https://pauk.top/nulevoy-provod.html
Как различить фазу, ноль, землю
Проще всего определить назначение проводников по цветовой маркировке. В соответствие с нормами, фазный проводник может иметь любой цвет, нейтраль – голубую маркировку, земля – желто-зеленого цвета. К сожалению, при монтаже электрики цветовая маркировка соблюдается далеко не всегда. Нельзя забывать и вероятности того, что недобросовестный или неопытный электрик легко может перепутать фазу и ноль или подключить две фазы. По этим причинам всегда лучше воспользоваться более точными способами, чем цветовая маркировка.
Определить фазный и нулевой проводники можно с помощью индикаторной отвертки. При соприкосновении отвертки с фазой загорится индикатор, так как по проводнику проходит электроток. Ноль не имеет напряжения, поэтому индикатор загореться не может.
Отличить ноль от земли можно с помощью прозвонки. Сначала определяется и маркируется фаза, затем щупом прозвонки нужно прикоснуться к одному и проводников и клемме заземления в электрощитке. Ноль звониться не будет. При прикосновении к земле раздастся характерный звуковой сигнал.
Блок: 4/4 | Кол-во символов: 1075
Источник: https://MadEnergy.ru/stati/chto-takoe-faza-i-nol-v-elektrichestve.html
Что такое заземление и нейтральный провод
Прежде всего давайте разберемся, что такое нулевой и что такое защитный провод, в чем их отличия и в чем предназначение? Исходя из этого нам проще будет понимать правила их подключения и те требования которые к ним предъявляет ПУЭ.
Что такое нулевой провод
Прежде всего остановимся на нулевом или как его еще называют нейтральном проводе. Согласно п. 1.7.35 ПУЭ он предназначен для питания электроприемников и соединен с глухозаземленной нейтралью трансформатора.
Что такое нулевой провод?
- Если же говорить простым языком и отбросить некоторые не столь важные для нас нюансы, то нулевой провод — это проводник, соединенный с заземленной частью трансформатора или генератора от которого вы получаете питание.
- В однофазной сети, которая используется у нас практически во всех частных домовладениях и квартирах, для работы электроустановок обязательно необходим фазный и нулевой провод. Нулевой провод по сути непосредственно соединен с землей и в идеале имеет нулевой потенциал. То есть напряжения на нем нет.
Обратите внимание! Напряжения на нулевом проводе нет если он соединен с землей. Если эта связь по какой-либо причине нарушена, то во время работы электроустановки он оказывается под напряжением равном фазному. То есть для однофазной сети равном 220В.
- На схемах нулевой провод обозначается символом «N». Старая советская инструкция рекомендовала применять обозначение «0» и его еще можно встретить на некоторых схемах. А сам провод согласно п.1.1.30 ПУЭ должен быть выполнен проводом синего цвета.
Что такое заземление?
Заземление или защитный проводник согласно п. 1.7.34 ПУЭ предназначен исключительно для целей электробезопасности. В нормальных условиях он не находится под напряжением и выполняет роль проводника только в случаях нарушения изоляции фазного или нулевого проводника. При этом на самой электроустановке он снижает потенциал до безлопастного.
Зачем нужно заземление?
- Если говорить простым языком, то заземление необходимо только на случай поломки. Например, у вас произошел пробой изоляции стиральной машинки. Если она не будет заземлена, то прикосновение к ней равноценно прикосновению к фазному проводу. Если же она будет заземлена, то нечего не произойдет, так как избыточный потенциал через заземление уйдет в землю.
- Заземление может выполняться по разным схемам в зависимости от ваших возможностей и схемы питающей сети. Данный вопрос мы рассмотрим ниже.
- Защитный проводник на схемах принято обозначать символами «PE». Сам же проводник должен быть выполнен из провода желто-зеленого цвета.
- На некоторых схемах вы можете встретить обозначение «PEN». Это обозначает совмещение нулевого и защитного проводов. О нем мы поговорим чуть ниже. Цвет такого провода согласно п.1.1.29 ПУЭ должен быть голубым с желто-зелеными полосами на концах.
Блок: 2/5 | Кол-во символов: 2807
Источник: https://Elektrik-a.su/kabeli-i-provoda/zazemleniya/zazemlenie-i-nulevoj-provod-482
Маркировка нулевых проводов
Для того чтобы сделать нулевой провод легко отличаемым от остальных, соответственно ГОСТ для них принято использовать кабели бело-голубого или просто голубого цвета.
При совмещении нулевого провода с заземлением используются полосатые жёлто-зелёные кабели с концами проводов, обозначенными синим цветом:
Рисунок 2. Маркировка нулевого провода
Блок: 5/5 | Кол-во символов: 369
Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/naznachenie_nulevogo_provoda/
Заключение
В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.
Блок: 5/5 | Кол-во символов: 507
Источник: https://YaElectrik.ru/elektroprovodka/faza-i-nol-v-elektrike
Повторное заземление нулевого провода
Повторное заземление – заземление, повторяющееся по всей длине нейтрального кабеля. Если вы повторно заземлили нулевой защитный проводник цепи, то понижается вероятность удара разрядом тока, появившуюся вследствие отрыва нейтрального кабеля и соединения фазы с корпусом после того места, где произошел обрыв, однако не исключит полностью опасность, т. е. не приведет к тем же безопасным условиям, которые были до разрыва.
Блок: 6/7 | Кол-во символов: 461
Источник: https://pauk.top/nulevoy-provod.html
Количество использованных доноров: 6
Информация по каждому донору:
- https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%82%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4: использовано 2 блоков из 7, кол-во символов 1522 (7%)
- https://YaElectrik.ru/elektroprovodka/faza-i-nol-v-elektrike: использовано 4 блоков из 5, кол-во символов 6438 (31%)
- https://MadEnergy.ru/stati/chto-takoe-faza-i-nol-v-elektrichestve.html: использовано 2 блоков из 4, кол-во символов 1924 (9%)
- https://pauk.top/nulevoy-provod.html: использовано 3 блоков из 7, кол-во символов 1574 (8%)
- https://Elektrik-a.su/kabeli-i-provoda/zazemleniya/zazemlenie-i-nulevoj-provod-482: использовано 3 блоков из 5, кол-во символов 7117 (35%)
- https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/naznachenie_nulevogo_provoda/: использовано 4 блоков из 5, кол-во символов 1873 (9%)
Обрыв нуля в трехфазной и однофазной сети
Даже те, кто не имеет электротехнического образования, наверняка слышали о такой аварийной ситуации, как перекос фаз. В некоторых предыдущих публикациях мы уже упоминали, чем грозит обрыв нуля, и кратко упоминали о способах защиты от несимметрии фазных напряжений. Сегодня мы более подробно рассмотрим данную тему.
Что такое обрыв нуля?
Для полноценного ответа на этот вопрос необходимо привести примеры штатной работы трехфазной схемы ввода электроснабжения. В качестве примера приведем упрощенный вариант с вводом для этажного распределительного щита.
Схема 1. Штатная работа системыКак видно из рисунка, каждая из квартир на этаже запитана от отдельной фазы (L1 – L3) и общего нуля. Что формирует в бытовой сети каждой квартиры фазное напряжение 220 вольт (L1N=L2N=L3=220 В.). В данном случае используется схема питания TN-C-S, где задействована шина заземления PE, соединяемая в РУ здания с нулем. Приведенная система сбалансированная, поскольку ток нагрузки в фазных проводах суммируется через нулевую линию, что снижает вероятность перекоса фазных напряжений.
Заметим, что полностью исключить данное явление довольно сложно, поскольку сопротивление нагрузок на каждой фазе может различаться. К примеру, в квартире_1 включен кондиционер и стиральная машина, в квартире_2 хозяин запустил бойлер и электропечку, а в квартире_3 жильцы отсутствуют и все бытовые приборы отключены от сети. По итогу, в трехфазной системе питания возникнет несимметрия напряжений.
Теперь рассмотрим работу сети в нештатном режиме, когда происходит отгорание нуля.
Что происходит в электросети при обрыве нуля?
Рассмотрим отдельно, изменение режима работы трехфазной сети при обрыве магистрального нуля и как поведет себя однофазная электрическая проводка, если отгорание нулевого проводника произойдет на вводе.
Отгорание нуля в трехфазной сети
Внесем изменения в рисунок 1, вызванные аварией, а именно отключением нуля .
Оборвался нулевой магистральный проводникВ данном случае обрыв общего нулевого провода приведет к тому, что движение электрического тока по нему прекратиться. В результате все квартиры R1-R3 будут запитаны по типу подключения «звезда без нулевой магистрали». Другими словами, при обрыве нуля на каждую квартиру будет поступать не фазное, а линейное напряжение.
Контур из квартир 1 и 2Для примера предлагаем рассмотреть, как сложится ситуация в квартирах 1 и 2. Нагрузка электрических приборов суммируется в данном контуре при прохождении через него тока I12. Соответственно, уровень напряжения для квартир установится в зависимости от нагрузки подключенных к сети приборов. То есть: U1 = I12*R1, а U2 = I12* R2. Из этого следует, что суммарная величина силы тока составит I12 = U12 / (R1+R2) :
Обратим внимание, что суммарное напряжение контура будет равно линейному в данной электросети, то есть U12 = 380 вольт. Но при этом показатели U1 и U2 могут варьироваться в диапазоне 0-380 вольт и, естественно, существенно отличаться друг от друга. На данные значения может влиять как нагрузка подключенных приборов в каждой из квартир, так и ее активная и пассивная составляющая.
В результате если произойдут проблемы с нейтралью трансформатора (нулем источника), велика вероятность выхода из строя подключенных к сети приборов. Причина – повышение уровня напряжения в сети.
Обрыв нуля в однофазной сети
В данной ситуации последствия будут не такими печальными, как в описанном выше случае, но, тем не менее, если отгорает вводный ноль в системе TN-C, это может представлять серьезную опасность для жизни человека.
Отгорание нуля в схеме однофазного потребителяДля однофазных нагрузок обрыв нуля будет аналогичен отключению напряжения, за исключением того фактора, что на фазном проводе останется потенциал, представляющий опасность для жизни. Причем, он также проявится там, где был ранее защитный ноль в контактах розеток. Если корпуса электроприборов заземлялись рабочим нулем, то весьма велика вероятность негативных последствий. В системах TN-C-S фактор риска существенно сокращается, за счет использования PEN проводника.
Как защититься?
Узнав об опасности, представляемой потерей нуля, предлагаем рассмотреть варианты защиты от данного явления:
- Начать необходимо с грамотного монтажа электропроводки. Если для питания объекта планируется задействовать трехфазную схему электроснабжения, то ее расчет должен быть произведен таким образом, чтобы минимизировать вероятность перекоса фаз. То есть, необходимо планомерно распределить нагрузку на каждую линию.
- Следует задействовать в управлении сетью приборы, выравнивающие нагрузку на каждую из фаз. Причем, в идеале, эта работа должна осуществляться без привлечения операторов, то есть, выполняться автоматически при обрыве нуля.
- Должна иметься возможность оперативного изменения схемы подключения потребителей. Это позволяет внести корректировки, если на этапе проектирования не была должным образом учтена нагрузка на каждый участок или увеличилась мощность потребления в связи с вводом новых объектов. То есть, при возникновении критической ситуации должна иметься возможность изменения мощности. В качестве примера можно привести вариант, когда многоквартирный дом переводится на линию с большей нагрузкой для «разбавления» перекоса фаз, возникающего при обрыве нуля.
В приведенных выше вариантах мы рассматривали защиту от перекосов в глобальных масштабах, конечный потребитель может обеспечить должный уровень защиты значительно проще. Для этого достаточно установить реле контроля напряжения, в котором указать допустимый минимальный и максимальный уровень. Как правило, это ±10% от нормы.
Подведем итоги
Безусловно, что вероятности аварий носят случайный характер, максимум, что можно сделать в таких ситуациях, — принять необходимые меры для обеспечения защиты. Но помимо этого не будет лишним вовремя определить аварийную ситуацию по характерным признакам. В первую очередь отгорание нулевого магистрального провода приводит к перенапряжению сети. Обнаружив первые признаки этого явления, следует отключить все электроприборы.
Сделать это оперативно и самостоятельно практически нереально. Временной промежуток для этого слишком коротким, поэтому следует установить на электрическом щитке специальные приборы, реагирующие на обрыв нуля. Как только напряжение выйдет за установленные пределы, реле контроля напряжения произведет защитное отключение.
Полностью доверять системе защиты не стоит. Может случиться так, что при наличии характерных признаков перепадов напряжения, отключение питания не произойдет. Поэтому имеет смысл перечислить наиболее вероятные проявления для данного явления:
- Мерцание ламп накаливания. Они наиболее чувствительны к перепаду уровня напряжения, возникающего при обрыве нуля. Энергосберегающие осветительные приборы и светодиодные лампы не настолько реагируют на изменения.
- Электронные приборы, имеющие встроенную защиту, как правило, отключаются от сети питания. Или не запускаются. Такие действия предусмотрены реакцией защиты импульсных БП на броски напряжения. Характерно, что такая реакция может сработать раньше, чем реле напряжения. Но это, во многом зависит от производителя и схемы реализации защиты электросетей, а также надежности электрического соединения.
- Еще один характерный признак – повышение температуры выключателя. Даже если Вы не обратили внимания на мерцание ламп, то данное проявление должно вызвать опасения.
- Искрение, при попытке подключения электроприбора, может говорить об обрыве нуля на вводе однофазного потребителя. Даже, если оно вызвано другим фактором, а не обрывом нуля, это очень нехороший признак.
- Самопроизвольные срабатывания вводных автоматов, также могут указывать на перенапряжение. Такая реакция на обрыв нуля характерна при включении электронагревательных приборов, например электропечи, бойлера, чайника и т.д.
- Характерные звуки во вводном электрическом щите также могут указывать на перепады напряжения. В такой ситуации рекомендуется отключить ввод питания и дождаться приезда аварийной бригады. Велика вероятность, что авария обрыва нуля имела место в электросети поставщика.
- Обязательно установите на вводе электрической сети реле напряжения. В идеале желательно продублировать данную систему стабилизатором напряжения для дома или квартиры. Такое устройство, работая в паре с реле, позволит поддерживать заданный уровень напряжения, не отключая питание.
Собственно, только многоуровневая защита может обеспечить максимальную безопасность.
Видео по теме статьи
В чем опасность обрыва нулевого провода в доме или в квартире
← Дистанционные светорегуляторы Hager (модульные диммеры) || Стильная простота — новые квартирные щиты Hager Cosmos →
В чем опасность обрыва нулевого провода в доме или в квартире
Обрыв нулевого провода в трехфазной электрической сети — опасное явление, которое может вывести из строя бытовые электроприборы и поразить людей электрическим током. От подстанции (ТП) к потребителю, в данном случае в дом, электричество поступает по четырем проводникам – трем фазным и проводнику, который совмещает функции рабочего нулевого и защитного заземляющего проводника. Ток поступает по наиболее распространенной системе заземления TN-C-S.
Система данного типа предусматривает заземление нейтрали источника питания – трансформатора подстанции. После ввода в здание совмещенный проводник разделяется на рабочий нулевой проводник и защитный, а затем распределяется между квартирами. Три фазы электрической сети при вводе в дом распределяются на примерно равное количество квартир. Но при нормальном режиме работы электрической сети нагрузка по трем фазам неравномерная, так как жители квартир по-разному эксплуатируют электроприборы, и в разные промежутки времени нагрузка по фазам отличается, причем значительно. При этом напряжение по фазам практически равное, так как нулевой провод играет роль балансира, снижает так называемое напряжение смещения нейтральной точки практически до нуля.
В случае обрыва нулевого провода на линии электропередач тут же возникает дисбаланс — возникает перекос фазных напряжений. При этом по одной фазе, где нагрузка меньше напряжение резко возрастает, а на самой загруженной фазе наоборот – падает. При этом в зависимости от перекоса, напряжение на фазах может колебаться от нескольких десятков вольт до значения линейного напряжения трехфазной сети — 380 В. В данном случае все зависит от величины перекоса нагрузок по фазам электрической сети.
Последствия таких перепадов напряжения наверняка всем известны. Значительное превышение напряжения в бытовой сети приведет к выходу из строя практически всей техники, которая в данный момент работала от сети. Чрезмерно низкое напряжение за считанные минуты выведет из строя компрессор холодильника или кондиционера, электродвигатель стиральной машины и другие электроприборы, конструктивно имеющие электродвигатели. Ненормальный режим работы электроприборов может закончиться выходом их из строя с последующим возгоранием.
Выход из строя бытовой техники — это не самое страшное. В случае перегорания нуля до ввода в дом, то есть до разделения его на нулевой и заземляющий проводник, на всех заземленных элементах оборудования, бытовых электроприборах появляется фазное напряжение. В случае прикосновения к таким электроприборам человек будет поражен электрическим током.
Если в доме реализована система уравнивания потенциалов, которая предусматривает электрическое соединение с заземляющей шиной всех металлических элементов конструкции, металлических трубопроводов, то вероятность поражения электрическим током снижается, так как человек не будет касаться двух точек с разным потенциалом. Но, как показывает практика, такая система в большинстве домов не реализована и в случае появления на корпусе электроприбора опасного потенциала и прикосновения человека одновременно к данному электроприбору и металлическому предмету, имеющему другой потенциал, человек будет поражен электрическим током.
Как защитить себя и бытовые электроприборы от вышеописанных последствий?
Основная мера защиты от возможных перепадов напряжения — это установка реле напряжения на вводе домашнего распределительного щитка. В случае чрезмерного снижения или увеличения напряжения реле напряжения мгновенно обесточит электропроводку, защитив при этом включенные в сеть электроприборы.
В случае повреждения нулевого провода и появления опасного потенциала на корпусе оборудования, ни одна из систем заземления сети не даст гарантированную защиту. В сети системы TN-C-S защиты от возможного появления опасного потенциала на корпусе оборудования в случае повреждения нуля до места его разделения нет. В данном случае гарантировать безопасность эксплуатации заземленных электроприборов можно только в том случае, если снабжающая организация выполняет периодические проверки состояния сетей от питающей подстанции непосредственно до главного распределительного щитка дома и своевременно устраняет возможные нарушения.
В электрической сети, где реализована система TT, обрыв нулевого провода не приводит к появлению опасного потенциала на корпусе оборудования. Но при этом перекос напряжений по фазам может возникнуть, поэтому реле напряжения в данных сетях также необходимо установить для защиты бытовых электроприборов.
Решением данной опасной ситуации будет устройство, измеряющее дифференциальную утечку тока и при превышении определенного уровня отключит электрическую линию. Это устройство защитного отключения или дифференциальный автомат. В данном случае при возможной утечке тока на заземленный корпус УЗО моментально обесточит электропроводку. Ни в коем случае не устанавливайте электронное УЗО, а только электромеханическое, т.к. первое при обрыве нуля становится бесполезным прибором. Электронная схема в электронном УЗО при обрыве нуля перестает работать, а с ней весь прибор. Электромеханическое УЗО не имеет такового недостатка и четко отрабатывает пропадание нуля, отключая контролируемую линию.
Наиболее полным техническим решением защиты от обрыва нуля в любой системе электрической сети по нашему мнению будет совместное использование в схеме электропитания реле контроля напряжения и электромеханического УЗО (дифференциального автомата).
Нулевой провод и его значение. Что такое ноль и фаза? Метод определения нуля и фазы в доме
фазный проводник.Дотронувшись до этого провода, вы можете получить хорошенький разряд, вплоть до смертельного исхода. И это не шутки, так как любой ток, напряжение которого свыше 50 Вольт убивает человека за несколько секунд, а у нас в бытовых розетках не менее 220 Вольт переменного тока.
Наличие напряжения на фазных проводниках можно определить специальными индикаторами . Они выполнены в виде обыкновенных отвёрток с крестовиной или лопаткой.
Рукоятка такой отвёртки состоит из полупрозрачного пластика, внутри которой встроена лампочка — диод. Верхняя часть рукоятки — металлическая.
Дотроньтесь рабочей частью индикатора до проводника, а большим пальцем руки — до металлической части на рукоятке. Если встроенный диод загорелся, значит трогать этот провод не стоит — он сейчас под напряжением.
Заметьте, что нулевой проводник никогда не вызовет горение диода, так как на нём по определению нет напряжения при условии, что он не соприкасается с проводником, по которому протекает ток.
А что же мы увидим, если вскроем розетку современного производства, приобщённую к евро стандартам. В такой розетке три провода. Два нам уже знакомы. Фазный проводник, который всегда под напряжением и может иметь любую окраску. Рабочий нулевой проводник, как правило имеет синюю или голубоватую окраску. И третий проводник, состоящий из жёлтой и зелёной окраски вдоль всего провода, который принято называть защитным нулевым проводником . Причём обычно фазный проводник расположен справа в розетках или сверху в выключателях. А нулевой защитный проводник располагается слева в розетках или снизу в выключателях.
Если по фазному проводу поступает напряжение к розетки, а по нулевому уходит от розетки к источнику, то зачем же нужен защитный?
Если подключаемое в розетку оборудование полностью исправно и проводка в надлежащем состоянии, то защитный нулевой проводник не принимает никакого участия и попросту бездействует.
Но представим, что произошло короткое замыкание, перенапряжение или замыкание на части оборудования, нормально не находящиеся под напряжением. То есть ток попал на те части, которые обычно не находятся под его действием, и поэтому изначально не соединены с проводниками Фаза и Рабочий ноль. Вы попросту ощутите удар электрического того на себе, и в худшем случае — можете погибнуть в следствии остановки сердечной мышцы.
Тут и нужен тот самый защитный нулевой проводник. Он заберёт этот ток и перенаправит его к источнику или в землю, в зависимости от того, как выполнена проводка в конкретном помещении. И даже Если Вы случайно прикоснётесь к оборудованию, не нормально находящемуся под напряжением, вы не ощутите сильного удара, ведь ток тоже не дурак — он ищет лёгкие пути, то есть выбирает ту дорогу, где наименьшее сопротивление. Сопротивление человеческого тела составляет приблизительно 1000 Ом, в то время как сопротивление защитного нулевого проводника всего около 0,1-0,2 Ом.
Пользуйтесь современными технологиями и стандартами, чтобы быть в безопасности в любой момент при любых обстоятельствах. Помните, что Ваша безопасность зависит от принимаемых Вами действий и мероприятий по её обеспечению!
Яков Кузецов
Сегодня решил попробовать разобраться с тем, что такое «фаза», «ноль» и «земля».
Небольшой поиск в Гугле по этому поводу выявил, что в основном люди в интернете отвечают на этот вопрос каждый по-своему, где-то неполно, где-то с ошибками.
Я решил разобраться в этом вопросе досконально, в результате чего появилась эта статья.
Достаточно длинная, но в ней всё объяснено, в том числе, что такое фаза, ноль, земля, как это всё появилось и зачем всё это нужно.
Если очень кратко, то фаза и ноль — для электричества, а земля — только для заземления корпусов электроприборов, во имя спасения жизни человека в случае утечки электрического тока на корпус электроприбора.
Если начать с самого начала: откуда берётся электричество?
Все электростанции построены на одном и том же принципе: если магнит вращать внутри катушки (создавая тем самым периодическое «переменное» магнитное поле), то в катушке возникает «переменный» электрический ток (и, соответственно, «переменное» напряжение).
Этот величайший по своему значению эффект называется в физике «ЭлектроДвижущей Силой индукции», она же «ЭДС индукции», была открыта в середине XIX века.
«Переменное» напряжение — это когда берётся обычное «постоянное» напряжение (как от батарейки), и изгибается по синусу, и оно поэтому то положительное, то отрицательное, то снова положительное, то снова отрицательное.
Напряжение на катушке является «переменным» по своей природе (никто его специально не изгибает) — просто потому что таковы законы физики (электричество из магнитного поля можно получить только тогда, когда магнитное поле «переменное», и поэтому получаемое на катушке напряжение тоже всегда будет «переменным»).
Итак, значит, где-то в дебрях электростанции вращается магнит (для примера — обычный, а в реальности — «электромагнит»), называемый «ротором», а вокруг него, на «статоре», закреплены три катушки (равномерно «размазаны» по поверхности статора).
Вращается этот магнит, не человеком, не рабом, и не огромным сказочным големом на цепи, а, например, потоком воды на мощной ГидроЭлектроСтанции (на рисунке магнит стоит на оси турбины в «Генераторе»).
Поскольку в таком случае (случае вращения магнита на роторе) магнитный поток, проходящий через катушки (неподвижные на статоре), периодически меняется во времени, то в катушках на статоре создаётся «переменное» напряжение.
Каждая из трёх катушек соединена в свою отдельную электрическую цепь, и в каждой из этих трёх электрических цепей возникает одинаковое «переменное» напряжение, только сдвинутое («по фазе») на треть окружности (120 градусов из полных 360-ти) друг относительно друга.
Такая схема называется «трёхфазным генератором» : потому что есть три электрических цепи, в каждой из которых (одинаковое) напряжение сдвинуто по фазе.
(на рисунке выше «N-S» — это обозначение магнита: «N» — северный полюс магнита, «S» — южный; также на этом рисунке вы видите те самые три катушки, которые для упрощения понимания маленькие и стоят отдельно друг от друга, но в реальности они по ширине занимают треть окружности и плотно прилегают друг к другу на кольце статора, так как в таком случае получается больший КПД генератора электроэнергии)
Можно было бы с одной такой катушки оба конца проводки просто взять и вести к дому, а там от них чайник запитать.
Но можно сэкономить на проводах: зачем тащить в дом два провода, если можно один конец катушки просто тут же заземлить (воткнуть в землю), а от второго конца вести провод в дом (этот провод назовём «фазой»).
В доме этот провод подсоединяется, например, к одному штырьку вилки чайника, а другой штырёк вилки чайника — заземляется (грубо говоря, просто втыкается в землю).
Получим то же самое электричество: одна дырка в розетке будет называться «фазой», а вторая дырка в розетке будет называться «землёй».
Теперь, раз уж у нас три катушки, сделаем так: скажем, «левые» концы катушек соединим вместе и прямо тут же заземлим (воткнём в землю).
А оставшиеся три провода (получается, это будут «правые» концы катушек) по отдельности потянем к потребителю.
Получится, мы тянем к потребителю три «фазы».
В «нейтральной» точке, как можно посчитать по школьным формулам тригонометрии (или на глаз отмерить по графику с тремя фазами напряжения, который я давал в начале статьи), суммарное напряжение равно нулю. Всегда, в любой момент времени. Вот такая интересная особенность. Поэтому она и называется «нейтралью».
Теперь возьмём и подсоединим к «нейтрали» провод, и этот, получается, уже четвёртый провод тоже будет тянуться рядом с тремя фазными проводами (и ещё рядом будет тянуться пятый провод — это «земля», которой можно будет заземлить корпус подключенного электроприбора).
Получается, от генератора теперь будет идти четыре провода (плюс пятый — «земля»), а не три, как раньше.
Подключим эти провода к какой-нибудь нагрузке (например, к какому-нибудь трёхфазному двигателю, который тоже стоит у нас в квартире).
(на рисунке ниже генератор изображён слева, а трёхфазный двигатель — справа; точка G — это «нейтраль»).
На нагрузке (на двигателе) все три фазных провода тоже соединяются в одну точку (только не напрямую, чтобы не было короткого замыкания, а через некоторые большие сопротивления), и получается ещё одна такая «как бы нейтраль» (точка M на рисунке).
Теперь соединим четвёртый провод (идущий он «нейтрали»; точка G на рисунке) с этой второй «как бы нейтралью» (точка M на рисунке), и получим так называемый «нулевой провод» (идущий от точки G к точке M).
Зачем нужен этот «нулевой» провод?
Можно было бы, как и раньше, не заморачиваться, и просто подсоединять одну из фаз на один шпенёк вилки чайника, а другой шпенёк вилки чайника соединять с землёй, как мы делали раньше, и чайник бы нормально работал.
Вообще, как я понял, так и делали в старых советских домах: там от подстанции в дом заходят только два провода — провод фазы и провод земли.
В новых же домах (новостройках) в квартиры входят уже три провода: фаза, земля и этот «ноль». Это более прогрессивный вариант. Это европейский стандарт.
И правильно соединять фазу именно с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током (именно такой смысл должно нести слово «заземление», и никакого отношения к потреблению тока в розетке оно иметь не должно).
Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным — абсурд получится, будет поставлен с ног на голову весь смысл заземления.
Теперь немного математики, для тех, кто умеет её считать, и для тех, кто ещё не устал: попробуем посчитать напряжение между фазой и «нейтралью» (то же самое, что между фазой и «нулём»).
(вот ещё ссылка с расчётами , если кто-то захочет заморочиться этим)
Пусть амплитуда напряжения между каждой фазой и «нейтралью» равна U (само напряжение переменное, и скачет по синусу от минус амплитуды до плюс амплитуды).
Тогда напряжение между двумя фазами равно:
U sin(a) — U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = -√3 U cos(a + 60).
То есть, напряжение между двумя фазами в √3 («квадратный корень из трёх») раз больше напряжения между фазой и «нейтралью».
Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
Для этого и нужен «ноль» — для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт — ни больше, ни меньше. Оно всегда постоянно, всегда 220 Вольт, и вы можете быть уверены, что пока вся электрика в доме правильно подсоединена, у вас ничего не сгорит.
Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы так называемый «перекос фаз», и у кого-то что-то могло бы сгореть в квартире (возможно даже в прямом смысле слова, вызвав пожар). Например, банально могла бы загореться изоляция проводки, если она не является пожаробезопасной.
До сих пор мы для простоты рассматривали случай воображаемого трёхфазного генератора, стоящего прямо в квартире.
Поскольку расстояние от квартиры до дворовой подстанции мало, и на проводах можно не экономить, то можно (и нужно, так же удобнее) перенести этот воображаемый трёхфазный генератор из квартиры в подстанцию.
Мысленно перенесли.
Теперь разберёмся с воображаемостью генератора. Понятно, что реальный генератор стоит не на подстанции, а где-нибудь далеко, на ГидроЭлектроСтанции, за городом. Можем ли мы на подстанции, имея три входящих фазных провода от ЛЭП, как-нибудь их соединить так, чтобы получилось всё то же самое, как если бы генератор стоял прямо в этой подстанции? Можем, и вот как.
В дворовой подстанции приходящее с ЛЭП трёхфазное напряжение снижается так называемым «трёхфазным» трансформатором до 380 Вольт на каждой фазе.
Трёхфазный трансформатор — это в простейшем случае просто три самых обычных трансформатора: по одному на каждую фазу
В реальности его конструкцию немного улучшили, но принцип работы остался тем же самым:
Бывают маленькие, и не очень мощные, а бывают большие и мощные:
Таким образом, входящие фазные провода от ЛЭП не прямо подсоединяются и заводятся в дом, а идут на этот огромный трёхфазный трансформатор (каждая фаза — на свою катушку), из которого уже «бесконтактным» способом, через электромагнитную индукцию, передают электроэнергию на три выходные катушки, от которых она идёт по проводам в жилой дом.
Поскольку на выходе из трёхфазного трансформатора имеются те же самые три фазы, которые вышли из трёхфазного генератора на электростанции, то здесь можно точно так же одни концы (условно, «левые») этих трёх выходных катушек трансформатора соединить друг с другом, чтобы получить «нейтраль» у себя на подстанции. А из нейтрали — вывести в жилой дом четвёртый «нулевой провод», вместе с тремя фазными (идущими от условно «правых» концов этих трёх выходных катушек трансформатора). И ещё добавить пятый провод — «землю».
Таким образом, из подстанции в итоге выходят три «фазы», «ноль» и «земля» (всего — пять проводов), и далее распределяются на каждый подъезд (например, можно распределить по одной фазе в каждый подъезд — получается по три провода заходит в каждый подъезд: одна фаза, ноль и земля), на каждую лестничную площадку, в электрораспределительные щитки (где счётчики стоят).
Итак, мы получили все три провода, выходящие из подстанции: «фаза», «ноль» (иногда «ноль» называют ещё «нейтралью») и «земля».
«фаза» — это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт между фазами на подстанции; между фазой и нулём получится ровно 220 Вольт).
«ноль» — это провод от «нейтрали» на подстанции.
«земля» — это просто провод от хорошего правильного грамотного заземления (например, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю рядом с подстанцией).
Внутри подъезда фазовый провод по схеме параллельного включения расщипляется на все квартиры (то же самое делается с нулевым проводом и проводом земли).
Соответственно, делиться ток по квартирам будет по правилу параллельного тока: напряжение в каждую квартиру будет идти одно и то же, а сила тока — тем больше, чем больше подключенная нагрузка в каждой квартире.
То есть, в каждую квартиру сила тока будет идти «каждому по потребностям» (и проходить через квартирный счётчик, который это всё будет подсчитывать).
Что может произойти, если все включат обогреватели зимним вечером?
Потребляемая мощность резко возрастёт, ток в проводах ЛЭП может превзойти допустимые рассчитанные пределы, и может либо какой-то из проводов перегореть (провод разогревается тем сильнее, чем больше его сопротивление и чем большая сила тока в нём течёт, и борется с этим сопротивлением), либо просто сама подстанция сгорит (не та, которая во дворе дома, а одна из Главных Подстанций города, которая может оставить без электроэнергии сотни домов, часть города может несколько суток сидеть без света и без возможности приготовить себе еду).
Если ещё у кого-то остался вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два — фазу и ноль или фазу и землю?
Только фазу и землю тянуть не получится (в общем случае).
Выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
А вот чему равно напряжение между фазой и землёй — это не факт.
Если бы нагрузка на всех трёх фазах всегда была равной (см. схему «звезды», когда я объяснял её выше), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет «перекос фаз» , и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже могут загореться, что может привести к пожару в квартире.
Точно такой же перекос фаз получится, если провод «нуля» оборвётся, или даже просто отгорит на подстанции, если по нулевому проводу пойдёт слишком большой ток (чем больше «перекос фаз», тем сильнее ток идёт по проводу нуля).
Поэтому в домашней сети обязательно должен использоваться ноль, и нельзя ноль заменить землёй.
Помню, когда мой отец делал разводку в его квартире в новостройке в Москве, и видел знакомый ему с советской молодости провод земли, а потом видел незнакомый ему провод ноля, то он, недолго думая, просто откусывал кусачками провод ноля, приговаривая, что «а он не нужен»…
Тогда зачем нам в доме нужен провод «земли»?
Для того, чтобы «заземлять» корпусы электроприборов (компьютеров, чайников, стиральных и посудомоечных машин), для того, чтобы от них не било током при прикосновении.
Приборы тоже иногда ломаются.
Что будет, если провод фазы, где-нибудь внутри прибора, отвалится и упадёт на корпус прибора?
Если корпус прибора вы заранее заземлили, то возникнет «ток утечки» (произойдёт короткое замыкание фазы на землю, вследствие чего упадёт ток в основном проводе фаза-ноль, потому что почти всё электричество устремится по пути меньшего сопротивления — по создавшемуся короткому замыканию фазы на землю).
Этот ток утечки будет немедленно замечен либо «автоматом» стоящим в щитке, либо «Устройством Защитного Отключения» (УЗО), тоже стоящим в щитке, и оно сразу разомкнёт цепь.
Почему недостаточно обычного «автомата», и зачем ставят именно УЗО? Потому что у «автомата» и у УЗО разный принцип работы (а ещё, «автомат» срабатывает гораздо позже, чем УЗО).
УЗО наблюдает за входящим в квартиру током (фаза) и исходящим из квартиры током (ноль), и размыкает цепь, если эти токи неодинаковы (в то время как «автомат» измеряет только силу тока на фазе, и размыкает цепь, если ток на фазе превосходит допустимый предел).
Принцип работы УЗО очень прост и логичен: если входящий ток не равен исходящему, то, значит, где-то «протекает»: где-то фаза имеет какой-то контакт с землёй, чего по правилам быть не должно.
УЗО измеряет разность между силой тока на фазе и силой тока на нуле. Если эта разность превышает несколько десятков миллиАмперов, то УЗО немедленно срабатывает и выключает электричество в квартире, чтобы никто не пострадал, прикоснувшись ко сломанному прибору.
Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на заземлённый корпус компьютера, и лежал бы так себе незамеченным, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой — скажем, на батарею отопления (которая тоже фактически является одной гигантской землёй, т.к. протяжённость отопительной сети огромная), то догадайтесь, что бы стало с этим человеком.
А если бы, например, УЗО стояло, но корпус компьютера не был бы заземлён, то УЗО сработало бы только во время прикосновения человека к корпусу и батарее. Но, по крайней мере, оно бы в любом случае мгновенно сработало, в отличие от «автомата», который бы сработал только через некоторый промежуток времени, пусть и маленький, но не мгновенно, как УЗО, и к тому времени человек мог бы быть уже «зажарен». Казалось бы, тогда, можно и не заземлять корпусы электроприборов — УЗО же в любом случае «мгновенно» сработает и разомкнёт цепь. Но кто-нибудь хочет испытать судьбу на предмет того, успеет ли УЗО достаточно «мгновенно» сработать и отключить ток, пока этот ток не нанесёт серьёзных повреждений организму?
Так что и «земля» нужна, и УЗО нужно ставить.
Поэтому нужны все три провода: «фаза», «ноль» и «земля».
В квартире к каждой розетке подходит тройка проводов «фаза», «ноль», «земля».
Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета — всё это называют «слаботочкой», потому что там протекают маленькие токи, неопасные), и идут в квартиру.
В квартире на стене (в современных квартирах) висит внутренний квартирный щиток.
Там эти три провода расщепляются и на каждую «точку доступа» к электричеству стоит свой отдельный «автомат», подписнанный: «кухня», «зал», «комната», «стиральная машина», и так далее.
(на рисунке ниже: сверху стоит «общий» автомат; после которого стоят подписанные «отдельные» автоматы; зелёный провод — земля, синий — ноль, коричневый — фаза: это стандарт цветового обозначения проводов)
От каждого такого «отдельного» автомата своя, отдельная, тройка проводов уже идёт к «точке доступа»: тройка проводов к печке, тройка проводов к посудомойке, одна тройка проводов на все зальные розетки, тройка проводов на освещение, и т.п..
Наиболее популярно сейчас совмещать «главный» автомат и УЗО в одном устройстве (на рисунке ниже оно показано слева). Счётчик электроэнергии ставится между «главным» общим автоматом (который имеет также встроенное УЗО) и остальными, «отдельными», автоматами (синий — ноль, коричневый — фаза, зелёный — земля: это стандарт цветового обозначения проводов):
Вроде бы, по этой теме пока всё.
Известно, что электрическая энергия вырабатывается на электрических станциях при помощи генераторов переменного тока. Затем, по линиям электропередач от трансформаторных подстанций электроэнергия поступает потребителям. Разберем подробнее, каким образом энергия подводится к подъездам многоэтажных домов и частным домам. Это даст понять даже чайникам в электрике, что такое фаза, ноль и заземление и зачем они нужны.
Простое объяснение
Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза — это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру. Помимо этого назначение нуля в электропроводке — выравнивание фазного напряжения. Заземляющий провод, называемый так же землей, не находится под напряжением и предназначен для защиты человека от поражения электрическим током. Подробнее о вы можете узнать в соответствующем разделе сайта.
Надеемся, наше простое объяснение помогло разобраться в том, что такое ноль, фаза и земля в электрике. Также рекомендуем изучить , чтобы понимать, какого цвета фазный, нулевой и заземляющий проводник!
Углубляемся в тему
Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.
Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.
Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.
Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено. Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током.
К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.
Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.
Каждый, кто хоть в какой-то степени разбирается в электротехнике, знаком со многими терминами и определениями. А профессиональные электрики и подавно. Но большая часть жителей не знают, что такое ноль и фаза. Что же обозначают данные слова? Как определить, где и что есть? В рамках данной статьи попробуем внести ясность.
Общие сведения
В нашей повседневной жизни мы сталкиваемся с электричеством практически в любом месте, где пребываем. Будь это работа или различные заведения: кино, театр, магазины, спортивные комплексы — перечислять можно очень долго. Что и говорить, мы пользуемся многими электроприборами ежедневно, причем лет так 20 или 30 лет назад их было не так много, как в настоящее время. Причем их число растет с завидной периодичностью.
Но все электрическое оборудование не может работать вечно и рано или поздно оно начинает ломаться, что просто неизбежно. Вечного двигателя пока еще никто не изобрел, поэтому на чудо надеяться не стоит. Некоторые люди хотят научиться чему-то новому, неизведанному и электричество не является исключением. Хотя бы потому, что можно самостоятельно проводить ремонт бытовой техники. Конечно, лучше приглашать специалиста, но легкую работу можно выполнить самостоятельно. Только для этого необходимо изучить фундаментальные понятия, дабы разобраться, что такое ноль и фаза.
Что такое электричество?
Описание тока следует начать с понятия электрического заряда, который, по сути, является скалярной величиной. Если взять эбонитовую палочку и потереть о шерсть, то у нее появится отрицательный заряд. Это связано с избытком электронов в результате контакта с шерстью. Это именуется статическим электричеством и бывает на волосах. Только в этом случае заряд положительный, поскольку теряются электроны.
Что касается электрического тока, то это упорядоченное движение заряженных частиц по какому-нибудь проводнику. Движение это возникает из-за электромагнитного поля. Ток может быть двух видов:
- Постоянным — его значение и направление не меняются.
- Переменным — он уже меняется во времени.
Фаза
Сами по себе термины «фаза», «ноль» и «земля» хорошо знакомы профессиональным электрикам. Но, к примеру, фаза встречается и в физике — под этим определением можно назвать несколько состояний воды:
- жидкое;
- твердое;
- газообразное.
Помимо этого, под фазой можно понимать несколько стадий колебания, что может относиться к волновому движению. В астрономии здесь несколько иное значение, что можно понять по наблюдению за луной.
Чуть выше было рассмотрено, как рождается электричество на станциях. Так вот именно на рабочую фазу, которую электрики называют просто — фазой, подается напряжение. Чтобы более точно представить себе, что это значит, следует раскрыть следующее понятие — ноль.
Ноль
Как известно в розетках два отверстия, соответственно, у вилок имеется по два штырька. Обычно такое встречается в старых домах, где к каждому потребителю подходят лишь два провода ноль, фаза.
В странах Европы и с недавнего времени на территории России стал применяться евростандарт. Здесь вместо двух жил или проводов уже три, за счет включения дополнительного защитного проводника.
Но что такое ноль и нужен ли он вообще? Ответ однозначен: нужен! Чтобы возник электрический ток и начал питать какой-нибудь бытовой прибор (фен, чайник, утюг и так далее), необходима замкнутая цепь. Это обеспечивается нулем и фазой. То есть по фазному проводу электроэнергия поступает в наши дома, проходит сквозь потребитель (совершается работа) и возвращается обратно по нулевому проводнику.
При этом важно, чтобы подключенный прибор работал — машинка стирала, телевизор показывал, утюг и чайник грелись и т. п. Иначе ток протекать не будет, однако напряжение на фазе никуда не денется. Поэтому важно следить, чтобы малыши ничего не вставляли в розетку.
Земля
Важно не только знать, как определить фазу и ноль, нужно и отличать заземление, которое стало применяться в новостройках. Как теперь известно, без фазы и нуля не бывает электричества, то есть он течет между двумя этими проводами. Только стоит еще прояснить, что такое переменное напряжение. В России и ряде стран электросеть характеризуется частотой 50 Гц (герц). Это означает, что ток меняет свое направление от фазы к нулю и наоборот очень часто — 50 раз за секунду!
Если по фазе проходит напряжение, то его нет у нулевого проводника. Так как большинство домов на территории Российской Федерации было построено еще во времена СССР, то в вводном электрическом щитке нулевой провод соединен с «землей» и дополнительно еще с заземлителем, который вкопан в грунт. При этом «земля» напрямую соединена с корпусом щитка, а ноль располагается в изолированной колодке.
Способы определения фазы и нуля
Мало понимать, что такое ноль и фаза, ни в коем случае нельзя их путать! Если при включении это не имеет значения, то делая монтаж проводки, в особенности самостоятельно, это необходимо учитывать. В противном случае можно устроить в цепи короткое замыкание. Поэтому нужно четко понимать, где фаза, а где ноль.
При необходимости провести замену розетки выключателя или люстры, первым делом стоит определить, где именно располагается ноль с фазой. У подготовленного человека это не вызовет никаких проблем, а вот для большинства людей это серьезная задача.
Но не стоит отчаиваться, так найти эти провода не так сложно, как может показаться на первый взгляд. Существует несколько способов, которые ниже будут рассмотрены.
Цветовая ориентация
Это самый безопасный способ по определению фазного и нулевого проводов. Необходимо знать, какими цветами они обозначаются, а чтобы не было никакой путаницы, введены следующие цвета фазы ноля и земли:
- Синий либо сине-белый цвет — это рабочий ноль.
- Желто-зеленым цветом принято обозначать защитный ноль.
- Красным, белым, черным, коричневым цветом окрашиваются фазные проводники.
В каждой стране принят свой цвет фазы. Только стоить заметить, что такой способ подойдет лишь новостройкам, которых разводка проводов оформлена в соответствии со стандартом IEC 60446, принятым в 2004 году. Определить фазу и ноль согласно цветовой маркировке в старых домах, таких как хрущевки, сталинки, брежневки, невозможно. В этом случае может подойти другой способ.
Индикаторная отвертка в помощь
Индикаторная отвертка является неотъемлемым инструментом в наборе каждого домашнего мастера на все руки. При помощи этого универсального средства можно не только откручивать крепежные элементы, но и найти фазу.
Процедура выполняется очень легко, поскольку особых знаний и умений здесь не потребуется. Все что нужно, это:
- Металлическим концом коснуться оголенного провода или одного из каналов в розетке.
- Во время проверки ни в коем случае не касаться самой рабочей части!
- Нужно коснуться большим пальцем (или любым другим) контактной площадки инструмента.
Данный способ, как и определение фазы и нуля по цвету проводов, работает безотказно.
Если напряжение присутствует, то загорится индикатор отвертки, в противном случае — это не фаза, а ноль. Помимо лампочки в отвертке имеется резистор, благодаря чему создается сопротивление протеканию тока и напряжение немного снижается. Поэтому проверка будет полностью безопасной.
Определение фазы мультиметром
Другой не менее известный среди радиолюбителей прибор — мультиметр, тоже может быть использован для нахождения фазы в домашней электросети. На приборе выбирается режим измерения переменного тока (как правило, обозначается V~) и выставляется передел более 220 В. Обычно тэто 500, 700 или 800 Вольт. Щупы должны быть подключены к разъемам COM (черный) и VΩmA (красный).
Одним щупом (обычно красным) нужно коснуться оголенного участка провода или погрузить в какой-нибудь канал розетки. Другим (уже черным) щупом касаемся какой-либо заземленной поверхности (батарея отопления, стальные элементы стены и прочее). При этом если красный щуп будет на фазе, то на дисплее прибора появится значение напряжения в диапазоне от 100 до 230 В, при условии, что нет перебоев электроснабжения. В противном случае это будет ноль.
Петля фаза-ноль
Периодически стоит проводить замер сопротивления фаза-ноль, что позволит электроприборам работать в бесперебойном режиме. Главная причина в таких замерах — это частое срабатывание автоматов. Обычно это обусловлено перегрузками в электросети или наличием короткого замыкания. Все это отрицательно сказывается на работе бытовых приборов.
Не все представляют, что значит петля фаза и ноль. Так обозначается контур, который образуется соединением нулевого провода, расположенного в заземленной нейтрали. Таким образом и получается петля.
В заключение
Можно найти много способов, как найти фазу и ноль без специального оборудования. К примеру, «умельцы» используют сырую картошку или водопроводную воду. Однако крайне не рекомендуется проводить такие опыты, поскольку есть большой риск для собственного здоровья.
Есть проверенные способы, которые не представляют угрозы при соблюдении техники безопасности. Поэтому не стоит заново изобретать велосипед и придумывать невесть что.
20. С оединение звездой в трехфазной цепи с нулевым проводом. Роль нулевого провода.
Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N’ называют нейтральным (нулевым) проводом.
Напряжения между началами фаз или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями. Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах — линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами. Iл = Iф.
ZN — сопротивление нейтрального провода. Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений
На рисунке изображена векторная диаграмма фазных и линейных напряжений симметричного источника.
Из векторной диаграммы видно, что
При симметричной системе ЭДС источника линейное напряжение больше фазного в √3 раз.
Отбрасывая нулевой провод в четырехпроводной системе, переходим к трехпроводной системе трехфазного тока, которая представлена на рисунке. Таким образом, если имеется симметричная нагрузка, как, например, трехфазные двигатели переменного тока, трехфазные печи, трехфазные трансформаторы и т. п., то к такой нагрузке подводятся только 3 провода. Потребители, включенные звездой с несимметричной нагрузкой фаз, нуждаются в нулевом проводе.
21. Соединение звездой без нулевого провода при симметричной и несимметричной нагрузках.
При симметричной нагрузке.
Отключение нейтрального провода при IN = 0 не приведет к изменению фазных напряжений, токов, углов сдвига фаз, мощностей и векторной диаграммы. Даже при отсутствии нейтрального провода фазные напряжения оказываются равными , т. е. тому напряжению, на которое рассчитаны фазы трехфазного приемника.
Из сказанного следует, что при симметричной нагрузке в нейтральном проводе нет необходимости, и при симметричной нагрузке нейтральный провод не применяется.
При несимметричной нагрузке.
Особенностью электрической цепи при несимметричной нагрузке является то, что она должна иметь обязательно нейтральный провод. Объясняется это тем, что при его отсутствии значения фазных напряжений приемников существенно зависят от степени несимметрии нагрузки, т. е. от значений и характера сопротивлений приемников различных фаз. Поскольку последние могут изменяться в широких пределах при изменении числа включенных приемников, существенно могут изменяться и фазные напряжения. На одних приемниках напряжение может оказаться значительно больше, а на других — меньше фазного напряжения сети , т. е. того напряжения, на которое рассчитаны приемники. А это недопустимо.
Напряжение смещения нейтрали при различных типах нагрузок
Как уже писалось (например, здесь) нейтралью называют общую точку обмоток электрических машин при соединении в схему звезда, при соединении в схему треугольник для получения нейтральной точки можно использовать схему “скользящий треугольник”.
Синонимом понятия “смещение нейтрали” является выражение “перекос фаз”. Оба эти словосочетания используются в лексиконе и профессиональной среде электриков.
В данной статье будем рассматривать смещение нейтрали у нагрузки. Для начала выведем формулу для расчета напряжения смещения нейтрали, для этого нарисуем схему замещения трехфазной сети, где в обычном режиме напряжения фаз представляют собой синусоиды, которые при равномерной нагрузке фаз сдвинуты на 1200 и в любой момент времени их сумма равна 0. В нашем же случае, нагрузка будет неравномерная, что приведет к смещению нейтрали, что можно увидеть по рисунку с векторными диаграммами.
Напряжение смещения нейтрали определяется по следующей формуле:
в формуле выше:
- Еа, Ев, Ес — ЭДС источника питания
- Уа, Ув, Ус — проводимости фаз потребителя, напомним, что проводимость — величина обратная полному сопротивлению, то есть У=1/Z
- 00’ — эти точки соответствуют нулю нагрузки и нулю генератора (трансформатора), питающего данную нагрузку
Под смещением нейтрали понимают, что между нулевым проводом источника и нагрузки возникает напряжение, а по нулевому проводу течет ток. Но, это в случае, если нулевые провода соединены. Если же нулевой провод источника и нагрузки не соединен, то смещение нейтрали может вызвать нарушение магнитного равновесия в трансформаторе.
Случай 1 — нагрузка однородная равномерная по трем фазам
Идеальный случай (симметричная нагрузка), при котором смещения нейтрали не происходит, сумма напряжений в любой момент времени равна нулю, линейные трех фаз составляют ~380В, фазные ~220В. Под однородностью нагрузки понимается, что она носит либо активный, либо индуктивный, либо емкостной характер по всем трем фазам, как сказали бы электроники — элемент “или”. В нашем примере верным будет утверждение, что Xa=Xb=Xc.
Случай 2 — нагрузка однородная и неравномерная по трем фазам
При данном стечении обстоятельств, происходит смещение нейтрали, которому соответствует отрезок 00’ на рисунке сверху слева, который и создает ток в нулевом проводе. Смещения в ту или иную сторону точки 0’ от точки 0 будет зависеть от характера нагрузки. В данном примере нагрузка однородная, но неравномерная, различающаяся по величине, но не по типу.
Случай 3 — нагрузка по трем фазам разнородная
В случае с разнородной неравномерной нагрузкой нейтральная точка нагрузки (0’) вышла за пределы треугольника. Значения же фазных напряжений на нагрузке превышают это значение на источнике питания в несколько раз. Однако, не следует забывать, что это смещение происходит только на нагрузке, а не на источнике питания.
Неоднородность нагрузки будет влиять на источник питания (трансформатор или генератор), только, если относительно источника эта нагрузка будет велика. В этом случае может произойти нарушение магнитной устойчивости трансформатора.
Следует помнить, чем выше нагрузка, тем большее влияние на систему она может оказывать, аналогично, как большие двигатели серьезнее просаживают напряжение на шинах при перерывах питания на электростанциях.
Самое популярное
Что такое нейтральный провод и как он работает?
Для тех, кто не знаком с этим, удивительный мир электропроводки может быть довольно сложным. Вы можете задаться вопросом «что такое нейтральный провод?» Или столкнуться с проблемами в других отраслевых терминах. Необходимо запомнить множество терминов и множество шагов и правил, которые необходимо соблюдать, чтобы обеспечить полную работоспособность электрической системы. Один из таких терминов, который вы, несомненно, слышали в какой-то момент на уроке естествознания в тот день, — это «нейтральный провод».”
Как и любой другой компонент электрической системы, нейтральный провод необходим для создания функциональной цепи. Но что такое нейтральный провод и чем он отличается от других проводов, например, от проводов под напряжением?
Продолжайте читать, чтобы понять роль нейтрального провода в цепи и почему он важен для всей вашей электрической системы.
Основные сведения о нейтральных проводахВозможно, лучший способ понять, что такое нейтральный провод и его роль, — это взглянуть на очень простую схему.
Представьте, что перед вами батарея и лампочка. Как и в классе естественных наук в 5-м классе, вам нужно найти способ соединить эти два предмета для питания лампочки. Перво-наперво вам понадобится провод, который будет питать аккумулятор и подключать его к лампочке. Этот провод известен как ваш горячий провод . Конечно, чтобы замкнуть цепь, провод должен вернуть электроны к источнику питания, чтобы включить лампочку. Этот провод — * барабанная дробь * * нейтральный провод .
Подводя итог: горячий провод передает электричество от источника питания и подводит его к нагрузке (лампочка). Нейтральные провода забирают использованную электроэнергию от нагрузки и возвращают ее в источник питания.
Нейтральные провода в вашем домеЛадно, это все хорошо, но от батарейки в домашних лампочках не питаются. Вместо этого они подключены к трансформатору. И поскольку они не подключены к батареям, вместо постоянного тока в вашем электричестве используется переменный ток.При постоянном токе электричество движется по прямому пути через горячий провод к нагрузке, обратно через нейтральный провод, а затем обратно к источнику питания.
Вы можете представить себе постоянное течение как лодку, движущуюся по реке, которая в конечном итоге возвращается к озеру, из которого она возникла, в виде петли. При переменном токе электроны постоянно движутся вперед и назад между проводами вместо идеальной, последовательной петли. Для наших сегодняшних целей нам не нужно больше знать о DC vs.AC, но это полезно знать, если вы не могли вспомнить те дни в начальной школе.
Чтобы получить более полное представление о том, как работает проводка в вашем доме, посмотрите это полезное видео, любезно предоставленное The Engineering Mindset:
Из этого видео вы узнаете все тонкости электрических цепей в вашем доме, в том числе разницу между нейтральной и заземляющей проводкой. Имейте в виду, что если вы проводите это исследование, чтобы провести какие-то электромонтажные работы в своем доме, будьте осторожны, ! Несчастные случаи с электропроводкой могут оказаться фатальными, поэтому беритесь за проект электропроводки только в том случае, если у вас есть опыт и вы уверены, что сделаете это правильно.Кроме того, обязательно соблюдайте правила техники безопасности. В противном случае оставьте это местному профессионалу, который сможет безопасно завершить проект с точностью.
Electric City — ведущая команда электриков МиннесотыДля жителей Миннесоты или владельцев недвижимости, которым нужна помощь с электричеством дома или на предприятии, компания Electric City всегда готова помочь. Наша команда опытных электриков не только способна решить любую проблему с электричеством или проект, но и сделать это с соблюдением техники безопасности на переднем крае нашего технологического процесса.
Мы также гордимся своей прозрачностью и отвечаем на любые вопросы, которые могут у вас возникнуть о том, что мы делаем, чтобы обеспечить полноценное электроснабжение вашего дома или офиса.
В Electric City мы стремимся наладить партнерские отношения с нашими клиентами, чтобы у них был кто-то, кому они могут доверять со всеми своими электрическими потребностями. Чтобы начать объединение с профессиональной командой, с которой легко и весело работать, обратитесь в Electric City прямо сейчас!
электричества — Одинаковы ли заземляющий и нейтральный провод?
Это действительно электротехника, но, поскольку мы с вами здесь, я попробую ответить.
Довольно универсально верно, что любая электрическая розетка в доме, предназначенная для подключения различных бытовых приборов, будет иметь 3 контакта; Линия (живая), Нейтраль и Земля. В установках электропроводки стало стандартной практикой называть «горячий» провод «Line» вместо «Live», поэтому я буду придерживаться этого правила, чтобы мы могли привыкнуть к нему, если вы хотите читать дальше, например Справочники по электромонтажным работам и т. Д.
Электропитание на устройство подается через соединения «Линия» и «Нейтраль».При отсутствии неисправности ток будет таким же. Если ток питания 10 А протекает через линейный провод, то 10 А также протекает через нейтральный провод (для этой одной розетки / устройства).
Третье соединение, заземляющий провод, предназначено ТОЛЬКО для обеспечения безопасности. В частности, чтобы уменьшить или исключить возможность опасного поражения электрическим током И возможность возгорания электрического тока. Многие бытовые электроприборы имеют корпус из металла, сюда входят такие предметы, как конвекторный обогреватель, холодильник, микроволновая печь и так далее.Корпус металлический по конструктивным / конструктивным причинам (не по электрическим причинам). Например, конвекторный обогреватель в пластиковом корпусе может быть очень глупой и опасной идеей (подумайте об этом!). ЕСЛИ у нас есть металлический корпус, в случае внутренней неисправности он может стать электрически активным и, таким образом, вызвать поражение электрическим током, возможно, со смертельным исходом, для любого, кто к нему прикоснется. Поэтому мы подключаем металлический корпус к заземляющему проводу розетки, используя одну отдельную жилу трехжильного гибкого кабеля. После этого прибор «заземляется».
А теперь подумайте, что происходит с неисправным прибором. Некоторый электрический ток из-за внутренней неисправности может течь через заземляющий провод электроустановки обратно к источнику (например, если земля и нейтраль подключены на подстанции, как вы говорите). Мы можем обнаружить этот ток в заземляющем проводе как «состояние неисправности» и отключить цепь, тем самым отключив питание и предупредив пользователя о возможности неисправности. В установках современного типа, которые включают автоматический выключатель утечки на землю (также известный как УЗО или УЗО), обнаружение тока замыкания на землю, протекающего в заземляющем проводе, происходит очень быстро (<40 мс).
Ни при каких обстоятельствах не пытайтесь подключать нагрузку любого вида между линейным проводом и заземляющим проводом. Также не следует пытаться подключать лампочку или что-либо еще через нейтраль и заземляющий провод. Фактически, может быть опасно даже использовать дешевый мультиметр для измерения напряжения на проводах домашней электроустановки (они не рассчитаны на импульсные напряжения, которые иногда могут появляться в сети). Обязательно читайте о домашних системах электропроводки, но не экспериментируйте с ними! Однажды я видел, как кто-то пытался измерить внутреннее сопротивление сети с помощью AVO в низкоомном диапазоне, когда я учился в школе в лаборатории физики.Результаты не были хорошими, к счастью, это была непоправимая куча черных гангстеров только AVO, а не человек, участвовавший в этом. Ему повезло сбежать.
electric — роль нейтрального проводника в трехфазных системах
В однофазной системе нейтральный и линейный провода создают разность потенциалов в нагрузке, на которую необходимо запитать. Нейтраль обычно заземляется, соединяется с землей в какой-то точке вашего дома. Из-за этого нейтральный провод имеет тот же потенциал, что и земля, к которой мы подключены, что, как правило, менее опасно.
Соединение между нейтралью и землей позволяет при любом замыкании фазы на землю развивать ток, достаточный для «срабатывания» устройства максимальной токовой защиты цепи.
источник в Википедии
В трехфазной системе у вас может быть нейтральный провод, но это необязательно. Ниже представлены две трехфазные конфигурации нагрузки, треугольник и Y. Ни одна из них не требует нейтрального проводника, хотя в конфигурации Y нейтраль может быть подключена к центру, где встречаются все фазы.Как вы упомянули о сбалансированной трехфазной системе, через нейтральный провод не течет ток. В такой системе ток в нейтральном проводе может указывать на проблему.
Может помочь визуализировать форму волны в полярных координатах. Радиус вокруг одинаковый, что указывает на одинаковую амплитуду каждой фазы. Каждая фаза разделена на 120 градусов.
AC всегда затягивает и затягивает ток, поэтому в определенный момент он может быть положительным или отрицательным.Мы можем сделать расчет, чтобы проиллюстрировать, как сбалансированная трехфазная система не оставит тока в нейтральной фазе.
- Сбалансированная система будет иметь одинаковую амплитуду для каждой фазы (равные источник и нагрузка), мы можем принять это как 1.
- В сбалансированной системе каждая фаза разделена на 120 градусов.
Итак, верно следующее:
I_neutral = I_a + I_b + I_c
, где I_x — мгновенный ток в один момент времени. Также, если каждая фаза представляет собой идеальную синусоидальную кривую, тогда
I = величина * Sin (тета)
, где тета,
— фазовый сдвиг.Итак,
I_neutral = (1) Sin (0) + (1) Sin (120 градусов) + (1) Sin (240 градусов)
= 0 + sqrt (3) / 2 - sqrt (3) / 2
= 0
- Кроме того, мы говорим о токе и напряжении в системах переменного тока, используя среднеквадратичное значение напряжения или тока; это то, что покажет мультиметр при установке переменного тока. Это не пиковое напряжение / ток и не среднее значение, а
значение постоянного тока, которое будет производить такое же среднее рассеивание мощности в резистивном источнике нагрузки
Для чего нужен нейтральный провод
Назначение нейтрального провода в электрических системах: каково назначение нейтрального провода и разница между заземляющим проводом и белым нейтральным проводом. |
Нейтральный провод в электрических системах
[ad # block] Электрический вопрос: Для чего нужна нейтраль?
- В чем разница между зеленым проводом заземления и белым отрицательным проводом?
Эти вопросы по электрике поступили от: Джона из Лемон-Гроув, Калифорния, и Джона из Сан-Сити-Центр, Флорида.
Ответ Дэйва:
Спасибо за вопросы по электрике.
Ниже приводится объяснение назначения нейтрального провода и разницы между заземляющим проводом и нейтральным проводом.
- Домашняя электрическая система в США
Типичная домашняя электрическая система здесь, в Соединенных Штатах, использует так называемый переменный ток, что означает переменный ток. - Цепи на 120 вольт и нейтральный провод
Типичная цепь переменного тока на 120 вольт требует обратного пути к заземлению, которое обеспечивается нейтралью.Если нейтральный провод будет отключен, это предотвратит протекание электричества, поэтому цепь перестанет работать. - Нейтральный провод
Назначение нейтрального провода — замкнуть цепь переменного тока 120 В, обеспечивая обратный путь к электрической панели, где нейтральный провод подсоединяется и соединяется с заземлением. Нейтраль представляет собой изолированный провод, потому что он является частью цепи, по которой протекает электрический ток. - Заземленный проводник электрода
Нейтральный провод является частью GEC или заземленного электродного проводника, который является частью домашней электрической системы.Соединение нейтрального провода и системы заземления выполняется только на главной электрической панели, где происходит соединение с заземлением. - Заземляющий провод — это предохранительный провод
Для всех электрических цепей переменного тока на 120 и 240 В требуется отдельный провод заземления, который также подключается к системе заземления панели, на которой возникла цепь. Заземляющий провод не является частью цепи, протекающей по току, поэтому некоторые заземляющие провода не изолированы. Заземляющий провод — это предохранительный провод, который подключается к компонентам цепи, обеспечивая прямой путь к заземлению в случае электрического повреждения.В определенных цепях требуются устройства защиты от замыканий на землю и другие системы безопасности, чтобы предотвратить поражение электрическим током в случае неисправности. Устройства защиты от перегрузки по току, такие как предохранители и химические стаканы, устанавливаются в цепях, которые реагируют и прерывают прохождение электрического тока в ненормальных условиях. - Требования кодов NEC
Национальный электротехнический кодекс NEC содержит несколько кодексов, которые необходимо учитывать для каждого конкретного проекта и применения электропроводки.
Базовые электрические схемы дома
В этой статье рассматриваются общие схемы домашней электропроводки на 120 и 240 вольт, а также устанавливаемые автоматические выключатели с указанием типов и значений силы тока, используемых в большинстве домов.
Список электрических цепей панели
Схема подключения
В этой статье рассматриваются общие схемы домашней электропроводки на 120 и 240 вольт, а также устанавливаемые автоматические выключатели с указанием типов и значений силы тока, используемых в большинстве домов.
Для получения дополнительной информации об электропроводке
Электропроводка
Электропроводка
Проекты домашней электропроводки с изображениями и электрическими схемами.
Эта ссылка полезна как домовладельцу
Электрооборудование «Сделай сам»
|
Будьте осторожны и будьте осторожны — никогда не работайте в цепях под напряжением!
Проконсультируйтесь в местном строительном департаменте по поводу разрешений и проверок для всех проектов электропроводки.
Что такое нейтральный провод и почему он может понадобиться вашему интеллектуальному переключателю света.
При первом знакомстве с электропроводкой дома лучше не усложнять.
Но не слишком просто, вы не хотите убивать себя.
Шучу.
Вроде.
Что такое нейтральный провод?
Вы можете представить схему как гигантскую петлю. Электричество должно иметь возможность постоянно течь вокруг него, чтобы обеспечивать электроэнергию. Любые перерывы в этом шлейфе и подача электроэнергии прекращается. Нейтральный провод помогает замкнуть эту петлю, подавая ток (электричество) обратно к источнику питания, замыкая цепь и оставляя питание включенным.
Это основная цель нейтрального провода — служить каналом для возврата энергии обратно к первоначальному источнику.
Помимо нейтральных проводов, большинство схем в Северной Америке содержат два провода под напряжением и заземляющий провод .
Два горячих провода переносят электричество от источника питания (аккумулятора) к нагрузке (в данном случае к лампе). Затем нейтральный провод передает электричество обратно к источнику питания, замыкая цепь. Земля используется только в целях безопасности.В случае аномального потока или выброса электричества заземляющий провод отправит заряд в землю.Горячие провода
В то время как нейтральный провод передает электричество обратно к источнику питания от нагрузки , «горячие» провода несут электричество от источника питания к нагрузке .
Нагрузка — это все, что использует электричество или потребляет электроэнергию. Например, лампа, тостер или щипцы для завивки вашей жены.
В домах Северной Америки используется «ток 240 вольт с разделенной фазой».Это просто означает, что на каждый из горячих проводов подается 120 вольт, что в сумме составляет 240 вольт.
Когда нагрузки на двух горячих проводах неуравновешены (как это обычно бывает), нейтральный провод передает разницу обратно к источнику питания.
Например, если один из горячих проводов передает 12,5 А, а другой — 15 А, нейтральный провод будет передавать 2,5 А (15 А — 12,5 А) обратно к источнику питания, замыкая цепь.
Если, однако, только один из горячих проводов пропускает ток 15 ампер, нейтральный провод будет передавать 15 ампер обратно к источнику питания, замыкая цепь.
В случае, если оба горячих провода проводят одинаковый ток, нейтральный провод не будет передавать электричество обратно к источнику питания. В этом случае цепь замыкается электричеством, перемещающимся туда и обратно между двумя горячими проводами.
Таким образом, горячие провода посылают электричество от источника питания к вашему прибору (или нагрузки ), а нейтральные провода возвращают электричество обратно к источнику питания (, если ток между двумя горячими проводами несбалансирован, ). Но что произойдет, если в цепи возникнет неожиданный ток электричества?
Заземляющий провод
Заземляющий провод обеспечивает альтернативные пути прохождения электричества в случае пробоя в цепи горячего и нейтрального проводов, по которым обычно протекает ток. Этот альтернативный путь отводит электричество глубоко под землей за пределы вашего дома.
Следовательно, «заземляющие» провода, в отличие от нейтральных проводов или проводов под напряжением, не пропускают электрический ток при нормальных обстоятельствах . Они используются только в случае замыкания на землю .
Замыкания на землю — это аномальные потоки электричества.
Например, в ваш дом ударила молния. Это может вызвать замыкание на землю. В этом сценарии заземляющий провод принимает аномальный электрический ток, производимый молнией, и отправляет его в землю.Это также приведет к срабатыванию выключателя на вашей электрической панели, что приведет к прекращению подачи электричества в ваш дом.
Без заземляющего провода ваш телевизор, или холодильник, или не дай бог щипцы для завивки вашей жены, могут взорваться. И это было бы отстой.
Есть ли у меня нейтральный провод?
Самый простой способ определить, есть ли у вас нейтральный провод в коробке переключателей света, — это посмотреть на , но вот несколько подсказок, если вам пока не хочется этого делать:
- Если ваш дом был построен в середине 80-х или позже есть очень большая вероятность, что в вашем доме повсюду будут нейтральные провода.
- Если рядом с выключателем освещения есть розетка, вероятно, выключатель имеет нейтральный провод.
- Выключатели света, собранные вместе (например, два или три рядом друг с другом), скорее всего, будут иметь нейтраль, независимо от года постройки дома.
Цвет нейтрального провода
В Северной Америке электротехнический кодекс требует, чтобы электрики следовали цветовому коду проводки, что упрощает идентификацию различных типов.
Предупреждение : Прежде чем продолжить и исследовать выключатель света, убедитесь, что у вас отключено питание! Подойдите к своей электрической панели и выключите выключатель, который приводит в действие выключатель света, на который вы работаете.
Как только вы это сделаете, вернитесь к выключателю и попробуйте включить свет. Если он не включается, продолжайте.
Затем отвинтите лицевую крышку переключателя света и снимите ее. Затем откручиваем выключатель света. После откручивания осторожно вытяните выключатель из стены, не снимая проводов.
Вы сможете довольно легко идентифицировать каждый провод. У меня не было опыта в этом раньше, и я обнаружил, что это прямолинейно.
Вы узнаете, что у вас нейтральный провод, если за выключателем света есть катушка из белых или серых проводов, не подключенная к выключателю.
Выключатель света с катушкой нейтрального провода, соединенной гайкой желтого проводаЕсли у вас нет катушки за выключателем света, у вас, вероятно, всего три провода — черный, белый и медный. В этом случае у вас нет нейтрального провода (хотя один из проводов белый!).
После идентификации лучший совет, который я когда-либо получил, — это использовать малярную ленту и промаркировать каждый провод, прежде чем снимать их с выключателя света . Вы даже можете сделать снимок на свой телефон на всякий случай, чтобы знать, как он был установлен.
Вы не хотите оказаться в ситуации, когда вам придется вызывать электрика, потому что вы даже не можете подключить оригинальный выключатель.
Зачем нужен нейтральный провод?
Некоторые схемы просто не могут работать без нейтрального провода, другим он не нужен. Например, стандартный выключатель света в вашем доме. Он не потребляет энергию, он только подключает питание к соответствующей лампе (ам).
В случае интеллектуальных выключателей света обычно требуется нейтральный провод, потому что на них необходимо постоянно подавать питание .Нейтральный провод позволяет замкнуть цепь и включить переключатель. Это верно даже тогда, когда умный выключатель света находится в положении «выключено».
Для большинства интеллектуальных выключателей света на рынке требуется нейтральный провод, но есть такие, в которых его нет. Обратной стороной этих коммутаторов является то, что для них требуется отдельный концентратор, который вам необходимо приобрести.
Что делать, если у меня нет нулевого провода?
Если у вас нет нейтрального провода, у вас есть три основных варианта:
- Проложить нейтральный провод
- Найдите умный выключатель света, для которого не нужен нейтральный провод
- Используйте умные лампочки вместо умных выключателей
Проведите нейтраль
Вы можете нанять электрика, и он / она проведет нейтраль по всему дому.Но вы, вероятно, не собираетесь вмешиваться в это. Это может быть дорого и просто неудобно.
Умный выключатель света, для которого не нужен нейтральный провод
Купить умный выключатель света, не требующий нейтрального провода, можно с помощью более простого и доступного варианта . Есть несколько вариантов, но, по моему опыту, лучший — это диммерный переключатель Lutron Caseta Smart Home. Он получает отличные отзывы и его легко настроить самостоятельно.
Опять же, вам нужно будет купить соответствующий концентратор, чтобы эти умные переключатели света работали.В случае диммерного переключателя Lutron Caseta вам понадобится интеллектуальный беспроводной мост Lutron Caseta Wireless Smart Bridge.
Используйте умные лампочки
Наконец, вы можете просто использовать умные лампочки и все вместе избавиться от хлопот, связанных с умными выключателями света. Однако у умных лампочек есть и недостатки. Самая большая проблема в том, что они просто не будут работать, если ваш выключатель света когда-либо выключен. . Это означает, что вам нужно, чтобы выключатель света всегда оставался включенным.
Это может быть настоящей болью для вас и вашей семьи, и о ней трудно вспомнить.Я считаю, что домашняя автоматизация smart должна добавить функциональность к тому, что уже существует сегодня, а не устранить ее.
То, что вы не можете использовать выключатели в вашем доме, не кажется мне таким уж умным.
Не поймите меня неправильно, есть варианты использования умных лампочек, просто они не мой первый выбор.
Если вы все еще взвешиваете плюсы и минусы интеллектуальных лампочек и интеллектуальных переключателей, ознакомьтесь с публикацией Эрика Бланка «Умная лампочка против умного переключателя».
Почему на моем нейтральном проводе есть напряжение?
Ранее мы обсуждали, что основная задача нейтрального провода — служить каналом для возврата энергии к первоначальному источнику. А в случае интеллектуального переключателя света нейтральный провод также обеспечивает питание, поэтому переключатель всегда может находиться в положении «на ».
Следовательно, наличие напряжения на этом проводе означает, что он выполняет свою работу! Но будьте осторожны, это, очевидно, означает, что вы не отключили питание переключателя, над которым работаете.Подойдите к электрическому щитку и выключите прерыватель.
Если вы уже отключили прерыватель, а нейтраль все еще находится под напряжением, прежде чем продолжить работу, обратитесь к электрику. . Скорее всего, есть проблема, для решения которой вам понадобится профессионал.
Можно ли заземлить нейтральный провод?
Я вижу этот вопрос, можно ли подключить нейтральный провод к земле , много всплывает на поисковых форумах. Ответ — НЕТ. Нейтральный и заземляющий провода не взаимозаменяемы!
Очень опасно пытаться использовать заземляющий или нейтральный провод для любых целей, отличных от их предполагаемого использования.
Как обсуждалось ранее, провода заземления не предназначены для пропускания тока при нормальных условиях . Они используются только в качестве меры предосторожности при возникновении аномального заряда.
Убирая землю или вмешиваясь в нее, вы подвергаетесь очень реальному риску поражения электрическим током.
Заключение
Работа с домашней электропроводкой может быть пугающей, и не зря. Ставки высоки.
Но, исходя из опыта, после того, как вы проведете свое исследование, заменить стандартные переключатели света на интеллектуальные переключатели легко.
Теперь, когда вы знаете, что такое нейтральный, горячий и заземляющий провода и как их идентифицировать, у вас есть все, что вам нужно для начала работы.
Просто убедитесь, что на вашем электрическом щите выключен правильный выключатель.
Серьезно.
Еще раз проверьте это.
А теперь приступим!
Заземление, нейтраль и провода под напряжением (США / Канада)
Нейтральный, заземляющий и горячий провода объяснены. В этой статье мы рассмотрим разницу между горячим, нейтральным и заземляющим проводами, а также функцию каждого из них на нескольких примерах.Эта тема для домов в Северной Америке. Если вы находитесь за пределами этого региона, вы все равно можете следовать инструкциям, но ваша система будет работать и выглядеть иначе, поэтому ознакомьтесь с другими нашими темами.
Прокрутите вниз, чтобы просмотреть руководство YouTube по заземлению, нейтрали и горячим проводам.
Предупреждение
Помните, что электричество опасно и может быть смертельным. Вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ. Никогда не работайте с электрическими цепями, находящимися под напряжением / горячими.
Прежде чем мы перейдем к этому видео, я хочу, чтобы вы запомнили три вещи.
1) Электричество будет течь только по замкнутой цепи, если вы войдете в контакт с электрическим проводником, ваше тело может замкнуть цепь.
2) Электричество всегда пытается вернуться к своему источнику.
3) Электричество использует все доступные пути для замыкания цепи. Он предпочитает путь с меньшим сопротивлением, и по нему будет течь больше тока.
Мы собираемся изучить провода под напряжением, нейтраль и заземление для типичной электросети в североамериканских жилых домах.Но сначала мы увидим действительно простую схему, чтобы понять, как она работает, а затем применим эти знания к сложной жилой установке.
Если мы посмотрим на простую электрическую схему с батареей и лампой. Мы знаем, что для включения лампы нам нужно подключить оба конца проводов к клеммам аккумулятора. Как только мы подключим эти провода, цепь замкнута, и электроны могут течь от отрицательного полюса через лампу и обратно к положительному выводу.
Электроны текут от отрицательного к положительному .Это называется потоком электронов. Первоначально считалось, что они текут от положительного к отрицательному. Позже было обнаружено, что это неверно, и мы называем это обычным током.
Итак, чтобы цепь была замкнута, нам нужен провод для переноса электронов от источника питания к свету, это наш горячий провод. Затем нам нужно подключиться от лампы и обратно к батарее, чтобы электроны вернулись к своему источнику питания или своему источнику. Это наш нейтральный провод. Горячий провод передает электричество от источника питания к нагрузке, а нейтральный провод возвращает использованное электричество обратно к источнику питания.
Токовая нагрузка в цепях
Если мы посмотрим на жилую электрическую систему в Северной Америке, мы найдем два провода под напряжением, нейтральный провод и несколько проводов заземления. Если вы хотите подробно изучить, как это работает, у нас есть обучающее видео, которое можно посмотреть здесь.
Представьте на секунду, что электрическая система дома отключена. подключен к аккумулятору, и у нас есть только один провод под напряжением и нейтральный провод. Как мы пила по простой схеме, для включения света нам понадобится горячий провод, чтобы подавать ток на нагрузку, и нам нужен нейтральный провод, чтобы вернуть ток к источнику.Таким образом, электричество проходит через горячую шину. и автоматический выключатель и в свет. Затем он возвращается через нейтрально и к источнику.
Конечно дома не подключены к батареям, они подключен к трансформаторам. Итак, мы заменили батарею на трансформатор, и мы иметь полную схему.
Электричество в этой цепи — переменный ток, который отличается от постоянного тока постоянного тока, который мы видели с батареей. С DC электроны текут прямо от A к B в одном направлении, как поток вода по реке.Но в наших домах у нас есть переменный ток переменного тока, что означает электроны сильно меняют свое направление между вперед и назад как прилив на море.
Сейчас в Северной Америке у нас есть разделенная фаза питания для большинства жилых домов, поэтому у нас есть два провода под напряжением и один нейтральный провод. У нас просто есть две катушки на 120 В, соединенные вместе в трансформаторе, а затем нейтраль подключается к центру между двумя катушками.
Когда мы подключаем мультиметр между фазой и нейтралью, мы получаем 120 В, и мы получаем такие же показания для другого, потому что мы используем только половину катушки в трансформаторе.Когда мы подключаемся между двумя точками, мы получаем 240 В, потому что мы используем полную катушку трансформатора.
Если у вас нет мультиметра, я настоятельно рекомендую вам его приобрести, это незаменимый инструмент для поиска любых находок и электромонтажных работ.
Если у нас есть нагрузка только на одну половину катушки, между горячей и нейтралью, и нагрузка, например, 20 А, то горячая часть будет переносить 20 А к нагрузке, а нейтраль вернет 20 А обратно к источнику.
Мы можем измерить ток в кабеле с помощью токоизмерительных клещей.
Если у нас есть другая нагрузка на нашей другой половине катушки, между другой горячей и нейтралью, и нагрузка имеет другое значение, скажем, 15 Ампер, тогда нейтраль будет переносить только разницу между этими двумя значениями обратно на трансформатор. В этом случае 20A — 15A = 5A, поэтому нейтраль будет переносить 5A обратно. Остальная часть пройдет через два провода под напряжением. Это то, что у нас будет в большинстве случаев, потому что есть несколько цепей с разными нагрузками.
Если бы у нас была нагрузка на обе катушки, и они имеют одинаковое значение, скажем, например, 15 А каждая, то в нейтральном проводе не будет протекать ток.Все это течет вперед и назад по двум токоведущим проводам между нагрузкой и источником. Это связано с тем, что это переменный ток переменного тока, и трансформатор имеет центральное ответвление с нейтралью, поэтому, когда одна половина движется вперед, другая половина движется назад, и ток будет течь в другую цепь, а не обратно через нейтраль.
Подробную анимацию см. В видео на YouTube ниже
Горячие провода переносят электрический ток от источника питания к нагрузке, а нейтральные провода переносят электрический ток от нагрузки и обратно к источнику питания.
Для чего нужен заземляющий провод?
Заземляющий провод при нормальных условиях эксплуатации не пропускает электрический ток. Этот провод будет пропускать электрический ток только в случае замыкания на землю. Будем надеяться, что иначе этот провод никогда не будет использоваться в течение всей его жизни. Это просто аварийный путь, по которому электричество возвращается к источнику энергии, а не проходит через вас. Заземляющий провод в большинстве случаев представляет собой неизолированный медный провод, но иногда он покрывается зеленой изоляцией.Этот провод имеет очень низкое сопротивление, поэтому электричество предпочтительнее перемещаться по нему, потому что это легче и может быстрее вернуться.
Возвращаясь к простой схеме с батареей и лампой. Если мы теперь возьмем другой провод и проведем его от положительной клеммы к лампе и подключим его к металлическому патрону лампы, это будет фактически наш заземляющий провод. Он не используется для подачи электричества. Если горячий провод касается металлического корпуса, то вместо этого электричество будет проходить через заземляющий провод.Если горячий провод соприкасается как с нейтралью, так и с землей, он будет течь по обоим проводам обратно к источнику, но, поскольку заземление имеет меньшее сопротивление, через него будет протекать больший ток.
Когда электричество находит способ покинуть свою цепь и вернуться к источнику другим путем, чем нейтральный провод, мы называем это замыкание на землю.
Возвращаясь к дому, электричество проходит через горячий и светлый и обратно через нейтраль. Но если горячая энергия касается металлического корпуса, она вместо этого потечет через заземляющий провод обратно к панели, затем через шину, а затем обратно к трансформатору через нейтральный провод.У заземляющего провода очень низкое сопротивление, поэтому он вызывает резкое и мгновенное увеличение тока, которое приведет к срабатыванию выключателя.
Поэтому мы подключаем заземляющие провода ко всему, что может потенциально стать потенциальным путем, по которому электричество может покинуть свою цепь, например, как металлические трубы, металлические пластины выключателей и розеток и их коробки. Нам также нужно запустить один в торговые точки, потому что часто наши бытовая техника будет иметь металлический корпус, как стиральные машины и микроволновые печи.
Если вы посмотрите на розетку и вилку, то увидите, что клемма под напряжением, клемма нейтрали и клемма заземления.Оболочка чего-то как стиральная машина подключена к проводу заземления в проводе, который идет к вилку через розетку и обратно к панели, чтобы спасти вас от поражение электрическим током.
Теперь предположим, что вы находитесь на улице без обуви и на земле. влажный. Если вы дотронетесь до горячего провода, вы замкните цепь и ток пройдет через вас, чтобы вернуться к источнику питания. В этом случае сопротивление очень высокое, поэтому ток может быть недостаточно высоким, чтобы автоматически переверните выключатель и отключите питание.Это, скорее всего, приведет к тому, что люди смерть.
К счастью, у нас есть розетка GFCI или прерыватель GFCI. GFCI расшифровывается как прерыватель цепи замыкания на землю. Мы рассмотрим вариант с автоматическим выключателем, но, по сути, они работают одинаково.
Этот выключатель GFCI будет подключаться как к горячему, так и к нейтрали цепи, чтобы он мог контролировать провода и гарантировать, что ток, протекающий в горячем проводе схемы, равен току в нейтральном проводе цепи. . Если ток не равен, значит, он явно течет обратно к источнику по другому маршруту, например, по металлической трубе, поэтому у нас есть замыкание на землю.Прерыватель осознает это очень быстро и автоматически переключится, чтобы отключить питание цепи.
Штанга заземления
При подключении к основной панели находим толстый медный провод. что ведет к заземляющему стержню. Грунтовая дорога засыпана землей снаружи рядом с собственностью. Этот стержень не используется при замыканиях на землю. Цель состоит в том, чтобы рассеивают статическое электричество и высокое внешнее напряжение, например, молнии удары.
Также имеется заземляющий стержень, подключенный к нейтрали на трансформаторе.Многие думают, что во время замыкания на землю электричество проходит через заземляющий стержень в землю. Но помните, что электричество пытается вернуться к своему источнику. Поскольку у трансформатора есть заземляющий стержень, существует потенциальный путь для электричества, чтобы вернуться к источнику. НО, этот путь будет иметь очень высокое сопротивление или импеданс, поскольку это переменный ток, и, как мы знаем, электричество предпочтет путь с наименьшим сопротивлением. Поскольку у нас уже есть заземляющий провод с низким сопротивлением, который обеспечивает обратный путь непосредственно к источнику, замыкание на землю будет происходить по этому же маршруту.
Когда дело доходит до освещения, источником освещения в основном является Земля. Итак, молния пытается вернуться к своему источнику, который является земля. Если молния ударит по кабелям электропитания, она потечет по проводам к добраться до заземляющих стержней как трансформатора, так и главной панели, чтобы вернуться на землю. В противном случае он взорвет все наши цепи и вызовет пожары.
Если горячая проволока непосредственно контактирует с заземляющим стержнем, то электричество будет проходить через землю обратно к трансформатору, но сопротивление очень велико, поэтому ток будет низким.Это означает, что автоматический выключатель вряд ли обнаружит эту неисправность, и выключатель не будет автоматически переключаться, чтобы отключить питание.
Функция нейтрального провода в 3-фазной 4-проводной системе
В этой статье я обсуждаю нейтральный провод с функцией 3 в фазе 4-проводной системы . Прочитав эту статью, вы сможете понять некоторые очень удивительные факты о необходимости нейтрального провода в трехфазной системе распределения.
Электроэнергия от генерирующих станций передается на большие расстояния по линиям передачи на различные приемные станции.Затем мощность распределяется между различными подстанциями, расположенными в разных местах и населенных пунктах. В конечном итоге напряжение снижается до 400/230 вольт, т.е. 400 вольт для оптовых потребителей и 230 вольт для обычных бытовых потребителей.
Обмотки трансформаторов, установленных на подстанции, подключены по схеме треугольник на первичной стороне и звездой на вторичной стороне.
Распределение обычно однофазное двухпроводное и трехфазное четырехпроводное. Напряжение между любым фазным проводом и нейтралью составляет 230 вольт, а между любыми двухфазными проводами — 400 вольт.
Электропитание домов, небольших офисов, магазинов и других помещений, требующих малых нагрузок, осуществляется от распределительной сети напряжением 230 В с помощью одной фазы и одного нулевого провода.
Там, где поставка должна осуществляться в крупные предприятия, такие как гостиницы, офисы, больницы, применяется система трехфазного четырехпроводного питания. Он состоит из трех фазных проводов и нейтрали.
Функция нейтрального провода в трехфазной четырехпроводной системе заключается в том, чтобы служить обратным проводом для общей бытовой системы электроснабжения.Нейтраль подключена к каждой однофазной нагрузке. Потенциал нейтральной точки можно очень хорошо понять из следующего рисунка.
На приведенной выше схеме генератор подключен к нагрузке по трехфазной четырехпроводной системе. Нейтральные точки как генератора переменного тока, так и нагрузки соединяются вместе. Нейтральный провод служит общим обратным проводом для всех трех фаз, выходящих наружу от N 1 .
Следовательно, полный ток нейтрали является векторной суммой трех линейных токов.В сбалансированных условиях векторная сумма равна нулю, и, следовательно, ток нейтрали равен нулю. В этом случае нет вопроса о падении напряжения вдоль нейтрали, и потенциал N 2 такой же, как и у N 1 .
Это проясняет, что если система питания переходит на трехфазную трехпроводную систему, нейтральный проводник может быть удален без каких-либо изменений в распределении потенциала в сети. В этом случае потенциал N 2 все равно будет равен потенциалу N 1 .Поэтому основная передающая сеть представляет собой трехпроводную систему.
Трехфазные нагрузки сбалансированы и не вносят вклад в ток нейтрали, поэтому нейтральный проводник можно удалить.
Но баланс нагрузки на каждой фазе затруднен в случае однофазных нагрузок. Из-за этого дисбаланса всегда течет нейтральный ток. Поэтому нейтральный провод в этом случае очень важен.
Балансировка фаз в трехфазной четырехпроводной системе
Под балансировкой фаз понимается равномерное распределение однофазных осветительных нагрузок по 3-фазным 4-проводным проводам питающей сети, так что линейные токи на всех фазах приблизительно равны.
Разница в нагрузке вызовет несбалансированный ток, протекающий через нейтральный провод. Импеданс трех проводников будет одинаковым, и неравный ток, протекающий по ним, приведет к неравным падениям напряжения, что может привести к несбалансированности напряжений на нагрузках. Однако достичь абсолютно равного распределения в таких случаях невозможно, и в результате может существовать небольшой ток в нейтрали.
Чтобы получить достаточно равномерное распределение нагрузки в трехфазных проводах, жилые дома следует подключать последовательно, при этом трехфазное питание подается на большие здания, такие как гостиницы, школы, коммерческие здания и т. Д., важно, чтобы равное распределение нагрузки по всем фазам было основной задачей .
«Балансировка» обеспечивает наиболее эффективное использование генератора и трансформатора. Например, трансформатор на 100 кВА может удовлетворительно выдерживать однофазную нагрузку 33,3 кВА на каждой из своих фаз. Если он подключен только к одной фазе питания, он будет перегружен.
Почему нейтраль заземлена?
Назначение заземления нейтрали показано на рисунке.
На рисунке A показан трансформатор 11 кВ / 230 В, питаемый от линии 11 кВ. Вторичная обмотка этого трансформатора в этом случае не заземляется.
При нарушении изоляции между обмотками HT и LT по какой-либо причине на клеммах трансформатора 230 В появится напряжение питания 11 кВ. Это будет очень опасная ситуация как для оборудования, подключенного к этой линии, так и для оператора.
Теперь посмотрим на рисунок B, в этом случае вторичная обмотка трансформатора заземлена.Если на клеммах вторичной обмотки появляется напряжение 11 кВ, то по пути, показанному на рисунке, будет протекать чрезмерный ток, и предохранитель перегорит.
Следовательно, заземление нейтрального провода распределительного трансформатора на подстанции очень необходимо с точки зрения безопасности .
Напряжение между нейтралью и землей
Может существовать очень небольшое напряжение между нейтралью и землей, поскольку нейтраль прочно соединена с землей на подстанции, и оно может возрасти, если заземление подстанции не работает должным образом.
При неисправных условиях, например, предохранитель или автоматический выключатель, защищающий фидер, не срабатывает в случае замыкания на землю на одной из линий, нейтраль может достичь гораздо более высокого потенциала по отношению к земле.
В таких условиях произойдет сильное падение напряжения на земле подстанции из-за тока короткого замыкания, что может привести к серьезному поражению электрическим током.
Что происходит при отсоединении нейтрального провода?
Когда нейтральный провод в 3-фазной 4-проводной системе отключен, нагрузки, которые подключены между любыми двумя линейными проводниками и нейтралью, подключаются последовательно, и разность потенциалов на комбинированной нагрузке становится равной линии Напряжение.Разность потенциалов на каждой нагрузке изменяется в соответствии с номинальной нагрузкой.
Рисунок : Эффект отключения нейтрального провода в трехфазной четырехпроводной системе можно более четко пояснить на следующем рисунке:
Предположим, что сопротивление 100 Ом подключено между фазой R и нейтралью, а сопротивление 50 Ом подключено между фазой Y и нейтралью в 3-фазном, 4-проводном источнике питания, как показано на рисунке (a). Упрощенная схема показана на рисунке (б).
Если нейтральный провод отключен, две нагрузки R 1 и R 2 подключаются последовательно, и разность потенциалов на них становится равной линейному напряжению, то есть 400 В.
Следовательно,
ток через нагрузки, I = V L / (R 1 + R 2 )
= 400 / (100 + 50) = 2,67 A
Следовательно,
разность потенциалов на сопротивлении R 1 = I * R 1
= 2.67 * 100 = 267 В
Аналогично,
разность потенциалов на сопротивлении R 2 = I * R 2
= 2,67 * 50 = 133 В
Из рисунка выше видно, что если нейтральный провод при отключении в 3-фазной, 4-проводной системе разность потенциалов на высокоомной нагрузке увеличивается, а разность потенциалов на низкоомной нагрузке уменьшается.
В этом процессе напряжение на высокоомной нагрузке может вырасти больше, чем расчетное значение, и может повредить высокоомную нагрузку .