Ветряк угринского: помощь в выборе типа ротора и схема создания устройства своими руками

Содержание

помощь в выборе типа ротора и схема создания устройства своими руками

Содержание

  1. Собственные энергоустановки
  2. Использование ветрогенераторов
  3. Выбор конструкции
  4. Ветрогенератор Угринского
  5. Создание ротора своими руками
  6. Рекомендуемые товары

Собственные энергоустановки

Потребности в электроэнергии возрастают с каждым годом. Растет число бытовой техники, используется большое число оборудования и аппаратуры, обеспечивающих дом теплом, водой, осуществляющих контроль за микроклиматом. Несмотря на рост потребления, состояние электрических сетей постоянно ухудшается. Общая изношенность оборудования достигает опасных размеров, что вынуждает многих пользователей задумываться о самообеспечении энергией.

Не менее остро стоит вопрос электроснабжения для жителей отдаленных или труднодоступных регионов, где сетевого электричества до сих пор никогда не было. Они лишены возможности полноценного пользования достижениями технического прогресса, так как ограничены в возможности энергоснабжения.

Решение вопроса, наиболее популярное на сегодня — использование собственных альтернативных энергоустановок, обеспечивающих собственный дом теплом и электроэнергией. Применяются дизельные электростанции, ветрогенераторы, солнечные батареи. Большой интерес у населения вызывают ветроэнергетические установки, способные работать независимо от времени суток, использующие неограниченный и неисчерпаемый источник энергии — ветер.

Использование ветрогенераторов

Развитие ветроэнергетики в России длительное время было уделом отдельных энтузиастов. Энергоизбыточность страны, большое количество гидроэлектростанций, с лихвой обеспечивавших население подавляющего большинства регионов, сделала ветроэнергетику низкоэффективным вариантом получения энергии. Поэтому в настоящее время Россия несколько отстает от других стран в использовании ветроэлектростанций.

На Западе картина другая — отсутствие возможностей для гидроэнергетики вызвало широкое применение альтернативных методов. На сегодня активно используются огромные прибрежные ветроэлектростанции, снабжающие энергией целые регионы и государства.

Для России ситуация абсолютно противоположна — ветроэнергетика как промышленный способ неэффективна, но для создания автономных источников для частных домов, усадеб или фермерских хозяйств является оптимальным вариантом. Возможность обеспечивать себя энергией и не зависеть от поставщиков, состояния электросетей и прочих обстоятельств весьма привлекательна для большинства пользователей, даже имеющих возможность подключения к сети.

Покупка готовых моделей доступна далеко не всем. Цены на оборудование слишком высоки, что отсекает большинство потенциальных пользователей. При этом, имеется возможность самостоятельного создания комплексов практически любой мощности, требуется лишь некоторая теоретическая подготовка и навыки владения инструментами.

Образцов, созданных своими руками, на территории России имеется немало, большинство из них демонстрируют вполне приличные показатели. Существуют и такие установки, которые далеко обошли промышленные образцы и обеспечивают усадьбы полностью, включая отопление и прочие нужды.

Выбор конструкции

Самостоятельное изготовление ветряка требует подбора наиболее практичной и эффективной конструкции. Прежде всего, требуется детально изучить метеорологическую обстановку в регионе и определить преобладающие направления и силу ветра. Полученная информация сможет стать отправной точкой при выборе типа ветряка, конструктивных особенностей, размеров и прочих параметров.

Сначала надо определиться, какой тип ротора наиболее подойдет:

  • горизонтальный
  • вертикальный

Горизонтальные конструкции считаются более удачными в плане производительности, но они имеют несколько недостатков:

  • потребность в сооружении высокой мачты для ветрогенератора. Размещение ветряка на высоте создает сложности в обслуживании и ремонте устройства, увеличивает длину соединительного кабеля
  • помимо вращения крыльчатки требуется узел вращения по вертикальной оси для настройки на поток ветра. Это устройство достаточно сложное, поскольку используется щеточный коллектор. В противном случае кабель будет перекручиваться и не даст ветряку настраиваться на ветер
  • при усилении скорости ветра требуется использовать тормозное устройство, или складывающуюся конструкцию, выводящую крыльчатку из потока и останавливающую вращение. В противном случае возможно разрушение ветряка

Вертикальные конструкции во многом лишены этих недостатков. Они не нуждаются в наведении на поток, подъеме на высокую мачту. Соответственно, обслуживание и ремонт таких установок производить намного легче, что способствует предпочтению вертикальных установок среди пользователей.

Простота монтажа, возможность использовать различные типы конструкции позволяет создавать производительные комплекты, обеспечивающие большое число потребителей.

Ветрогенератор Угринского

Один из ярких представителей вертикальных конструкций ветряка — ротор Угринского. Конструкция лопастей представляет собой доработанный ротор Савониуса, но, в отличие от него, у ветряка Угринского имеется две пары лопастей.

Каждая пара имеет разный профиль. Одна половина имеет загнутую в продольном направлении рабочую поверхность. Вторая половина прямая. В сечении такая лопасть напоминает ковш с ручкой. Вторая пара лопастей такая же в сечении, установлена симметрично относительно оси вращения. Между парами лопастей остается зазор для свободного прохождения воздушного потока.

Аэродинамика такого ротора намного эффективнее, чем у конструкции Савониуса. Поток ветра практически все время воздействует в правильном направлении, обратное уравновешивающее воздействие снижено почти до нуля. Поток не может оказывать давление на задние части, так как они закрыты второй парой лопастей, а зазор между ними способствует быстрому прохождению опасных по воздействию точек.

Ротор быстро изменяет свое положение, получая импульс в нужном направлении. Имеется правило: средняя часть канала (зазора между лопастями) должна составлять 2/3 от ширины устья канала. Таким образом обеспечивается оптимальный аэродинамический режим крыльчатки.

Образующийся воздушный кокон обеспечивает ограничение скорости потока ветра. При усилении кокон сглаживает воздействие, замедляя вращение и отсекая быстро движущий1ся поток. Ветер обтекает ротор, словно сплошной цилиндр. В этом заключается удачная особенность конструкции вертикального типа.

При повышении скорости потока можно использовать простейшее тормозное устройство. Оно представляет собой подвешенные на цепочках грузы, которые при повышении скорости вращения под действием центробежной силы изменяют угол наклона или поворота лопастей.

Создание ротора своими руками

Для изготовления такого ротора потребуется два куска листового металла (в идеале — алюминия) или стеклопластика. Предварительно потребуется изготовить шаблон, дающий возможность сделать совершенно одинаковые лопасти, что важно для обеспечения правильного режима работы установки. Также надо изготовить две торцовых части со ступицами, установленными на вертикальный вал. Лопасти устанавливаются на эти диски или обручи в надлежащем порядке — зазор в средней точке должен составлять 2/3 от ширины устья (входа в зазор).

Чем точнее будет создан профиль лопастей, тем устойчивее получится режим вращения крыльчатки, чувствительнее и производительнее установка. От размера крыльчатки зависит мощность ветряка, но слишком большая установка стане чрезмерно тяжелой. Инерция покоя не даст ей стартовать при низких скоростях ветра, поэтому следует делать лопасти как можно более легкими и не слишком усердствовать в создании большого ротора. Для таких конструкций надо использовать тихоходные генераторы, поскольку высокой скорости вращения добиться не удастся.

Рекомендуемые товары

 

 

Как вам статья?

Определение характеристик ротора Угринского

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Чистяков А.Д. 1


1МАОУ «Гуманитарная гимназия №8» г. Северодвинск

Лыбашев А.В. 1


1МАОУ «Гуманитарная гимназия №8»

Автор работы награжден дипломом победителя II степени

Диплом школьникаСвидетельство руководителя

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

ВВЕДЕНИЕ.

Тема нашей работы – определение характеристик ротора Угринского.

Ротор Угринского — это турбина, применяемая для вращения генераторов и использующая энергию потока жидкости или газа. Она придумана советским инженером К.А. Угринским в 1946 году. Состоит из двух лопастей, имеющих в сечениях вид черпака с ручкой и расположенных так, что в любой момент времени какая-то часть ротора направлена навстречу потоку газа или жидкости.

Ротор имеет заявленный КПД до 46 %, максимум установлен на идеализированном объекте – компьютерной модели. Строительство ветротурбин такого рода целесообразно в районах, где среднегодовая скорость ветра больше 3 м/с. Согласно карте средней скорости ветра в России сюда входит побережье Белого моря, а это, в первую очередь, север и запад Кольского полуострова и территории западнее Беломорско-Кулойского плато, хотя частные ветроэлектростанции (ВЭС) целесообразно строить и на территориях восточнее устья Онеги.

Актуальность нашей работы заключается в том, что во всем мире непрерывно растет интерес к «зеленой» энергетике, к возобновляемым источникам энергии. Изначально ротор Угринского меня, ученика, занимающегося судомоделированием, заинтересовал как движитель судна. В сети Интернет имеется огромное количество страниц с информацией об этой ветротурбине, приводятся некие характеристики ротора, на форумах, посвященным ветрогенераторам одни любители говорят о КПД в 20-30%, другие о 30-40%, третьи вообще называют 10-20%, но нигде нет никаких конкретных расчётов. Мы заинтересовались реальным КПД ротора Угринского, и захотели выяснить зависит ли, и если зависит то как, КПД ротора от скорости ветра.

Таким образом, цель нашего исследования – определить зависимость КПД ротора Угринского от скорости ветрового потока, ометающего ротор.

Для достижения данной цели мы поставили следующие задачи:

Изучить чертежи и принцип работы ротора Угринского;

Построить модель ветротурбины Угринского;

Найти КПД ротора Угринсого;

Изучить зависимость энергии вращения ротора от мощности воздушного потока.

Основными методами нашего исследования станут анализ научной литературы, наблюдение, эксперимент.

Объект нашего исследования — ротор Угринского.

Предмет исследования – зависимость КПД ротора Угринского от скорости ветра.

Наша гипотеза: при увеличении скорости ветра линейно растет КПД ротора.

1 Ветротурбины

1.1 Горизонтальные

Ось ротора вращается параллельно земной поверхности. Имеет большую мощность преобразования энергии ветра в переменный и постоянный ток. Разные модификации горизонтальных установок имеют от одной до трех лопастей и более. Поэтому коэффициент полезного действия намного выше, чем у вертикальных. Недостатки ветрогенераторов − в необходимости ориентировать их на направление ветра. Постоянное перемещение снижает скорость вращения, что понижает его производительность.

Разновидности – одно- дву- трех- четырех- многолопастные, с аэродинамическим профилем и парусные1. (Приложение 1).

1.2 Вертикальные

Турбина расположена вертикально по отношению к плоскости земли. Начинает работать при небольшом ветре. Вертикальные преобразователи силы ветра в энергию часто используются для бытовых нужд. Эти виды ветрогенераторов просты в обслуживании. Основные узлы, которые требуют внимания, находятся в нижней части установок и свободны для доступа.

Разновидности – ротор Савониуса, ротор Угринского, ротор Дарье, горизонтальная ветротурбина с направляющей системой.2 (Приложение 1).

1.3 Ротор Угринского

Ротор Угринского — модификация турбины Савониуса, представленная К.А.Угринским в 1946 году. Может быть использован для работы в жидкостях и газах. Состоит из двух лопастей, имеющих вид буквы S и расположенных так, что в любой момент времени какая-то часть направлена навстречу потоку.
(Схема и фото ротора Угринского – Приложение 1).

2 Строение ротора Угринского.

2.1 Конструкция ротора.

У ветряка Угринского имеется две пары лопастей.

Каждая пара имеет разный профиль.

Одна половина имеет загнутую в продольном направлении рабочую поверхность. Вторая половина прямая. В сечении такая лопасть напоминает ковш с ручкой. Вторая пара лопастей такая же в сечении, установлена симметрично относительно оси вращения. Между парами лопастей остается зазор для свободного прохождения воздушного потока. Лопасти крепятся на диски, в центр вставляется стержень.

2.2 Изготовление модели ротора.

Вырезаем 4 круга из упаковочного картона, 2 – откладываем, на оставшихся чертим разметку профиля лопастей по размерам, указанным на чертеже, разрезаем по разметке. Если необходимое отношение длины ротора к высоте имеется, то через пропорцию находим высоту лопастей ротора, через формулу длины дуги находим длину лопастей. Клеим эпоксидным клеем средние части разрезанных кругов на целые круги, линии лопастей должны располагаться как на чертеже, одну из заготовок откладываем, на другую клеим каплеобразные боковые части так, чтобы между ними и средней частью образовались небольшие желобки.

Вставляем в них лопасти и зажимаем боковыми частями которые приклеены, но ещё не просохли, повторяем операцию с другой стороны, когда первая просохнет, когда высохнут обе — проделываем в центрах кругов отверстия, куда вставляем заточенный с двух сторон стержень, закрепляем его эпоксидным клеем или пластилином. (Схема сборки – Приложение 1).

3 Исследование ротора Угринского.

3.1 Определение момента инерции.

На одном их этапов исследования ротора Угринского у нас возникла идея найти связь между скорость ветрового потока и кинетической энергией вращения ротора. Для определения энергии вращающегося тела необходимо знать момент инерции вращающегося тела. Идею нахождения момента инерции собранного ротора мы подсмотрели в этом источнике

3. В нем описан метод нахождения момента инерции методом махового колеса (Приложение 2).

Расчет момента инерции:

m1gh1 + +/Aтр/ (1)

m2gh2= + +/Aтр/ (2)

a=

h=

v=

w= =

Aтр1=Атр2, т. к условия эксперимента не меняются, скорости сравнимы.

Вычитаем из(1) уравнения(2)

Заменяем w

Выражаем I

I=

Таблица данных и результата:

m1,кг

m2.кг

t1ср.,с

t2ср.,с

w1,рад/с

w2,рад/с

h2,м

r,м

h3,м

I,кг*м2

0,01

0,02

6,45

3,21

14,839

28,927

1,005

0,021

0,975

0,0003

При определении момента инерции основную погрешность мы допускаем при измерении времени опускания груза из-за скорости реакции человека ( (0,2+0,2)/3,21≈0,12 или 12%). Погрешностями определения m, h можно пренебречь. Поэтому конечный результат мы получаем с погрешностью порядка 12%.

3.2 Определение кинетической энергии вращения ротора при различных частотах вращения.

Энергия вращения ротора E=I•ω2/2=I•4•π2•n2/2

Таблица_1 расчета кинетической энергии ротора при различных скоростях ветропотока и график зависимости Ек ротора
от скорости ветра в Приложении 4.

3.3 Определение коэффициента передачи энергии воздушного потока ротору.

Коэффициента передачи энергии воздушного потока ротору по сути это и есть КПД ротора: он показывает, какая доля мощности воздушного потока отбирается ветроколесом.

Формулу для расчета мы получили путем следующих рассуждений:

Ветер со средней скоростью v обладает кинетической энергией:

Ев= , (1) где Ев- кинетическая энергия ветра в Дж, -масса воздушного потока в кг, — скорость ветра в м/с.

Мощность данного ветра – его кинетическая энергия в единицу времени:

N= = (2), где m- масса воздуха, проходящего через ротор за 1 секунду.

Учитывая, что m=V*p можно рассчитать расход воздуха за одну секунду : , где s-расстояние, проходимое воздушной массой за 1 секунду, т.е. скорость воздушного потока, А- площадь воздушного потока (т.н. ометаемая площадь)

Преобразовав (1) и (2), получим мощность ветрового потока:

N=

Согласно закону Бернулли расход воздуха за одну секунду остается постоянным в сечении потока до ротора, в месте нахождения ротора и за ротором:

А- площадь, ометаемая ветроколесом, А1 и А2-площади поперечных сечений, проходящих через ветроколесо ветрового потока соответственно до и за ним, v1, v2 и v-скорости в сечениях А1, А2 иА.

Действующая на ветроколесо сила F равна изменению импульса массы проходящего через него в единицу времени воздуха: F=

Мощность, развиваемая этой силой, т.е. мощность

ветроколеса: Nв=F*v=

Скорость ветра в сечении ветроколеса:

Мощность, развиваемую ветроколесом можно записать: Nв=

В случае отсутствия ветроколеса, в этом сечении мощность ветрового потока составила бы: N=

Отношение отобранной мощности ветроколесом NB к обладающей мощности ветрового потока N назовем КПД η:

Исследования проводились на установке, фото которой можно видеть в Приложении 3. Скорость ветрового потока измерялась анемометром, частота вращения ротора датчиком частоты вращения. У датчика частоты вращения пришлось убрать «родной» ротор, и чтобы он считал обороты нашего ротора, к ротору Угринского пришлось прикрепить диск наполовину непрозрачный, наполовину прозрачный. Значение скорости ветра, измеренное анемометром выводится на встроенный дисплей датчика, датчик частоты вращения подключен через компьютерный измерительный блок L-микро ичастота вращения ротора выводится на экран монитора компьютера. Изначально планировалось получать ветровой поток с помощью квадрокоптера, частоту вращения пропеллеров, которого регулировать с пульта управления, но впоследствии квадрокоптер заменили пылесосом, работающим на выдув воздуха и регулировать скорость ветропотока, меняя расстояние от пылесоса до ротора.

Результаты эксперимента сведены в таблицу 2 (Приложение 4). По результатам эксперимента построены графики зависимость КПД ротора от скорости ветра (Приложение 4) и Сравнение изменения скорости ветропотока и КПД ротора (Приложение 5). Погрешность анемометра по паспорту — 5%.

ЗАКЛЮЧЕНИЕ

Проделав эту работу, мы выяснили, что при увеличении скорости ветра линейно увеличивается КПД ротора (График 2). Поэтому, выдвинутая нами гипотеза подтвердилась.

Попутно, по результатам исследования мы пришли еще к некоторым выводам.

Упоминаемые на форумах любителей ветроэнергетики значения КПД ротора Угринского нами получены (Таблица_2).

Анализируя График 3, мы приходим к выводу, что КПД ротора Угринского незначительно возрастает при значительном увеличении скорости воздушного потока (примерно в 1,5 раза вырос КПД в наших опытах и более чем в 3 раза скорость ветропотока)-т.е. ротор Угринского будет примерно одинаково отбирать энергию воздушного потока в большом диапазоне скоростей ветра.

Анализируя Графика 1 приходим к выводу, что зависимость кинетической энергии ротора от скорости ветра близка к параболической.

Ротор должен быть тщательно отцентрован. У нас это идеально не получилось, и при больших частотах вращения ротор вываливался из системы крепления.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.

Овсецова Т.И. Определение момента инерции махового колеса методом вращения. [Электронный ресурс] URL: http://www.unn.ru/books/met_files/Ovsetsina_metod_vraschenii.pdf (дата обращения 22.12.2020).

Ветроэнергетика. [Электронный ресурс] URL: https://present5.com/vetroenergetika-1-energiya-vetra-eto-forma (дата обращения 22.12.2020).

Все об альтернативной энергетике. [Электронный ресурс] URL: https://tcip.ru/blog/wind/osnovnye-vidy-vetrogeneratorov-vertikalnye-gorizontalnye.html

Приложание 1

Виды горизонтальных (слева) и вертикальных (справа) ветротурбин

Схема ротора Угринского.

Фото ротора Угринского, изготовленного нами для исследования.

Приложение 2

Установка для нахождения момента инерции ротора
методом махового колеса. .

Экспериментальное определение момента инерции
методом махового колеса..

Приложение 3

Фотография установки в сборе.

Фото датчиков частоты вращения и скорости ветрового потока.

Приложение 4

График 1

Т аблица_1.

v,м/с

Eк, Дж

1,7

0,001846

2

0,003401

3,2

0,013602

3,7

0,015835

3,9

0,019076

4,2

0,022617

4,8

0,037388

Таблица_2

v1,м/с

v2,м/с

КПД

n, об/с

Ек, Дж

р, Вт

1,8

1,6

0,198217

1,4

0,001846

0,038491

2,2

1,8

0,300526

1,9

0,003401

0,070277

3,6

2,8

0,351166

3,8

0,013602

0,30793

4

3,3

0,29143

4,1

0,015835

0,4224

4,4

3,3

0,382813

4,5

0,019076

0,562214

4,8

3,6

0,382813

4,9

0,022617

0,729907

5,7

3,8

0,462963

6,3

0,037388

1,222274

График 2

Приложение 5.

График 3

1Все об альтернативной энергетике. [Электронный ресурс] URL: https://tcip.ru/blog/wind/osnovnye-vidy-vetrogeneratorov-vertikalnye-gorizontalnye.html

2Все об альтернативной энергетике. [Электронный ресурс] URL: https://tcip.ru/blog/wind/osnovnye-vidy-vetrogeneratorov-vertikalnye-gorizontalnye.html

3Овсецова Т.И. Определение момента инерции махового колеса методом вращения. [Электронный ресурс] URL: http://www.unn.ru/books/met_files/Ovsetsina_metod_vraschenii.pdf.

Просмотров работы: 200

Бесплатный файл STL Угринский ветряк.・Модель для 3D-печати для скачивания・Культы


Игрушечная лодка

0,98 €

Игрушечный плот

0,98 €

Рождественский олень

Бесплатно

Формочка для печенья Обезьянка

Бесплатно

Пирамида Звездный корабль Звездные врата

Бесплатно

ОСЕВОЕ КОЛЕСО ТУРБИНЫ

Бесплатно

Воронка.

Бесплатно

Подставка для салфеток «бабочка»

Бесплатно

Лучшие файлы 3D-принтеров в категории Инструменты

ПРОСТАЯ И БЫСТРАЯ ЗАЩИТНАЯ МАСКА КОВИД — ФИНАЛ

Бесплатно

Подвесной держатель катушки Tiko

Бесплатно

Крепление OpenRC F1 GoPro

Бесплатно

SD-ридер man

Бесплатно

Модульная ракета

1,99 €

Зажим для нити «DAS FILAMENT» 1,75 мм

Бесплатно

поддержка реле Arduino

Бесплатно

Бестселлеры категории Инструменты

Подставка для краски с ножницами

5,41 €

ИНДИКАТОР ЛУЧШЕГО ВЫРАВНИВАНИЯ КОРМУШКИ ДЛЯ ENDER 3 V2

2,93 €

ПЕРЕДАЧИ И ТЯГОВЫЙ МЕХАНИЗМ

€9,79 -50% €4,90

Система охлаждения Minimus Hotend

€2,43 -50% €1,21

Контейнер для хранения пожарного гидранта

1,96 €

ПЭТ-Машина, сделай нить своими руками из пластиковых бутылок дома!

€50 -70% €15

СУПЕРБОКС

1,50 €

ENDER 3 S1/PRO SPRITE, 4020 FAN CR TOUCH NO Y OFFSET

€1,95 -15% €1,66

Прямой привод BMG E3D V6 для Creality Ender 3 (Pro/V2) и CR-10

4,49 €

УНИВЕРСАЛЬНЫЙ ИНДИКАТОР ДЛЯ ВЫРАВНИВАНИЯ ПЛАСТИНЫ ПОЧТИ ДЛЯ ВСЕХ ПРИНТЕРОВ

2,93 €

Система тиснения визитных карточек

3 €

Держатель для телефона

2,54 €

Распечатанная на 3D-принтере зубчатая передача (Harmonic Drive)

4,99 €

Держатель для ложки Chunky Flavour More Nutrition

1,25 €

НАБОР BOCA MATE — ЙЕРБЕРА И САХАРЕЛЬНИЦА — BOMBONERA

1,83 €

ТОЧНЫЙ ЦИФРОВОЙ ИНДИКАТОР 3D ПЕЧАТЬ СДЕЛАЙ САМ

1,90 €



Хотели бы вы поддержать культы?

Вам нравятся культы и вы хотите помочь нам продолжить приключение самостоятельно ? Обратите внимание, что мы небольшая команда из 3 человек , поэтому нам очень просто поддерживать деятельность и создавать будущие разработки . Вот 4 решения, доступные для всех:

  • РЕКЛАМА: Отключите блокировщик баннеров AdBlock и нажмите на наши рекламные баннеры.

  • ПРИНАДЛЕЖНОСТЬ: Совершайте покупки в Интернете, нажав на наши партнерские ссылки здесь Amazon.

  • ПОЖЕРТВОВАНИЕ: Если вы хотите, вы можете сделать пожертвование через PayPal.

  • СВОБОДНЫЕ СВЕДЕНИЯ: Пригласите своих друзей, откройте для себя платформу и великолепные 3D-файлы, которыми делится сообщество!

▷ Угринский ветрогенератор 3d модели 【STLFinder 】

Угринский ветрогенератор.

культы3d

Угринский ветрогенератор.

Угринский ветрогенератор.

мояминифабрика

… оптимизирован для 3D-печати. Он позволяет увеличить высоту турбин. Турбина может работать на общий генератор. Угринский ветряк. by TanyaAkinora лицензируется в соответствии с Creative Commons – Attribution – Share Alike.

Угринский ветрогенератор.

вещьвселенная

… дизайн. … Сравнение ветряков Угринского и Савониуса: https://www.youtube.com/watch?v=TAa8fu-6sRo Эта конструкция оптимизирована для 3D-печати. Он позволяет увеличить высоту турбин. …Турбина может работать от общего генератора.

Угринский ветрогенератор.

игольчатый

… простой дизайн. …Сравнение ветряков Угринского и Савониуса: https://www. youtube.com/watch?v=TAa8fu-6sRo Эта конструкция оптимизирована для 3D-печати. Он позволяет увеличить высоту турбин. …Турбина может работать от общего генератора.

Ветродвигатель Угринского

игольчатый

Это исследование концепции ветряной турбины Угринского. я не нашел много подробностей об этой концепции, но можно найти несколько эскизов, и это был заявлен как намного более эффективный по сравнению с конструкцией Савониу. А также на самом деле так и есть! Я сделал этот дизайн…

Угринский ветряк Бесплатная модель для 3D печати

cgtrader

… дизайн. …Сравнение ветряков Угринского и Савониуса: https://www.youtube.com/watch?v=TAa8fu-6sRo Эта конструкция оптимизирована для 3D-печати. Он позволяет увеличить высоту турбин. Турбина может работать на общий генератор. …

Угринский ВЭУ

культы3d

Сначала это было просто упражнение для изучения дизайна FreeCAD с использованием формул и параметров для проектирования объектов, но оказалось, что это нечто большее. На этом изображении основана основная форма и пропорции ротора Угринского. Так как я уже разработал…

Угринский ВЭУ

вещьвселенная

Сначала это было просто упражнение для изучения дизайна FreeCAD с использованием формул и параметров для проектирования объектов, но оказалось, что это нечто большее. Базовая форма и пропорции ротора Угринского основаны на этом…

Большой Угринский ВЭУ VAWT

вещьвселенная

Распечатать дважды и дважды зеркально. Вам понадобится 30 м3 гаек и болтов. Дважды фольга шириной 420 мм или тонкий листовой металл. 2x 608 шарикоподшипники. …

Штабелируемая вертикальная ветряная турбина Угринского VAWT

вещьвселенная

… проверить под нагрузкой. Однако, сравнивая их как свободно вращающиеся роторы в течение более длительного времени в различных ветровых условиях, Ugrinsky обеспечивает значительно лучшие характеристики. …Он начинает вращаться при более низких скоростях ветра и производит более высокие обороты.

Вертикальная ось ВЭУ Угринского VAWT

ты представляешь

Предназначен для Ultimaker 2 с блоком Olsson или UM2+ (максимальный объем печати, большое сопло, высокая скорость печати). … Новый генератор здесь (работа в процессе): https://www.youmagine.com/designs/low-rpm-generator

Ветроустановка Угринского (ВАВТ) со встроенным генератором

вещьвселенная

** Примечание. В настоящее время я печатаю детали и собираю их в течение следующих нескольких дней, поэтому некоторые детали могут быть изменены. Ожидайте увидеть фотографии в ближайшее время!** Это полностью функционирующий (предположительно) ВАВТ с местом для магнитов и…

Ветродвигатель Угринский Часть 1

вещьвселенная

Это исследование концепции ветряной турбины Угринского. Я не нашел много подробностей об этой концепции, но можно найти несколько эскизов, и она была заявлена ​​как намного более эффективная по сравнению с дизайном Савониу. А на самом деле так и есть! Я сделал этот дизайн, чтобы быть…

Penciltop Ugrinsky Ветряная турбина с вертикальной осью VAWT

вещьвселенная

Малая ветряная турбина Угринского с вертикальной осью (ВАВТ), которая помещается на кончике карандаша. Хорошо подходит для демонстрации физики или просто для того, чтобы красиво выглядеть перед настольным вентилятором. … Если вы предпочитаете конструкцию с подшипниками и держателем, посмотрите на…

Ветряная турбина Ugrinsky с вертикальной осью VAWT

вещьвселенная

Угринский Ветродвигатель с вертикальной осью (ВАВТ). Вам понадобится пара маленьких подшипников: Д = 5 мм, д = 2 мм (например, https://www. aliexpress.com/item/-/32941620883.html) Вставьте небольшой кусок стандартной нити диаметром 1,75 мм сверху и снизу, чтобы сохранить…

Ветряная турбина с вертикальной осью (VAWT) — Дарье и Угрински

вещьвселенная

VAWT I разработан в Fusion 360. …ротор Дарье использует профиль NACA 0015 с углом атаки 0-2 градуса Размер сборки 200 мм x 200 мм x 150 мм на секцию каждая секция может быть закреплена обычными скобами использует стандартные подшипники 608 включает 64 зуба…

Ветряная турбина

скетчфаб

Ветряная турбина

Ветряная турбина

грабкад

Ветряная турбина

ВЕТРОВАЯ ТУРБИНА

грабкад

Ветряная турбина

Ветряная турбина

грабкад

Ветряная турбина.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *