Выбор теплового реле: Выбор теплового реле по мощности двигателя – Tokzamer

Тепловые реле перегрузки Schneider Electric

Быстрый переход по статьи:

Тепловые реле перегрузки Schneider Electric

Виды тепловых реле перегрузки Schneider Electric

Характеристики серии LR2K

Купить тепловое реле для однофазного или трехфазного двигателя

Тепловое реле – это электроприбор, который защищает электродвигатель от токовой перегрузки, «выпадания» фаз сети или затянутого пуска. Срок службы оборудования главным образом зависит от перегрузок в процессе работы. Длительность эксплуатации и надежность оборудования обеспечивается, за счет конкретной зависимости времени протекания тока от его значения. Когда ток становится больше номинального, повышается температура, что приводит к старению изоляции и соответственно, при повышении перегрузок, должно уменьшаться время действия.

Тепловые реле различают по нескольким признакам. По способу действия реле тепловой защиты двигателя делятся на электронные и механические (биметаллические). Самыми распространенными являются именно биметаллические тепловые реле, так как они более дешевые и просты в использовании. Электронные реле тепловой защиты двигателя более точные и имеют больше дополнительных настроек.

Тепловое реле электродвигателя от французской фирмы Schneider Electric – это лучший выбор для вас, если вам важно качество, гарантии безопасности и надежность. Эта компания представляет свою продукцию на европейском рынке более 100 лет, и имеет замечательную репутацию. 

Тепловое реле для двигателя защищает цепи переменного тока и электродвигатели от исчезновения фазы, перегрузок, заклинивания ротора, но, оно не защищает от короткого замыкания. Более того, тепловое реле для электродвигателя само нуждается в защите с помощью предохранителей aM, gG, BS88. Для выбора номинального тока теплового реле необходимо чтобы номинальный ток нагрузки был ближе к середине диапазона установок, чтобы была возможность регулировать ток отсечки, в зависимости от температуры. Фирма Schneider Electric предлагает тепловое реле для двигателя серии LRD, LR2K, LR9F.

Виды тепловых реле перегрузки Schneider Electric

Тепловые реле фирмы Schneider Electric серии LRD используются с контакторами Tesys D. Они надежны и имеют широкий диапазон токов. Монтаж осуществляется с помощью пружинные, винтовые зажимы или клеммного блока. Тепловое реле электродвигателя серии LRD применяется в сфере промышленности, строительства и инфраструктуре.

Характеристики серии LRD

— диапазон сброса токов и напряжений: 0,1 — 150 A, 0,06 — 75 кВт;
— сброс: ручной, автоматический, а также возможен дистанционный электронный;
— используется: TeSys D (ширина 45 мм) с максимальным напряжением 18,5 кВт, 55 мм — 30 кВт;
— классы защиты: 10 A и 20.

Тепловые реле перегрузки Schneider Electric серии LR2K используются совместно с контакторами Tesys K. Реле этой серии обеспечивает тепловую защиту электродвигателя и защиту электроцепи от перегрузки и обрыва фаз, а защита силовой цепи осуществляется с помощью предохранителя. Присоединяется тепловое реле для электродвигателя с помощью пружинных и винтовых зажимов. Оно используются преимущественно в промышленности и строительстве.

Характеристики серии LR2K

— полюсы: 3;
— сброс: ручной, автоматический, а также возможен удаленный;
— диапазон сброса токов и напряжений: 0,11 — 16 A, 0,06 – 5,5 кВт;
— используется: TeSys K с шириной 45;
— класс защиты: 10 A.

Серия LR9F защищает оборудование от тепловых перегрузок в однофазных или трехфазных сетях, от дисбаланса фаз и от блокировки ротора. LR9F используется с контакторами Tesys F (каталог контакторов Schneider Electric). Доступ к настройкам ограничивается прозрачной пломбированной крышкой. Также тепловое реле для однофазного двигателя и трехфазного двигателя оснащено аварийно-предупредительной сигнализацией, которая предупреждает аварийное отключение.

Характеристики серии LR9F

— полюсы: 3;
— степень защиты: IP 20;
— температура: от – 20 до +70 С;
— частота: 50-60 Гц;
— диапазон сброса токов: 30 – 630 А;
— класс защиты: 10, 10 A и 20.

Купить тепловое реле для однофазного или трехфазного двигателя

Независимо от ваших потребностей, вы всегда сможете подобрать соответствующее тепловое реле для защиты однофазного или трехфазного двигателя среди ассортимента оборудования Schneider Electric. Тепловые реле перегрузки, предлагаемые компанией, отличаются высокой надежностью, долговечностью и широким диапазоном сферы применения.

Подробную информацию про тепловое реле для защиты однофазного двигателя и трехфазного двигателя, о его цене и сроке поставки можно получить в разделе тепловые реле нашего каталога

Рекомендации по выбору контактора (магнитного пускателя), реле тепловой перегрузки (теплового реле).

16.05.2022



Рекомендации по выбору контактора и теплового реле.

Содержание:

  1. Категории применения контакторов.
  2. Номинальные параметры электродвигателей.  
  3. Коммутационная износостойкость (электрический и механический ресурс) контакторов.
  4. Подбор реле тепловой перегрузки для защиты электрических двигателей.
  5. Выбор контакторов по напряжению, вспомогательным контактам, климатическому исполнению.


Рис. 1

 Правильный и рациональный выбор аппаратов управления (контакторов), аппаратов защиты (реле тепловой перегрузки) является основополагающим при разработке электрических схем при их разнообразии как по мощности, так и по степени ответственности, надежности, экономичности. Данный факт вынуждает иметь дело с таким же (или большим) разнообразием исполнительных элементов (рис.1), правильный выбор которых во многом определяет технико-экономические показатели объекта управления в целом. Среди основных показателей, характеризующих качество исполнительных элементов, можно выделить: надежность, экономичность, достаточный срок службы, малые массу и габаритные размеры, небольшие эксплуатационные затраты, низкую стоимость, высокую технологичность, иногда низкий шум при работе и т.

д.

   1.Категории применения контакторов.

 Для правильного подбора контактора очень важно определить его категорию применения согласно Приложения 1. Самой распространенной у контакторов является категория AC-3, применяемая для асинхронных двигателей с короткозамкнутыми роторами: пуск; отключение; отключение во время разгона. Приоритет категории AC-3 связан с тем, что более 80% всех контакторов применяются для дистанционного управления электрическими двигателями, а точнее асинхронными двигателями с коротко замкнутыми роторами благодаря своей простоте, низкой стоимости и высокой надёжности, т.к. это самый распространённый тип двигателей (90% от общего числа выпускаемых в мире). Именно на данный факт ориентируются все производители контакторов, указывая номинальный ток по АС-3 в своих наименованиях после названия серии.

 Также производители контакторов дополнительно указывают номинальный ток Ie по АС-1 для неиндуктивных или незначительно индуктивных нагрузок, что важно для коммутации печей сопротивления, организации АВР на контакторах и дистанционного отключения общей нагрузки (рис.

2).


Рис. 2

 Обязательно нужно принимать во внимание условия эксплуатации: нормальные или особые, согласно Приложения 1. Под особые условия попадают электродвигатели для прессов, дробилок, насосов, некоторых вентиляторов и прочего оборудования запуск которых осуществляется под большой дополнительной механической нагрузкой на приводе. К примеру прямой пуск в течении 5 секунд по категории AC-3 для нормальных условий эксплуатаций 6xIe и уже 8xIe для особых условий. Данный факт необходимо учитывать в подборе контактора с запасом по номинальному току в 1,25xIe по АС-3, т. к. электрический ресурс производители указывают для нормальных условий эксплуатации.

 К особым условиям нужно отнести эксплуатацию с частой коммутацией контактора (выше установленной производителем нормы), данный случай рассмотрен в пункте 3. 

   2. Номинальные параметры электродвигателей.

 В Приложении 2 приведены справочные данные номинальных параметров электрических двигателей для прямого пуска и пуска звезда-треугольник. С помощью данного приложения можно также подобрать номинал предохранителя на вводе для защиты от токов короткого замыкания.

 Для двигателей специального исполнения необходимо руководствоваться технической документацией, приложенной к ним, а также биркой на их корпусе. 

   3. Коммутационная износостойкость (электрический и механический ресурс) контакторов.

 Коммутационная износостойкость контакторов – это один из самых важных параметров и определяется таким числом включений и отключений цепи с током и без тока, после которого требуется замена силовых контактов или контактора целиком. Механический ресурс обычно с большим запасом по отношению к электрическому и у большинства производителей составляет не менее 5 млн циклов для серии CNN от Rade Koncar.

Электрический ресурс полностью зависит от мощности потребителя и выбрав контактор номиналом выше данный параметр можно повысить. Как видно на (рис. 3) выбрав контактор CNN 12 для электрического двигателя Pn= 3,5kW повысит электрический ресурс контактора чуть более 2 млн циклов (для нормальных условий эксплуатации).


Рис. 3

 Основные факторы снижающими коммутационный ресурс контактора:

  • неправильный выбор контактора по номинальному току с учетом категории потребителя и условий эксплуатации;
  • эксплуатация при температурах вне разрешенного рабочего диапазона, указанного в технических данных производителя;
  • коммутация электродвигателя в «грязных сетях» при выборе контактора без учета фактического (рабочего) номинального тока электродвигателя;
  • эксплуатация с частотой коммутации в единицу времени вне разрешенного количества, указанного в технических данных производителя. На рис.4 пример выбора номинального тока контактора в зависимости от числа операций в час на примере серии DILM от Eaton;
  • подключение и эксплуатация с проводниками меньшего сечением, чем указано в технической документации на контактор, что приводит к дополнительному нагреву силовых контактов и как следствие снижению электрического ресурса.


Рис.4

   

   4. Подбор реле тепловой перегрузки для защиты электрических двигателей.


Рис. 5

 Методика выбора реле тепловой защиты (защиты двигателя от перегрузки) заключается в том, что реле не должно ложно срабатывать при пуске, но надежно отрабатывать при повышении номинального тока двигателя. Основная причина перегрузки и роста тока выше номинального — увеличение момента на валу машины, износ подшипников, работа на пониженном напряжении.


В соответствии с МЭК 60947-4-1 существуют 4 класса срабатывания теплового реле: 10А, 10, 20 и 30. Чаще всего применяются классы 10 и 10 А. Классы 20 и 30 предназначены для тяжелых и очень тяжелых условий пуска двигателей (особые условия эксплуатации). На (рис. 6 и рис. 7) графически и в виде таблицы показано время срабатывания теплового реле в зависимости от кратности номинального тока. 


                                                               Рис. 6                                                                                               Рис. 7

 Фактически тепловое реле защищает не только двигатель от перегрузки, а также еще и контактор. При выборе контактора по номинальному току для его эксплуатации в рамках ожидаемого срока службы необходимо учитывать возможную перегрузку как минимум 20% (по мнению автора статьи).

 Пример на базе Rade Koncar: Для электрического двигателя с прямым пуском 4kW(400VAC) или 8,5A по АС-3 при нормальных условиях эксплуатации и относительно «чистых» сетей выбираем контактор СNN 12 и тепловым реле с регулировкой TM 40-10A c диапазоном регулировки It=7. 2_10A. Номинал предохранителя на вводе — 20A.

   5. Выбор контакторов по напряжению, вспомогательным контактам, климатическому исполнению.

 Не считая версий с универсальными катушками, большинство контакторов изготавливаются на одно индивидуальное напряжение катушки (точнее диапазон) при котором магнитная система устройства работает стабильно. Напряжение катушки указывается в наименовании контактора и также нанесено на его корпусе.

 Вспомогательные контакты двух типов – нормально разомкнутые (NO) и нормально замкнутые (NC) могут быть встроенные либо в виде отдельного аксессуара к контактору. Их количество и тип определяются их функциональной задачей (коммутации цепей управления, блокировки, питания сигнальных ламп, катушек реле и других вспомогательных аппаратов) и отображаются на электрической схеме.

 Для выбора контактора по климатическому исполнению достаточно понимать, что контактор, установленный в шкафу, корпусе, щите и пр. будут соответствовать степени защиты места установки. У многих производителей доступны аксессуары в виде корпусов для наружного монтажа контакторов IP54/65 c возможность установки тепловых реле, также есть варианты корпусов с кнопками пуск-стоп для организации пусковой сборки (рис. 8).


Рис. 8

 P.S.:

  1. Выражение «чем больше, тем лучше» всегда работает для подбора контактора.
  2. Правильно подобранное реле тепловой перегрузки защитит не только электродвигатель, но и контактор.
  3. Контактор и магнитный пускатель — «одного поля ягоды».
  4. Контакторы с напряжением катушки 380/400VAC представлены в широком ассортименте для всех популярных номиналов 9_100A по АС-3 серии CNN от Rade Koncar.

Приложение 1


Приложение 2


  Задать вопросы автору статьи:

 telushkin@overdrive. by.


 Уточнить цены, наличие, получить квалифицированную консультацию можно по телефонам ☎️ +375 17 247-19-99+375 44 567-19-99+375 29 787-19-99 либо у своего менеджера.


Что такое тепловое реле перегрузки? – Schneider Electric

Тепловые реле перегрузки предназначены для обеспечения электромеханической защиты двигателей от перегрузки из-за чрезмерного потребления входных токов из главной цепи. Эти электронные компоненты могут обеспечить надежную защиту от необратимых электрических повреждений во время электрических аномалий, таких как обрыв фазы и перенапряжение.

Как работает тепловое реле перегрузки?

Тепловые реле перегрузки позволяют безвредным временным перегрузкам проходить через цепь без нарушения электрической цепи и отключают обрыв цепи только при обнаружении любого протекания тока неестественно высокого уровня, таким образом защищая подключенный двигатель от любого электрического повреждения.

Тепловое реле перегрузки оснащено электрическими контактами, которые чувствительны к теплу и могут замыкать или размыкать цепь в зависимости от температуры на катушке реле. В случае, если двигатель потребляет ток при опасно высоком напряжении, электрическая катушка реле нагревается, отключая электрические контакты и прерывая поток электричества по цепи. Эти электрические контакты могут управляться вручную или автоматически для возобновления электрического потока после того, как катушка реле достаточно остынет.

Автоматический сброс по сравнению с ручным сбросом на тепловых реле перегрузки

Тепловые реле перегрузки, которые производятся для коммерческого использования, в основном доступны с двумя типами сброса — автоматическим и ручным. В зависимости от типа управления вы можете различать их следующим образом:

Тепловое реле перегрузки с ручным сбросом

Тепловое реле перегрузки с ручным сбросом требует физического вмешательства пользователя и перезапуска двигателя после срабатывания реле из-за перегрева . Пользователь должен физически присутствовать, чтобы управлять кнопкой пуска или внешним переключателем, который подает питание на катушку контактора для запуска двигателя.

Тем не менее, тепловые реле перегрузки могут быть перезапущены только после того, как они достаточно остынут. Пользователь должен иметь возможность вручную следить за охлаждением реле, а также учитывать внешние факторы, такие как солнечный свет, температура окружающей среды и поток воздуха, прежде чем двигатель можно будет перезапустить.

Тепловое реле с автоматическим сбросом

В отличие от тепловых реле с ручным сбросом, автоматические реле с функцией автоматического сброса оснащены биметаллической пластиной, которая может определить, достаточно ли охладилось реле, прежде чем оно вернется в исходное состояние. состояние, прежде чем установить контакт, чтобы возобновить работу реле и автоматически перезапустить двигатель.

Тепловое реле перегрузки с автоматическим сбросом не требует ручного вмешательства. Однако, несмотря на его очевидное преимущество, тепловые реле перегрузки с автоматическим сбросом часто могут быть непредсказуемыми, поскольку скорость охлаждения перегрузки не всегда постоянна, и это может привести к резкому перезапуску двигателя без какого-либо предупреждения.

Преимущества и недостатки тепловых реле перегрузки

Существует несколько преимуществ и недостатков, связанных с использованием тепловых реле перегрузки для электрической защиты, и некоторые из них следующие:

Преимущества тепловых реле перегрузки

— Реле тепловой защиты основаны на простом, но эффективном принципе работы, который обеспечивает большую точность и поддержку подключенных двигателей.

— Тепловые реле перегрузки в основном используются для предотвращения перегрева электродвигателей с течением времени. Эти реле удобно использовать в 1- и 3-фазных электродвигателях.

— Некоторые модели тепловых реле перегрузки предназначены для обеспечения защиты от внутренних потерь фазы.

— Тепловые реле перегрузки известны своей простотой установки. Большинство моделей тепловых реле перегрузки можно монтировать непосредственно на контакторы или удобно монтировать на панель управления с помощью переходников на рейку.

— Некоторые модели тепловых реле перегрузки оснащены внутренними кнопками выбора класса срабатывания.

— Модели тепловых реле перегрузки оснащены функциями автоматического и ручного сброса для упрощения операций.

 – у них есть внутренняя тестовая кнопка для устранения неполадок.

— Тепловые реле перегрузки активны в широком и регулируемом диапазоне тока.

— Эти модели реле имеют механизм без отключения для оптимальной работы.

— Имеют функции температурной компенсации для точной работы.

— Тепловые реле перегрузки — это экономичные устройства, которые можно легко использовать где угодно.

Недостатки тепловых реле перегрузки

— Хотя тепловые реле перегрузки обеспечивают электрическую защиту, они не имеют защиты от короткого замыкания.

— Тепловые реле перегрузки не предназначены для прямого отключения. Вместо этого их необходимо использовать с другими коммутационными и электрическими защитными устройствами для отключения цепи под напряжением.

— Большинство устройств защиты от тепловой перегрузки работают медленно.

— Устройства защиты от тепловой перегрузки оптимально работают в цепях с низким сопротивлением. Они не всегда работают так же хорошо при использовании в тяжелых схемах.

— За исключением самых сложных моделей, тепловые реле перегрузки редко способны выдерживать вибрации и удары электрическим током.

— Поскольку тепловые реле перегрузки не имеют высокой частоты переключения, им часто требуется время для охлаждения после того, как они перегрелись и сработали.

Тепловые реле перегрузки из интернет-магазина Schneider Electric

Если вы хотите обеспечить дома или на рабочем месте наилучшую электрическую защиту от колебаний напряжения, перегрузок и электрических аномалий, вам подойдет интернет-магазин Schneider Electric.

В интернет-магазине Schneider Electric вы можете просмотреть широкий ассортимент электротехнической продукции и компонентов и купить электрозащитное устройство самого высокого качества, не выходя из дома, причем по удивительно выгодным ценам!

Тепловое реле перегрузки: автоматический и ручной сброс

Опубликовано автором springercontrols

Тепловое реле защиты от перегрузки, иногда называемое тепловым реле защиты от перегрузки, является неотъемлемой частью пускателя электродвигателя. Контактор действует как переключатель и передает мощность на двигатель. Перегрузка предназначена для предотвращения повреждения двигателя, если двигатель начинает потреблять слишком большой ток, то есть больше, чем номинальная сила тока при полной нагрузке двигателя при данном напряжении.

Чтобы узнать больше, вы можете прочитать наши предыдущие записи в блоге о пускателях двигателей:

  • Магнитные пускатели двигателей: основы
  • Выбор пускателя двигателя IEC

После того, как тепловая перегрузка нагреется и разомкнет контакт, чтобы остановить двигатель, в конечном итоге вы захотите перезапустить двигатель. Тепловая перегрузка может быть перезапущена двумя способами, и это вопрос, который мы часто получаем от наших клиентов, и, похоже, существует некоторая путаница в отношении того, как решить. На фото ниже вы можете увидеть синюю ручку, которая обведена кружком:

Эта ручка управляет сбросом перегрузки. Он имеет две настройки: АВТОМАТИЧЕСКИЙ и РУЧНОЙ. Перегрузка на фото в настоящее время установлена ​​на РУЧНУЮ.

Ручной сброс

РУЧНОЙ сброс означает, что после срабатывания защиты от перегрузки потребуется внешнее вмешательство для перезапуска двигателя. Это может быть человек-оператор, нажимающий кнопку пуска, или внешний переключатель, подающий питание на катушку контактора. Важно отметить, что двигатель перезапустится только после того, как реле перегрузки достаточно остынет, чтобы восстановить контакт внутри реле перегрузки. Сколько времени потребуется для охлаждения перегрузки, зависит от многих факторов. Температура окружающей среды, воздушный поток, солнечный свет — все это может повлиять на скорость охлаждения перегрузки.

Автосброс

АВТОМАТИЧЕСКИЙ сброс означает, что как только биметаллическая пластина внутри реле перегрузки остынет и снова установит контакт, двигатель автоматически перезапустится. Для перезапуска двигателя не требуется никакого внешнего вмешательства. Поскольку скорость охлаждения при перегрузке является переменной и ее трудно предсказать, это означает, что двигатель может перезапуститься и перезапустится в любое время без предупреждения.

Автоматический сброс по сравнению с ручным сбросом на тепловых реле перегрузки

С точки зрения безопасности легко понять, насколько опасен АВТОМАТИЧЕСКИЙ сброс, и его следует использовать только в определенных ситуациях. Обычно АВТОМАТИЧЕСКИЙ сброс используется только в тех случаях, когда двигатель удален и не контролируется человеком на регулярной основе. Прежде чем использовать АВТОМАТИЧЕСКИЙ сброс, вы должны рассмотреть возможные последствия и опасности перезапуска двигателя в неизвестное время. Если есть вероятность возникновения опасных условий из-за случайного запуска двигателя, то АВТОМАТИЧЕСКИЙ сброс не следует использовать. Удаленно расположенный скважинный насос может быть ситуацией, когда используется АВТОМАТИЧЕСКИЙ сброс. В этом случае может иметь смысл иметь какой-то сигнал о срабатывании реле перегрузки, чтобы можно было исследовать источник проблемы, вызвавшей перегрев двигателя, однако АВТОМАТИЧЕСКИЙ сброс позволит двигателю работать в течение определенного периода времени, пока он снова перегревается. В сценарии со скважинным насосом это позволит прокачать некоторое количество воды перед повторным перегревом, и цикл перегрев>охлаждение>АВТОМАТИЧЕСКИЙ сброс>перезапуск двигателя продолжится. Предположительно, пользователь воды мог выяснить, почему поток воды уменьшился, и устранить проблему, вызывающую перегрев двигателя.

В большинстве других сценариев предпочтительным является РУЧНОЙ сброс, который позволяет человеку исследовать проблему, вызвавшую остановку двигателя, и обеспечить безопасный перезапуск двигателя. Именно по этой причине более 95% пускателей двигателей, с которыми мы имеем дело, используют РУЧНОЙ сброс.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *