Электромагнитный двигатель своими руками. Магнитные двигатели: принцип работы, виды, перспективы применения

Как работают магнитные двигатели. Какие бывают виды магнитных двигателей. Можно ли создать вечный двигатель на магнитах. Каковы перспективы применения магнитных двигателей в будущем. Насколько реальны утверждения о магнитных двигателях с КПД более 100%.

Содержание

Что такое магнитный двигатель

Магнитный двигатель — это устройство, которое преобразует энергию магнитного поля постоянных магнитов в механическую энергию вращения или линейного движения. В отличие от обычных электродвигателей, в магнитных двигателях не используется электрический ток для создания магнитного поля — оно создается постоянными магнитами.

Основные элементы магнитного двигателя:

  • Статор с системой постоянных магнитов
  • Ротор (подвижная часть)
  • Магнитопровод для концентрации магнитного потока
  • Подшипники

Принцип работы основан на взаимодействии магнитных полей статора и ротора. За счет сил притяжения и отталкивания между магнитами создается крутящий момент, приводящий ротор в движение.


Виды магнитных двигателей

Существует несколько основных типов магнитных двигателей:

1. Роторные магнитные двигатели

В роторных двигателях постоянные магниты расположены на статоре и роторе. При вращении ротора происходит периодическое изменение магнитного потока, создающее крутящий момент. Это наиболее распространенный тип.

2. Линейные магнитные двигатели

Создают возвратно-поступательное движение за счет линейного перемещения подвижной части относительно неподвижных магнитов. Применяются в компрессорах, насосах и других механизмах.

3. Униполярные магнитные двигатели

Используют взаимодействие магнитного поля с электрическим током в проводнике. Отличаются простой конструкцией, но имеют низкий КПД.

Можно ли создать вечный двигатель на магнитах

Идея вечного двигателя на магнитах периодически появляется, но противоречит законам физики. Основные причины, почему создание такого двигателя невозможно:

  • Постоянные магниты со временем размагничиваются и теряют свои свойства
  • Присутствуют силы трения, на преодоление которых тратится энергия
  • Действует закон сохранения энергии — невозможно получить больше энергии, чем затрачено

Поэтому так называемые «вечные» магнитные двигатели на практике либо не работают, либо получают энергию из внешнего источника.


Возможно ли создать магнитный двигатель с КПД более 100%

Утверждения о создании магнитных двигателей с КПД более 100% периодически появляются, но не имеют научного подтверждения. Причины, почему это невозможно:

  • Противоречит фундаментальному закону сохранения энергии
  • Нарушает второй закон термодинамики
  • Не подтверждается экспериментально при корректных измерениях

КПД любого реального устройства всегда меньше 100% из-за неизбежных потерь энергии. Заявления о сверхединичном КПД обычно связаны с ошибками измерений или намеренной фальсификацией.

Перспективы применения магнитных двигателей

Несмотря на невозможность создания вечного двигателя, магнитные двигатели имеют ряд преимуществ и перспективы применения:

  • Высокая эффективность и КПД (до 95-97%)
  • Отсутствие потерь на возбуждение магнитного поля
  • Компактность и малый вес
  • Низкий уровень шума и вибраций
  • Длительный срок службы

Области возможного применения магнитных двигателей в будущем:

  • Электротранспорт (электромобили, электровелосипеды)
  • Бытовая техника (стиральные машины, холодильники)
  • Промышленные приводы и станки
  • Авиация и космонавтика
  • Медицинское оборудование

Дальнейшее развитие технологий производства мощных постоянных магнитов позволит создавать еще более эффективные магнитные двигатели.


Заблуждения о магнитных двигателях

Вокруг магнитных двигателей существует немало мифов и заблуждений. Рассмотрим некоторые из них:

Миф 1: Магнитный двигатель может работать вечно

Это невозможно из-за потерь энергии на трение и постепенного размагничивания магнитов. Любой реальный двигатель требует периодического обслуживания и замены компонентов.

Миф 2: Магнитный двигатель не потребляет энергию

На самом деле энергия берется из намагниченности постоянных магнитов. Со временем они размагничиваются и требуют подзарядки или замены.

Миф 3: КПД магнитного двигателя может превышать 100%

Это противоречит законам физики. Реальный КПД всегда меньше 100% из-за неизбежных потерь энергии.

Миф 4: Магнитные двигатели запрещены правительствами

На самом деле магнитные двигатели активно исследуются и применяются там, где это целесообразно. Никакого запрета на них не существует.

Эксперименты с магнитными двигателями

Многие любители и изобретатели проводят эксперименты по созданию магнитных двигателей. Вот несколько популярных конструкций для самостоятельного изготовления:


1. Простейший магнитный мотор

Состоит из ротора с закрепленными магнитами и статора с одним неподвижным магнитом. При правильном расположении магнитов ротор начинает вращаться.

2. Двигатель с магнитным подшипником

Использует магнитную левитацию для уменьшения трения. Ротор «парит» в магнитном поле статора.

3. Линейный магнитный двигатель

Создает возвратно-поступательное движение за счет притяжения/отталкивания магнитов на подвижной и неподвижной частях.

Важно понимать, что такие самодельные конструкции не являются вечными двигателями и не нарушают законы физики. Они демонстрируют принципы работы магнитных систем, но не могут производить энергию «из ничего».

Вклад ученых в развитие магнитных двигателей

Многие известные ученые внесли вклад в исследование магнитных явлений и развитие технологий магнитных двигателей:

  • Никола Тесла — разработал ряд конструкций электромагнитных двигателей
  • Майкл Фарадей — открыл закон электромагнитной индукции
  • Джеймс Максвелл — создал теорию электромагнитного поля
  • Андре-Мари Ампер — исследовал взаимодействие токов и магнитов
  • Петр Капица — изучал сверхпроводимость и сильные магнитные поля

Современные ученые продолжают исследования в области магнитных материалов и разработку новых типов высокоэффективных магнитных двигателей.


Проблемы внедрения магнитных двигателей

Несмотря на преимущества, широкому внедрению магнитных двигателей препятствует ряд проблем:

  • Высокая стоимость мощных постоянных магнитов
  • Сложность изготовления прецизионных магнитных систем
  • Необходимость защиты от размагничивания при высоких температурах
  • Ограниченный ресурс работы из-за постепенного размагничивания
  • Сложность регулировки скорости и мощности

Решение этих проблем — одна из важных задач для дальнейшего развития технологии магнитных двигателей.


правда или миф, возможности и перспективы, линейный двигатель своими руками

Мечты о вечном двигателе не дают людям покоя уже сотни лет. Особенно остро этот вопрос стал сейчас, когда мир не на шутку обеспокоен надвигающимся энергетическим кризисом. Наступит он или нет — вопрос другой, но однозначно сказать можно лишь то, что вне зависимости от этого человечество нуждается в решениях энергетической проблемы и поиске альтернативных источников энергии.

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах. К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.

Устройство магнитного двигателя

Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:

  • Сам двигатель;
  • Статор с электромагнитом;
  • Ротор с установленным постоянным магнитом.

На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе». Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Линейный двигатель своими руками

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Плюсы и минусы магнитных двигателей

Плюсы:

  • Экономия и полная автономия;
  • Возможность собрать двигатель из подручных средств;
  • Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
  • Способен на любой стадии износа выдавать максимальную мощность.

Минусы:

  • Негативное влияние магнитных полей на человека;
  • Большинство экземпляров не могут пока что работать в нормальных условиях. Но это дело времени;
  • Сложности в подключении даже готовых образцов;
  • Современные магнитные импульсные моторы имеют довольно высокую цену.

Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.

Электромагнитный двигатель. Миниэлектростанция. Бестопливный генератор

Электромагнитный двигатель


Альтернативный источник энергии

 

 

Стремительный рост цен на ископаемое топливо, заставил весь мир срочно искать альтернативные источники энергии. Уже предлагается масса вариантов замены традиционному способу производства энергии. Однако все они пока уступают хоть и устаревшим, но испытанным видам производства по многим показателям.

Чтобы стать коммерчески выгодным, новый источник энергии должен обладать рядом свойств:

1.Быть достаточно мощным в сравнительно небольших габаритах.

2.Независимым от внешних условий.

3.Непрерывностью работы.

4.Использовать более дешёвое топливо, либо вообще быть без топливным.
 

В полной мере, таким источником энергии может служить только электромагнитный двигатель, с возбуждением от постоянных магнитов.

Принцип действия данного электромагнитного двигателя основан на законе Ампера для проводника с электротоком в магнитном поле.


F=B L I

Сила, действующая на проводник с электротоком в магнитном поле прямо пропорциональна индукции магнитного поля B, длине проводника L, и силе тока в нём I.
 
Если принять, силу F за мощность электромагнитного двигателя.

Значение B- за мощность магнитного поля постоянных магнитов, а произведение LI   за мощность электромагнитной обмотки, то не сложно заметить, что мощность электромагнитного двигателя с постоянными магнитами может расти только за счёт роста мощности постоянных магнитов. А поскольку — «… постоянный магнит ниоткуда не получает энергию, а его магнитное поле не расходуется, когда им что либо притягиваешь….». «Магнит за три тысячелетия». В.П. Карцев. Стр. 155 , можно утверждать, что при потреблении подобным двигателем электроэнергии мощностью в 1 КВт. Мощность его может составить и 2 и 3 КВт.


2BLI = 2F

3BLI = 3F


  Так гласит закон.  Более того. Если


2B 2L 2I = 8F

3B 3L 3I = 27F


Закон Ампера для проводника с электротоком известен уже давно и не раз проверялся на практике. Пока претензий к нему не было.

Это значит, что используя постоянные магниты в качестве неисчерпаемого источника энергии можно создать электромагнитный двигатель с КПД больше 100 % , о чем долгие годы мечтало всё человечество и с таким упорством отрицали  учёные – физики.

Но почему до сих пор такой источник энергии не был создан?

На это есть целый ряд причин:

         1.    Учёные не могут признать постоянный магнит неисчерпаемым источником энергии. Это, по их мнению, прямое нарушение закона о сохранении энергии. И хотя постоянный магнит существует реально и его магнитное поле действительно не уменьшается при совершении работы, признать этот факт никто не решается.

        2.     Достаточно сильные постоянные магниты были изобретены сравнительно недавно. А способ концентрации магнитного потока, ещё позже. Но без концентрации источника энергии, электростанция не может получиться достаточно компактной, что является одним из основных условий практичности электростанции.

        3.    Природа постоянного магнита описана учёными не правильно. В учебниках нам объясняли, что ферромагнетики не могут стать магнитами, поскольку домены, носители магнитного заряда, расположены в ферромагнетиках хаотично. И их поля  нивелируют друг друга. (Рис.1.)

 

Рис. 1

Однако это утверждение неверно.

Если взять энное количество прямоугольных магнитов и соединить их разноимёнными полюсами, то в результате получим замкнутый круг. Рис.2

 

Рис. 2

 

Рис.3

 

Точно также ведут себя и домены, которые по своей сути  являются элементарными магнитами. Рис.3

Причём домены пытаются сжаться в минимальное кольцо, что бы занять наименьшее энергетическое положение.

Магнитная энергия заключена в это кольцо, и наружу вырваться не может. Это явление используют для защиты механических часов от магнитного поля. Механизм элементарно помещают внутрь железного кольца, которое является магнитным проводником, и магнитное поле двигаясь по пути наименьшего сопротивления, обходит механизм часов вокруг не проникая внутрь железного кольца.

Чтобы получить постоянный магнит, необходимо кольца доменов разорвать, сориентировать  параллельно и закрепить.

Что бы удостовериться в том, что постоянный магнит обладает энергией достаточно поднести железный предмет к современному магниту из редкоземельных материалов.

Сила, с которой предмет притянется к магниту, развеет все сомнения.

Но энергию постоянного магнита необходимо преобразовать в иную, более привычную и изученную. Например, в механическую.

Это можно сделать лишь, создав электромагнитный двигатель, у которого, за счёт мощных постоянных магнитов, КПД будет значительно превышать 100%.

Конечно, двигатель с КПД больше 100% противоречит закону о сохранении энергии. Но этот закон гласит, что подобное невозможно лишь в замкнутой системе. То есть там, где нет внешнего источника энергии. В данной же конструкции внешним источником энергии служит постоянный магнит.

Рис.4

 

Если взять постоянный магнит в виде кольца и удалить некоторую часть его, получится подковообразный магнит с двумя полюсами. Между этими полюсами поместить якорь электродвигателя с электропроводящей обмоткой. Обмотка состоит из ряда катушек размеры, которых соответствуют размеру зазора между полюсами. Если по катушке пропустить постоянный электроток, то в катушке возникнет электромагнитное поле, которое заменит недостающее звено постоянного магнита и замкнёт собою кольцо магнитного поля постоянного магнита. А катушка притянется к магниту. Но если направление тока в катушке поменять, то  катушка оттолкнётся от магнита.

Разместив на статоре ряд подковообразных магнитов, а на якоре ряд электромагнитных катушек, получим электромагнитный двигатель. Рис.5.

 

Рис.5

Похожие двигатели широко используются в промышленности. Но не один из них не имеет КПД больше 100%. Почему? Теперь уже дело в неправильной трактовке природы как магнитного и электромагнитного поля, так и электрического тока.

Учёные утверждают, что магнитное поле сплошное. Однако это физически невозможно.

Любая материя состоит из атомов, и даже сами атомы из элементарных частиц. Нет ничего сплошного. Мир вокруг нас дискретный.

Постоянный магнит состоит из доменов. Из групп атомов. По своей сути, это уже кристаллы. А из чего же состоит магнитное поле? Из силовых линий. Их легко обнаружить с помощью листа бумаги и железных опилок. Энергия магнита заключена в силовых линиях. Вся беда в том, что никаких полей не существует. Но учённые верят в поля и совершенно не признают силовые линии. Хотя и пользуются ими для объяснения некоторых физических явлений.

И хотя никто не знает, что такое энергия, и каким образом она держится в силовой линии? Что из себя представляет сама  силовая линия, и какова её природа, мы, обязаны использовать это природное явление для своих нужд, оставив  поиск ответов будущим поколениям.

Итак, магнитное поле, это пучок силовых линий. Предположительно каждый домен на поверхности магнитного полюса, содержит одну силовую линию. Но силовая линия должна содержать ещё одну характеристику, толщину. Толщина силовой линии зависит от количества доменов выстроенных в один ряд. Словно ручейки воды сливаясь, образуют большую реку. И чем длиннее постоянный магнит, чем толще силовые линии на его полюсах, а значит и магнитное поле на его полюсах.

Но и электромагнитное поле должно иметь подобную природу. Однако доменов там нет.

Отчего же может зависеть количество силовых линий и их толщина в катушке намотанной проводником электрического тока? Наверняка, количество от напряжения,  а толщина от силы тока.

Ведь известно, что по тонкому проводнику можно пропустить электроток практически любого напряжения, если сила тока будет мала. Всё просто. Много тонких линий можно разместить в проводнике, а вот много толстых там не помещаются. Отсюда и падение напряжения при протекании через проводник электротока большой силы. Лишние силовые линии просто выталкиваются из проводника.

Итак, выясняется, чтобы замкнуть магнитное кольцо электромагнитной катушкой, требуется подать на катушку электроток высокого напряжения и малой силы.

К сожалению, пока нет методик подсчёта силовых линий постоянного магнита в зависимости от индукции магнитного поля и количество силовых линий электромагнита в зависимости от напряжения электротока протекающего по этой катушке. Поэтому  приходится устанавливать величину напряжения индивидуально для каждой конструкции двигателя и подбирать экспериментально.

Наилучшим показателем для двигателя по мощности и экономичности будет момент, когда силовые линии и статора и якоря совпадут как по количеству, так и по толщине. Если силовые линии якоря будут тоньше силовых линий статора, КПД такого двигателя возрастёт, однако мощность уменьшится.

Но из за большой индукции магнитного поля статора, применение классического, железосодержащего якоря невозможно. Якорь просто намагнитится под действием магнитного поля статора в местах против магнитных полюсов до насыщения, и чтобы перемагнитить его потребуется электроток большой мощности. Именно поэтому в классических электродвигателях, магнитное поле статора значительно слабее магнитного поля якоря.

Якорь данного электродвигателя должен быть не только немагнитным, но и диэлектрическим.

Причина этому, большие вихревые токи при движении проводников в сильном магнитном поле. Материалом для якоря может служить текстолит или стеклотекстолит.

Главным, в конструкции данного двигателя является концентрация магнитного потока постоянных магнитов. Для этого, к магнитному полюсу из материала с максимальной степенью магнитного насыщения, например «Пермендюр»,  присоединяются постоянные магниты с пяти сторон одноимёнными полюсами. Шестая грань обращена к якорю, куда и выходит концентрированный магнитный поток. Рис.6.

 

Рис.6

Изобретение данного концентратора в основном и способствовало созданию электромагнитного двигателя с КПД больше 100%.Ведь любой энергоноситель необходимо сконцентрировать. Воду в водохранилище с помощью огромной плотины, пар в турбине, повышая температуру и давление, энергию атома, обогащая урановое топливо. Только та энергия которую есть возможность сконцентрировать с большой плотностью в относительно небольших объёмах, способна служить альтернативой классическим видам энергии.                                                                                                                                           

Но  магнитное поле увеличивается только за счёт увеличения количества силовых магнитных линий. Поэтому в двигателе площадь магнитных полюсов желательно уменьшить, чтобы напряжение в обмотке якоря было меньше, а количество полюсов можно увеличить. Рис7.

Рис.7

 

 

Конечно, при увеличении количества полюсов ,потребляемый ток тоже будет расти. Но если двигатель будет потреблять даже 10 КВт. электроэнергии , а его мощность составит 20 КВт. это будет выгодно.

Правда, дешёвым такой двигатель не назовёшь. И редкоземельные магниты, и магнитные полюса из сплава «Пермендюр», достаточно дороги.

Но эти материалы могут служить десятки лет. И обязательно себя окупят. В данном двигателе изнашиваются только подшипники, контактные кольца и щётки контактных колец. Но эти комплектующие сравнительно не дороги и применяются в обычных электродвигателях много лет.

Применение постоянных магнитов в качестве источника энергии ограничивает мощность двигателя. С их помощью и помощью сплава «Пермендюр» возможно получение магнитных полей всего до 2,5 Тл. И совокупную мощность до 100КВт. Но если применить в качестве источника магнитного поля сверхпроводящий магнит, мощность можно резко увеличить и уже говорить о нескольких мегаваттах.

Постоянный магнит, или постоянное магнитное поле сверхпроводящего магнита, уникальный источник энергии. Без топливный, компактный, экологически безвредный. Он отвечает всем требованиям, предъявляемым к источникам энергии как традиционным, так и альтернативным. И достаточно лишь соединить такой двигатель с самым обычным генератором электротока, и добавить пару аккумуляторов, как  мы получим  автономную электростанцию, которая будет вырабатывать электроэнергию круглосуточно и круглогодично, не взирая ни на погоду, ни на географическое положение.

Конечно, в теории кажется всё очень просто. Сконцентрировали магнитный поток. Замкнули полюса искусственным магнитным полем и всё. Но это в теории. На практике всё гораздо сложнее.

 

Предположим, каждый домен постоянного магнита содержит одну силовую линию. По крайней мере, это логично. А размер домена всего 4 микрона. Значит, на один квадратный сантиметр магнитного полюса, приходится примерно 25 000 силовых линий. Если предположить, что один вольт напряжения тоже даёт одну силовую линию, то не трудно понять, какое напряжение необходимо подать на одну катушку якоря. Теоретически это конечно возможно, но практически сделать очень сложно. Напряжение необходимо снижать. Либо увеличить размер домена. Теоретически это тоже возможно, но пока никто не пытался это сделать.

 

Можно также разделить катушку якоря на множество параллельных ветвей.

Профрезеровать в якоре максимально возможное число пазов и одну катушку уложить в один паз. А каждую катушку подключить параллельно. Тогда напряжённость электрических полей будет суммироваться, а не вычитаться как при последовательном подключении.

Но традиционными методами этого сделать не удастся. Альтернативный двигатель требует альтернативных решений.

Есть два решения этой проблемы.

Первый способ решение это создание многофазного ротора. Каждая секция должна быть отдельной фазой. И с помощью электроники подавать на контактные кольца переменное напряжение чередуя фазы. Ничего сложного в этом нет, хотя колец потребуется больше чем привычных три.

 

 

Второй способ коллекторный. Но тоже необычный. Коллекторов должно быть два. Один с положительным током, а второй с отрицательным.

 

В общем, нет ничего невозможного. Просто необходимо это делать на высоком профессиональном уровне. Конечно, сложно. Но ведь не сложнее термоядерной энергетики. Но зато безопасно и значительно дешевле.

 

Владимир Чернышов. Приморский край. e-mail—[email protected]

Магнитные двигатели. Виды и устройство. Применение и работа

Магнитные двигатели (двигатели на постоянных магнитах) являются наиболее вероятной моделью «вечного двигателя». Еще в давние времена была высказана эта идея, но так никто его не создал. Многие устройства дают ученым возможность приблизиться к изобретению такого двигателя. Конструкции подобных устройств еще не доведены до практического результата. С этими устройствами связано много различных мифов.

Магнитные двигатели не расходуют энергию, являются агрегатом необычного типа. Силой, двигающей мотор, является свойство магнитных элементов. Электродвигатели также применяют магнитные свойства ферромагнетиков, но магниты приводятся в движение электрическим током. А это является противоречием основному принципиальному действию вечного двигателя. В двигателе на магнитах используется магнитное влияние на объекты. Под действием этих объектов начинается движение. Небольшими моделями таких двигателей стали аксессуары в офисах. На них двигаются постоянно шарики, плоскости. Но там для работы применены батарейки.

Ученый Тесла занимался серьезно проблемой образования магнитного двигателя. Его модель была выполнена из катушки, турбины, проводов для соединения объектов. В обмотку закладывался маленький магнит, захватывающий два витка катушки. Турбине давали небольшой толчок, раскручивали ее. Она начинала движение с большой скоростью. Такое движение называлось вечным. Двигатель Тесла на магнитах стал идеальной моделью вечного двигателя. Его недостатком стала необходимость начального задания скорости турбине.

По закону сохранения электропривод не может содержать более 100% КПД, энергия частично тратится на трение в двигателе. Такой вопрос должен решать магнитный двигатель, у которого постоянные магниты (роторный тип, линейный, униполярный). В нем осуществление механического движения элементов идет от взаимодействия магнитных сил.

Принцип работы

Многие инновационные магнитные двигатели применяют работу трансформации тока во вращение ротора, являющееся механическим движением. Вместе с ротором вращается вал привода. Это дает возможность утверждать, что всякий расчет не даст результата КПД равного 100%. Агрегат не получается автономным, он имеет зависимость. Такой же процесс можно увидеть в генераторе. В нем крутящий момент, который образуется от энергии движения, создает выработку электроэнергии на пластинах коллектора.

1 — Линия раздела магнитных силовых линий, замыкающихся через отверстие и внешнюю кромку кольцевого магнита
2 — Катящийся ротор (Шарик от подшипника)
3 — Немагнитное основание (Статор)
4 — Кольцевой постоянный магнит от громкоговорителя (Динамика)
5 — Плоские постоянные магниты (Защелки)
6 — Немагнитный корпус

Магнитные двигатели применяют другой подход. Необходимость в дополнительных источниках питания сводится к минимуму. Принцип работы легко объяснить «беличьим колесом». Для производства демонстративной модели не нужны специальные чертежи или прочностной расчет. Нужно взять постоянный магнит, чтобы его полюса находились на обеих плоскостях. Магнит будет главной конструкцией. К ней добавляется два барьера в виде колец (внешний и внутренний) из немагнитных материалов. Между кольцами располагают стальной шарик. В магнитном двигателе он станет ротором. Силами магнита шарик притянется к диску противоположным полюсом. Этот полюс не будет менять свое положение при движении.

Статор включает в себя пластину, изготовленную из экранируемого материала. На нее по траектории кольца закрепляют постоянные магниты. Полюса магнитов находятся перпендикулярно в виде диска и ротора. В итоге, при приближении статора к ротору на некоторое расстояние, появляется отталкивание и притяжение в магнитах поочередно. Оно создает момент, переходит во вращательное движение шарика по траектории кольца. Запуск и торможение осуществляется движением статора с магнитами. Такой метод магнитного двигателя действует, пока магнитные свойства магнитов будут сохраняться. Расчет делается относительно статора, шариков, управляющей цепи.

На таком же принципе работают действующие магнитные двигатели. Самыми известными стали магнитные двигатели на тяге магнитов Тесла, Лазарева, Перендева, Джонсона, Минато. Так же известны двигатели на постоянных магнитах: цилиндровые, роторные, линейные, униполярные и т.д. У каждого двигателя своя технология изготовления, основанная на магнитных полях, образующихся вокруг магнитов. Вечных двигателей не бывает, так как постоянные магниты утрачивают свои свойства через несколько сотен лет.

Магнитный двигатель Тесла

Ученый исследователь Тесла стал одним из первых, кто изучал вопросы вечного двигателя. В науке его изобретение называется униполярным генератором. Сначала расчет такого устройства сделал Фарадей. Его образец не произвел стабильности работы и должного эффекта, не достиг необходимой цели, хотя принцип действия был сходным. Название «униполярный» дает понять, что по схеме модели проводник находится в цепи полюсов магнита.

По схеме, обнаруженной в патенте, видна конструкция из 2-х валов. На них помещены 2 пары магнитов. Они образуют отрицательное и положительное поля. Между магнитами находятся униполярные диски с бортами, которые применяются как образующие проводники. Два диска друг с другом имеют связь тонкой лентой из металла. Лента может использоваться для вращения диска.

Двигатель Минато

Этот тип двигателя также использует магнетическую энергию для самостоятельного движения и самовозбуждения. Образец двигателя разработан японским изобретателем Минато более 30 лет назад. Двигатель обладает высокой эффективностью, характеризуется бесшумной работой. Минато утверждал, что магнитный самовращающийся двигатель такого исполнения выдает КПД более 300%.

Ротор изготовлен в форме колеса или дискового элемента. На нем находятся магниты, расположенные под определенным углом. Во время приближения статора с мощным магнитом создается момент вращения, диск Минато вращается, применяет отторжение и сближение полюсов. Скорость вращения и крутящий момент мотора зависит от расстояния между ротором и статором. Напряжение мотора подается по цепи реле прерывателя.

Для предохранения от биения и импульсных движений при вращении диска применяют стабилизаторы, оптимизируют расход энергии управляющего электрического магнита. Негативной стороной можно назвать то, что нет данных по свойствам нагрузки, тяге, которые применяются реле управления. Также периодически необходимо производить намагничивание. Об этом Минато в своих расчетах не упоминал.

Двигатель Лазарева

Русский разработчик Лазарев сконструировал действующую простую модель двигателя, применяющего магнитную тягу. Роторный кольцар включает в себя резервуар с пористой перегородкой на две части. Эти половины между собой сообщаются трубкой. По этой трубке поступает поток жидкости из нижней камеры в верхнюю. Поры создают перетекание вниз за счет гравитации.

При расположении колеса с расположенными на лопастях магнитами под напором жидкости возникает постоянное магнитное поле, двигатель вращается. Схема двигателя Лазарева роторного типа применяется при разработке простых устройств с самовращением.

Двигатель Джонсона

Джонсон в своем изобретении применял энергию, которая генерируется потоком электронов. Эти электроны находятся в магнитах, образуют цепь питания двигателя. Статор двигателя соединяет в себе множество магнитов. Они располагаются в виде дорожки. Движение магнитов и их расположение зависит от конструкции агрегата Джонсона. Компоновка может быть роторной или линейной.

1 — Магниты якоря
2 — Форма якоря
3 — Полюса магнитов статора
4 — Кольцевая канавка
5 — Статор
6 — Резьбовое отверстие
7 — Вал
8 — Кольцевая втулка
9 — Основание

Магниты прикрепляются к особой пластине, обладающей большой магнитной проницаемостью. Одинаковые полюса магнитов статора поворачиваются в сторону ротора. Этот поворот создает отторжение и притяжение полюсов по очереди. Совместно с ними смещаются элементы ротора и статора между собой.

Джонсон организовал расчет воздушного промежутка между ротором и статором. Он дает возможность коррекции усилия и магнитной совокупности взаимодействия в направлении увеличения или снижения.

Магнитный двигатель Перендева

Двигатель самовращающейся модели Перендева так же является примером применения работы магнитных сил. Создатель этого мотора Брэди оформил патент и создал фирму еще до начала уголовного дела на него, организовал работу на поточной основе.

При анализе принципа работы, схемы, чертежей в патенте можно понять, что статор и ротор выполнены в форме внешнего кольца и диска. На них по траектории кольца располагают магниты. При этом соблюдают угол, определенный по центральной оси. Из-за взаимного действия поля магнитов образуется момент вращения, осуществляется их перемещение друг относительно друга. Цепь магнитов рассчитывается путем выяснения угла расхождения.

Синхронные магнитные двигатели

Главным видом электрических двигателей является синхронный вид. У него обороты вращения ротора и статора одинаковые. У простого электромагнитного двигателя эти две части имеют в составе обмотки на пластинах. Если изменить конструкцию якоря, вместо обмотки установить постоянные магниты, то получится оригинальная эффективная рабочая модель двигателя синхронного типа.

1 — Стержневая обмотка
2 — Секции сердечника ротора
3 — Опора подшипника
4 — Магниты
5 — Стальная пластина
6 — Ступица ротора
7 — Сердечник статора

Статор сделан по привычной конструкции магнитопровода из катушек и пластин. В них образуется магнитное поле вращения от электрического тока. Ротор образует постоянное поле, взаимодействующее с предыдущим, и образует момент вращения.

Нельзя забывать о том, что относительное нахождение якоря и статора имею возможность изменяться в зависимости от схемы двигателя. Например, якорь может быть сделан в форме наружной оболочки. Для запуска двигателя от сети питания применяется схема из магнитного пускателя и реле тепловой защиты.

Похожие темы:

Магнитный двигатель своими руками | Земля Мастеров

МАГНИТНЫЙ ДВИГАТЕЛЬ — RU, НОВЫЙ ВАРИАНТ

Действующий макет магнитного двигателя МД-500-RU со скоростью вращения до 500 об/мин.

 

Ивестны седующие варианты магнитных двигателей (ДМ):

1. Магнитные двигатели, работающий только за счет силвзаимодействия магнитных полей, без устройства управления (синхронизации), т.е. без потребления энергии от внешнего источника.«Perendev», Wankel и др.

2. Магнитные двигатели, работающие за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которых требуется внешний источник питания.

Применение устройств управления позволяет получить на валу МД повышенную величину мощности, в сравнении с МД, указанными выше. Этот вид МД легче в изготовлении и настройке на режим максимальной скорости вращения.
3. Манитные двигатели использующие 1 и 2 варианты, например МД Нarry Paul Sprain,  Минато и другие.

***

Макет доработанного варианта работающего магнитного двигателя (МД-RU)

с устройством управления (синхронизации),обеспечивающий скорость вращения до 500 об/мин.

1. Технические параметры двигателя МД_RU:.

Число магнитов 8, 600Гс.
Электромагнит 1 шт.
Радиус R диска 0,08м.
Масса m диска 0,75 кг. 

Скорость вращения диска 500 об/мин.

Число оборотов в секунду 8,333 об/сек.. 
Период вращения диска 0.12 сек. ( 60сек/500 об/мин= 0,12сек).
Угловая скорость диска ω = 6,28/0,12 = 6,28/(60/500) = 52,35 рад./sec.
Линейная скорость диска V = R* ω = 0,08*52,35 = 4,188 m/сек.
2.Вычисление основных энергетических показателей МД.
Полный момент инерции диска:
Jпми = 0,5 * mкг *R2 = 0,5*0,75*(0,08) 2 = 0,0024[кг *m2]. 
Кенетическая энергия Wke на валу двигателя:
Wke = 0,5*Jпми* ω2 = 0,5*0,0024*(52,35) 2 = 3,288 дж/сек= 3,288 Вт*сек. 
При вычислениях использовался «Справочник по физике», Б.М.Яворский и А.А. Детлаф, и БСЭ. 

 

3. Получив результат вычисления кинетической энергии на валу диска (ротора) в Ваттах (3,288), для вычисления энергетической эффективности этого вида МД, необходимо вычислить мощность, потребляемую устройством управления (синхронизации). Мощность потребляемая устройством управления (синхронизации) в ваттах, приведенная к 1 секунде:

в течение одной секунды устройство управления потребляет ток напротяжении 0,333 сек, т.к. за проход одного магнита электромагнит потребляет ток в течении 0,005сек., магнитов 8, за одну секунду происходит 8,33 оборота, поэтому время потреблен ия тока устройством управления равно произведению:

0,005*8*8,33 об/сек = 0,333сек.
-Напряжения питания устройства управления 12В.
-Ток, потребляемый устройством 0,13 А.
-Время потребления тока на протяжении 1 секунды равно — 0,333 сек. 
Следовательно мощность Руу, потребляемая устройством за 1 секунду непрерывного вращения диска составит:
Pуу = U* A = 12 * 0,13А * 0,333 сек. = 0,519 Вт*сек.
Это в (3,288 Вт*сек) /(0,519 Вт *сек) = 6,33 раз больше энергии потребляемой устройством управления.



Фрагмент конструкции МД.

 4. ВЫВОДЫ: 
Очевидно, что магнитный двигатель, работающий за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которого требуется внешний источник питания, потребляемая мощность от которого значительно меньше мощности на валу МД. 

 

5. Признаком нормальной работы магнитного двигателя является то, что если его, после подготовке к работе, слегка подтолкнуть, — он, далее, сам начнет раскручиваться до своей максимальной скорости.

 

6.Изготовление магнитного двигателя требует наличие материально – технической и инструментальной базы, без которой, практически, не возможно изготовление устройств подобного рода. Это видно из описания  патентов и других источников информации по
рассматриваемой теме.

При этом, наиболее походящие виды NdFeB — магнитов можно найти на сайте http://www.magnitos.ru/.

Для подобного вида МД наиболее подходящими являются магниты «средний квадрат»
К-40-04-02-N (длиной до 40 x 4 x 2 mm) с намагничиванием N40 и сцеплением 1 — 2 kg.
***

7. Рассмотренный вид магнитного двигаеля с устройством синхронизации

(управления включением электромагнита) отностися к наиболее доступному в изготовленении  вида  МД, которые называют импульсными магнитнами двигателями.  На рисунке приведен  один  из  известных  вариантов импульсных МД с электромагнитом, «выполняющим роль поршня»,  похожий на  игрушку. В реальной полезной  модели  диаметр колеса (маховика), например, велосипедного колеса,  должен  быть не менее метра  и, соответственно,   длинее  путь  перемещения  сердечника  электромагнита.

Создание импульсного МД — это только 50% пути  до достижения  цели — изготовления  источника электрической энергии с повышенным кпд. Скорость и момент вращения на оси МД должены быть достаточными для вращения генератора постоянного или переменного тока и получения максимального значения получаемой мощности на выходе,  которая  так  же зависит и  от скорости вращения.

 

8. Аналогичные МД:
1. Magnetic Wankel Motor,http://www.syscoil.org/index.php?cmd=nav&cid=116
Мощность этой модели достаточна только для того,  чтобы колыхать воздух, тем не менее, она подсказывает путь к достижению цели. 

2. НARRY PAUL SPRAIN
http://www.youtube.com/watch?v=mCANbMBujjQ&mode=related&search;

Это двигатель, аналогичный Magnetic Wankel Motor, но значительно большего размера  и  с устройством управления (синхронизации) с  мощностью на валу 6 Вт*сек.

3. Вечный двигатель «PERENDEV»
Многие не верят, а он работает! 
См: http://www.perendev-power.ru/ 
Патент МД «PERENDEV»:
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2006045333&F=0

Двигатель — генератор на 100 кВт стоит 24 000 евро. 
Дорого, поэтому некоторые умельцы изготавливают его своими руками в масшабе 1/4 (фото приведено выше).

Рисунок действущего макета  разработанного  импульсного магнитного двигателя МД-500-RU,  дополненного  асинхронным генераторм  переменного тока.

 

Новые конструкции вечных магнитных двигателей: 

 

1.

Из перевода комментарий и ответов автора следует:

Автор магнитного двигателя (perpetuum) использует двигатель вентилятора, на ось которого насажено колесо с постоянными магнитами и две или три неподвижныекатушки, которые наматывается в два провода.

 

К выводам каждой катушки подключен транзистор. Катушки содержат магнитный сердечник. Магниты колеса, проскакивая мимо катушек с магнитами, наводит в них эдс, достаточную для возникновения генерации в цепи катушка-транзистор, далее напряжение генератора через,  предположительно,   согласующее устройство поступает на обмотки двигателя,  вращающего колесо и т.д.

Подробности своего perpetuum автор изобретения не раскрывает, за что его называют шарлатаном. Ну как обычно.

2.

Магнитный двигатель LEGO (perpetuum).

Он выполнен на базе элементов из набора для конструирования LEGO.

При медленной прокрутки видео – становится понятным почему эта штуковина вращается  непрерывно.

 

 

3. «Запрещённая конструкция» вечного двигателя с двумя поршнями.  Вопреки известному «не может быть», медленно, — но вращается.

 

 

В нем одновременное использование гравитации и взаимодействия магнитов.

4.Гравитационно-магнитный двигатель.

 

На вид очень простое устройство, но не известно, потянет ли оно генератор постоянного или переменного тока ? Ведь простого вращения колеса не достаточно.

Приведенные виды магнитных двигателей (с пометкой: perpetuum), если даже они работают, — очень маломощны. Поэтому, чтобы они стали эффективными дляпрактического применения их размеры неизбежно придется увеличивать, при этом, они не должны потерять свое важное свойство: непрерывно вращаться.


+++

Странная «качалка» сербского изобретателя В.Милковича , которая, как ни странно, — работает.


http://www.veljkomilkovic.com/OscilacijeEng.html

Краткий перевод:
Простой механизм с новыми механическими эффектами, представляющим собой источник энергии. Машина имеет только две основных части: огромный рычаг на оси и маятник. Взаимодействие двухступенчатого рычага умножает входную энергию удобную для полезной работы (механический молот, пресса, насос, электрический генератор…). Для полного ознакомления с научными исследованиями смотрите видио.

1 — «Наковальня», 2 — Механический молот с маятником, 3 – Ось рычага молота, 4 — Физический маятник.
Наилучшие результаты были достигнуты, когда ось рычага и маятника находятся на одной и той же высоте, но немного выше центра массы, как показано на рисунке.
В машине используется различие в потенциальной энергии между состоянием невесомости в положении ( вверху) и состоянием максимальной силы (усилия) (внизу) в течение процесса генерации энергии маятником. Это истина для центробежной силы, для которой сила равна нулю в верхней позиции и достигает наибольшего значения в нижней позиции, в которой скорость максимальна. Физический маятник использован как главное звено генератора с рычагом и маятником.
После многих лет испытаний, консультаций и общественных презентаций, много было сказано об этой машине. Простота конструкции для самостоятельного изготовления в домашних условиях.
Эффективность модели может быть за счет повышения массы, как отношение веса (массы) рычага к поверхности молота, ударяющего по «наковальне».
Согласно теории генерации, колебательные перемещения «качалки» трудно поддаются анализу.
***
Испытания указали на важное значение процесса синхронизации частоты в каждой модели. Генерация физического маятника должна происходить с первого запуска и далее поддерживаться самостоятельно, но только при определенной скорости, в противном случае входная энергия будет затухать и исчезнет.
Молот более эффективно работает с коротким маятником (в насосе), но длительно (наиболее долго) работают с удлиненным маятником.
Дополнительное ускорение маятника является следствием силы тяжести. Если обратиться

к формуле: Ек = М(V1 +V 2)/2

и провести вычисления избытока энергии становится понятным, что он обусловлен потенциальной энергией гравитации. Кинетическая энергия может быть повышена  путем увеличения тяжести (массы).

Демонстрация работы устройства.
***

РУССКАЯ  КАЧАЛКА (резонансная качалка RU)

http://www.001-lab.com/001lab/index.php?topic=140.0 
Cм.
RE Магнитогравитационные установки 
Reply #14 : Март 02, 2010, 05:27:22
Видео: Работа в резонансе.rar (2955.44 Кб — загружено 185 раз.)
Работает!!!

ГЕНЕРАТОРЫ С ИЗБЫТОЧНОЙ ЭНЕРГИЕЙ (TORS TT) 
НОВОЕ НАПРАВЛЕНИЕ В СОЗДАНИИ ГЕНЕРАТОРОВ СВОБОДНЙ ЭНЕРГИИ

1. Известная схема устройства на базе изобретения Эдвина Грея, которое заряжает аккумулятор Е1 от которого оно и питается или внешний акккумулятор Е2, переключением элемента S2а — S2б. Т1,Т2 — мультивибратор (можно выполнить на ИМС), запускающий гнератор высоковольтных колбений на Т3, Т4 и Т5. 
L2, L3 — понижающий трансформатор, далее выпрямитель на D3, D4.
и трансформатр L2 — L3 можно вставит ферритовый сердечник (600 -1000 мп).
Элементы, заключенные в зеленый прямоугольник похожи на так называемую «конверсионную элементную трубку». В качестве искрового разрядника можно использовать обычную автомобильную свечу, а в качестве автотрансформатора (L1) – автомобильную катушку зажигания.
Другие схемные решения можно найти  на youtube.com  в видеоматериалах  по генераторам «свободной энергии», т.н. TROS,  amplifier  и  др.  со  схемами  этого вида генераторов энергии.  Схемы генераторов избыточной энергии TORS TT, это когда потребляемая генератором мощность, предположительно, значительно меньше энергии выделяемой в нагрузке. 

2. Очень интересный генератор Joule Thief избыточной энергии, работает от 1,5В, а питает лампы накаливания.

http://4.bp.blogspot.com/_iB7zWfiuCPc/TCw8_UQgJII/AAAAAAAAAf8/xs7eZ4680SY/s1600/Joule+Thief+Circuit+-2___.JPG

3. Наибольший интерес представляет генератор свободной энергии, работающий от источника постоянного тока 12 — 15В, который на выходе «тянет» несколько ламп накаливания на 220В. 

http://www.youtube.com/watch?v=Y_kCVhG-jl0&feature=player_embedded
Однако, автор не раскрывает технические особенности изготовления этого вида генератора электрической энергии, с так называемой самозапиткой. 
Кадр из этого видео ролика.

 

Для кого создают талантливые искатели «свободной энергии» подобные устройства?


Для себя, для потенциального инвестора или для кого — то еще ? Работа, как правило, закачивается известной формулировкой: получил «техническое чудо», но никому не скажу как. 
Тем не менее над этим видом герератора с самозапиткой стоит поработать. 
Он содержит источник постоянного тока на 15-20 В, конденсатор 4700мкФ, включенный параллельно источнику питания, транзисторный генератор высокого напряжения (2-5кВ), резрядник и катушку, содержащую несколько обмоток, намотанных на сердачник собранный из ферритовых колец (D~ 40мм). С ней придется разбираться, искать аналогичную конструкцию из множества подобных. Естественно, если будет желание.
Катушку, аналогичную используемой можно посмотреть на: http://jnaudin.free.fr/kapagen/replications.htm
http://www.001-lab.com/001lab/index.php?topic=24.0
УСПЕХОВ!

4. Достоверная схема генератора Капанадзе
Подробности на http://www.youtube.com/watch?v=tyy4ZpZKBmw&feature=related

5. Ниже набросок СхЭ генератора Naudin. Анализ схемы вызывает некоторые сомнения. Возникает естественный вопрос: какую мощность потребляет транс, например, от микроволновой печи (220/2300В), вставленный в генератор «свободной энергии» и какую мощность получаем на выходе в виде свечения ламп накаливания? Если транс от микроволновки, то его входная потребляемая мощность 1400 Вт, а выходная по СВЧ 800 — 900 Вт, при кпд магнетрона порядка 0.65. Поэтому, подключенные ко вторичной обмотке (2300В) через разрядник и небольшие индуктивности — лампы могут полыхать и только от выходного напряжения вторичной обмотки и весьма прилично. 

С этим варианотом схемы могут быть затруднения с достижением положительного эффекта. 
Элемент, обозначаемый буквами МОТ — это сетевой трансформатор 220/2000 … 2300В, в большинстве сучаев от микроволновой печи, Рвхода до 1400Вт, Рпо выходу (СВЧ) 800Вт. 
 

ПОЛУЧЕНИЕ ВОДОРОДА C ИСПОЛЬЗОВАНИЕМ ЧАСТОТЫ РЕЗОНАНСА  ВОДЫ

             ВОДОРОД МОЖНО ПОЛУЧАТЬ ОБЛУЧЕНИЕМ ВОДЫ ВЧ КОЛЕБАНИЕМ.

http://peswiki.com/index.php/Directory:John_Kanzius_Produces_Hydrogen_from_Salt_Water_Using_Radio_Waves
John Kanzius
The authors have shown that NaCl-h3O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised RF radiofrequency beam at at room temperature, generate an intimate mixture of hydrogen and oxygen which can be ignited and burned with a steady flamePatent of John Kanzius…

Преревод:
John_Kanzius показал, что раствор NaCl-h3O с концентрацией, колеблющейся от 1 до 30%, когда его облучают направленным поляризованным (polarised radiofrequency) ВЧ излучением с частотой, равной резонансной частоте раствора, порядка 13,56 МГц, при комнатной температуре начинает выделять водород, который в смеси с кислородом, начинает устойчиво гореть. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия.
Удельная теплота сгорания водорода: 120 Мдж/кг или 28000 ккал/кг.

Пример схемы ВЧ генератора:

Катушка диаметром 30-40 мм изготавливается из одножильного изолированного провода диаметром 1 мм, число витков 4-5 (подбирается экспериментально). Питание 15 – 20В подключить у правому концу дросселя 200 мкГ. Настойка в резонанс производится переменным конденсатором. Катушка наматывается поверх  сосуда с соленой водой  цилиндрической формы. Сосуд  на 75-80% заливается соленой водой и плотно закрывается крышкой  с патрубком для отвода водорода, у  выхода,  трубказаполняется ватой для предотвращения  свободного проникновения  кислорода в сосуд.

***
Подробнее можно посмотреть на:
http://www.scribd.com/doc/36600371/Kanzius-Hydrogen-by-RF
Observations of polarised RF radiation catalysis of dissociation of h3O–NaCl solutions 
R. Roy, M. L. Rao and J. Kanzius. The authors have shown that NaCl–h3O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised radiofrequency beam at 13,56 MHz…

Ответ на вопрос читателя:
Я получал водород, заливая водным раствором едкого натра (Na2CO3) пластину алюминия (100 х100 х 1мм). В воде кальцинированная сода реагирует с водой 
2CO3− + h3O ↔ HCO3− + OH−   и образует гидроксил ОН, который очищает алюминий от пленки. Далее начинается известная реакция: 
2Аl + 3Н2О = A12О3 + 3h3  с выделением тепла  и  интенсивным выделением водорода, схожая с кипением воды. Реакция проходит без электролиза! 

Эксперимент следует проводить осторожно, чтобы не произошло возгорание и взрыв водорода. Или сразу предусмотреть отвод водорода из накрытого крышкой сосуда с рабочими компонентами. В процессе реакции выделения водорода, через некоторое время, алюминиевая пластина начинает покрывается отходами реакции хлоридом кальция CaCl2 и окисью алюминия A12О3. Интенсивность химической реакции через некоторое время начнет снижаться. 
Для поддержания её интенсивности следует удалить отходы, заменить раствор едкого натра и алюминиевую пластину на другую. Использованную, после очистки можно, применять снова и т.д. до полного их разрушения. Если применять дюраль, реакция протекает с выделением тепла. 
***
Аналогичная разработка:
Your house can be warmed up this way. (Ваш дом может быть обогрет этим способом) 
Изобретатель Mr. Francois P. Cornish. Европейский патент №0055134А1 от 30.06.1982, применительно к бензиновому двигателю,  он позволяет  машине  нормально двигаться, используя вместо бензина,  воду и небольшое количество алюминия. 
Mr. Francois P   в своем устройстве, использовал электролиз (при 5-10 кВ) в воде с алюминиевой проволокой, которую предварительно очищал от окиси до введения её в камеру, из которой по трубке отводил водород и подавал его в велосипедный двигатель. 


Здесь отходом реакции является A12О3. 

 

 
       
Возник вопрос, что дороже на 100 км пути — бензин или алюминий с высоковольтным источником и аккумулятором? 
Если «люмнь» со свалки или из отходов куханной посуды, то будет дешево.
***
Дополнительно, можете посмотреть  подобное устройство здесь: http://macmep.h22.ru/main_gaz.htm
и здесь: «Простой народный способ получения водорода»
http://new-energy21.ru/content/view/710/179/,
а здесь http://www.vodorod.net/  — информация о генераторе водорода за 100 баксов. Я бы не покупал, т.к. на видео не видно явного возгорания водорода на выходе бидона с компонентами для электролиза.

 

Линейный двигатель на коленке — Проектирование и конструирование

С давних пор ведутся работы по использованию альтернативных источников энергии в различных устройствах. Среди многих вариантов отметим гравитационный двигатель, работающий не на традиционных видах топлива, а использующий эффект гравитации. Специальная форма вместе с различными приспособлениями дает возможность эффективно использовать гравитационное поле Земли. Данное устройство относится к категории вечных двигателей, которые еще никому не удавалось изобрести и довести до логического завершения. Поэтому в данной статье такой двигатель может рассматриваться лишь с теоретической точки зрения.

Принцип работы

Сейчас существует понятие, что вечные двигатели могут быть первого и второго вида. К первому относятся устройства, производящие самостоятельно энергию – как бы из воздуха, а вот второй вариант – двигатели, получающие эту энергию извне, в ее качестве выступает вода, солнечные лучи, ветер, а затем устройство преобразовывает полученную энергию в электричество. Если рассматривать законы термодинамики, то каждая из этих теорий практически неосуществима, однако с подобным утверждением совершенно не согласны некоторые ученые. Именно они начали разрабатывать вечные двигатели, относящиеся ко второму типу, работающие на получаемой от магнитного поля энергии.

Разрабатывали подобный «вечный двигатель» множество ученых, причем во разное время. Если рассматривать конкретнее, то наибольший вклад в такое дело, как развитие теории создания магнитного двигателя совершили Василий Шкондин, Николай Лазарев, Никола Тесла. Помимо них хорошо известны разработки Перендева, Минато, Говарда Джонсона, Лоренца.

Все они доказывали, что силы, заключенные в постоянных магнитах, имеют огромную, постоянно возобновляемую энергию, которая пополняется из мирового эфира. Тем не менее, суть работы постоянных магнитов, а также их действительно аномальную энергетику никто на планете до сих пор не изучил. Именно поэтому так никто не смог пока достаточно эффективно применить магнитное поле для того, чтобы получить действительно полезную энергию.

Сейчас еще никто не смог создать полноценного магнитного двигателя, однако существует достаточное количество весьма правдоподобных устройств, мифов и теорий, даже вполне обоснованных научных работ, которые посвящены разработке магнитного двигателя. Всем известно, что для сдвига притянутых постоянных магнитов требуется значительно меньше усилий, нежели для того, чтобы их оторвать один от другого. Именно это явление чаще всего используется, чтобы создать настоящий «вечный» линейный двигатель на основе магнитной энергии.

Линейный привод своими руками

Интересные и широкие перспективы развития электропривода связаны с применением так называемых линейных двигателей. Большое число производственных механизмов и устройств имеют поступательное или возвратно-поступательное движение рабочих органов подъемно-транспортные машины, механизмы подач различных станков, прессы, молоты и т. В качестве привода этих механизмов и устройств до недавнего времени использовались обычные электродвигатели в сочетании со специальными видами механических передач кривошипно-шатунный механизм, передача винт — гайка , преобразовывавших вращательное движение двигателей в прямолинейное движение рабочего органа. Применение линейных электродвигателей позволяет упростить или полностью исключить механическую передачу, повысить экономичность и надежность работы привода и производственного механизма в целом. Специфичность конструкции линейного двигателя определила появление и некоторых специальных терминов, применяемых для обозначения отдельных его частей.

Каким должен быть настоящий магнитный двигатель

В общем, выглядит подобное устройство следующим образом.

  1. Катушка индуктивности.
  2. Магнит подвижный.
  3. Пазы катушек.
  4. Центральная ось;
  5. Шарикоподшипник;
  6. Стойки.
  7. Диски;
  8. Постоянные магниты;
  9. Закрывающие магниты диски;
  10. Шкив;
  11. Приводной ремень.
  12. Магнитный двигатель.

Любое устройство, которое изготовлено на подобном принципе, вполне успешно может быть использовано для выработки по-настоящему аномальной электрической и механической энергии. Причем, если применять его как генераторный электрический узел – то он способен вырабатывать электроэнергию такой мощности, которая существенно превышает аналогичное изделие, в виде механического приводного двигателя.

Теперь разберем подробнее, что вообще представляет из себя магнитный двигатель, а также почему множество людей пытаются разработать и воплотить в реальность эту конструкцию, видя именно в ней заманчивое будущее. Действительно настоящий двигатель этой конструкции должен функционировать исключительно только на магнитах, при этом используя непосредственно для перемещения всех внутренних механизмов их постоянно выделяемую энергию.

Важно: основной проблемой разнообразных конструкций основанных именно на использовании постоянных магнитов, становится то, что они склонны стремиться к статическому положению, именуемому равновесием.

Когда рядом привинтить два достаточно сильных магнита, то они двигаться будут только до момента, когда будет достигнуто на минимально возможной удаленности максимальное притяжение между полюсами. В реальности они просто друг к другу повернутся. Поэтому каждый изобретатель разнообразных магнитных двигателей пытается сделать переменным притяжение магнитов за счет механических свойств самого двигателя или использует функцию своеобразного экранирования.

При этом магнитные двигатели в чистом виде очень неплохи по своей сущности. А если добавить к ним реле и управляющий контур, использовать гравитацию земли и дисбаланс, то они становятся действительно идеальными. Их смело можно именовать «вечными» источниками поставляемой бесплатной энергии! Есть сотни примеров всевозможных магнитных двигателей, начиная от наиболее примитивных, которые можно собрать собственноручно и заканчивая японскими серийными экземплярами.

Труба Франка Штельзера

В 1981 году немецкий изобретатель Франк Штельзер продемонстрировал двухтактный мотор со свободным поршнем, который он разрабатывал в своем гараже с начала 1970-х. По его расчетам, движок был на 30% экономичнее обычного ДВС. Единственная движущаяся деталь мотора — сдвоенный поршень, снующий с бешеной частотой внутри цилиндра. Стальная труба длиной 80 см, оснащенная карбюратором низкого давления от мотоцикла Harley-Davidson и блоком катушек зажигания Honda, по грубым прикидкам Стельзера, могла вырабатывать до 200 л.с. мощности при частоте до 20 000 циклов в минуту. Штельзер утверждал, что его моторы можно делать из простых сталей, а охлаждаться они могут как воздухом, так и жидкостью. В 1981 году изобретатель привез свой мотор на Франфуртский международный автосалон в надежде заинтересовать ведущие автокомпании. Поначалу идея вызвала определенный интерес со стороны немецких автопороизводителей. По отзывам инженеров Opel, прототип двигателя демонстрировал великолепный термический КПД, а его надежность была совершенно очевидной — ломаться там было практически нечему. Всего восемь деталей, из которых одна движущаяся — сдвоенный поршень сложной формы с системой уплотнительных колец общей массой 5 кг. В лаборатории Opel были разработаны несколько теоретических моделей трансмиссии для мотора Штельзера, включая механическую, электромагнитную и гидравлическую. Но ни одна из них не была признана достаточно надежной и эффективной. После Франкфуртского автосалона Штельзер и его детище пропали из поля зрения автоиндустрии. Еще пару лет после этого в прессе то и дело появлялись сообщения о намерениях Штельзера запатентовать технологию в 18 странах мира, оснастить своими моторами опреснительные установки в Омане и Саудовской Аравии и т. д. С начала 1990-х Штельзер навсегда пропал из виду, хотя его сайт в интернете все еще доступен.
Максимальная мощность FPLA составляет 40 кВт (55 лошадок) при среднем потреблении топлива 140 г на 1кВтч. По эффективности двигатель не уступает водородным топливным ячейкам — термический КПД генератора при использовании в качестве топлива водорода и степени сжатия 30:1 достигает 65%. На пропане чуть меньше — 56%. Помимо этих двух газов FPLA с аппетитом переваривает солярку, бензин, этанол, спирт и даже отработанное растительное масло.

Однако ничто не дается малой кровью. Если проблема превращения тепловой энергии в электрическую Ван Блариганом решена успешно, то управление капризным поршнем стало серьезной головной болью. Верхняя мертвая точка траектории зависит от степени сжатия и скорости сгорания топливного заряда. Фактически торможение поршня происходит за счет создания критического давления в камере и последующего самопроизвольного возгорания смеси. В обычном ДВС каждый последующий цикл является аналогом предыдущего благодаря жестким механическим связям между поршнями и коленвалом. В FPLA же длительность тактов и верхняя мертвая точка — плавающие величины. Малейшая неточность в дозировке топливного заряда или нестабильность режима сгорания вызывают остановку поршня или удар в одну из боковых стенок.


Зеленый и плоский Двигатель Ecomotors отличается не только скромными габаритами и массой. Внешне плоский агрегат напоминает оппозитные моторы Subaru и Porsche, которые дают особые компоновочные преимущества в виде низкого центра тяжести и линии капота. Это означает, что автомобиль будет не только динамичным, но и хорошо управляемым.

Таким образом, для двигателя такого типа требуется мощная и быстродействующая электронная система управления. Создать ее не так просто, как кажется. Многие эксперты считают эту задачу трудновыполнимой. Гарри Смайт, научный руководитель лаборатории General Motors по силовым установкам, утверждает: «Двигатели внутреннего сгорания со свободным поршнем обладают рядом уникальных достоинств. Но чтобы создать надежный серийный агрегат, нужно еще очень много узнать о термодинамике FPE и научиться управлять процессом сгорания смеси». Ему вторит профессор Массачусетского технологического института Джон Хейвуд: «В этой области еще очень много белых пятен. Не факт, что для FPE удастся разработать простую и дешевую систему управления».

Ван Блариган более оптимистичен, чем его коллеги по цеху. Он утверждает, что управление положением поршня может быть надежно обеспечено посредством той же пары — статор и магнитная оболочка поршня. Более того, он считает, что полноценный прототип генератора с настроенной системой управления и КПД не менее 50% будет готов уже к концу 2010 года. Косвенное подтверждение прогресса в этом проекте — засекречивание в 2009 году многих аспектов деятельности группы Ван Бларигана.


У кого шатун длиннее Значительная часть потерь на трение в обычных ДВС приходится на повороты шатуна относительно поршня. Короткие шатуны поворачиваются на больший угол, нежели длинные. В OPOC очень длинные и сравнительно тяжелые шатуны, которые снижают потери на трение. Уникальная конструкция шатунов OPOC не требует использования поршневых пальцев для внутренних поршней. Вместо них применяются радиальные вогнутые гнезда большого диаметра, внутри которых скользит головка шатуна. Теоретически такая конструкция узла позволяет сделать шатун длиннее обычного на 67%. В обычном ДВС серьезные потери на трение возникают в нагруженных подшипниках коленвала во время рабочего такта. В OPOC этой проблемы не существует вовсе — линейные разнонаправленные нагрузки на внутренний и внешний поршни полностью компенсируют друг друга. Поэтому вместо пяти опорных подшипников коленвала для OPOC требуется лишь два.

В чем преимущества и минусы работающих двигателей на магнитной энергии

Преимуществами магнитных двигателей является их полная автономия, стопроцентная экономия топлива, уникальная возможность из средств, находящихся под руками, организовать в любом требуемом месте установку. Также явным плюсом выглядит то, что мощный прибор, изготовленный на магнитах может обеспечивать жилое помещение энергией, а также такой фактор, как возможность гравитационному мотору работать до тех пор, пока он не износится. При этом даже перед физической кончиной он способен выдавать максимум энергии.

Однако у него имеются и определенные недостатки:

  • доказано, что магнитное поле весьма негативно воздействует на здоровье, особенно этим отличается реактивный движок;
  • хотя имеются положительные результаты экспериментов, большинство моделей совсем не функционируют в естественных условиях;
  • приобретение готового устройства еще не гарантирует, что оно будет успешно подключено;
  • когда появится желание купить магнитный поршневой или импульсный двигатель, стоит быть настроенным на то, что он будет иметь слишком завышенную стоимость.

История возникновения теории

Теорию нескончаемой работы механизма рассматривали с давних времен. Аристотель и его современники отрицали возможность создания такой системы искусственным путем. Свою точку зрения они объясняли тем, что условия, которые могут удовлетворить данную систему, не работают на Земле. Самые приближенные тела, которые соответствуют таким требованиям, находятся в космосе. В начале Х столетия индийский поэт и ученый описал круг с беспрерывным движением. Апогеем развития теории считаются Средние века, когда максимально развилось строение храмов, соборов, дворцов.

Как самостоятельно собрать подобный двигатель

Подобные самоделки пользуются неизменным спросом, о чем свидетельствуют практически все форумы электриков. Из-за этого следует подробнее рассмотреть, каким же образом можно самостоятельно собрать дома работающий магнитный двигатель.

То приспособление, которое сейчас мы вместе попробуем сконструировать, будет состоять из соединенных трех валов, причем они должны скрепляться так, чтобы центральный вал был прямо повернут к боковым. По центру среднего вала необходимо прикрепить диск, изготовленный из люцита и имеющий диаметр около десяти сантиметров, а его толщина составляет немногим больше одного сантиметра. Наружные валы также должны оснащаться дисками, но уже вдвое меньшего диаметра. На этих дисках закрепляются небольшие магниты. Из них восемь штук крепят на диск большего диаметра, а на маленькие — по четыре.

При этом ось, где расположены отдельные магниты, должна располагаться параллельно плоскости валов. Их устанавливают так, чтобы концы магнитов проходили с минутным проблеском возле колес. Когда эти колеса приводятся руками в движение, то полюсы магнитной оси станут синхронизироваться. Чтобы получить ускорение настоятельно рекомендуется в основании системы установить брусок из алюминия так, чтобы конец его немного соприкасался с магнитными деталями. Выполнив подобные манипуляции, можно будет получить конструкцию, которая будет вращаться, выполняя полный оборот за две секунды.

При этом приводы необходимо устанавливать определенным образом, когда все валы будут вращать относительно других аналогично. Естественно, когда выполнить на систему сторонним предметом тормозящее воздействие, то она прекратит вращение. Именно такой вечный двигатель на магнитной основе впервые изобрел Бауман, однако у него не получилось запатентовать изобретение, поскольку в то время устройство относилось к той категории разработок, на которые патент не выдавался.

Этот магнитный двигатель интересен тем, что совершенно не нуждается во внешних энергетических затратах. Только магнитное поле вызывает вращение механизма. Из-за этого стоит попробовать самостоятельно соорудить вариант подобного устройства.

Для выполнения эксперимента потребуется заготовить:

  • диск, изготовленный из оргстекла;
  • двухсторонний скотч;
  • заготовку, выточенную из шпинделя, а затем закрепленную на стальном корпусе;
  • магниты.

Важно: последние элементы необходимо слегка подточить с одной из сторон под углом, тогда можно будет получить более наглядный эффект.

На заготовку из оргстекла в виде диска по всему периметру требуется наклеить с помощью двухстороннего скотча кусочки магнита. Располагать их необходимо наружу сточенными краями. При этом следует обязательно проследить, чтобы все сточенные края каждого магнита обязательно имели одностороннее направление.

В результате полученный диск, на котором расположены магниты, необходимо закрепить на шпинделе, а затем проверить, насколько свободно он будет вращаться, чтобы не допустить ни малейшего цепляния. Когда к выполненной конструкции поднести маленький магнит, аналогичный тем, которые уже наклеены на оргстекло, то ничего не должно измениться. Хотя если попробовать сам диск немного покрутить, то станет заметен небольшой эффект, хотя и весьма незначительный.

Теперь следует поднести больший размерами магнит и понаблюдать, как изменится ситуация. При подкручивании рукой диска механизм останавливается все равно в промежутке, имеющемся между магнитами.

Когда взять только половинку магнита, который поднести к изготовленному механизму, зрительно видно, что после легкого подкручивания он немного продолжает движение из-за воздействия слабого магнитного поля. Осталось проверить, каким будет наблюдаться вращение, если поочередно убирать магнитики с диска, делая между ними большие промежутки. И этот эксперимент обречен на фиаско — диск неизменно будет останавливаться точно в магнитных промежутках.

Проведя длительные исследования, каждый сможет воочию убедиться, что подобным образом не получится изготовить магнитный двигатель. Следует поэкспериментировать с иными вариантами.

Магнитный двигатель своими руками

В чем преимущества и минусы работающих двигателей на магнитной энергии.

Практически все происходящее в нашем быту целиком зависит от электроэнергии, однако существуют некоторые технологии, позволяющие совсем избавиться от проводной энергии. Давайте вместе рассмотрим, можно ли изготовить магнитный двигатель своими руками, в чем состоит принцип его работы, как он устроен.

Принцип работы магнитного двигателя

Сейчас существует понятие, что вечные двигатели могут быть первого и второго вида. К первому относятся устройства, производящие самостоятельно энергию – как бы из воздуха, а вот второй вариант – двигатели, получающие эту энергию извне, в ее качестве выступает вода, солнечные лучи, ветер, а затем устройство преобразовывает полученную энергию в электричество. Если рассматривать законы термодинамики, то каждая из этих теорий практически неосуществима, однако с подобным утверждением совершенно не согласны некоторые ученые. Именно они начали разрабатывать вечные двигатели, относящиеся ко второму типу, работающие на получаемой от магнитного поля энергии.

Разрабатывали подобный «вечный двигатель» множество ученых, причем во разное время. Если рассматривать конкретнее, то наибольший вклад в такое дело, как развитие теории создания магнитного двигателя совершили Василий Шкондин, Николай Лазарев, Никола Тесла. Помимо них хорошо известны разработки Перендева, Минато, Говарда Джонсона, Лоренца.

Все они доказывали, что силы, заключенные в постоянных магнитах, имеют огромную, постоянно возобновляемую энергию, которая пополняется из мирового эфира. Тем не менее, суть работы постоянных магнитов, а также их действительно аномальную энергетику никто на планете до сих пор не изучил. Именно поэтому так никто не смог пока достаточно эффективно применить магнитное поле для того, чтобы получить действительно полезную энергию.

Сейчас еще никто не смог создать полноценного магнитного двигателя, однако существует достаточное количество весьма правдоподобных устройств, мифов и теорий, даже вполне обоснованных научных работ, которые посвящены разработке магнитного двигателя. Всем известно, что для сдвига притянутых постоянных магнитов требуется значительно меньше усилий, нежели для того, чтобы их оторвать один от другого. Именно это явление чаще всего используется, чтобы создать настоящий «вечный» линейный двигатель на основе магнитной энергии.

Каким должен быть настоящий магнитный двигатель

В общем, выглядит подобное устройство следующим образом.

  1. Катушка индуктивности.
  2. Магнит подвижный.
  3. Пазы катушек.
  4. Центральная ось;
  5. Шарикоподшипник;
  6. Стойки.
  7. Диски;
  8. Постоянные магниты;
  9. Закрывающие магниты диски;
  10. Шкив;
  11. Приводной ремень.
  12. Магнитный двигатель.

Любое устройство, которое изготовлено на подобном принципе, вполне успешно может быть использовано для выработки по-настоящему аномальной электрической и механической энергии. Причем, если применять его как генераторный электрический узел – то он способен вырабатывать электроэнергию такой мощности, которая существенно превышает аналогичное изделие, в виде механического приводного двигателя.

Теперь разберем подробнее, что вообще представляет из себя магнитный двигатель, а также почему множество людей пытаются разработать и воплотить в реальность эту конструкцию, видя именно в ней заманчивое будущее. Действительно настоящий двигатель этой конструкции должен функционировать исключительно только на магнитах, при этом используя непосредственно для перемещения всех внутренних механизмов их постоянно выделяемую энергию.

Важно: основной проблемой разнообразных конструкций основанных именно на использовании постоянных магнитов, становится то, что они склонны стремиться к статическому положению, именуемому равновесием.

Когда рядом привинтить два достаточно сильных магнита, то они двигаться будут только до момента, когда будет достигнуто на минимально возможной удаленности максимальное притяжение между полюсами. В реальности они просто друг к другу повернутся. Поэтому каждый изобретатель разнообразных магнитных двигателей пытается сделать переменным притяжение магнитов за счет механических свойств самого двигателя или использует функцию своеобразного экранирования.

При этом магнитные двигатели в чистом виде очень неплохи по своей сущности. А если добавить к ним реле и управляющий контур, использовать гравитацию земли и дисбаланс, то они становятся действительно идеальными. Их смело можно именовать «вечными» источниками поставляемой бесплатной энергии! Есть сотни примеров всевозможных магнитных двигателей, начиная от наиболее примитивных, которые можно собрать собственноручно и заканчивая японскими серийными экземплярами.

В чем преимущества и минусы работающих двигателей на магнитной энергии

Преимуществами магнитных двигателей является их полная автономия, стопроцентная экономия топлива, уникальная возможность из средств, находящихся под руками, организовать в любом требуемом месте установку. Также явным плюсом выглядит то, что мощный прибор, изготовленный на магнитах может обеспечивать жилое помещение энергией, а также такой фактор, как возможность гравитационному мотору работать до тех пор, пока он не износится. При этом даже перед физической кончиной он способен выдавать максимум энергии.

Однако у него имеются и определенные недостатки:

  • доказано, что магнитное поле весьма негативно воздействует на здоровье, особенно этим отличается реактивный движок;
  • хотя имеются положительные результаты экспериментов, большинство моделей совсем не функционируют в естественных условиях;
  • приобретение готового устройства еще не гарантирует, что оно будет успешно подключено;
  • когда появится желание купить магнитный поршневой или импульсный двигатель, стоит быть настроенным на то, что он будет иметь слишком завышенную стоимость.

 

Как самостоятельно собрать подобный двигатель

Подобные самоделки пользуются неизменным спросом, о чем свидетельствуют практически все форумы электриков. Из-за этого следует подробнее рассмотреть, каким же образом можно самостоятельно собрать дома работающий магнитный двигатель.

То приспособление, которое сейчас мы вместе попробуем сконструировать, будет состоять из соединенных трех валов, причем они должны скрепляться так, чтобы центральный вал был прямо повернут к боковым. По центру среднего вала необходимо прикрепить диск, изготовленный из люцита и имеющий диаметр около десяти сантиметров, а его толщина составляет немногим больше одного сантиметра. Наружные валы также должны оснащаться дисками, но уже вдвое меньшего диаметра. На этих дисках закрепляются небольшие магниты. Из них восемь штук крепят на диск большего диаметра, а на маленькие — по четыре.

При этом ось, где расположены отдельные магниты, должна располагаться параллельно плоскости валов. Их устанавливают так, чтобы концы магнитов проходили с минутным проблеском возле колес. Когда эти колеса приводятся руками в движение, то полюсы магнитной оси станут синхронизироваться. Чтобы получить ускорение настоятельно рекомендуется в основании системы установить брусок из алюминия так, чтобы конец его немного соприкасался с магнитными деталями. Выполнив подобные манипуляции, можно будет получить конструкцию, которая будет вращаться, выполняя полный оборот за две секунды.

При этом приводы необходимо устанавливать определенным образом, когда все валы будут вращать относительно других аналогично. Естественно, когда выполнить на систему сторонним предметом тормозящее воздействие, то она прекратит вращение. Именно такой вечный двигатель на магнитной основе впервые изобрел Бауман, однако у него не получилось запатентовать изобретение, поскольку в то время устройство относилось к той категории разработок, на которые патент не выдавался.

Этот магнитный двигатель интересен тем, что совершенно не нуждается во внешних энергетических затратах. Только магнитное поле вызывает вращение механизма. Из-за этого стоит попробовать самостоятельно соорудить вариант подобного устройства.

Для выполнения эксперимента потребуется заготовить:

  • диск, изготовленный из оргстекла;
  • двухсторонний скотч;
  • заготовку, выточенную из шпинделя, а затем закрепленную на стальном корпусе;
  • магниты.

Важно: последние элементы необходимо слегка подточить с одной из сторон под углом, тогда можно будет получить более наглядный эффект.

На заготовку из оргстекла в виде диска по всему периметру требуется наклеить с помощью двухстороннего скотча кусочки магнита. Располагать их необходимо наружу сточенными краями. При этом следует обязательно проследить, чтобы все сточенные края каждого магнита обязательно имели одностороннее направление.

В результате полученный диск, на котором расположены магниты, необходимо закрепить на шпинделе, а затем проверить, насколько свободно он будет вращаться, чтобы не допустить ни малейшего цепляния. Когда к выполненной конструкции поднести маленький магнит, аналогичный тем, которые уже наклеены на оргстекло, то ничего не должно измениться. Хотя если попробовать сам диск немного покрутить, то станет заметен небольшой эффект, хотя и весьма незначительный.

Теперь следует поднести больший размерами магнит и понаблюдать, как изменится ситуация. При подкручивании рукой диска механизм останавливается все равно в промежутке, имеющемся между магнитами.

Когда взять только половинку магнита, который поднести к изготовленному механизму, зрительно видно, что после легкого подкручивания он немного продолжает движение из-за воздействия слабого магнитного поля. Осталось проверить, каким будет наблюдаться вращение, если поочередно убирать магнитики с диска, делая между ними большие промежутки. И этот эксперимент обречен на фиаско — диск неизменно будет останавливаться точно в магнитных промежутках.

Проведя длительные исследования, каждый сможет воочию убедиться, что подобным образом не получится изготовить магнитный двигатель. Следует поэкспериментировать с иными вариантами.

Заключение

Магнитомеханическое явление, заключающееся в необходимости применять действительно незначительные усилия, чтобы сдвигать магниты, если сравнивать с попыткой их отрыва, использовано повсеместно для создания, так называемого, «вечного» линейного магнитного мотора-генератора.

Многие верят, что очень скоро наступит время, когда мощную энергию человечество сможет получать без использования газа и нефтепродуктов. На самом деле гигаватты электроэнергии, которая будет совершенно бесплатной, можно получать, если руководствоваться только магнетизмом, законами электростатики, силы тяготения и постулатами Архимеда. опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

Магнитный вечный двигатель делаем своими руками. Импульсный магнитный двигатель своими руками Электродвигатель на постоянных магнитах принцип работы

Эта статья посвящена рассмотрению моторов, работающих на постоянных магнитах, с помощью которых предпринимаются попытки получить КПД>1 путем изменения конфигурации схемы соединений, схем электронных переключателей и магнитных конфигураций. Представлено несколько конструкций, которые можно рассматривать в качестве традиционных, а также несколько конструкций, которые представляются перспективными. Надеемся, что эта статья поможет читателю разобраться в сущности данных устройств перед началом инвестирования подобных изобретений или получением инвестиций на их производство. Информацию о патентах США можно найти на сайте http://www.uspto.gov .

Введение

Статья, посвященная моторам, работающим на постоянных магнитах, не может считаться полной без предварительного обзора основных конструкций, которые представлены на современном рынке. Промышленные моторы, работающие на постоянных магнитах, обязательно являются двигателями постоянного тока, так как используемые в них магниты постоянно поляризуются перед сборкой. Многие щеточные моторы, работающие на постоянных магнитах, подключаются к бесщеточным электродвигателям, что способно снизить силу трения и изнашиваемость механизма. Бесщеточные моторы включают в себя электронную коммутацию или шаговые электромоторы. Шаговый электромотор, часто применяемый в автомобильной промышленности, содержит более длительный рабочий вращающий момент на единицу объема, по сравнению с другими электромоторами. Однако обычно скорость подобных моторов значительно ниже. Конструкция электронного переключателя может быть использована в переключаемом реактивном синхронном электродвигателе. В наружном статоре подобного электродвигателя вместо дорогостоящих постоянных магнитов используется мягкий металл, в результате чего получается внутренний постоянный электромагнитный ротор.

По закону Фарадея, вращающий момент в основном возникает из-за тока в обкладках бесщеточных двигателей. В идеальном моторе, работающем на постоянных магнитах, линейный вращающий момент противопоставлен кривой частоты вращения. В моторе на постоянных магнитах конструкции как внешнего, так и внутреннего ротора являются стандартными.

Чтобы обратить внимание на многие проблемы, связанные с рассматриваемыми моторами, в справочнике говорится о существовании «очень важной взаимосвязи между моментом вращения и обратной электродвижущей силой (эдс), чему иногда не придается значения». Это явление связано с электродвижущей силой (эдс), которая создается путем применения изменяющегося магнитного поля (dB/dt). Пользуясь технической терминологией, можно сказать, что «постоянная вращающего момента» (N-m/amp) равняется «постоянной обратной эдс» (V/рад/сек). Напряжение на зажимах двигателя равняется разности обратной эдс и активного (омического) падения напряжения, что обусловлено наличием внутреннего сопротивления. (Например, V=8,3 V, обратная эдс=7,5V, активное (омическое) падение напряжения=0,8V). Этот физический принцип, заставляет нас обратиться к закону Ленца, который был открыт в 1834г., через три года после того, как Фарадеем был изобретен униполярный генератор. Противоречивая структура закона Ленца, также как используемое в нем понятие «обратной эдс», являются частью так называемого физического закона Фарадея, на основе которого действует вращающийся электропривод. Обратная эдс — это реакция переменного тока в цепи. Другими словами, изменяющееся магнитное поле естественно порождает обратную эдс, так как они эквивалентны.

Таким образом, прежде чем приступать к изготовлению подобных конструкций, необходимо тщательно проанализировать закон Фарадея. Многие научные статьи, такие как «Закон Фарадея — Количественные эксперименты» способны убедить экспериментатора, занимающегося новой энергетикой, в том, что изменение, происходящее в потоке и вызывающее обратную электродвижущую силу (эдс), по существу равно самой обратной эдс. Этого нельзя избежать при получении избыточной энергии, до тех пор, пока количество изменений магнитного потока во времени остается непостоянным. Это две стороны одной медали. Входная энергия, вырабатываемая в двигателе, конструкция которого содержит катушку индуктивности, естественным образом будет равна выходной энергии. Кроме того, по отношению к «электрической индукции» изменяемый поток «индуцирует» обратную эдс.

Двигатели с переключаемым магнитным сопротивлением

При исследовании альтернативного метода индуцированного движения в преобразователе постоянного магнитного движения Эклина (патент № 3,879,622) используются вращающиеся клапаны для переменного экранирования полюсов подковообразного магнита. В патенте Эклина №4,567,407 («Экранирующий унифицированный мотор- генератор переменного тока, обладающий постоянной обкладкой и полем») повторно высказывается идея о переключении магнитного поля путем «переключения магнитного потока». Эта идея является общей для моторов подобного рода. В качестве иллюстрации этого принципа Эклин приводит следующую мысль: «Роторы большинства современных генераторов отталкиваются по мере их приближения к статору и снова притягиваются статором, как только минуют его, в соответствии с законом Ленца. Таким образом, большинство роторов сталкиваются с постоянными неконсервативными рабочими силами, и поэтому современные генераторы требуют наличия постоянного входного вращающего момента». Однако «стальной ротор унифицированного генератора переменного тока с переключением потока фактически способствует входному вращающему моменту для половины каждого поворота, так как ротор всегда притягивается, но никогда не отталкивается. Подобная конструкция позволяет некоторой части тока, подведенного к обкладкам двигателя, подавать питание через сплошную линию магнитной индукции к выходным обмоткам переменного тока…» К сожалению, Эклину пока не удалось сконструировать самозапускающуюся машину.

В связи с рассматриваемой проблемой стоит упомянуть патент Ричардсона №4,077,001, в котором раскрывается сущность движения якоря с низким магнитным сопротивлением как в контакте, так и вне его на концах магнита (стр.8, строка 35). Наконец, можно привести патент Монро №3,670,189, где рассматривается схожий принцип, в котором, однако, пропускание магнитного потока игается с помощью прохождения полюсов ротора между постоянными магнитами полюсов статора. Требование 1, заявленное в этом патенте, по своему объему и детальности кажется удовлетворительным для доказательства патентоспособности, однако, его эффективность остается под вопросом.

Кажется неправдоподобным, что, являясь замкнутой системой, мотор с переключаемым магнитным сопротивлением способен стать самозапускающимся. Многие примеры доказывают, что небольшой электромагнит необходим для приведения работы якоря в синхронизированный ритм. Магнитный двигатель Ванкеля в своих общих чертах может быть приведен для сравнения с представленным типом изобретения. Патент Джаффе №3,567,979 также может использоваться для сравнения. Патент Минато №5,594,289, подобный магнитному двигателю Ванкеля, является достаточно интригующим для многих исследователей.

Изобретения, подобные мотору Ньюмана (патентная заявка США №06/179,474), позволили обнаружить тот факт, что нелинейный эффект, такой как импульсное напряжение, благоприятен для преодоления эффекта сохранения силы Лоренца по закону Ленца. Кроме того, сходным является механический аналог инерциального двигателя Торнсона, в котором используется нелинейная ударная сила для передачи импульса вдоль оси перпендикулярно плоскости вращения. Магнитное поле содержит момент импульса, который становится очевидным при определенных условиях, например, при парадоксе диска Фейнмана, где он сохраняется. Импульсный способ может быть выгодно использован в данном моторе с магнитным переключаемым сопротивлением, при условии, если переключение поля будет производиться достаточно быстро при стремительном нарастания мощности. Тем не менее, необходимы дополнительные исследования по этой проблеме.

Наиболее удачным вариантом переключаемого реактивного электромотора является устройство Гарольда Аспдена (патент №4,975,608), который оптимизирует пропускную способность входного устройства катушки и работу над изломом B-H кривой. Переключаемые реактивные двигатели также объясняются в .

Мотор Адамса получил широкое признание. Например, в журнале Nexus был опубликован одобрительный отзыв, в котором это изобретение называется первым из когда-либо наблюдавшихся двигателей свободной энергии. Однако работа этой машины может быть полностью объяснена законом Фарадея. Генерация импульсов в смежных катушках, приводящих в движение намагниченный ротор, фактически происходит по той же схеме, что и в стандартном переключаемом реактивном моторе.

Замедление, о котором Адамс говорит в одном из своих Интернет сообщений, посвященных обсуждению изобретения, может объясняться экспонентным напряжением (L di/dt) обратной эдс. Одним из последних добавлений к этой категории изобретений, которые подтверждают успешность работы мотора Адамса, является международная патентная заявка №00/28656, присужденная в мае 2000г. изобретателям Бритс и Кристи, (генератор LUTEC). Простота этого двигателя легко объясняется наличием переключаемых катушек и постоянного магнита на роторе. Кроме того, в патенте содержится пояснение о том, что «постоянный ток, подводимый к катушкам статора, производит силу магнитного отталкивания и является единственным током, подводимым снаружи ко всей системе для создания совокупного движения…» Хорошо известным является тот факт, что все моторы работают по этому принципу. На странице 21 указанного патента содержится объяснение конструкции, где изобретатели выражают желание «максимизировать воздействие обратной эдс, которое способствует поддержанию вращения ротора/якоря электромагнита в одном направлении». Работа всех моторов данной категории с переключаемым полем направлена на получение этого эффекта. Рисунок 4А, представленный в патенте Бритс и Кристи, раскрывает источники напряжения «VA, VB и VC». Затем на странице 10 приводится следующее утверждение: «В это время ток подводится от источника питания VA и продолжает подводиться, пока щетка 18 не перестает взаимодействовать с контактами с 14 по 17». Нет ничего необычного в том, что эту конструкцию можно сравнить с более сложными попытками, ранее упомянутыми в настоящей статье. Все эти моторы требуют наличия электрического источника питания, и ни один из них не является самозапускающимся.

Подтверждает заявление о том, что была получена свободна энергия то, что работающая катушка (в импульсном режиме) при прохождении мимо постоянного магнитного поля (магнита) не использует для создания тока аккумуляторную батарейку. Вместо этого было предложено использовать проводники Вейганда , а это вызовет колоссальный Баркгаузеновский скачок при выравнивании магнитного домена, а импульс приобретет очень четкую форму. Если применить к катушке проводник Вейганда, то он создаст для нее достаточно большой импульс в несколько вольт, когда она будет проходить изменяющееся внешнее магнитное поле порога определенной высоты. Таким образом, для этого импульсного генератора входная электрическая энергия не нужна вовсе.

Тороидальный мотор

По сравнению с существующими на современном рынке двигателями, необычную конструкцию тороидального мотора можно сравнить с устройством, описанным в патенте Лангли (№4,547,713). Данный мотор содержит двухполюсный ротор, расположенный в центре тороида. Если выбрана однополюсная конструкция (например, с северными полюсами на каждом конце ротора), то полученное устройство будет напоминать радиальное магнитное поле для ротора, использованного в патенте Ван Гила (№5,600,189). В патенте Брауна №4,438,362, права на который принадлежат компании Ротрон, для изготовления ротора в тороидальном разряднике используются разнообразные намагничивающиеся сегменты. Наиболее ярким примером вращающегося тороидального мотора является устройство, описанное в патенте Юинга (№5,625,241), который также напоминает уже упомянутое изобретение Лангли. На основе процесса магнитного отталкивания в изобретении Юинга используется поворотный механизм с микропроцессорным управлением в основном для того, чтобы воспользоваться преимуществом, предоставляемым законом Ленца, а также с тем, чтобы преодолеть обратную эдс. Демонстрацию работы изобретения Юинга можно увидеть на коммерческом видео «Free Energy: The Race to Zero Point». Является ли это изобретение наиболее высокоэффективным из всех двигателей, в настоящее время представленных на рынке, остается под вопросом. Как утверждается в патенте: «функционирование устройства в качестве двигателя также возможно при использовании импульсного источника постоянного тока». Конструкция также содержит программируемое логическое устройство управления и схему управления мощностью, которые по предположению изобретателей должны сделать его более эффективным, чем 100%.

Даже если модели мотора докажут свою эффективность в получении вращающегося момента или преобразования силы, то из-за движущихся внутри них магнитов эти устройства могут остаться без практического применения. Коммерческая реализация этих типов моторов может быть невыгодной, так как на современном рынке существует множество конкурентоспособных конструкций.

Линейные моторы

Тема линейных индукционных моторов широко освещена в литературе. В издании объясняется, что эти моторы являются подобными стандартным асинхронным двигателям, в которых ротор и статор демонтированы и помещены вне плоскости. Автор книги «Движение без колес» Лэйтвайт известен созданием монорельсовых конструкций, предназначенных для поездов Англии и разработанных на основе линейных асинхронных моторов.

Патент Хартмана №4,215,330 представляет собой пример одного из устройств, в котором с помощью линейного мотора достигнуто перемещение стального шара вверх по намагниченной плоскости приблизительно на 10 уровней. Другое изобретение из этой категории описано в патенте Джонсона (№5,402,021), в котором использован постоянный дуговой магнит, установленный на четырехколесной тележке. Этот магнит подвергается воздействию со стороны параллельного конвейера с зафиксированными переменными магнитами. Еще одним не менее удивительным изобретением является устройство, описанное в другом патенте Джонсона (№4,877,983) и успешная работа которого наблюдалась в замкнутом контуре в течение нескольких часов. Необходимо отметить, что генераторная катушка может быть размещена в непосредственной близости от движущегося элемента, так чтобы каждый его пробег сопровождался электрическим импульсом для зарядки батареи. Устройство Хартмана также может быть сконструировано как круговой конвейер, что позволяет продемонстрировать вечное движение первого порядка.

Патент Хартмана основывается на том же принципе, что и известный эксперимент с электронным спином, который в физике принято называть экспериментом Стерна-Герлаха. В неоднородном магнитном поле воздействие на некий объект с помощью магнитного момента вращения происходит за счет градиента потенциальной энергии. В любом учебнике физики можно найти указание на то, что этот тип поля, сильный на одном конце и слабый на другом, способствует возникновению однонаправленной силы, обращенной в сторону магнитного объекта и равного dB/dx. Таким образом, сила, толкающая шар по намагниченной плоскости на 10 уровней вверх в направлении, полностью согласуется с законами физики.

Используя промышленые качественные магниты (включая сверхпроводящие магниты, при температуре окружающей среды, разработка которых в настоящее время находится на завершающей стадии), будет возможна демонстрация перевозки грузов, обладающих статочно большой массой, без затрат электричества на техническое обслуживание. Сверхпроводящие магниты обладают необычной способностью годами сохранять исходное намагниченное поле, не требуя периодической подачи питания для восстановления напряженности исходного поля. Примеры того положения, которое сложилось на современном рынке в области разработки сверхпроводниковых магнитов, приведены в патенте Охниши №5,350,958 (недостаток мощности, производимой криогенной техникой и системами освещения), а также в переизданной статье, посвященной магнитной левитации .

Статический электромагнитный момент импульса

В провокационном эксперименте с использованием цилиндрического конденсатора исследователи Грэм и Лахоз развивают идею, опубликованную Эйнштейном и Лаубом в 1908 году, в которой говорится о необходимости наличия дополнительного периода времени для сохранения принципа действия и противодействия. Цитируемая исследователями статья была переведена и опубликована в моей книге , представленной ниже. Грэм и Лахоз подчеркивают, что существует «реальная плотность момента импульса», и предлагают способ наблюдения этого энергетического эффекта в постоянных магнитах и электретах.

Эта работа является вдохновляющим и впечатляющим исследованием, использующим данные, основанные на работах Эйнштейна и Минковского. Это исследование может иметь непосредственное применение при создании, как униполярного генератора, так и магнитного преобразователя энергии, описанного ниже. Данная возможность обусловлена тем, что оба устройства обладают аксиальным магнитным и радиальным электрическим полями, подобно цилиндрическому конденсатору, использовавшемуся в эксперименте Грэма и Лахоза.

Униполярный мотор

В книге подробно описываются экспериментальные исследования и история изобретения, сделанного Фарадеем. Кроме того, уделяется внимание тому вкладу, которое привнес в данное исследование Тесла. Однако в недавнем времени был предложен ряд новых конструкторских решений униполярного двигателя с несколькими роторами, который можно сравнить с изобретением Дж. Р.Р. Серла.

Возобновление интереса к устройству Серла также должно привлечь внимание к униполярным двигателям. Предварительный анализ позволяет обнаружить существование двух различных явлений, происходящих одновременно в униполярном двигателе. Одно из явлений можно назвать эффектом «вращения» (№1), а второй — эффектом «свертывания» (№2). Первый эффект может быть представлен в качестве намагниченных сегментов некоего воображаемого сплошного кольца, которые вращаются вокруг общего центра. Примерные варианты конструкций, позволяющих произвести сегментацию ротора униполярного генератора, представлены в .

С учетом предложенной модели может быть рассчитан эффект №1 для силовых магнитов Тесла, которые намагничиваются по оси и распологаются вблизи одиночного кольца с диаметром 1 метр. При этом эдс, образующаяся вдоль каждого ролика, составляет более 2V (электрическое поле, направленное радиально из внешнего диаметра роликов к внешнему диаметру смежного кольца) при частоте вращения роликов 500 оборотов в минуту. Стоит отметить, что эффект №1 не зависит от вращения магнита. Магнитное поле в униполярном генераторе связано с пространством, а не с магнитом, поэтому вращение не будет оказывать влияния на эффект силы Лоренца, имеющий место при работе этого универсального униполярного генератора .

Эффект №2, имеющий место внутри каждого роликового магнита, описан в , где каждый ролик рассматривается как небольшой униполярный генератор. Этот эффект признается чем-то более слабым, так как электричество вырабатывается от центра каждого ролика к периферии. Эта конструкция напоминает униполярный генератор Тесла , в котором вращающийся приводной ремень связывает внешний край кольцевого магнита. При вращении роликов, имеющих диаметр, приблизительно равный одной десятой метра, которое осуществляется вокруг кольца с диаметром 1 метр и при отсутствии буксировки роликов, вырабатываемое напряжение будет равно 0,5 Вольт. Конструкция кольцевого магнетика, предложенная Серлом, будет способствовать усилению B-поля ролика.

Необходимо отметить, что принцип наложения применим к обоим этим эффектам. Эффект №1 представляет собой однородное электронное поле, существующее по диаметру ролика. Эффект №2 — это радиальный эффект, что уже было отмечено выше . Однако фактически только эдс, действующая в сегменте ролика между двумя контактами, то есть между центром ролика и его краем, который соприкасается с кольцом, будет способствовать возникновению электрического тока в любой внешней цепи. Понимание данного факта означает, что эффективное напряжение, возникающее при эффекте №1 составит половину существующей эдс, или чуть больше 1 Вольт, что примерно в два раза больше, чем вырабатываемое при эффекте №2. При применении наложения в ограниченном пространстве мы также обнаружим, что два эффекта противостоят друг другу, и две эдс должны вычитаться. Результатом этого анализа является то, что примерно 0,5 Вольт регулируемой эдс будет представлено для выработки электричества в отдельной установке, содержащей ролики и кольцо с диаметром 1 метр. При получении тока возникает эффект шарикоподшипникового двигателя , который фактически толкает ролики, допуская приобретение роликовыми магнитами значительной электропроводности. (Автор благодарит за данное замечание Пола Ла Виолетте).

В связанной с данной темой работе исследователями Рощиным и Годиным были опубликованы результаты экспериментов с изобретенным ими однокольцевым устройством, названным «Преобразователем магнитной энергии» и имеющим вращающиеся магниты на подшипниках. Устройство было сконструировано как усовершенствование изобретения Серла. Анализ автора этой статьи, приведенный выше, не зависит от того, какие металлы использовались для изготовления колец в конструкции Рощина и Година. Их открытия достаточно убедительны и детальны, что позволит возобновить интерес многих исследователей к этому типу моторов.

Заключение

Итак, существует несколько моторов на постоянных магнитах, которые могут способствовать появлению вечного двигателя с кпд, превышающим 100%. Естественно, необходимо принимать во внимание концепции сохранения энергии, а также должен исследоваться источник предполагаемой дополнительной энергии. Если градиенты постоянного магнитного поля претендуют на появление однонаправленной силы, как это утверждается в учебниках, то наступит момент, когда они будут приняты для выработки полезной энергии. Конфигурация роликового магнита, который в настоящее время принято называть «преобразователем магнитной энергии», также представляет собой уникальную конструкцию магнитного мотора. Проиллюстрированное Рощиным и Годиным в Российском патенте №2155435 устройство является магнитным электродвигателем-генератором, который демонстрирует возможность выработки дополнительной энергии. Так как работа устройства основана на циркулировании цилиндрических магнитов, вращающихся вокруг кольца, то конструкция фактически представляет собой скорее генератор, чем мотор. Однако это устройство является действующим мотором, так как для запуска отдельного электрогенератора используется вращающий момент, вырабатываемый самоподдерживающимся движением магнитов.

Литература

1. Motion Control Handbook (Designfax, May, 1989, p.33)

2. «Faraday’s Law — Quantitative Experiments», Amer. Jour. Phys.,

3. Popular Science, June, 1979

4. IEEE Spectrum 1/97

5. Popular Science (Популярная наука), May, 1979

6. Schaum’s Outline Series, Theory and Problems of Electric

Machines andElectromechanics (Теория и проблемы электрических

машин и электромеханики) (McGraw Hill, 1981)

7. IEEE Spectrum, July, 1997

9. Thomas Valone, The Homopolar Handbook

10. Ibidem, p. 10

11. Electric Spacecraft Journal, Issue 12, 1994

12. Thomas Valone, The Homopolar Handbook, p. 81

13. Ibidem, p. 81

14. Ibidem, p. 54

Tech. Phys. Lett., V. 26, #12, 2000, p.1105-07

Томас Валон Integrity Research Institute, www.integrityresearchinstitute.org

1220 L St. NW, Suite 100-232, Washington, DC 20005

Карикатура вечного двигателя

Наука давно не стоит на месте и развивается все больше и больше. Благодаря науке было изобретено множество предметов, которыми мы пользуемся в повседневной жизни. Однако, на протяжении многих столетий перед наукой всегда стоял вопрос изобретения такого устройства, которое бы могло работать не потребляя никакой энергии извне, работая вечно. Такого результата добивались многие. Однако кому это удалось? Создан ли такой двигатель? Об этом и о многом другом мы и поговорим в нашей статье.

Двигатель Стирлинга простейшей конструкции. Свободнопоршневой. Игорь Белецкий

Что такое вечный двигатель?

Трудно представить современную человеческую жизнь без использования специальных машин, которые в разы облегчают жизнь людям. С помощью таких машин люди занимаются обработкой земли, добычей нефти, руды, а также просто передвигается. То есть, главной задачей таких машин является совершать работу. В любых машинах и механизмах перед тем, как совершить какую-либо работу, любая энергия переходит их одного вида в другой. Но существует один нюанс: нельзя получить энергии одного вида больше, чем иного при самых любых превращениях, поскольку это противоречит законам физики. Таким образом, вечный двигатель создать нельзя.

Но что же означает словосочетание «вечный двигатель»? Вечный двигатель – это такой двигатель, в котором в конечном результате превращения энергии вида получается больше, чем было в начале процесса. Данный вопрос о вечном двигателе занимает особое место в науке, в то время, как существовать не может. Это достаточно парадоксальный факт оправдывается тем, что все искания ученых в надежде изобрести вечный двигатель насчитывают уже более 8 веков. Эти поиски связаны прежде всего с тем, что существуют определенные представления о самом распространенном понятии физики энергии.

История возникновения вечного двигателя

Прежде чем описывать вечный двигатель, стоит обратиться к истории. Откуда же взялась ? Впервые идея о создании такого двигателя, которое бы приводило в работу машины, не используя специальную силу, появилась в Индии в седьмом веке. Но уже практический интерес к данной идее появился позже, уже в Европе в восьмом веке. Создание такого двигателя позволило бы существенно ускорить развитие науки энергетики, а также развить производительные силы.

Такой двигатель был необычайно полезен в то время. Двигатель был способен приводить в движение различные водяные насосы, крутить мельницы, а также поднимать различные грузы. Но средневековая наука была развита не настолько, чтобы делать такие большие открытия. Люди, которые мечтали создать вечный двигатель. Прежде всего они опирались на то, что движется всегда, то есть вечно. Примером тому служит движение солнца, луны, различных планет, течение рек и так далее. Однако, наука не стоит на своем. Именно поэтому, развиваясь, человечество пришло к созданию настоящего двигателя, который опирался не только на естественное стечение обстоятельств.

Вечный двигатель на магнитах

Первые аналоги современного вечного магнитного двигателя

В 20 веке произошло величайшее открытие – появление постоянного и изучение его свойств. К тому же, в том же веке появилась идея о создании магнитного двигателя. Такой двигатель должен был работать неограниченное количество времени, то есть бесконечно. Такой двигатель назвали вечным. Однако, слово «вечно» тут не совсем подходит. Вечного нет ничего, поскольку в любую минуту какая-либо часть такого магнита может отвалиться, либо какая-нибудь деталь отколется. Именно поэтому под словом «вечно» следует принимать такой механизм, который работает беспрерывно, не требуя при этом каких-либо затрат. К примеру, на топливо и так далее.

Но существует мнение, что вечного ничего нет, вечный магнит не может существовать по законам физики. Однако стоит подметить, что постоянный магнит излучает энергию постоянно, при этом совершенно не теряет своих магнитных свойств. Каждый магнит совершает работу беспрерывно. Во время данного процесса, магнит вовлекает в данное движения все молекулы, которые содержатся в окружающей среде специальным потоком, который называется эфир.

Американский БТГ выдвинут на Нобелевскую премию

A Brief Tour of the IEC Factory Floor

Это единственное и самое верное объяснение механизму действия такого магнитного двигателя. На данный момент трудно установить, кто создал первый двигатель, работающий на магнитах. Он сильно отличался от нашего современного. Однако существует мнение, что в трактате величайшего индийского математика Бхскара Ачарья есть упоминание о двигателе, работающем на магните.

В Европе первые сведения о создании вечного магнитного двигателя возникли также от важной персоны. Данное известие поступило в 13 веке, от Виллара д’Оннекура. Это был величайший французский архитектор и инженер. Он, как и многие деятели того века занимался различными делами, которые соответствовали профилю его профессии. А именно: строительство различных соборов, создание сооружений по подъему грузов. Кроме того, деятель занимался созданием пил с водным приводом и так далее. Кроме того, он оставил после себя альбом, в котором оставил чертежи и рисунки потомкам. Данная книга хранится в Париже, в национальной библиотеке.

Двигатель Перендева основанный на взаимодействии магнитов

Создание вечного магнитного двигателя

Когда же был создан первый вечный магнитный двигатель? В 1969 году был изготовлен первый современный рабочий проект магнитного двигателя. Сам корпус такого двигателя был полностью выполнен из дерева, сам двигатель находился вполне в рабочем состоянии. Но существовала одна проблема. Самой энергии хватало исключительно на вращение ротора, поскольку все магниты были достаточно слабыми, а других в то время просто не изобрели. Создателем такой конструкции был Майкл Брэди. Всю жизнь он посвятил на разработку двигателей и наконец в 90-х годах прошлого века он создал абсолютно новую модель вечного двигателя на магните, за что и получил патент.

На основе данного магнитного двигателя был сделан электрогенератор, который имел мощность 6 кВт. Силовым устройством являлся тот магнитный мотор, который использовал исключительно постоянные магниты. Однако, такой вид электрогенератора не обходился без своих определенных минусов. К примеру, обороты и мощность двигателя не зависели ни от каких факторов, к примеру, нагрузки, которая подключалась к электрогенератору.

Далее, шла подготовка к изготовлению электромагнитного мотора, в котором, кроме всех постоянных магнитов также использовались специальные катушки, которые называются электромагнитами. Такой мотор, работающий на электромагнит, мог успешно управлять силой момента вращения, а также самой скоростью вращения ротора. На основе двигателя нового поколения были созданы две мини электростанции. Генератор весит 350 килограмма.

Группы вечных двигателей

Магнитные двигатели и иные другие подразделяются на два вида. Первая группа вечных двигателей совершенно не извлекают энергию из окружающей среды (к примеру, тепло) Однако, при этом, физические и химические свойства двигателя по-прежнему остаются неизменными, не используя при этом энергии, кроме собственной. Как было сказано выше, именно такие машины просто не могут существовать, исходя из первого закона термодинамики. Вечные двигатели второго вида делают все с точностью наоборот. То есть их работа полностью зависит от внешних факторов. При работе они извлекают энергию из окружающей среды. Поглощая, допустим, тепло, они превращают такую энергию в механическую. Однако такие механизмы не могут существовать исходя из второго закона термодинамики. Проще говоря, первая группа относится к так называемым естественным двигателям. А вторая к физическим или искусственным двигателям.

Но к какой же группе отнести вечный магнитный двигатель? Конечно, к первой. При работе данного механизма энергия внешней среды совершенно не используется, напротив, механизм сам вырабатывает то количество энергии, которое ему необходимо.

Тейн Хайнс — презентация двигателя

Создание современного вечного магнитного двигателя

Каким же должен быть настоящий вечный магнитный двигатель нового поколения? Так, в 1985 году над этим задумался будущий изобретатель механизма Тейн Хайнс (Thane Heins). Он задумался над тем, как с помощью магнитов значительно улучшить генератор мощности. Таким образом, к 2006 году он все-таки изобрел то, о чем так долго мечтал. Именно в этом году произошло, то, что он никак не ожидал. Работая над своим изобретением, Хайнс соединил приодной вал обычного мотора вместе с ротором, на котором находились маленькие круглые магниты.

Они располагались на внешнем ободе ротора. Хайнс надеялся на то, что в период, когда ротор будет вращаться, магниты будут проходить через катушку, материалом которой служила обычная проволка. Данный процесс, по мнению Хайнса, должен был вызвать протекание тока. Таким образом, используя все вышесказанное, должен был получиться настоящий генератор. Однако, ротор, который работал на нагрузку, постепенно должен был замедляться. И, конечно, в конце ротор должен был остановиться.

Но Хайнс что-то не рассчитал. Таким образом, вместо того, чтобы остановиться, ротор начал ускорять свое движение до невероятной скорости, что привело к тому, что магниты разлетелись во все стороны. Удар магнитами был действительно огромной силы, что повредило стены лаборатории.

Проводя данный эксперимент, Хайнс надеялся на то, что при данном действии должно быть установлено специальное силовое магнитное поле, в котором и должен был появиться эффект, совершенно обратной ЭДС. Такой исход эксперимента является теоретически правильный. Данный исход опирается на закон Ленца. Данный закон проявляет себя физически как обычнейший закон трения в механике.

Но, увы, предполагаемый исход эксперимента вышел из-под контроля ученого-испытателя. Дело в том, что вместо результата, который хотел получить Хайнс, обычнейшее магнитное трение превратилось в самое, что ни на есть магнитное ускорение! Таким образом возник первый современный вечный магнитный двигатель. Хайнс считает, что, вращающиеся магниты, которые формируют поле с помощью стальных проводящих ротора, а также вала действуют на электрический мотор таким образом, что происходит превращение электрической энергии в совершенно иную, кинетическую.

Варианты разработок вечных двигателей

То есть, обратная ЭДС в нашем конкретном случае еще больше ускоряет мотор, которая соответственно заставляет вращаться ротор. То есть, таким образом, возникает процесс, имеющий положительную обратную связь. Сам изобретатель подтвердил данный процесс, заменив лишь одну деталь. Стальной вал Хайнс заменил непроводящей пластиковой трубкой. Это дополнение он сделал для того, чтобы ускорение в данном примере установки не было возможным.

И, наконец, 28 января 2008 года Хайнс испытал свой прибор Технологическом Институте Массачусетса. Что самое удивительное, прибор действительно функционировал! Однако, дальнейших новостей о создании вечного двигателя не поступало. У некоторых ученых существует мнение, что это лишь блеф. Однако сколько людей, столько и мнений.

Стоит отметить, что настоящие вечные двигатели можно обнаружить и во Вселенной, не изобретая ничего самостоятельно. Дело в том, что такие явления в астрономии называют белыми дырами. Данные белые дыры являются антиподами черных дыр, тем самым они могут быть источниками бесконечной энергии. К сожалению, данное утверждение не проверено, а существует оно лишь теоретически. Что уж говорить, если существует высказывание, что и сама Вселенная- это один большой и вечный двигатель.

Таким образом, в статье мы отразили все основные мысли по поводу магнитного двигателя, который может работать без остановки. К тому же, мы узнали о его создании, о существовании его современного аналога. К тому же, в статье можно найти имена различных изобретателей разных времен, которые трудились над созданием вечного двигателя, работающего на магните. Надеемся, что вы нашли что-то полезное для себя. Удачи!

Как разоряют и убивают изобретателей двигателей на воде. Почему беЗтопливные технологии под запретом

С давних пор многие ученые и изобретатели мечтали построить так называемый . Работа над этим вопросом не прекращается и в настоящее время. Основным толчком к исследованиям в данной области послужил надвигающийся топливный и энергетический кризис, который вполне может стать реальностью. Поэтому, уже в течение длительного времени разрабатывается такой вариант, как магнитный двигатель, схема которого основана на индивидуальных свойствах постоянных магнитов. Здесь главной движущей силой выступает энергия магнитного поля. Все ученые, инженеры и конструкторы, занимающиеся этой проблемой, видят основную цель в получении электрической, механической и прочих видов энергии за счет использования магнитных свойств.

Следует отметить, что все подобные изыскания проводятся, в основном, теоретически. На практике такой двигатель еще не создан, хотя определенные результаты уже имеются. Уже разработаны общие направления, позволяющие понять принцип работы этого устройства.

Из чего состоит магнитный двигатель

Конструкция магнитного двигателя коренным образом отличается от обыкновенного электрического мотора, где главной движущей силой является электрический ток.

Магнитный двигатель функционирует исключительно за счет постоянной энергии магнитов, приводящей в движение все части и детали механизма. Стандартная конструкция агрегата состоит из трех основных деталей. Кроме самого двигателя, здесь имеется статор, на который устанавливается электромагнит, а также, ротор, на котором размещается постоянный магнит.

Вместе с двигателем, на один и тот же вал, производится установка электромеханического генератора. Кроме того, весь агрегат оборудован статическим электромагнитом. Он выполнен в виде кольцевого магнитопровода, в котором вырезается сегмент или дуга. Электромагнит дополнительно оборудован . К ней производится подключение электронного коммутатора, с помощью которого обеспечивается реверсивный ток. Регулировка всех процессов осуществляется электронным коммутатором.

Принцип работы магнитного двигателя

В первых моделях применялись железные части, на которые должен был оказывать влияние магнит. Однако, чтобы вернуть такую деталь в исходное положение, нужно затратить столько же энергии.

Для решения этой проблемы был использован медный проводник с пропущенным по нему электрическим током, который мог притягиваться к магниту. При отключении тока, взаимодействие между проводником и магнитом прекращалось. В результате проведенных исследований была обнаружена прямая пропорциональная зависимость силы воздействия магнита от его мощности. Поэтому, при постоянном электрическом токе в проводнике и увеличивающейся силе магнита, воздействие этой силы на проводник также будет расти. С помощью повышенной силы будет вырабатываться ток, который, в свою очередь, будет проходить через проводник.

На этом принципе был разработан более совершенный магнитный двигатель, схема которого включает все основные этапы его работы. Его пуск производится электротоком, поступающим в индуктивную катушку. При этом, расположение полюсов постоянного магнита перпендикулярно к вырезанному зазору в электромагните. Возникает полярность, в результате которой начинается вращение постоянного магнита, установленного на роторе. Его полюса начинают притягиваться к электромагнитным полюсам с противоположным значением.

При совпадении разноименных полюсов, происходит выключение тока в катушке. Ротор, под действием собственного веса, вместе с проходит за счет инерции эту точку совпадения. Одновременно, в катушке изменяется направление тока, и полюса в очередном рабочем цикле принимают одноименное значение. Происходит отталкивание полюсов, заставляющее ротор дополнительно ускоряться.

Двигатели на протяжении многих лет используются для преобразования электрической энергии в механическую различного типа. Эта особенность определяет столь высокую его популярность: обрабатывающие станки, конвейеры, некоторые бытовые приборы – электродвигатели различного типа и мощности, габаритных размеров используются повсеместно.

Основные показатели работы определяют то, какой тип конструкции имеет двигатель. Существует несколько разновидностей, некоторые пользуются популярностью, другие не оправдывают сложность подключения, высокую стоимость.

Двигатель на постоянных магнитах используют реже, чем вариант исполнения. Для того, чтобы оценить возможности этого варианта исполнения, следует рассмотреть особенности конструкции, эксплуатационные качества и многое другое.

Устройство


устройство

Электродвигатель на постоянных магнитах не сильно отличается по виду конструкции.

При этом, можно выделить следующие основные элементы:

  1. Снаружи используется электротехническая сталь, из которой изготавливается сердечник статора.
  2. Затем идет стержневая обмотка.
  3. Ступица ротора и за ней специальная пластина.
  4. Затем , изготовленные из электротехнической стали, секции редечника ротора.
  5. Постоянные магниты являются частью ротора.
  6. Конструкцию завершает опорный подшипник.

Как любой вращающийся электродвигатель, рассматриваемый вариант исполнения состоит из неподвижного статора и подвижного ротора, которые при подаче электроэнергии взаимодействую между собой. Отличие рассматриваемого варианта исполнения можно назвать наличие ротора, в конструкцию которого включены магниты постоянного типа.

При изготовлении статора, создается конструкция, состоящая из сердечника и обмотки. Остальные элементы являются вспомогательными и служат исключительно для обеспечения наилучших условий для вращения статора.

Принцип работы


Принцип работы рассматриваемого варианта исполнения основан на создании центробежной силы за счет магнитного поля, которое создается при помощи обмотки. Стоит отметить, что работа синхронного электродвигателя схожа с работой трехфазного асинхронного двигателя.

К основным моментам можно отнести:

  1. Создаваемое магнитное поле ротора вступает во взаимодействие с подаваемым током на обмотку статора.
  2. Закон Ампера определяет создание крутящего момента, который и заставляет выходной вал вращаться вместе с ротором.
  3. Магнитное поле создается установленными магнитами.
  4. Синхронная скорость вращения ротора с создаваемым полем статора определяет сцепление полюса магнитного поля статора с ротором. По этой причине, рассматриваемый двигатель нельзя использовать в трехфазной сети напрямую.

В данном случае, нужно в обязательном порядке устанавливать специальный блок управления.

Виды

В зависимости от особенностей конструкции, существует несколько типов синхронных двигателей. При этом, они обладают разными эксплуатационными качествами.

По типу установки ротора, можно выделить следующие типы конструкции:

  1. С внутренней установкой – наиболее распространенный тип расположения.
  2. С внешней установкой или электродвигатель обращенного типа.

Постоянные магниты включены в конструкцию ротора. Их изготавливают из материала с высокой коэрцитивной силой.

Эта особенность определяет наличие следующих конструкций ротора:

  1. Со слабо выраженным магнитным полюсом.
  2. С ярко выраженным полюсом.

Равная индуктивность по перечным и продольным осям – свойство ротора с неявно выраженным полюсом, а у варианта исполнения с ярко выраженным полюсом подобной равности нет.

Кроме этого, конструкция ротора может быть следующего типа:

  1. Поверхностная установка магнитов.
  2. Встроенное расположение магнитов.

Кроме ротора, также следует обратить внимание и на статор.

По типу конструкции статора, можно разделить электродвигатели на следующие категории:

  1. Распределенная обмотка.
  2. Сосредоточенная обмотка.

По форме обратной обмотке, можно провести нижеприведенную классификацию:

  1. Синусоида.
  2. Трапецеидальная.

Подобная классификация оказывает влияние на работу электродвигателя.

Преимущества и недостатки

Рассматриваемый вариант исполнения имеет следующие достоинства:

  1. Оптимальный режим работы можно получить при воздействии реактивной энергии, что возможно при автоматической регулировке тока. Эта особенность обуславливает возможность работы электродвигателя без потребления и отдачи реактивной энергии в сеть. В отличие от асинхронного двигателя, синхронный имеет небольшие габаритные размеры при той же мощности, но при этом КПД значительно выше.
  2. Колебания напряжения в сети в меньшей степени воздействую на синхронный двигатель. Максимальный момент пропорционален напряжению сети.
  3. Высокая перегрузочная способность. Путем повышения тока возбуждения, можно провести значительное повышение перегрузочной способности. Это происходит на момент резкого и кратковременного возникновения дополнительной нагрузки на выходном валу.
  4. Скорость вращения выходного вала остается неизменной при любой нагрузке, если она не превышает показатель перегрузочной способности.

К недостаткам рассматриваемой конструкции можно отнести более сложную конструкцию и вследствие этого более высокую стоимость, чем у асинхронных двигателей. Однако в некоторых случаях, обойтись без данного типа электродвигателя невозможно.

Как сделать своими руками?


Провести создание электродвигателя своими руками можно только при наличии знаний в области электротехнике и наличия определенного опыта. Конструкция синхронного варианта исполнения должна быть высокоточной для исключения возникновения потерь и правильности работы системы.


Зная то, как должна выглядеть конструкция, проводим следующую работу:

  1. Создается или подбирается выходной вал. Он не должен иметь отклонений или других дефектов. В противном случае, возникающая нагрузка может привести к искривлению вала.
  2. Наибольшей популярностью пользуются конструкции , когда обмотка находится снаружи. На посадочное место вала устанавливается статор, который имеет постоянные магниты. На валу должно быть предусмотрено место для шпонки для предотвращения прокручивания вала при возникновении серьезной нагрузки.
  3. Ротор представлен сердечником с обмоткой. Создать самостоятельно ротор достаточно сложно. Как правило, он неподвижен, крепится к корпусу.
  4. Механической связи между статором и ротором нет , так как в противном случае, при вращении будет создавать дополнительная нагрузка.
  5. Вал , на котором крепится статор, также имеет посадочные места для подшипников. В корпусе имеется посадочные места для подшипников.

Большая часть элементов конструкции создать своими руками практически невозможно, так как для этого нужно иметь специальное оборудование и большой опыт работы. Примером можно назвать как подшипники, так и корпус, статор или ротор. Они должны иметь точные размеры. Однако, при наличии необходимых элементов конструкции, сборку можно провести и самостоятельно.

Электродвигатели имеют сложную конструкцию, питание от сети 220 Вольт обуславливает соблюдение определенных норм при их создании. Именно поэтому, для того, чтобы быть уверенным в надежной работе подобного механизма, следует покупать варианты исполнения, созданные на заводах по выпуску подобного оборудования.

В научных целях, к примеру, в лаборатории для проведения испытаний по работе магнитного поля часто создают собственные двигатели. Однако они имеют небольшую мощность, питаются от незначительно напряжения и не могут быть применены в производстве.

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения . Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид, год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделять корпусу , так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

Содержание:

Существует немало автономных устройств, способных вырабатывать электрическую энергию. Среди них следует особо отметить двигатель на неодимовых магнитах, который отличается оригинальной конструкцией и возможностью использования альтернативных источников энергии. Однако существует целый ряд факторов, препятствующих широкому распространению этих устройств в промышленности и в быту. Прежде всего, это негативное влияние магнитного поля на человека, а также сложности в создании необходимых условий для эксплуатации. Поэтому прежде чем пытаться изготовить такой двигатель для бытовых нужд, следует тщательно ознакомиться с его конструкцией и принципом работы.

Общее устройство и принцип работы

Работы над так называемым вечным двигателем ведутся уже очень давно и не прекращаются в настоящее время. В современных условиях этот вопрос становится все более актуальным, особенно в условиях надвигающегося энергетического кризиса. Поэтому одним из вариантов решения этой проблемы является двигатель свободной энергии на неодимовых магнитах, действие которого основано на энергии магнитного поля. Создание рабочей схемы такого двигателя позволит без каких-либо ограничений получать электрическую, механическую и другие виды энергий.

В настоящее время работы по созданию двигателя находятся в стадии теоретических изысканий, а на практике получены лишь отдельные положительные результаты, позволяющие более подробно изучить принцип действия этих устройств.

Конструкция двигателей на магнитах полностью отличается от обычных электрических моторов, использующих электрический ток в качестве главной движущей силы. В основе работы данной схемы лежит энергия постоянных магнитов, которая и приводит в движение весь механизм. Весь агрегат состоит из трех составных частей: сам двигатель, статор с электромагнитом и ротор с установленным постоянным магнитом.

На одном валу с двигателем устанавливается электромеханический генератор. Дополнительно на весь агрегат устанавливается статический электромагнит, представляющий собой кольцевой магнитопровод. В нем вырезается дуга или сегмент, устанавливается катушка индуктивности. К этой катушке подключается электронный коммутатор для регулировки реверсивного тока и других рабочих процессов.

Самые первые конструкции двигателей изготавливались с металлическими частями, которые должны были подвергаться влиянию магнита. Однако для возвращения такой детали в исходное положение затрачивается такое же количество энергии. То есть, теоретически использование такого двигателя нецелесообразно, поэтому данная проблема была решена путем использования медного проводника, по которому пропущен . В результате, возникает притяжение этого проводника к магниту. Когда ток отключается, то прекращается и взаимодействие между магнитом и проводником.

Установлено, что сила воздействия магнита находится в прямой пропорциональной зависимости от ее мощности. Таким образом, постоянный электрический ток и рост силы магнита, увеличивают воздействие этой силы на проводник. Повышенная сила способствует вырабатыванию тока, который затем будет подан на проводник и пройдет через него. В результате, получается своеобразный вечный двигатель на неодимовых магнитах.

Этот принцип был положен в основу усовершенствованного двигателя на неодимовых магнитах. Для его запуска используется индуктивная катушка, в которую подается электрический ток. Полюса должны быть расположены перпендикулярно зазору, вырезанному в электромагните. Под действием полярности постоянный магнит, установленный на роторе, начинает вращаться. Начинается притяжение его полюсов к электромагнитным полюсам, имеющим противоположное значение.

Когда разноименные полюса совпадают, ток в катушке выключается. Под собственным весом, ротор вместе с постоянным магнитом проходит по инерции данную точку совпадения. При этом, в катушке происходит изменение направления тока, и с наступлением очередного рабочего цикла полюса магнитов становятся одноименными. Это приводит к их отталкиванию друг от друга и дополнительному ускорению ротора.

Конструкция магнитного двигателя своими руками

Конструкция стандартного двигателя на неодимовых магнитах состоит из диска, кожуха и металлического обтекателя. Во многих схемах практикуется использование электрической катушки. Крепление магнитов осуществляется с помощью специальных проводников. Для обеспечения положительной обратной связи используется преобразователь. Некоторые конструкции могут быть дополнены ревербераторами, усиливающими магнитное поле.

В большинстве случаев для того, чтобы собственноручно изготовить магнитный двигатель на неодимовых магнитах, используется схема на подвеске. Основная конструкция состоит из двух дисков и медного кожуха, края которого должны быть тщательно обработаны. Большое значение имеет правильное подключение контактов по заранее составленной схеме. Четыре магнита располагаются с внешней стороны диска, а слой диэлектрика проходит вдоль обтекателя. Применение инерционных преобразователей позволяет избежать возникновения отрицательной энергии. В данной конструкции движение положительно заряженных ионов будет происходить вдоль кожуха. Иногда могут потребоваться магниты с повышенной мощностью.

Двигатель на неодимовых магнитах может быть самостоятельно изготовлен из кулера, установленного в персональном компьютере. В данной конструкции рекомендуется использовать диски с небольшим диаметром, а крепление кожуха выполнять с внешней стороны каждого из них. Для рамы может использоваться любая, наиболее подходящая конструкция. Толщина обтекателей составляет в среднем чуть более 2 мм. Подогретый агент выводится через преобразователь.

Кулоновские силы могут иметь разное значение, в зависимости от заряда ионов. Для повышения параметров охлажденного агента рекомендуется применение изолированной обмотки. Проводники, подключаемые к магнитам, должны быть медными, а толщина токопроводящего слоя выбирается в зависимости от типа обтекателя. Основной проблемой таких конструкций является невысокая отрицательная заряженность. Ее можно решить, используя диски с большим диаметром.


Электромотор своими руками — Школа AstroCamp


Электрогенераторы преобразуют механическую энергию в электрическую. Электродвигатель делает обратное: он преобразует электрическую энергию в физическое движение. Это преобразование возможно благодаря силе Лоренца .
Электричество — это просто движение электронов по петле, называемой цепью. Вы когда-нибудь замечали, как магниты могут отталкивать или притягивать предметы, не касаясь их? Когда цепь переносит электроны около магнита, магнитное поле толкает эти электроны в сторону.
Сила Лоренца наиболее велика, когда магнитное поле и токоведущий провод перпендикулярны друг другу. Электродвигатели используют это устройство для эффективного преобразования электрической энергии в механическое движение. В этом тоже легко убедиться! Все, что вам нужно, это магнитное поле и цепь, которая может свободно двигаться. В сегодняшнем эксперименте мы покажем силу Лоренца в действии с магнитом, батареей и отрезком провода.

Начните с установки отрицательного полюса батареи AA на сильный магнит.Магнитное поле, проверка; источник питания, проверьте. Придайте длине провода любую форму, которая может балансировать на положительном конце батареи, одновременно касаясь магнита, образуя петлю из проводящих материалов. При наличии контура протекания электроны начинают двигаться, и вуаля! У вас есть ток, протекающий через магнитное поле. Ток и поле почти перпендикулярны друг другу в месте пересечения. Сила Лоренца отталкивает электроны и проводник, через который они проходят, в сторону.
Сформируйте провод так, чтобы он мог балансировать и вращаться на положительной клемме, а электромагнитный толчок индуцирует вращение до тех пор, пока сохраняется заряд аккумулятора. Электрическая энергия становится физическим движением. Поздравляем — вы только что создали мотор!

Авторы: Скотт Альтон, Кэла Барри

Глава 2: Электромагнетизм — быстрый самодельный электродвигатель

Мотор побольше

Наш следующий мотор — это просто увеличенная версия первого, с базой из дерева вот так:

В середине основания мы разместили магнит.Вокруг магнита мы просверлили четыре маленьких отверстия для опорных тросов.

Катушку наматываем толстой проволокой (это эмалированная медь 20 калибра). провод). Мы используем ячейку «D» в качестве формы катушки:

Для опор используем латунную проволоку, а все соединения делаем под база, так что все выглядит красиво и аккуратно. Для подключения батареи, мы используем батарейный зажим на 9 В.

Готовый мотор выглядит так:

Как это работает?

Когда электричество проходит через катушку с проволокой, катушка становится электромагнит .Электромагнит действует как обычный магнит. У него есть северный полюс и южный полюс, и он может притягивать и отталкивать другие магниты.

Наша катушка становится электромагнитом, когда голая медная половина провода арматуры касаются оголенного провода опор, а электричество течет в катушку. У электромагнита есть северный полюс, который притягивается к южному полюсу штатного магнита. Он также имеет южный полюс, который отталкивается южным полюсом регулярного магнит.

Когда мы соскребали изоляцию с проводов якоря, мы были осторожны. делать это с катушкой стоя, а не лежа на столе.Это заставляет полюса электромагнита указывать влево и вправо. (как если бы был невидимый обычный магнит, в который была намотана проволока вокруг него). Если бы катушка лежала на столе плоско, полюса указывали бы вверх и вниз.

Поскольку полюса указывают влево и вправо, они должны двигаться, чтобы выровнять вверх с магнитом внизу, полюса которого выровнены вверх и вниз. Таким образом, катушка вращается, чтобы выровняться с магнитом. Но как только катушка точно выровнен с магнитом, изолируемая половина провода теперь касаясь опор вместо голой половины.Электричество отключено выключен, и катушка больше не является электромагнитом. Это оставляет это бесплатно двигаться по кругу, пока голая медь снова не коснется голой опоры, и начать весь процесс заново.

Более быстрый мотор

Один простой способ заставить двигатель работать быстрее — это добавить еще один магнит. Держите магнит над двигателем во время его работы. Когда вы приближаете магнит к вращающейся катушке, одно из двух случится. Либо двигатель остановится, либо он будет работать быстрее.Что из этого произойдет, будет зависеть от того, какой полюс магнита вы имеют облицовку катушки. Убедитесь, что вы держите мотор вниз, чтобы магниты не будем скакать и гнать моторчик!

Есть еще один способ разогнать мотор. Мотор получает только электричество в течение половины цикла. Во второй половине изоляционные блоки поток тока. Это необходимо, потому что после того, как катушка закрутилась повернувшись лицом к магниту, если мы позволим току продолжать течь, он будет оставайтесь там, лицом к магнитному полюсу, к которому он притягивается.

Но предположим, что вместо того, чтобы просто остановить ток, мы поменяли его местами, поэтому северный полюс электромагнита стал южным полюсом, и наоборот. Катушка снова захочет перевернуться! И поскольку он уже идет в одном направлении, это направление он решит продолжить движение (из-за инерции и импульса катушка).

Теперь все, что нам нужно сделать, это выяснить, как заставить ток поменять местами. и как сделать так, чтобы это произошло в нужное время.

Оказывается, это довольно просто.Поместите мотор перед собой так, чтобы ось идет слева направо. Теперь прикрепите оголенный провод к левой опоре и пусть он опирается на правую ось, сразу за правой опорой. Повторяй вещь с правой опорой и левой осью.

В одной половине цикла голая половина оси будет обращена вниз и прикоснитесь к оголенному проводу опоры, как и раньше. На другой половине цикла, голая половина оси будет касаться новых проводов, которые опираясь на ось.Поскольку эти провода подключены к противоположному опоры, ток будет течь в обратном направлении. Мотор будет получить два удара за цикл вместо одного, и никогда не будет выбегать, он всегда есть сила. Пойдет вдвое быстрее.

Ниже фото мотора, построенного таким образом. Связи скрыты под основанием для аккуратности, но вы можете увидеть провода, лежащие на верхнюю часть осей, и знайте, что они подключены к противоположному поддерживает.

Ниже представлен крупный план того же двигателя.Обратите внимание, что есть два крошечные стеклянные бусины размещены на осях. Эти бусинки ускоряют мотор. даже больше, поскольку они уменьшают трение якоря о поддерживает. Поскольку это снижение трения уравновешивает дополнительное трение из новых проводов мотор по-прежнему работает примерно в два раза быстрее, чем старый, мотор попроще.

Следующий: 10-минутный мотор без магнита.

Для получения дополнительной информации об электромагнетизме см. Рекомендуемая литература раздел.

Заказать супер магниты здесь.

Вкусные

Некоторые из моих других веб-сайтов:


Отправить письмо на Поле Саймона Квеллена через [email protected] > Google

Глава 2: Электромагнетизм — Двигатель за 10 минут

Мотор за 10 минут

Еще в 1960-х мой отец научил меня делать маленькие электродвигатель мы сделаем здесь.Когда-то в 1980-х годах я увидел его описание в журнале «Учитель физики». Недавно Я видел, как его описывают как двигатель Бикмана после того, как наука ориентированное телешоу, в котором он недавно появился. Мотор — это просто батарея, магнит и небольшая катушка проволоку вы делаете сами. Есть секрет его изготовления (который Я, конечно, поделюсь с вами) что в то же время умно и восхитительно просто. Что тебе понадобится:
  • Держатель батареи, например Radio Shack # 270-402 (вмещает ячейку «C») или # 270-403 (содержит ячейку «D»).
  • Аккумулятор для держателя.
  • Магнит, например Radio Shack # 64-1877, # 64-1895, # 64-1883, # 64-1879, или № 64-1888.
  • Некоторые магнитные провода, например Radio Shack # 278-1345. Мы хотим эмаль проволока с покрытием 22 калибра (или толще). Нам понадобится всего около ярда провода, поэтому из пакета Radio Shack можно сделать не менее дюжины моторов.
  • Некоторые более тяжелые провода, например Radio Shack # 278-1217 или # 278-1216. Мы хотим неизолированный провод калибра 18 или 20, поэтому будем снимать пластиковую изоляцию от перечисленных выше проводов.Нам понадобится меньше фута этот провод на мотор.

Быстрый мотор

Начнем с намотки якоря , той части двигателя, которая движется. Чтобы арматура была красивой и круглой, наматываем ее на цилиндрическую форму катушки, например, шариковая ручка или небольшая батарейка AAA. Диаметр не критичен, но должно быть связано с размером провода. Тонкая проволока требует небольшой формы, толстая проволока требует большей формы. Оставив пару дюймов проволоки свободной на одном конце, намотайте 25 или 30 витков. вокруг формы катушки.Не пытайтесь быть аккуратным, немного случайности помогают пучку лучше сохранять форму. Катушка в конечном итоге будет выглядеть как на фото ниже: Теперь осторожно снимите катушку с формы, удерживая проволоку так, чтобы она не теряет форму. Чтобы катушка постоянно сохраняла свою форму, каждый свободный конец проволоки обернем вокруг катушки пару раз, следя за тем, чтобы новые витки крепления лежали точно напротив друг друга, так что катушка может легко вращаться вокруг оси, образованной двумя свободными концами проволоки, как колесо.Не обязательно, но я обычно пару витков заворачиваю вокруг этих витков обвязки, продевая проволоку в пространство между большой катушкой и маленькими катушками, которые удерживают ее вместе. Это делает для аккуратной плотной упаковки, как на фото ниже: Если этот метод удержания катушки слишком сложен, не стесняйтесь используйте скотч или изоленту для выполнения работы. Важно то, что чтобы катушка удерживалась вместе, и чтобы два конца проволоки были закреплены на якоре хорошо, и выровнены по прямой, поэтому они образуют хорошую ось.Вот здесь-то и проявляется секретный трюк — то, что заставляет двигатель Работа. Это секретный трюк, потому что это маленькая и тонкая вещь, и очень трудно увидеть, когда двигатель работает. Даже люди, знающие много о двигателях может быть озадачено, пока они не изучат это внимательно и не найдут секрет. Держите катушку на краю стола, чтобы катушка стояла вертикально вверх и вниз. (не на столе), а один из свободных концов провода лежит на стол. Острым ножом снимите верхнюю половину изоляции с свободный конец провода.Следите за тем, чтобы нижняя половина проволоки оставалась с эмалевый утеплитель в целости и сохранности. Верхняя половина провода будет блестящей голой медью, а нижняя половина будет цвета утеплителя. Быстрый набросок может помочь: Проделайте то же самое с другим свободным концом провода, убедившись, что блестящий неизолированная медная сторона обращена вверх на обоих концах провода. Идея трюка заключается в том, что якорь будет опираться на два опоры из неизолированной проволоки. Эти опоры будут прикреплены к каждому конец батареи, чтобы электричество могло течь от одной опоры к арматуру и обратно через другую опору к аккумулятору.Но это произойдет только тогда, когда голая половина провода будет обращена вниз, касаясь опоры. Когда голая медная половина обращена вверх, изолированная половина касается опор, и ток не может течь. Следующим шагом будет изготовление опор оси. Это простые петли из проволоки которые удерживают арматуру и позволяют ей вращаться. Они сделаны из голого провода, так как они также будут подавать электричество на арматуру. Возьмите кусок жесткого голого провода (подойдет медь или латунь, распрямленная канцелярская скрепка) и согните ее вокруг небольшого гвоздя, чтобы получилась петля посередине, как показано на фото ниже.Сделай то же самое с другим проволока, так что у вас есть две опоры. Основанием для этого первого двигателя будет держатель батареи. Это хорошая основа, потому что она тяжелая, когда установлен аккумулятор. (чтобы двигатель не раскачивался) и потому, что у него есть удобные отверстия в пластик, куда мы можем прикрепить опоры арматуры из неизолированного провода. Надежно прикрепите поддерживающие тросы к держателю батареи, намотав свободные концы несколько раз через маленькие отверстия в пластике на каждом конец. Согните опорные тросы так, чтобы кольца находились достаточно далеко друг от друга. арматура вращаться свободно.Немного согните их и вставьте арматуру в оба кольца, затем отогните их назад, чтобы они были близко к катушку, но не касаясь ее. Вставьте аккумулятор в держатель. Поместите магнит на верхнюю часть держателя батареи, прямо под катушкой. Убедитесь, что катушка все еще может вращаться свободно, и что она просто не попадает в магнит. Готовый мотор выглядит так: Обратите внимание, что между аккумулятором и аккумулятором застряла полоска бумаги. электрический контакт в держателе. Это переключатель включения / выключения.Удалить бумага, чтобы позволить электричеству течь в двигатель, и заменить бумагу когда вы хотите остановить двигатель и сохранить аккумулятор. Осторожно покрутите якорь, чтобы запустить двигатель. Если не запускается, попробуйте повернуть его в другую сторону. Мотор будет крутиться только на одном направление. Если двигатель по-прежнему не запускается, внимательно проверьте все электрические соединения. Аккумулятор подключен так, чтобы одна опора касалась положительный конец батареи, а другой касается отрицательного полюса? Касается ли оголенная медная половина провода якоря оголенной опоры? провода внизу, а только внизу? Арматура свободно спиннинг? Если все это верно, ваш моторчик должен вращаться. вокруг довольно быстро.Попробуйте перевернуть его. Мотор должен вращаться в противоположном направлении, если магнит находится сверху внизу. Попробуйте перевернуть магнит и посмотреть, какой направление вращения мотора. Если вам нужен двигатель с включенным магнитом боковую, а не верхнюю или нижнюю, вы можете просто сделать новую якоря, но на этот раз положите катушку на стол, когда вы соскабливаете изоляция верхней половины свободных концов проводов.

Двигатели побольше и быстрее

Для получения дополнительной информации об электромагнетизме см. Рекомендуемая литература раздел. Заказать супер магниты здесь.

Работа с электрическими и магнитными полями для детей

Работа с электрическими и магнитными полями для детей — Простой мотор DIY

1%

Обработка, пожалуйста, подождите …

Обработка прошла успешно!

Обработано успешно!

Ой! Похоже, ваши настройки безопасности блокируют это видео 🙁

Если вы находитесь на школьном компьютере или в сети, попросите технического специалиста внести эти URL-адреса в белый список:
*.wistia.com, fast.wistia.com, fast.wistia.net, embedwistia-a.akamaihd.net

Иногда эту проблему решает простое обновление. Если вам нужна дополнительная помощь, свяжитесь с нами.

Простой двигатель DIY

  • Продолжительность: 20 мин
  • Сложность: Easy
  • Стоимость: От 0 до 10 долларов

Используйте магнитное поле, чтобы сделать простой двигатель!

Список материалов

  • 1 AA Батарея
  • 1 Пакет Неодимовые дисковые магниты
  • 1 Медный провод (около 20 см)

Инструкции

  • 1 Сложите магниты на отрицательную сторону батареи (плоской стороной) и положите на стол.
  • 2 Согните медную проволоку в форме сердца.
  • 3 Поместите сердечко на положительный конец батареи.
  • 4 Отрегулируйте так, чтобы концы проволоки слегка касались магнитов.
  • 5 Смотрите, как он крутится!
  • 6 Как только вы освоитесь, попробуйте другие формы!

Как это работает

Электрический ток от аккумулятора течет по проводу, создавая магнитное поле.Поле от магнитов взаимодействует с магнитным полем от провода. Это прикладывает силу к проводу, которая заставляет его двигаться. Ученые называют эту конструкцию униполярным двигателем.

«Моим ученикам понравились видео. Я начал подписку на видео в мае и использовал их в качестве обзора перед государственным тестом, который, как я знаю, помог 100% моего класса пройти государственный тест».

Rhonda Fox Учитель 4-го класса, Окала, Флорида

Получите бесплатный доступ на 1 месяц

• Кредитная карта не требуется •

Информация об учетной записи

Платежная информация

Начать бесплатную пробную версию

Бесплатно в течение 14 дней, тогда всего 10 канадских долларов в месяц.
  • Неограниченный доступ к нашей полной библиотеке
    видео и уроков для классов K-5.

  • Вам не будет выставлен счет , если вы не оставите свою учетную запись
    открытой после 14-дневной бесплатной пробной версии.

  • Вы можете отменить в один клик на странице управления аккаунтом
    или отправив нам электронное письмо.

  • Неограниченный доступ к нашей полной библиотеке видео и уроков для классов K-5.

  • Вам не будет выставлен счет , если вы не оставите свою учетную запись открытой в течение 14 дней.

  • Вы можете отменить в любое время одним щелчком мыши на странице управления учетной записью.

Информация об учетной записи

Платежная информация

Вам не будет выставлен счет, если вы не оставите свою учетную запись открытой после 14-дневного бесплатного пробного периода (30 октября 2021 г.).

Отмените в любой момент одним щелчком мыши на странице управления учетной записью до окончания пробного периода, и с вас не будет взиматься плата.

В противном случае вы будете платить всего 10 канадских долларов в месяц за услугу, пока ваш счет открыт.

Отмените в любое время на странице управления учетной записью одним щелчком мыши, и с вас не будет взиматься плата.

В противном случае вы будете платить 10 канадских долларов в месяц за услугу, пока ваш счет открыт.

Ваша бесплатная пробная версия активна!

Теперь вы вошли как:
имя пользователя

Мы только что отправили вам электронное письмо с подтверждением. Наслаждаться!

Готово

Как собрать собственный электромагнит и двигатель постоянного тока

, который действительно будет работать

В сети есть множество «проектов» для «простых двигателей постоянного тока», но большинство из них очень неэффективны и не производят выходной сигнал, способный управлять оборудованием.Эта конструкция отличается тем, что в ней используется неподвижная катушка (статор) и намагниченный ротор.

Вам понадобится очень мало вещей.

Перечень запчастей

  1. плинтус деревянный. Около 6 дюймов на 4 дюйма будет хорошо, а толщина около 0,5 дюйма.
  2. старая деревянная ватная катушка (а если и не пластиковая).
  3. длина стальных шпилек (диаметром 8 0 или 10 мм), а также несколько гаек и шайб.
  4. 2-дюймовые шайбы или аналогичные
  5. медная водопроводная труба (12 мм или 18 мм) всего на несколько дюймов.Или паяную муфту для медных труб.
  6. пластиковая или резиновая труба для размещения внутри вышеупомянутого.
  7. 4 стальных уголка длиной от 4 до 6 дюймов.
  8. Жесткий медный провод
  9. (для изготовления щеток) — можно взять от одножильного сетевого кабеля T&E на 30А. Около фута.
  10. «Звонок» многожильный провод для соединения.
  11. катушка изоленты.
  12. соединитель клеммной колодки.
  13. Медный эмалированный провод 250 г — диаметром около 0,2 мм. (36SWG, 32AWG) (ebay) (катушечный провод) — вы получаете почти 1 км провода!
  14. 2 сильных неодимовых магнита диаметром около 10 мм * глубиной 4 мм (их можно склеить, если они тонкие)

Строительство:

Готовый двигатель должен выглядеть так ..

Ротор:

Возьмите ватную катушку и просверлите центральное отверстие (при необходимости) для крепления шипа.

Вырежьте отверстия для магнитов на противоположных сторонах ватной катушки и приклейте первое на место. Примените второй магнит к другой стороне так, чтобы он притягивался к первому; затем приклейте на место. Вы можете набить катушку гипсом для увеличения веса.

* Если вы не можете найти подходящую катушку, вы можете отлить ротор, используя небольшую жестяную банку (например, форму для томатного пюре) в качестве формы. Смешайте штукатурку paris или polyfilla, добавьте немного клея ПВА и добавьте немного армирующего материала, например, стружки или клочков тонкой ткани, например, бинта.Смажьте банку и набейте гипсом. Когда он высохнет, его можно просверлить и обрезать напильником. После установки на вал может потребоваться его балансировка.

Катушка:

Отрежьте полоску бумаги шириной 2 дюйма и длиной примерно 6 дюймов и оберните вокруг гвоздика, чтобы получилась трубка длиной 2 дюйма. Заклейте конец скотчем.
Установите шайбы на каждый конец рулона и закрепите гайками. Нанесите лак для ногтей, чтобы орехи не расшатались.
Возьмите провод катушки и обмотайте его лентой вдоль трубки от конца до конца, оставив 6-дюймовый хвост.Лента надежно на месте. Теперь начните наматывать провод равномерно, спускаясь по трубке, плотно прилегая. Когда вы подойдете к концу, накройте катушку слоем тонкой бумаги и продолжайте наматывать в том же направлении, но теперь поднимая трубку вверх. Повторяйте, пока не будет использована вся проволока, кроме 6-дюймового хвоста. (или остановитесь, если намотаете 4 или 5 обмоток.
Наконец, заклейте катушку изолентой, чтобы провод не отсоединился.

Это электромагнит. Вы можете проверить это, прикоснувшись к хвостовикам катушки батареей АА (после удаления изоляционного лака с концов.)

Коммутатор

Возьмите кусок медной трубы или соединителя и очистите мелким наждаком или мочалкой для посуды.
Разрежьте его пополам, как показано здесь; затем вырежьте по части из каждой, чтобы получить две L-образные части.
Соедините две детали вместе над трубой, чтобы зазоры между ними были симметричными.
Теперь наденьте трубу на вал. Если он плохо сидит, вам нужно упаковать его, чтобы он не раскачивался. Вы можете обернуть полоску бумаги вокруг вала, как вы это делали для катушки.Теперь коммутатор можно закрепить на валу гайкой с любого конца.

Сборка

См. Схему ниже.

Установив свой ротор и коммутатор к валу, теперь вы можете установить его между L-образными скобами на плинтусе. Возможно, вам придется просверлить или выпилить отверстия для вала. Закрепите его гайками и шайбами, чтобы он мог свободно вращаться.Нанесение лака для ногтей остановит ослабление гаек.

Теперь поместите катушку между второй парой угловых скоб и прикрепите к плинтусу.

Возьмите 4 куска жесткой проволоки и надежно прикрепите их к плинтусу. Между ними может помочь деревянный брусок, чтобы удерживать их на месте. Убедитесь, что у вас есть доступ к нижним концам проводов. Подвяжите концы хвостов катушки к щеткам 3 и 4.

Отрегулируйте щетки, согнув провод так, чтобы они мягко прижимались к коммутатору, как показано здесь.

Теперь подключите элемент AA на 1,5 В между щетками 1 и 2 с помощью провода звонка.

Двигатель должен вращаться. Для достижения наилучших результатов вам потребуется отрегулировать ориентацию якоря на валу.

Электросхема

Это показывает, как щетки подключены к катушке и батарее. Вы можете использовать такую ​​клеммную колодку для подключения.

Как это работает

Батарея заставляет ток течь через катушку.
Как коммутатор поворачивает:

  1. положительный полюс батареи подключен через щетку 1 к коммутатору, затем через щетку 3 к верхней части катушки. Ток проходит через катушку и возвращается через щетку 4, а затем через щетку 2 на минус батареи.
    Создается магнитное поле, которое притягивает магниты якоря, и вал вращается.
  2. Щетки 3 и 4 на мгновение теряют контакт с коммутатором.
  3. положительный полюс батареи подключен через щетку 1 к коммутатору, затем через щетку 4 к нижней части катушки.Ток проходит через катушку и возвращается через щетку 3, а затем через щетку 2 на минус батареи.
    Создается магнитное поле, которое притягивает магниты якоря, и вал вращается.
  4. Щетки 3 и 4 на мгновение теряют контакт с коммутатором.

и цикл повторяется

Если вам трудно уследить за этим, попробуйте нарисовать схему и показать, как изменяется ток, когда переключатель коммутатора переключается из одного положения в другое.


Проще говоря, «сила» электромагнита (где есть большой зазор между полюсами) дается по m = N I A / L
где

N = количество поворотов
I = ток в амперах
A = площадь поперечного сечения сердечника
L = длина между полюсами.

Итак (в идеале) вам нужно максимизировать N, I и A и минимизировать L. Однако в реальной жизни, если вы делаете A большим, вы используете больше проволоки для каждого витка — поэтому сопротивление увеличивается, а также стоимость.

Чтобы минимизировать L, сделаем магнит подковообразного типа.

Вот как сделать ДЕЙСТВИТЕЛЬНО ХОРОШИЙ электромагнит.

Сначала возьмите шпильку (300 мм) или ДВА стальных болта диаметром 8–12 мм, и скажем, 4 дюйма = 100 мм в длину. Вам понадобится около дюжины гаек и шайб.

Сделайте катушку, как описано выше, но немного длиннее — скажем, 70 мм. Вы можете проверить силу этого электромагнита, когда он будет изготовлен, но мы еще не закончили!

Расчеты — (пропустите, если хотите)

36SWG = 32AWG = 0.Диаметр 2 мм — это 5 витков на мм, поэтому одна 70-миллиметровая катушка (плотно намотанная) будет иметь 350 витков.
(скорее всего 330)

Диаметр каждого витка (скажем) составляет 12 мм, поэтому длина витка составляет 2 * пи * r = пи * d = 40 мм.

Итак, мы используем 330 * 40 мм = 13,2 м (= 0,013 км) провода.

Масса 36SWG составляет 260 мкг / м = 0,26 г / м, поэтому на 1 обмотку требуется 0,26 * 13,2 = 3,4 г

Сопротивление 36SWG составляет 0,6 Ом на м, поэтому наша катушка будет иметь r = 0,6 * 13,2 = 8 Ом.

4-слойная катушка (4 обмотки) будет иметь 1300 витков, использовать 15 г провода и иметь R = 32 Ом

Строительство

Продолжайте наматывать, как описано выше, пока не завершите 4 обмотки.Лучший способ сделать это — установить сердечник в сверлильном или токарном станке на медленной скорости и осторожно наматывать провод по мере вращения сердечника. Когда каждый виток доходит до конца, оберните его слоем тонкой ткани (можно и туалетной бумаги). Нанесение клея ПВА удержит его на месте. Затем продолжайте наматывать сердечник вверх или вниз. Когда ваша катушка будет завершена, свяжите концы проводов катушки вместе, чтобы предотвратить раскручивание последних витков.

Вот и готовый электромагнит. Вам нужно будет сделать пару катушек и соединить их вместе, просверлив отверстия в куске железа, чтобы они образовали форму подковы, как показано здесь.

Теперь вам нужно подключить катушки.

Очистите от лака концы 1 катушки и коснитесь батареи 1,5 В. Магнит должен притягивать любой предмет из железа или стали. Проделайте то же самое с другой катушкой.

Если вы хотите запустить магнит от низкого напряжения (от 1,5 до 6 вольт), подключите катушки параллельно.
(т.е. подключите A к C к плюсу, а B к D к минусу)

Для работы от более высокого напряжения, скажем 12 В, подключите их последовательно.

(т.е. подключите положительный к A, B к C, а отрицательный к D.)

Если полученный магнит кажется очень слабым, вы подключили их неправильно, и вам нужно будет поменять местами соединения ТОЛЬКО ДЛЯ ОДНОЙ КАТУШКИ.

Самый простой электродвигатель — MEL Chemistry

Сложно представить наш современный мир без электроэнергии. Но знаете ли вы, как преобразовать электричество в движение? На самом деле все очень просто! Давайте посмотрим, как сделать самый простой электродвигатель.

Правила техники безопасности

  • Не оставляйте контур замкнутым более чем на 1 минуту! Это может привести к сгоранию аккумулятора!
  • Выполняйте этот эксперимент только под наблюдением взрослых.

Оборудование

  • батарейка АА;
  • Лента липкая
  • ;
  • глина;
  • две английские булавки;
  • неодимовый магнит;
  • медный провод;
  • наждачная бумага.

Пошаговая инструкция

Сначала сделайте индукционную катушку из медной проволоки.Плотно намотайте провод на батарейку АА. Закрепите катушку, несколько раз обмотав концы проволоки через нее и вокруг нее. Используйте наждачную бумагу, чтобы удалить верхнюю половину изоляции провода с каждого конца катушки. Обязательно оголите одну и ту же сторону провода на обоих концах. Используйте липкую ленту, чтобы закрепить английскую булавку на каждом полюсе батареи. Прикрепите аккумулятор к плоской поверхности с помощью пластилина. Поместите неодимовый магнит на аккумулятор. Проденьте контакты катушки через петли в английских шпильках.Катушка начинает вращаться! Двигатель заведен!

Описание процесса

Когда открытые участки катушки касаются английских булавок, катушка, батарея и булавки вместе образуют замкнутую цепь, по которой может течь ток. Когда ток течет через катушку, он создает магнитное поле как внутри, так и снаружи, превращая катушку в электромагнит. Взаимодействие с полем неодимового магнита заставляет катушку вращаться, пытаясь достичь положения равновесия.Но при повороте цепь размыкается, и индукционный ток проходит через катушку в направлении, противоположном начальному току. Другими словами, полярность электромагнита и его положение равновесия меняются. Катушка снова поворачивается, и контакты снова замыкаются. Текущее снова меняет направление, возвращается на прежнее место. Из-за циклического изменения направления тока катушка каждый раз делает полный оборот. Это приводит к непрерывному вращению.Это пример простейшего электродвигателя, который в некоторой степени раскрывает основы преобразования электрической энергии в механическую.

Создайте простой электродвигатель (униполярный двигатель)

Узнайте об электричестве с помощью этого простого научного проекта для детей. Используйте батарею, магнит и медный провод, чтобы построить свой собственный электродвигатель, который действительно вращается!

Этот пост содержит партнерские ссылки Amazon.

Это проект, который я хотел попробовать в течение некоторого времени, поэтому, когда он появился в нашей научной книге, я решил заняться им.Мы с мальчиками изучали магниты и электричество, используя исследование творчества с химией и физикой. Я полностью рекомендую эту серию! Он идеально подходит для занятий наукой вместе с детьми разного возраста.

Хотите увидеть мотор в действии?


Примечания по безопасности: Этот проект электродвигателя отлично подходит для детей. Маленькие дети не смогут это сделать, но им понравится смотреть! Дети в возрасте 8+ смогут помочь, хотя потребуется присмотр и помощь взрослых.Мой 12-летний ребенок мог бы сделать это и сам, но присмотр все еще необходим. Неодимовые магниты чрезвычайно сильны, и их следует использовать только под наблюдением, и никогда не следует использовать их с детьми, которые могут положить их в рот. Также помните, что медный провод может нагреться.

Для изготовления мотора вам понадобятся:

Для версии с оптической иллюзией:

  • Учетная карточка
  • Лента
  • Цветные карандаши

Сначала отрежьте кусок проволоки длиной 7 дюймов.Согните небольшую петлю из проволоки в центре, как показано ниже.

Затем согните обе стороны вниз. Прикрепите магниты к отрицательному полюсу батарейки AA.

Теперь согните каждый из концов, как показано. Вам нужно, чтобы оба конца медного провода мягко касались магнита.

Потребуется немного поработать, чтобы отрегулировать медный провод так, чтобы он касался верхней части батареи, а оба конца касались магнита. Медная проволока Как только она у вас получится, проволока начнет вращаться!

Попробуйте перевернуть магниты и посмотреть, что происходит с направлением двигателя.Когда вы меняете полюса магнитов, двигатель вращается в другую сторону! Так круто.

Почему это работает?

Этот двигатель называется униполярным двигателем, и он был впервые продемонстрирован Майклом Фарадеем в 1821 году. Этот двигатель работает благодаря электромагнитной силе, называемой силой Лоренца. Основное определение силы Лоренца — это сила, оказываемая магнитным полем на движущийся электрический заряд. Вы можете прочитать больше об этом здесь. Упрощенное объяснение состоит в том, что электричество течет из батареи через медный провод в магнит.Магнит посылает электрический заряд через другую сторону провода обратно к батарее, замыкая цепь. И проволока, и магнит имеют вокруг себя электрические поля, и эти поля отталкиваются друг от друга, оказывая силу на проволоку, заставляя проволоку вращаться. Довольно аккуратно, да?

Вот еще одна статья об униполярных двигателях, если вы хотите узнать больше.

Попробуйте создать оптическую иллюзию!

После того, как наш мотор заработал, мы решили сделать еще один с оптической иллюзией! Я отрезал еще один кусок проволоки длиной около 10 дюймов и отрезал лишние концы, когда закончил формировать его.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *