Зависимость плотности электролита от температуры таблица: нормальные значения, правила измерения и доливки

Содержание

3.30. Обслуживание аккумуляторной батареи

3.30. Обслуживание аккумуляторной батареи

ОБЩИЕ СВЕДЕНИЯ

Вам потребуются
  • термометр
  • ареометр
  • стеклянная трубка
  • резиновая груша
  • зарядно-пусковое устройство

Периодичность

Через каждые 15 000 км пробега проверяйте уровень и плотность электролита.

Регулярно очищайте аккумуляторную батарею от пыли и грязи. Если на корпусе появились трещины или вспучивание верхней крышки, замените аккумуляторную батарею.

Электролит должен быть прозрачным. Бурый оттенок свидетельствует об осыпании активной массы пластин — надо менять батарею.


Предупреждения

При эксплуатации уровень электролита постепенно снижается из-за испарения воды, входящей в его состав. Для восстановления уровня доливайте в батарею только дистиллированную воду.

При проверке плотности будьте осторожны: в состав электролита входит серная кислота! Капли электролита, попавшие на детали автомобиля или на открытые участки тела, немедленно промойте большим количеством воды.

Во время зарядки аккумуляторной батареи не курите и не пользуйтесь открытым огнем.

Перед зарядкой снимите аккумуляторную батарею с автомобиля, иначе «закипевший» электролит может выплеснуться на кузов и детали автомобиля.


Таблица 1. Корректировка плотности электролита в зависимости
от температуры

Температура электролита, &degС

Поправка, г/см3

От -40 до -26

-0,04

От -25 до -11

-0,03

От -10 до +4

-0,02

От +5 до +19

-0,01

От +20 до +30

-0,00

От +31 до +45

+0,01

Таблица 2. Плотность электролита при 25 &degС, г/см3

Климатический район (средне месячная температура воздуха в январе, &degС)

Время года

Полностью заряженная батарея

Батарея заряжена

на 25%

на 50%

Очень холодный

(от -50 до -30 &degС)

Зима
Лето

1,30
1,28

1,26
1,24

1,22
1,20

Холодный
(от -30 до -15 &degС)

Круглый год

1,28

1,24

1,20

Умеренный
(от -15 до -8 &degС)

Круглый год

1,28

1,24

1,20

Теплый влажный
(от 0 до +4 &degС)

Круглый год

1,23

1,19

1,15

Жаркий сухой
(от -15 до +4 &degС)

Круглый год

1,23

1,19

1,15

Таблица 3. Примерные нормы корректировки плотности электролита

Требуемая плотность электролита в аккумуляторе, г/см3

1,24

1,26

1,28

1,30

Реальная плотность электролита, г/см

3

Объем удаляемого из аккумулятора электролита, см3

1,15

254

290

342

396

1,16

220

275

330

385

1,17

201

259

316

374

1,18

181

241

301

362

1,19

158

222

285

348

1,20

133

200

266

333

1,21

105

176

246

316

1,22

74

149

223

242

1,23

40

119

198

277

1,24

0

84

169

253

1,25

24

45

136

226

1,26

47

0

97

194

1,27

68

23

53

158

1,28

87

44

0

115

1,29

105

63

21

63

1,30

112

82

41

0

1,31

138

90

59

20


  После удаления электролита необходимо долить такое же количество электролита плотностью 1,40 г/см3.
  После удаления электролита необходимо долить такое же количество дистиллированной воды.

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Если у батареи полупрозрачный корпус, уровень электролита определяют визуально: он должен находиться между метками «MIN» и «MAX» на боковой поверхности батареи. 2. Если у батареи корпус непрозрачный, отверните шесть пробок на крышке. 3. Проверьте уровень электролита в первой банке аккумуляторной батареи, вставив стеклянную трубку (она продается в комплекте с ареометром) в отверстие до упора в предохранительную сетку и зажав трубку пальцем…

4. …выньте трубку. Уровень электролита должен составлять 10-15 мм.

5. Вставьте трубку в отверстие и слейте электролит. Таким же образом проверьте уровень в остальных банках аккумуляторной батареи. Если в какой-либо из банок уровень меньше, долейте в них дистиллированную воду до рекомендуемого уровня (отметка «MIN» или 10-15 мм по уровню в трубке).

6. После заливки измерять плотность электролита можно только через два часа: вода должна перемешаться с электролитом. Для проверки плотности вставьте ареометр в отверстие до упора в предохранительную сетку и засосите электролит с помощью груши, чтобы поплавок ареометра всплыл.

7. Деление на поплавке, находящееся на уровне электролита, показывает его плотность, которая должна составлять 1,28 г/см3 для умеренного климата (при температуре электролита 25&degС). Плотность зависит от температуры электролита, поэтому вносите в результат измерений поправку (см. табл. 1). По этому показателю можно судить о степени разряда батареи (см. табл. 3). Если плотность ниже указанной или отличается в банках более чем на 0,02 г/см3, надо подзарядить аккумулятор.

8. Слейте электролит из ареометра в банку аккумуляторной батареи.

9. Для зарядки аккумуляторной батареи пользуйтесь зарядным или зарядно-пусковым устройством в соответствии с инструкцией.

12. Во время зарядки регулярно проверяйте температуру и плотность электролита. Если температура электролита превысит 40&degС, уменьшите зарядный ток наполовину либо прервите зарядку и дайте электролиту остыть до 27&degС.
10. Выверните все пробки банок и подсоедините провода зарядного устройства к клеммам батареи, соблюдая полярность, затем включите зарядное устройство. 11. Установите зарядный ток, равный 0,1 емкости батареи (для батареи емкостью 5 А-ч — 5,5 А; для батареи емкостью 65 А-ч — 6,5 А и т.д.). Во время зарядки периодически корректируйте величину зарядного тока.
13. Если в течение двух часов плотность не меняется и началось бурное «кипение» электролита, значит батарея полностью заряжена. Сначала выключите зарядное устройство, затем отсоедините провода от клемм батареи.  
14. Замерьте плотность электролита во всех банках. Если она больше нормы, отсосите резиновой грушей часть электролита из банки и долейте такой же объем дистиллированной воды. Если плотность электролита меньше нормы, откачайте ареометром часть электролита и долейте столько же электролита плотностью 1,40 г/см3 (см. табл. 3). После этого вновь подключите зарядное устройство и заряжайте батарею в течение 30 мин. Снова измерьте плотность электролита и при необходимости доведите ее до нормы, как указано выше.

АКБ. Правила зимнего хранения и эксплуатации

08.08.2016

Зимой некоторые автомобили эксплуатируются нечасто. Нужно ли перед долгой стоянкой скидывать клеммы и отключать массу? И каковы правила хранения АКБ зимой, если машина совсем не используется?

Снимать клеммы и отключать массу необходимо. На это есть свои причины. Прежде всего, в любом случае существует утечка в виде работы бортовых систем, например часов, питание идет и на бортовой компьютер. Все это постепенно опустошает вашу аккумуляторную батарею. Стандартная утечка бортовой цепи автомобиля, допустимая заводом-изготовителем по нормам, составляет 30 миллиампер (0,03 А). На первый взгляд, кажется, что это совсем немного. Но это только так кажется. Попробуйте пересчитать, за какое время такая утечка опустошит ваш аккумулятор. Возьмем, к примеру, стандартную батарею емкостью 55 А/ч. Это означает, что 55 ампер он, выдаст за час. Или 5,5 ампер за 10 часов. Половину ампера он отдаст уже за сто часов. Следовательно, 50 миллиампер уйдут за тысячу часов. Тысячу часов делим на 24 часа, получается, что полностью батарея сядет за 41 день, это если АКБ была 100% заряжена, если нет то еще быстрее. Но эксплуатация при 100% разряде совершенно недопустимо. Если аккумулятор разрядится на 25 % — это уже плохо, а если сядет на 50% — он замерзнет уже при «-27» градусах по Цельсию. Так что за 20 дней при стандартной утечке ваш аккумулятор превратится в кусок льда при стоянке на улице зимой, а про пуск автомобиля мы тут вообще не говорим. Чтобы избежать такого развития событий, нужно просто снять клемму. Это самый простой способ предотвратить утечку энергии и разрядку батареи при длительном промежутке времени «не езды» на машине. Для современных машин это, конечно, не очень хорошо. Могут сброситься настройки бортового компьютера, заблокироваться аудиосистема, потеряться настройки электронного ключа. Но ведь такие машины и не рассчитаны на такую редкую эксплуатацию. Впрочем, и здесь есть выход — периодически подзаряжать аккумулятор или как компромисс хотя бы запускать иногда машину на короткий промежуток времени.

Как же правильно хранить АКБ, если машина зимой на приколе, обслуживать аккумулятор и эксплуатировать его.

1. Хранение аккумулятора

Залитые батареи рекомендуется хранить в сухом помещении с температурой не ниже −30? и не выше 0?. Батареи устанавливаются на хранение полностью заряженными. Допускается хранить батареи и при положительных температурах, однако темп саморазряда аккумуляторов при этом будет в несколько раз выше. Ежемесячно необходимо проверять плотность электролита или измерять напряжение на клеммах аккумулятора. Степень разряда аккумулятора можно проверить по таблице № 1. При снижении плотности электролита более чем на 0,03 г/см3, т.е. до уровня 1,24 г/см3 или напряжения ниже «12,45» Вольт батарею следует подзарядить.

Перед продолжительной стоянкой автомобиля необходимо отсоединить АКБ от бортовой сети, полностью ее зарядить и хранить в прохладном помещении. Моноблок во избежание саморазряда по поверхности должен быть чистым. Если батарея должна быть постоянно готова к установке на автомашину, то при снижении плотности до уровня 1,24 г/см3, батарею следует подзарядить. Если от батареи не требуется постоянной готовности, то рекомендуется ее подзаряжать при снижении плотности до уровня 1,22 г/см3.

Зимой следует иметь в виду, что электролит в сильно разряженных батареях может замерзнуть при наступлении морозов. Зависимость температуры замерзания электролита от его плотности приведена в таблице № 2.

Не допускайте снижения плотности до критической, иначе при замерзании электролита возможно необратимое повреждение моноблока и пластин аккумулятора.

Таблица № 1. Степень разряженности аккумулятора.

Напряжение на клеммах, (В) 12,6612,4512,2412,0611,80 и ниже
Плотность электролита, г/см3 1,271,231,201,171,12 и ниже
Степень заряда, % 1007550250
t замерзания электролита ? -64-42-27-15-10 до 0

Таблица № 2. Температура замерзания электролита в зависимости от его плотности.

Плотность Эл-та 1,01,051,101,151,201,251,271,301,35
t замерзания, ? 0 −3,.3 −7,7 −15 −27 −52 −64 −70 −49

2. Контроль состояния батареи

Рекомендуется один раз в месяц проверять уровень электролита и при необходимости доливать только дистиллированную воду до нормального уровня. Пластины, не покрытые электролитом, высыхают и осыпаются, что приводит к преждевременному выходу АКБ из строя.

Запрещается доливать электролит или кислоту в АКБ.
Это можно делать только в том случае, если точно известно, что понижение уровня электролита произошло за счет его выплескивания.

Не используйте воду сомнительного происхождения.
Контролируйте степень заряженности аккумулятора по плотности электролита или по напряжению на клеммах ненагруженной батареи. Степень разряда батареи можно определить из Таблицы № 1, или посчитать по формуле:

Uнрц = 6*(0,84+Р), где
Uнрц (НРЦ) — напряжение разомкнутой цепи;
Р — Плотность электролита.

Следовательно, плотность можно посчитать соответственно по формуле: Р = Uнрц/ 6 — 0,84

100% заряженная батарея, т.е. с плотностью электролита 1,27 г/см3 будет иметь:
НРЦ = 6*(0,84+1,27) = 12,66 Вольта;
Р = 12,66 / 6 — 0,84 = 1,27 г/см3

Зная напряжение на клеммах аккумулятора, можно всегда посчитать плотность электролита в нем.

Категорически запрещается эксплуатировать батареи с уровнем заряда ниже 75% зимой и 50% летом.
Хранение и эксплуатация АКБ в разряженном состоянии приводит к необратимым процессам, при которых восстановление АКБ не возможно.

Низкая плотность электролита в АКБ говорит о её разряженности и для повышения плотности электролита необходимо заряжать АКБ, а не повышать её доливкой кислоты или электролита.
Просто долив кислоты или электролита, приведёт к изменению кислотного баланса и как следствие после полного заряда к превышению допустимого уровня плотности электролита. Превышение плотности электролита выше допустимой нормы приводит к разрушению пластин внутри АКБ.

3. Заряд аккумулятора

Заряд АКБ производится током равным 10% от её ёмкости (например при ёмкости 55 А/Ч ток зарядки не должен превышать 5,5 А). Нарушение данного требования приводит к разрушению пластин из-за перегрузок.

Старайтесь заряжать батарею малыми токами, при этом увеличивается степень и глубина заряда.

Окончанием процесса заряда аккумуляторов следует считать:

  1. равномерное кипение электролита во всех банках;
  2. равномерный нагрев корпуса батареи;
  3. напряжение на клеммах аккумулятора достигло значения 16,4 вольта;
  4. плотность электролита прекратила подниматься в батарее (если плотность растет, то это означает, что не все элементы еще прореагировали и батарея заряжается).

4. Контроль электрооборудования автомобиля

Необходимо качественно и регулярно проверять и обслуживать электрооборудование автомобиля. Отклонение параметров электрооборудования (генератора, стартера, различных реле) от установленных величин приводит к снижению надежности и к сокращению срока службы АКБ.

Нормы на параметры электрооборудования:

Пределы рабочего напряжения бортовой сети автомобиля не должны выходить за пределы 13,8-14,5 V, при различных режимах работы автомобиля.

Отклонение величины зарядного напряжения за пределы нормы на 0,3 — 0,5 V приводит к сокращению срока службы батареи в несколько раз.

Токи утечки не должны превышать 30 мА/ч (0,03 Ампера). Повышенный ток утечки уменьшает срок службы АКБ ввиду ускоренности циклов заряда-разряда батареи, и увеличивает вероятность глубокого разряда батареи.

Повышенное напряжение генератора приводит к осыпанию активной намазки пластин в батареях, что приводит к уменьшению емкости батареи и способствует замыканию пластин за счет осыпавшейся активной массы с положительных пластин.

Эксплуатация разряженной батареи приводит к осыпанию активной массы с отрицательных пластин. Признаком осыпания пластин является потемнение цвета электролита во всех банках (коричневый цвет — осыпание положительных пластин, серый цвет — осыпание отрицательных пластин).

Так же пониженное напряжение генератора (особенно зимой) не позволяет зарядить полноценно батарею, и происходит ее эксплуатация в полуразряженном состоянии. Это может привести к необратимой сульфатации пластин, что чревато уменьшением, как емкости батареи, так и величины стартового тока аккумулятора.

У недозаряженного аккумулятора плотность электролита понижена, что может привести к его замерзанию при сильных морозах и стоянке машины на улице (смотри таблицу № 2).

5. Эксплуатация аккумулятора

Пуск стартера производите короткими включениями, но не более чем на 10 сек. Перерыв между включениями летом не менее 15 сек., зимой не менее 1 мин. Избегайте включать стартер более 3-х раз подряд. Езда при помощи стартера не допускается.

Категорически запрещается «прикуривать» аккумулятор от нестандартных пускозарядных устройств во избежание взрыва моноблока, деформации пластин и внутренних тоководов, что приводит к осыпанию активной массы пластин и разрыву межэлектродных соединений.

При низких температурах происходит замедление всех химических процессов внутри АКБ, батарея переходит в «спящий режим» (электрические параметры АКБ при t ниже «-30» градусов по Цельсию понижаются в 2 раза.) Поэтому перед пуском двигателя на некоторое время необходимо включить электрические потребители (фары, габариты) для возобновления электрохимических процессов и только после этого делать попытки старта.

Для уменьшения рисков плохих пусков при эксплуатации автомобиля в зимнее время рекомендуется подбирать АКБ по ёмкости и стартовым характеристикам в соответствии с конкретной климатической зоной.

Обслуживание аккумулятора автомобиля | Плотность электролита в аккумуляторе

Аккумулятор – это накопитель электрической энергии. В автомобиле его основной задачей является запуск двигателя, именно в момент запуска батарея теряет значительную часть своего запаса энергии. Поэтому если вдруг ваше авто не заводится в течение 5 секунд от начала, то следует выключить зажигание, подождать минуту и повторить попытку снова. Если после трех таких неудачных подходов машина не завелась, то не следует больше мучать стартер и батарею, а нужно искать неисправность. Если будете продолжать попытки и далее, то очень скоро ваша аккумуляторная батарея (АКБ) перестанет выдавать достаточно тока для вращения двигателя и ее придется заряжать от зарядного устройства.

Только что мы привели пример, как не стоит часто делать для того чтобы продлить срок службы АКБ. Еще одной из функций аккумулятора в автомобиле является подпитка энергией потребителей тока в то время, когда машина не заведена или же когда в аварийном случае нужно добраться до места ремонта по причине неисправности генератора автомобиля.

Следует упомянуть еще и о таком моменте — на машинах, оснащенных инжекторными двигателями, АКБ выполняет роль стабилизатора напряжения, которое поступает в сеть от генератора. Поэтому не рекомендуется отключать батарею при работающем двигателе, дабы избежать проблем с контроллером.

Все вышеперечисленные нюансы говорят о том, что к состоянию АКБ нужно относиться наиболее пристально.

Автомобильные аккумуляторы бывают нескольких видов, рассмотрим основные 4 из них.

  1. Обслуживаемые – такие батареи встречаются очень редко, производство их не очень велико. Обращаем внимание, что это не те обслуживаемые аккумуляторы, которые мы привыкли видеть. Данный вид батарей имеет существенное количество недостатков, у них слишком высокая цена, корпус таких АКБ выполнен из эбонита и поэтому довольно хрупкий, банки с пластинами сверху заливаются специальной мастикой, которая со временем теряет свои изоляционные свойства, что приводит к ускорению процессов разряда батареи. Так же в них нужно доливать воду примерно через каждые 6 тыс. км. Из положительных качеств является лишь то, что имеется возможность замены блоков пластин, которые опять же нужно где-то приобрести.
  2. Малообслуживаемые – это как раз тот вид батарей, которые мы все и называем обслуживаемыми. Распространены они повсеместно, стоимость их так же варьируется от довольно дешевых до дорогих. Доливать воду в них рекомендуется через 25 тыс. км., если в том есть необходимость.
  3. Гибридные АКБ – имеют все свойства малообслуживаемых, только с улучшенными характеристиками. Решетки плюсовых и минусовых электродов таких батарей выполняются из разных сплавов для достижения высоких пусковых токов. Гибридные аккумуляторы стоят довольно дорого и их достаточно трудно найти.
  4. Необслуживаемые АКБ – сделаны по специальной технологии, благодаря которой расход воды в них снижен практически до нуля. Они не имеют пробок, не требуют никакого обслуживания. С такими аккумуляторами нужно постоянно следить за исправностью электросети автомобиля, за натяжением ремня генератора и ни в коем случае не давать закипеть АКБ от высокого напряжения на клеммах, если вдруг оно появится по причине выхода из строя генератора. Стоимость их сравнима с ценами на хорошие малообслуживаемые батареи.

Обслуживание аккумулятора автомобиля заключается в проверке величины напряжения на клеммах, уровня электролита во всех банках, его плотности и уходе за состоянием корпуса батареи и контактов.

Измерение уровня электролита в АКБ

Следует помнить, что летом в очень жаркую погоду процесс испарения воды усиливается в разы и необходимо проверять уровень электролита в аккумуляторе хотя бы раз в месяц. Если корпус батареи немного прозрачный, то приглядевшись сбоку можно определить уровень жидкости в нем для каждой из банок. Многие АКБ оснащены метками min и max, по которым и судят, следует ли добавлять дистиллированную воду. Если так оказалось, что визуально проверить уровень электр-та нельзя, то нужно будет отвернуть поочередно каждую из пробок и проверить количество жидкости, например тонкой стеклянной трубкой (длиной около 10 см) или на глаз, кто уже более опытен. Трубкой это делается так: аккуратно опускаем ее в заливное отверстие, где мы выкрутили пробку, пока она не упрется в верхнюю сетку блока пластин, зажимаем пальцем верхнее отверстие трубки и вынимаем. Уровень электролита должен быть не менее 10-15 мм, если у вас он меньше, то смело можно добавлять дист. воду, которую лучше всего купить в автомагазине или в обычной аптеке.

Измерение плотности электролита ареометром

Многие современные аккумуляторы оснащены специальным цветным датчиком, по которому можно судить о степени заряженности АКБ. На корпусе батареи должна иметься расшифровка его показаний, чаще всего это выглядит так: зеленый — батарея заряжена, черный — требует подзарядки, белый — разряжена или пришла в негодность. Принцип работы такого поплавка как раз основан на измерении плотности электролита, но многие автолюбители жалуются, что иногда его показания ошибочны, так что верить ему или нет, каждый решает сам.

Рассмотрим ситуацию, когда нужно проверить плотность электролита ареометром. Что из себя представляет этот прибор описано здесь, а как им пользоваться на этой странице. Мы будем использовать автомобильный ареометр, который представляет собой стеклянную колбу с обычным ареометром внутри, на концах которой снизу длинный шланг, а сверху груша. Температура окружающего воздуха и электр-та должна быть от +20С до +30С. Приступим к замеру. Берем прибор, сдавливаем грушу для того чтобы выпустить воздух, опускаем нижним концом в электр-т как можно ниже. После чего медленно начинаем набирать жидкость, разжимая постепенно грушу пока ареометр внутри не всплывет на достаточный для измерения уровень (должен свободно плавать, не касаясь дна и стенок). Расположив прибор строго вертикально, смотрим на нижний мениск, это и будет являться показанием плотности электролита. Нажимаем на грушу, чтобы отправить жидкость обратно, откуда мы ее откачали. Проверяем таким же образом все банки и делаем выводы.

При работе с электр-м следует соблюдать установленные правила безопасности, при попадании на кожу он вызывает ожог. Электролит — это серная кислота, разбавленная водой.

Если аккумулятор ранее не закипал и из него по каким-либо причинам не вытекал электр-т, то до доведения плотности до нужного уровня достаточно добавлять лишь дистиллированную воду.

Плотность электролита в аккумуляторе

Величина эта зависит от того, где эксплуатируется батарея и какова температура окружающего ее воздуха. Ниже приведена таблица с некоторыми такими значениями.

Таблица1 — Зависимость плотности электролита от средней температуры в январе
Климатические зоны, где средняя месячная температура воздуха в январе в °С составляет:Значения плотности электролита в АКБ при 25 °С (г/см3)
заливаемого в АКБзаряженной АКБ
от -50 до -301,281,30
от -30 до -151,261,28
от -15 до -81,241,26
от -8 до +41,211,23

Ниже на рисунке в зеленой области представлены рекомендуемые значения плотности электролита в зависимости от температуры окружающего воздуха. Так же по нему можно сориентироваться какие температуры для вашей АКБ будут критичны, ведь если дать элек-ту замерзнуть, то это значительно сократит срок ее эксплуатации, если не убьет вовсе.

Зависимость плотности электролита от температуры окружающего воздуха

Напряжение заряженного аккумулятора

Так же необходимо знать, чему должно быть равно напряжение заряженного аккумулятора, ведь достаточные уровень и плотность электролита еще не говорят о степени зарядки АКБ. Чтобы измерить напряжение батареи, нужно воспользоваться вольтметром или мультиметром, при этом перед процедурой необходимо снять «минусовой» провод с клеммы.

Таблица2 — Напряжение на клеммах АКБ
Напряжение на выводах, ВУровень зарядки акк. %
12,6-12,9100
12,3-12,675
12,1-12,350
11,8-12,125
11,5-11,80

Если уровень напряжения говорит о том, что батарея недостаточно заряжена, следует это исправить, ознакомившись со статьей – «автомобильный аккумулятор зарядка»

Последним штрихом в обслуживании АКБ является проверка состояния крепления его к кузову автомобиля и проверка надежности контактов на клеммах батареи. Если контакты окислены следует снять с них провода и поочередно зачистить либо напильником, либо шкуркой, а затем смазать, например литолом или графитовой смазкой.

Касаться токопроводящим предметом сразу обеих клемм АКБ запрещено, это вызовет короткое замыкание и может привести к пожару или взрыву батареи.

Следует так же осмотреть отверстия в пробках корпуса АКБ на наличие загрязнений и при необходимости очистить их. Поверхность акк-ра всегда должна находиться в чистом и сухом состоянии, для этого можно использовать салфетку, смоченную в 10% растворе нашатырного спирта или обычной пищевой соды, при этом следите, чтобы влага не попала внутрь. Помните, своевременное обслуживание аккумулятора автомобиля поможет существенно увеличить срок его службы.

Плотность жидкости в зависимости от изменения давления и температуры

Плотность жидкости будет изменяться в зависимости от температуры и давления. Плотность воды в зависимости от температуры и давления указана ниже:


См. Также «Вода — плотность, удельный вес и коэффициент теплового расширения», онлайн-калькулятор, рисунки и таблицы, показывающие изменения в зависимости от температуры.

Плотность

Плотность жидкости может быть выражена как

ρ = м / В (1)

, где

ρ = плотность жидкости (кг / м 3 )

m = масса жидкости (кг)

V = объем жидкости (м 3 )

Плотность, обратная удельному объему:

v = 1 / ρ

= В / м (2)

, где

v = удельный объем (м 3 / кг)

Объем и изменение температуры

При повышении температуры — большая часть жидкостей расширяется:

dV = V 1 — V 0

= V 0 β dt

= V 0 β (t 1 — t 0 ) (3)

, где

dV = V 1 — V 0 = изменение объема — разница между конечным и начальным объемом (м 3 )

β = коэффициент объемного температурного расширения (m 3 / m 3 o C)

dt = t 1 — t 0 = изменение температуры — разница между конечной и начальной температурой ( o C)

( 3) можно изменить на

V 1 = V 0 (1 + β (t 1 — t 0 )) (3b)

Плотность и изменение температуры

Для (1) и (3b) конечная плотность после изменения температуры может быть выражена как

ρ 1 = m / ( В 0 (1 + β (t 900 62 1 — t 0 ))) (4)

где

ρ 1 = конечная плотность (кг / м 3 )

— или в сочетании с (2)

ρ 1 = ρ 0 / (1 + β (t 1 — t 0 )) (4b )

где

ρ 0 = начальная плотность (кг / м 3 )

Объемные температурные коэффициенты β

Примечание! — объемные температурные коэффициенты могут сильно изменяться в зависимости от температуры.

Плотность и изменение давления

Влияние давления на объем жидкости может быть выражено трехмерным законом Гука

E = — dp / (dV / V 0 )

= — (p 1 — p 0 ) / ((V 1 — V 0 ) / V 0 ) (5)

, где

E = модуль объемной упругости — эластичность жидкости (Н / м 2 )

Знак минус соответствует тому, что увеличение давления приводит к уменьшению объема.

С (5) — конечный объем после изменения давления может быть выражен как

V 1 = V 0 (1 — (p 1 — p 0 ) / E) (5b )

Объединение (5b) с (1) — конечная плотность может быть выражена как:

ρ 1 = m / ( V 0 (1 — (p ) 1 — p 0 ) / E)) (6)

— или в сочетании с (2) — конечная плотность может быть выражена как

ρ 1 = ρ 0 / (1 — (p 1 — p 0 ) / E) (6b)

Объемный модуль упругости жидкости некоторые распространенные жидкости — E 9 0240
  • вода: 2.15 10 9 (Н / м 2 )
  • этиловый спирт: 1,06 10 9 (Н / м 2 )
  • масло: 1,5 10 9 (Н / м 2 )

Примечание! Модуль объемной упругости жидкостей зависит от давления и температуры.

Модуль объемной упругости для воды — британские единицы

Модуль объемной упругости для воды — единицы СИ

Плотность жидкости, изменяющая температуру и давление

Плотность жидкости при изменении температуры и давления может быть выражена как сочетание (4b) и (6b) :

ρ 1 = ρ 1 (из ур.1) / (1 — (p 1 — p 0 ) / E)

= ρ 0 / (1 + β (t 1 — t 0 )) / (1 — (p 1 — p 0 ) / E) (7)

Пример — плотность воды при 100 бар и 20 o C

  • плотность воды 0 o C : 999,8 (кг / м 3 )
  • Коэффициент расширения воды при 10 o C : 0.000088 ( м 3 / м 3 o C) (среднее значение от 0 до 20 o C)
  • модуль объемной упругости воды: 2,15 10 9 (Н / м 2 )

Плотность воды можно рассчитать по формуле (3):

ρ 1 = (999,8 кг / м 3 ) / (1 + (0,000088 м 3 / м 3 o C) ((20 o C) — (0 o C) )) / (1 — ((100 10 5 Па) — (1 10 5 Па) ) / ( 2.15 10 9 Н / м 2 ) )

= 1002,7 (кг / м 3 )

Температурная зависимость удельного сопротивления — материалы исследования для IIT JEE

  • Полный курс физики — 11 класс
  • ПРЕДЛАГАЕМАЯ ЦЕНА: Rs.2 968

  • Просмотр подробностей

 


Удельное сопротивление

Удельное сопротивление известно как удельное электрическое сопротивление или объемное сопротивление.Его можно определить как внутреннее свойство данного материала, которое показывает, как он противостоит току. Его также можно определить как сопротивление проводника с единичной длиной и единичной площадью поперечного сечения. Таким образом, это не зависит от длины и площади поперечного сечения материала. Но сопротивление материала зависит от длины и площади поперечного сечения материала. Удельное сопротивление выражается как ρ = R A / L, где R — сопротивление в омах, A — площадь поперечного сечения в квадратных метрах, а L — длина в метрах.Единица измерения удельного сопротивления — омметр.


Температурная зависимость удельного сопротивления

Удельное сопротивление материалов зависит от температуры. ρ t = ρ 0 [1 + α (T — T 0 ) — это уравнение, которое показывает связь между температурой и удельным сопротивлением материала. В уравнении ρ 0 — удельное сопротивление при стандартной температуре, ρ t — удельное сопротивление при t 0 C, T 0 — эталонная температура, а α — температурный коэффициент удельного сопротивления.

Изменение удельного сопротивления проводников

Мы знаем, что ток — это движение свободных электронов от одного атома к другому при наличии разности потенциалов. В проводниках нет запрещенной зоны между зоной проводимости и валентной зоной. Во многих случаях обе полосы перекрывают друг друга. Валентные электроны слабо связаны с ядром в проводниках. Обычно металлы или проводники имеют низкую энергию ионизации и поэтому очень легко теряют электроны.При подаче электрического тока делокализованные электроны могут свободно перемещаться внутри структуры. Так бывает при нормальной температуре.

Когда температура увеличивается, колебания ионов металлов в решетке возрастают. Атомы начинают колебаться с большей амплитудой. Эти колебания, в свою очередь, вызывают частые столкновения между свободными электронами и другими электронами. Каждое столкновение истощает часть энергии свободных электронов и делает их неспособными двигаться.Таким образом, он ограничивает движение делокализованных электронов. Когда происходит столкновение, скорость дрейфа электронов уменьшается. Это означает, что удельное сопротивление металла увеличивается и, таким образом, ток в металле уменьшается. Увеличение удельного сопротивления означает, что проводимость материала снижается.

Для металлов или проводников считается, что они имеют положительный температурный коэффициент. Значение α положительное. Для большинства металлов удельное сопротивление линейно увеличивается с повышением температуры в диапазоне 500 К. Примеры для положительного температурного коэффициента включают серебро, медь, золото и т. Д.

Температурная зависимость удельного сопротивления металлов


Изменение удельного сопротивления в полупроводниках

Кремний — это полупроводник. В полупроводниках ширина запрещенной зоны между зоной проводимости и валентной зоной мала. При 0K валентная зона полностью заполнена, а зона проводимости может быть пустой. Но при приложении небольшого количества энергии электроны легко перемещаются в зону проводимости.Кремний — это пример полупроводника. В нормальных условиях кремний играет роль плохого проводника. Каждый атом кремния связан с 4 другими атомами кремния. Связи между этими атомами представляют собой ковалентные связи, в которых электроны находятся в фиксированных позитонах. Таким образом, при 0K электроны не перемещаются внутри структуры решетки.

При повышении температуры запрещенная зона между двумя зонами становится очень меньше, и электроны перемещаются из валентной зоны в зону проводимости.Таким образом, некоторые электроны из ковалентных связей между атомами Si могут свободно перемещаться внутри структуры. Это увеличивает проводимость материала. Увеличение проводимости означает уменьшение удельного сопротивления. Таким образом, когда температура в полупроводнике повышается, плотность носителей заряда также увеличивается, а удельное сопротивление уменьшается. О полупроводниках говорят, что они имеют отрицательный температурный коэффициент. Таким образом, значение температурного коэффициента удельного сопротивления α отрицательно.

Кривая нелинейная в широком диапазоне температур.

Температурная зависимость от удельного сопротивления для полупроводников


Изменение удельного сопротивления в изоляторах

В изоляторах большой запрещенный энергетический зазор между зоной проводимости и валентной зоной. Валентная зона полностью заполнена электронами. Запрещенная щель между двумя зонами будет больше 3 eV. Таким образом, для перехода валентного электрона в зону проводимости требуется большое количество энергии.Алмаз — это пример изолятора. Здесь все валентные электроны участвуют в образовании ковалентной связи, и проводимости не происходит. Электроны прочно связаны с ядром.

Когда температура повышается, атомы материала колеблются, и это заставляет валентные электроны, присутствующие в валентной зоне, переходить в зону проводимости. Это, в свою очередь, увеличивает проводимость материала. Когда проводимость материала увеличивается, это означает, что удельное сопротивление уменьшается, и поэтому ток увеличивается.Таким образом, некоторые изоляторы при комнатной температуре превращаются в проводники при высокой температуре. Для изоляторов они имеют отрицательный температурный коэффициент. Таким образом, значение температурного коэффициента удельного сопротивления α отрицательно.

Проводники и изоляторы

Сверхпроводники

Мы знаем, что когда электрический ток проходит по проводникам, некоторая энергия теряется в виде тепла. Количество потерь энергии зависит от сопротивления материала.В 1911 году некоторые ученые охладили образец ртути до 4,2 ° выше абсолютного нуля. Таким образом, сопротивление материала упало до нуля. Так был открыт первый сверхпроводник. Таким образом, ученые обнаружили, что в некоторых случаях некоторые материалы не проявляют никакого сопротивления. Материалы с нулевым сопротивлением называются сверхпроводниками. При нулевом сопротивлении материалы проводят ток без потери энергии. Когда температура таких материалов снижается, свободные электроны перестают сталкиваться с положительными ионами, и, таким образом, сопротивление оказывается нулевым.Температура, при которой сопротивление падает до нуля, называется критической температурой .

Когда сверхпроводник помещается в магнитное поле, магнитное поле изгибается вокруг материала, не позволяя магнитному полю проходить через них. Когда напряженность магнитного поля увеличивается, в определенный момент поле может проникать через сверхпроводник и, таким образом, его поведение нарушается.

Считайте, что через сверхпроводник проходит электрический ток.Предположим, что плотность тока увеличивается, при определенном значении плотности тока он теряет свою сверхпроводимость и, наконец, ведет себя как нормальный материал. Плотность тока, выше которой материал теряет сверхпроводимость, называется критической плотностью тока. Высокая температура, сильное магнитное поле и высокая плотность тока нарушают сверхпроводимость материала. Сейчас эти материалы используются в аппаратах МРТ.

Прочие материалы

Удельное сопротивление таких материалов, как нихром, манганин и константан, не сильно зависит от температуры и показывает очень низкую зависимость.Следовательно, эти материалы используются в проволочных стандартных резисторах, поскольку изменение значения сопротивления незначительно при изменении температуры.

Манганин Константан


Факторы, влияющие на удельное сопротивление

Мы знаем, что удельное сопротивление ρ = m / ne 2 ԏ, где e — заряд электрона, ԏ — среднее время между столкновениями или время релаксации электронов, а m — масса электрона, n — плотность заряда.Таким образом, это показывает, что сопротивление зависит от ряда факторов, таких как время релаксации между столкновениями и плотность заряда. Из приведенных выше сценариев ясно, что при повышении температуры средняя скорость электронов увеличивается, и, следовательно, происходит больше столкновений. Таким образом, время релаксации между каждым столкновением уменьшается.

В случае металлов плотность заряда в некоторой степени не зависит от температуры. Таким образом, это влияет на другие факторы, такие как ԏ, что означает, что при повышении температуры среднее время между столкновениями уменьшается, что приводит к увеличению удельного сопротивления.

Для полупроводников и изоляторов плотность заряда n увеличивается при повышении температуры. Это компенсирует уменьшение значения. Следовательно, удельное сопротивление уменьшается при понижении температуры.

Резюме

  • Удельное сопротивление — это сопротивление проводника, имеющего единицу длины и площади поперечного сечения. Единица измерения удельного сопротивления — омметр. Формула: ρ = RA / L, где R — сопротивление в омах, A — площадь поперечного сечения в квадратных метрах, а L — длина в метрах.

  • ρ t = ρ 0 [1 + α (T — T 0 ) — это уравнение, которое показывает связь между температурой и удельным сопротивлением материала. ρ 0 — удельное сопротивление при стандартной температуре, ρ t — удельное сопротивление при t 0 C, T 0 — эталонная температура, а α — температурный коэффициент удельного сопротивления.

  • Для металлов или проводников, когда температура увеличивается и удельное сопротивление металла увеличивается, и, таким образом, ток в металле уменьшается.У них положительный температурный коэффициент. Значение α положительное.

  • Для полупроводников, когда температура увеличивается, увеличивается проводимость материала. Это означает, что удельное сопротивление материала уменьшается, и поэтому ток увеличивается. Для полупроводников они имеют отрицательный температурный коэффициент. Таким образом, значение температурного коэффициента удельного сопротивления α отрицательно.

  • Для изоляторов электропроводность материала увеличивается при повышении температуры.Когда проводимость материала увеличивается, мы знаем, что удельное сопротивление уменьшается и, таким образом, увеличивается ток. Поэтому некоторые изоляторы при комнатной температуре превращаются в проводники при высокой температуре. Для изоляторов они имеют отрицательный температурный коэффициент. Значение температурного коэффициента удельного сопротивления α отрицательно.

  • Материалы с нулевым сопротивлением называются сверхпроводниками. Температура, при которой сопротивление падает до нуля, называется критической температурой.Высокая температура, сильное магнитное поле и высокая плотность тока ослабят свойство сверхпроводимости материала. Меркурий — пример сверхпроводника.

  • Такие материалы, как нихром, манганин и константан, не сильно зависят от температуры. Таким образом, изменение удельного сопротивления материала при изменении температуры незначительно.


Посмотрите это видео, чтобы получить дополнительную информацию


Другие материалы

Температурная зависимость удельного сопротивления


Особенности курса

  • 101 Видеолекция
  • Примечания к редакции
  • Документы за предыдущий год
  • Интеллектуальная карта
  • Планировщик исследования
  • Решения NCERT
  • Обсуждение Форум
  • Тестовая бумага с видео-решением

Температурная зависимость вязкости и плотности цис-1,4 / транс

  • Ресурс исследования
  • Исследовать
    • Искусство и гуманитарные науки
    • Бизнес
    • Инженерная технология
    • Иностранный язык
    • История
    • Математика
    • Наука
    • Социальная наука
    Лучшие подкатегории
    • Продвинутая математика
    • Алгебра
    • Основы математики
    • Исчисление
    • Геометрия
    • Линейная алгебра
    • Предалгебра
    • Предварительный камень
    • Статистика и вероятность
    • Тригонометрия
    • другое →
    Лучшие подкатегории
    • Астрономия
    • Астрофизика
    • Биология
    • Химия
    • Науки о Земле
    • Наука об окружающей среде
    • Наука о здоровье
    • Физика
    • другое →
    Лучшие подкатегории
    • Антропология
    • Закон
    • Политология
    • Психология
    • Социология
    • другое →
    Лучшие подкатегории
    • Бухгалтерский учет
    • Экономика
    • Финансы
    • Менеджмент
    • другое →
    Лучшие подкатегории
    • Аэрокосмическая техника
    • Биоинженерия
    • Химическая инженерия
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *