Как собрать мощный регулируемый блок питания в домашних условиях. Какие схемы использовать для создания блока питания с регулировкой напряжения и тока. Где взять детали и как правильно собрать устройство.
Особенности самодельного регулируемого блока питания
Регулируемый блок питания — незаменимое устройство для радиолюбителей и электронщиков. С его помощью можно запитать различные схемы и устройства, подобрав оптимальное напряжение и ток. Собрать такой блок питания своими руками вполне реально, имея базовые навыки пайки и работы с электроникой.
Основные преимущества самодельного регулируемого блока питания:
- Возможность плавной регулировки выходного напряжения
- Регулировка максимального выходного тока
- Защита от короткого замыкания
- Низкая стоимость по сравнению с готовыми лабораторными блоками питания
- Возможность модернизации и доработки под свои нужды
Как сделать регулируемый блок питания из компьютерного БП
Один из самых простых способов получить регулируемый блок питания — переделать старый компьютерный БП. Для этого понадобится:
- Плата от компьютерного блока питания
- Подстроечный резистор на 10 кОм
- Мультиметр
- Паяльник
Порядок действий:
- Выпиливаем из платы компьютерного БП часть, отвечающую за питание оперативной памяти
- Находим на плате ШИМ-контроллер и резисторы обратной связи
- Заменяем один из резисторов обратной связи на подстроечный резистор 10 кОм
- Припаиваем провода для подключения входного напряжения и выхода
- Подключаем входное напряжение 12В
- Регулируем выходное напряжение с помощью подстроечного резистора
В результате получаем блок питания с регулировкой напряжения от 1В до 12В и током до 4-5А.
Схема простого регулируемого блока питания на микросхеме LM317
Простейшую схему регулируемого блока питания можно собрать на популярной микросхеме LM317. Основные параметры такого БП:
- Входное напряжение: до 40В
- Выходное напряжение: 1.2-37В
- Максимальный ток: 1.5А
- Мощность: до 10Вт (с радиатором)
Для сборки понадобится:
- Микросхема LM317
- Диодный мост на 2А
- Конденсаторы: 1000мкФ, 10мкФ
- Резисторы: 240 Ом, 5.1 кОм
- Переменный резистор 5 кОм
- Радиатор для LM317
Схема собирается согласно даташиту на LM317. Регулировка напряжения осуществляется переменным резистором.
Мощный регулируемый блок питания на дискретных элементах
Для получения больших токов можно собрать регулируемый блок питания на отдельных транзисторах. Схема такого БП включает:
- Понижающий трансформатор
- Выпрямитель на диодном мосте
- Фильтрующие конденсаторы
- Стабилизатор на транзисторах и стабилитроне
- Цепь регулировки напряжения
- Цепь ограничения тока
Основные параметры такого самодельного блока питания:
- Выходное напряжение: 0-15В
- Максимальный ток: 1.5-2А
- Защита от КЗ
- Плавная регулировка напряжения и ограничения тока
Как сделать регулируемый блок питания из готового БП
Еще один простой способ получить регулируемое напряжение — доработать готовый блок питания, например от принтера. Для этого нужно:
- Разобрать корпус БП
- Найти на плате регулируемый стабилитрон TL431
- Выпаять транзистор, управляющий TL431
- Установить вместо транзистора переменный резистор 3-10 кОм
- Вывести регулятор на корпус
В результате получаем БП с регулировкой напряжения в диапазоне 7-24В при токе до 1А.
Советы по сборке регулируемого блока питания
При самостоятельном изготовлении регулируемого блока питания важно учитывать следующие моменты:
- Используйте качественные компоненты с запасом по мощности
- Обеспечьте хорошее охлаждение силовых элементов
- Тщательно изолируйте все токоведущие части
- Используйте предохранители для защиты от перегрузки
- Проверяйте работу БП на разных режимах перед окончательной сборкой
Применение самодельного регулируемого блока питания
Регулируемый блок питания, собранный своими руками, пригодится для:
- Питания и тестирования электронных схем
- Зарядки аккумуляторов
- Экспериментов с электроникой
- Питания маломощных электродвигателей
- Гальваники и электролиза
Имея такое устройство, вы сможете подобрать оптимальное напряжение и ток для любой нагрузки в пределах его возможностей.
Меры безопасности при работе с самодельным блоком питания
При использовании самодельного регулируемого блока питания необходимо соблюдать следующие меры предосторожности:
- Не превышайте максимально допустимые значения тока и напряжения
- Избегайте короткого замыкания выходных клемм
- Не касайтесь оголенных проводников и контактов при включенном устройстве
- Периодически проверяйте изоляцию проводов и качество соединений
- Не используйте блок питания при наличии повреждений корпуса или проводки
Соблюдение этих простых правил обеспечит безопасную и долговременную эксплуатацию самодельного блока питания.
Мощный лабораторный блок своими руками
Приветствую, Самоделкины!
Сегодня мы с вами соберем мощнейший лабораторный блок питания. На данный момент он является одним из самых мощных на YouTube.
Все началось с постройки водородного генератора. Для запитки пластин автору понадобился мощный блок питания. Покупать готовый блок типа DPS5020 не наш случай, да и бюджет не позволял. Спустя некоторое время схема была найдена. Позже выяснилось, что этот блок питания настолько универсален, что его можно использовать абсолютно везде: в гальванике, электролизе и просто для запитки различных схем. Сразу пробежимся по параметрам. Входное напряжение от 190 до 240 вольт, выходное напряжение — регулируемое от 0 до 35 В. Выходной номинальный ток 25А, пиковый — свыше 30А. Также, блок имеет автоматическое активное охлаждение в виде кулера и ограничения по току, она же защита от короткого замыкания.
Теперь, что касается самого устройства. На фото вы можете видеть силовые элементы.
От одного взгляда на них захватывает дух, но свой рассказ хотелось бы начать совсем не со схем, а непосредственно с того, от чего приходилось отталкиваться, принимая то или иное решение. Итак, в первую очередь, конструкция ограничена корпусом. Это было очень большим препятствием в построении печатных плат и размещении компонентов. Корпус был куплен самый большой, но все равно его размеры для такого количества электроники малы. Второе препятствие — это размер радиатора. Хорошо, что они нашлись в точности, подходящие под корпус.
Как видим радиаторов тут два, но входе построения объединим в один. Помимо радиатора, в корпусе нужно установить силовой трансформатор, шунт и высоковольтные конденсаторы. Они никак не влазили на плату, пришлось их вынести за пределы. Шунт имеет небольшие размеры, его можно положить на дно. Силовой трансформатор был в наличии только таких размеров:
Остальные раскупили. Его габаритная мощность 3 кВт. Это конечно намного больше чем нужно. Теперь можно переходить к рассмотрению схем и печаток. В первую очередь рассмотрим блок-схему устройства, так будет легче ориентироваться.
Состоит она из блока питания, dc-dc преобразователя, системы плавного пуска и различной периферии. Все блоки не зависят друг от друга, например, вместо блока питания можно заказать готовый. Но мы рассмотрим вариант как сделать все своими руками, а вам уже решать, что купить, а что делать также. Стоит отметить, что необходимо установить предохранители между силовыми блоками, так как при выходе из строя одного элемента, он потащит за собой в могилу остальную схему, а это вылетит вам в копеечку.
Предохранители на 25 и 30А в самый раз, так как это номинальный ток, а выдержать они могут на пару ампер больше.
Теперь по порядку о каждом блоке. Блок питания построен на всеми любимой ir2153.
Также в схему добавлен умощненный стабилизатор напряжения для питания микросхемы. Он запитан от вторичной обмотки трансформатора, параметры обмоток рассмотрим при намотке. Все остальное — это стандартная схема блока питания.
Следующий элемент схемы — это плавный пуск.
Установить его необходимо для ограничения тока зарядки конденсаторов, чтобы не спалить диодный мост.
Теперь самая важная часть блока – dc-dc преобразователь.
Его устройство очень сложное, поэтому углубляться в работу не будем, если интересно подробнее узнать про схему, то изучите самостоятельно.
Настало время переходить к печатным платам. Вначале рассмотрим плату блока питания.
На нее не вместились ни конденсаторы, ни трансформатор, поэтому на плате имеются отверстия для их подключения. Размеры фильтрующего конденсатора подбирайте под себя, так как они бывают разных диаметров.
Далее рассмотрим плату преобразователя. Тут тоже можно немного подогнать размещение элементов. Автору пришлось сместить второй выходной конденсатор вверх, так как он не вмещался. Так же можете добавить еще перемычку, это уже на ваше усмотрение.
Теперь переходим к травлению платы.
Думаю, тут нет ничего сложного.
Как видим, при подключении лампочки, она загорелась, а это значит, что схема без ошибок. Отлично, можно установить элементы выходной цепи, а как известно, туда нужен дроссель. Его придется изготовить самостоятельно. В качестве сердечника используем вот такое желтое кольцо от компьютерного блока питания:
С него необходимо удалить штатные обмотки и намотать свою, проводом 0,8 мм сложенным в две жилы, количество витков 18-20.
Заодно можем намотать дросселя для dc-dc преобразователя. Материалом для намотки являются вот такие кольца из порошкового железа.
В отсутствие такого, можно применить тот же материал, что и в первом дросселе. Одной из важных задач является соблюдение одинаковых параметров для обоих дросселей, так как они будут работать в параллели. Провод тот же – 0,8 мм, количество витков 19.
После намотки, проверяем параметры.
Они в принципе совпадают. Далее запаиваем плату dc-dc преобразователя. С этим проблем возникнуть не должно, так как номиналы подписаны. Тут все по классике, сначала пассивные компоненты, потом активные и в последнюю очередь – микросхемы.
Настало время заняться подготовкой радиатора и корпуса. Радиаторы соединим между собой двумя пластинками вот таким образом:
На словах это все хорошо, надо бы заняться делом. Сверлим отверстия под силовые элементы, нарезаем резьбу.
Сам же корпус тоже немного подправим, отломав лишние выступы и перегородки.
Когда все готово, приступаем к креплению деталей на поверхность радиатора, но так как фланцы активных элементов имеют контакт с одним из выводов, то необходимо их изолировать от корпуса подложками и шайбами.
Крепить будем на винты м3, а для лучшей термо передачи воспользуемся не высыхающей термопастой.
Когда разместили на радиаторе все греющиеся части, запаиваем на плату преобразователя ранее не установленные элементы, а также припаиваем провода для резисторов и светодиодов.
Теперь можно тестировать плату. Для этого подадим напряжение от лабораторного блока питания в районе 25-30В. Проведем быстрый тест.
Как видим, при подключении лампы идет регулировка по напряжению, а также ограничения по току. Отлично! И эта плата тоже без косяков.
Тут же можно настроить температуру срабатывания кулера. С помощью подстроечного резистора производим калибровку.
Сам же термистор нужно закрепить на радиаторе. Осталось намотать трансформатор для блока питания на вот таком гигантском сердечнике:
Перед намоткой необходимо рассчитать обмотки. Воспользуемся специальной программой (ссылку на нее найдете в описании под видеороликом автора, пройдя по ссылке «Источник»). В программе указываем размер сердечника, частоту преобразования (в данном случае 40 кГц). Также указываем количество вторичных обмоток и их мощность. Силовая обмотка на 1200 Вт, остальные на 10 Вт. Также нужно указать каким проводом будут мотаться обмотки, жмем кнопку «Рассчитать», тут нет ничего сложного, думаю разберетесь.
Посчитали параметры обмоток и начинаем изготовление. Первичка в один слой, вторичка в два слоя с отводом от середины.
Изолируем все с помощью термоскотча. Тут по сути стандартная намотка импульсника.
Все готово к установке в корпус, осталось разместить периферийные элементы на лицевой стороне таким образом:
Сделать это можно довольно просто, лобзиком и дрелью.
Теперь самая трудная часть — разместить все внутри корпуса. В первую очередь соединяем два радиатора в один и закрепляем его.
Соединение силовых линий будем проводить вот такой 2-ух миллиметровой жилой и проводом сечением 2,5 квадрата.
Также возникли некие проблемы с тем, что радиатор занимает всю заднюю крышку, и там невозможно вывести провод. Поэтому выводим его сбоку.
На этом все, сборка завершена. Перед закрытием крышки проводим тестовое включение.
Блок завелся, теперь закрываем верхнюю крышку и идем тестировать. Для теста сначала воспользуемся лампочками накаливания на 36В 100Вт.
Как видим, блок держит их без труда. Данный вольтамперметр, который купил автор, не может измерить максимальный ток блока даже шунтом, хоть и написано на сайте, что с шунтом может измерять до 50А. Не совершайте такую же ошибку и возьмите себе стрелочный амперметр — надежнее будет. А по поводу проверки — не переживайте, сейчас вы убедитесь в том, что максимальный ток устройства свыше 25А. Для этого воспользуемся предохранителем на 25А и пустим его в короткое замыкание.
Его просто плавит, а это значит, что ток тут больше 25 ампер. Также попробуем плавить различные предметы.
Скрепка, шайба и даже шило — ничто не устояло перед мощью данного блока.
Благодарю за внимание. До новых встреч!
Видео:
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.usamodelkina.ru
Регулируемый блок питания своими руками
Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.
Блок питания из старой платы компьютера
Stalevik
Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.
Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.
Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.
Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.
Так выглядит блок питания импульсный на видеокарте.
Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.
Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.
Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.
Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.
Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.
Посмотрим, как блок питания выглядит в работе
Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.
Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.
Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.
Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.
Как сделать регулирующий БП из обычного, от принтера
Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.
Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.
Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.
Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.
Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.
Как сделать регулировку?
Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.
Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.
Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.
Видео канала “Технарь”.
Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.
Простой блок с регулировкой
Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.
Самодельный регулированный блок на одном транзисторе
Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.
Скачать схему с платой.
Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.
Приступаем к сборке
Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.
Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.
Видео Radioblogful. Видеоблог паяльщика.
izobreteniya.net
Блок питания с регулировкой напряжения и тока
Приветствую всех, особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для своих самоделок и поэтому в ходе этой статьи будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока.
Наш блок питания может обеспечивать на выходе стабилизированное напряжения от ноля до пятнадцати вольт и ток до 1.5 Ампер, эти параметры можно изменять и походу поясню, как это сделать.В проекте специально использованы наиболее доступные компоненты, чтобы ни у кого не возникло трудности с их поиском, а теперь давайте рассмотрим схему и поймём принцип её работы.
Схема состоит из трех основных частейСетевой понижающий трансформатор (красным обозначен), он обеспечивает нужные для наших целей выходные параметры, а также гальваническую развязку. В моем варианте был использован трансформатор от блока питания старого кассетного магнитофона, подойдет и любой другой, основные параметры блока питания будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент — максимальное выходное напряжение лабораторного блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе. Трансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 вольт, ток каждой из них составляет около 0,7 Ампер, обмотки подключены параллельно, то есть общий ток около полутора ампер.
Вторая часть из себя представляет выпрямитель, для выпрямления переменного напряжения в постоянку и конденсатор, для сглаживания напряжения после выпрямителя и фильтрации помех.
И наконец третий узел — это плата самого стабилизатора, давайте её рассмотрим поподробнее…
Уже постоянное напряжение поступает на плату стабилизатора, где стабилизируется до некоторого уровня. Режим стабилизации будет зависеть от стабилитрона, в нашем случае он на 15 Вольт, именно он задает максимальное выходное напряжение блока питания.
Беда в том, что ток у таких стабилитронов не велик, поэтому его нужно усилить с помощью простого каскада усиления по току, построенного на транзисторах VТ 1 и VТ 2, транзисторы подключены таким образом, чтобы обеспечить максимально большое усиление, то есть по сути это аналог составного транзистора.
Регулятор напряжения в лице переменного резистора R1, выполняет функцию простого делителя напряжения и может быть рассмотрен, как 2 последовательно соединенных резистора с отводом от места их соединения.Изменяя сопротивление каждого из них, мы можем регулировать напряжение. Это напряжение усиливается ранее указанным каскадом.
Второй переменный резистор позволит ограничивать выходной ток. Если такая функция не нужна, то схема будет выглядеть следующим образом.
Теперь подробнее о компонентах, большую их часть, а если точнее все компоненты можно найти в старой аппаратуре, например в телевизорах, усилителях, приемниках, магнитолах и прочей технике.
Также возможно использовать импортные аналоги, которые имеют одинаковое расположение выводов. В архиве сможете найти некоторые варианты замены транзисторов, как на советские, так и на импортные.
Можно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых четырех аналогичных диодов с током от двух ампер.
Для увеличения выходного напряжения блока питания сначала нужно найти соответствующий трансформатор, затем заменить стабилитроны на более высоковольтные, скажем на 18 или 24 вольта, будет зависеть от нужного вам выходного напряжения.
Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения выпрямителя. Рассчитываю так, чтобы ток через стабилитрон не превышал значение 20-25 миллиампер, в случае стабилитрона на пол ватта и 40-45 миллиампер в случае если стабилитрон одноваттный.
Если под рукой не оказалось нужного стабилитрона, то можно использовать несколько последовательно соединенных с меньшим напряжением, в итоге сумма их напряжения будет равняться конечному напряжению стабилизации.
Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT 2 нуждается в радиаторе.
А теперь давайте проверим конструкцию в работе
и как видим напряжения плавно регулируется от нуля до пятнадцати вольт
Теперь проверим функцию ограничения тока, обратите внимание без выходной нагрузки вращая регулятор тока, напряжение у нас не будет меняться, что свидетельствует о корректной работе функции ограничения.
Выходной ток также регулируется достаточно плавно, минимальная граница 180 миллиампер.
Максимальный выходной ток в моём случае, составляет около полутора ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.Несмотря на простоту конструкции, при токах около одного Ампера, наблюдаем просадку выходного напряжения меньше 200 милливольт, это очень хороший показатель для стабилизаторов такого класса.
Блок питания может переносить короткие замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе одного — семи Ампер.
Монтаж при желании можно сделать навесным,но более красиво смотрится конструкция на печатной плате, тем более, что я ее для вас нарисовал,а файл платы также можете скачать с общим архивом проекта.
В качестве индикаторов советую использовать стрелочные приборы, чтобы не путаться с подключением, хотя можно и цифровые.
По мне, это довольно годный вариант в качестве первого блока питания, так что смело собирайте.
Архив к статье: скачать…
Автор; АКА КАСЬЯН
xn--100—j4dau4ec0ao.xn--p1ai
ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ
Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов. В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.
Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А — минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом — ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие — раньше ограничить ток.
Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.
На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:
- 1-выход 0-22в
- 2-выход 0-22в
- 3-выход +/- 16в
Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге — смотрите далее:
Отдельная благодарность за улучшение схемы — Rentern. Сборка, корпус, испытания — aledim.
Форум по БП
Обсудить статью ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ
radioskot.ru
МОЩНЫЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ
Собрал недавно очень неплохой лабораторный регулируемый блок питания по такой, многократно проверенной разными людьми схеме:
- Регулировка от 0 до 40 В (при ХХ и 36В по расчету с нагрузкой) + возможна стабилизация до 50 В, но мне надо было именно до 36 В.
- Регулировка тока от 0 до 6А (Imax устанавливается шунтом).
Имеет 3 вида защиты, если так можно назвать:
- Стабилизация по току (при превышении установленного тока — ограничивает его и любые изменения напряжения в сторону увеличения не вносят изменений)
- Триггерная защита по току (при превышении установленного тока отключает питание)
- Температурная защита (при превышении установленной температуры отключает питание на выходе) У себя ее не ставил.
Вот плата управления, основанная на LM324D.
С помощью 4х ОУ реализовано все управление стабилизацией и вся защита. В интернете более известна как ПиДБП. Данная версия — 16-я усовершенствованная, проверенная многими (v.16у2). Разрабатывается\лась на «Паяльнике». Проста в настройке, собирается буквально на коленке. Регулировка тока у меня довольно грубая и думаю стОит поставить еще дополнительную ручку точной настройки тока, помимо основной. На схеме справа есть пример как это сделать для регулировки напряжения, но можно применить и к регулировке тока. Питается все это от ИИП из одной из соседних тем, с квакающей «защитой»:
Как всегда, пришлось развернуть по своему ПП. Думаю о нем здесь особо не стоит говорить. Для умощнения стабилизатора установлены 4 транзистора TIP142:
Все на общем теплоотводе (радиатор от CPU). Для чего их так много? Во-первых — для увеличения выходного тока. Во-вторых — для распределения нагрузки на все 4 транзистора, что в последующем исключает перегрев и выход из строя на больших токах и больших разниц потенциалов. Ведь стабилизатор — линейный и плюс к этому всему, чем выше напряжение на входе и меньше напряжение на выходе, тем больше энергии рассеивается на транзисторах. В добавок у всех транзисторов есть определенные допуски по напряжению и току, для тех кто все это не знал. Вот схема подключения транзисторов в параллель:
Резисторы в эмиттерах можно устанавливать в пределах от 0.1 до 1 Ома, стоит учитывать, что при увеличении тока падение напряжения на них будет существенно и естественно нагрев неизбежен.
Все файлы — краткую информацию, схемы в .ms12 и .spl7, печатку от одного из людей на паяльнике (100% проверенная, все подписано, за что ему огромное спасибо!) в .lay6 формате, предоставляю в архиве. Ну и, наконец, видео работы защиты и немного информации о БП в целом:
Цифровой VA-метр в дальнейшем заменю, поскольку он не точен, шаг показаний большой. Сильно разнятся показания тока при отклонении от настроенного. Например выставим 3 А и на нем тоже 3 А, но когда снизим ток до 0.5 А, то он будет показывать 0.4 А, например. Но это уже другая тема. Автор статьи и фото — BFG5000.
Форум по ИП
Обсудить статью МОЩНЫЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ
radioskot.ru
Простой регулируемый стабилизированный блок питания
Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.
Нам, для изготовления этого нужного устройства, потребуются детали:
- Микросхема LM317 или LM317T.
- Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
- Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
- C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
- C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
- D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
- R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
- R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.
Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.
Сборка регулируемого стабилизированного блока питания
Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.
Проверка блока питания
Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.
Видео испытаний блока питания прилагается
sdelaysam-svoimirukami.ru
Простой регулируемый блок питания своими руками
Когда собираешь какую либо электронную самоделку, то для ее проверки нужен блок питания. На рынке большое разнообразие готовых решений. Красиво оформлены, имеют много функций. Так же много kit-наборов для самостоятельного изготовления. Я уже не говорю про китайцев с их торговыми площадками. Покупал я на Алиэкспресс платы модулей понижающего преобразователя, вот на нем и решил сделать. Напряжение регулируется, тока хватает. Блок в основе имеет модуль из Китая, так же радиодетали которые были у меня в мастерской(давно лежали и ждали своего часа). Регулирует блок от 1.5 вольта и до максимума(все зависит от применяемого выпрямителя до платы регулировки.
Описание компонентов
Есть у меня трансформатор 17.9 Вольт и током 1.7Ампера. Он установлен в корпусе, значит подбирать последний не нужно. Обмотка довольно толстая, думаю и 2 Ампера потянет. Вместо трансформатора можно применить импульсный блок питания ноутбука, но тогда нужен еще и корпус для остальных компонентов.
Выпрямителем переменного тока, будет диодный мост, можно собрать и из четырех диодов. Сглаживать пульсации будет электролитический конденсатор, у меня 2200 микрофарад и рабочим напряжением 35 вольт. Применил б/у, был в наличии.
Регулировать выходное напряжение буду китайским модулем. Их на рынке большое разнообразие. Он обеспечивает хорошую стабилизацию и довольно надежен.
Для комфортной регулировки выходного напряжения буду применять регулировочный резистор на 4.7 кОм. На плате установлен 10 кОм, но у меня какой был, такой и поставлю. Резистор еще начала 90-х. При таком номинале, регулировка обеспечивается плавно. Так же подобрал ручку на него, тоже лохматых годов.
Индикатором выходного напряжения служит вольтметр из Китая. У него три провода. Два провода питание вольтметра(красный и черный), а третий(синий) измеряющий. Можно соединить красный и синий вместе. Тогда вольтметр будет питаться от выходного напряжения блока, то есть загораться индикация от 4 вольт. Согласитесь не удобно, поэтому я его буду питать отдельно, об этом далее.
Для питания вольтметра я применю отечественную микросхему стабилизатора напряжения на 12 вольт. Тем самым обеспечу работу индикатора-вольтметра от минимума. Питается вольтметр через красный плюс и черный минус. Измерение осуществляется через черный минус и синий плюс выход блока.
Клеммы у меня отечественные. Имеют отверстия для штекеров типа «банан» и отверстия под зажим проводов. Похожие можно купить в Китае. Так же подобрал провода с наконечниками.
Сборка блока питания
Все собирается по простой зарисованной схеме.
Диодный мост нужно припаять к трансформатору. Я его выгнул для комфортной установки. На выход моста припаял конденсатор. Получилось не выйти за габариты по высоте.
Кренку питания вольтметра прикрутил к трансформатору. В принципе она не греется, и так она стоит на своем месте и никому не мешает.
На плате регулятора выпаял резистор и припаял два проводка под выносной резистор. Так же припаял провода под выходные клеммы.
На корпусе разметив отверстия под все, что будет на передней панели. Вырезал отверстия под вольтметр и одну клемму. Резистор и вторую клемму устанавливаю на стык коробки. При сборке коробки все зафиксируется сжатием обеих половинок.
Клемма и вольтметр установлены.
Так получилось установить вторую клемму и регулировочный резистор. Под ключ резистора сделал вырез.
Вырезаем окно под выключатель. Корпус собираем и закрываем. Осталось только распаять выключатель и регулируемый блок питания готов к применению.
Испытание блока
Блок питания регулирует напряжение от 1.23 Вольта.
Максимальное напряжение 19 Вольт.
Отображает вольтметр довольно точно. 20-30 милливольт не считаю таким уж сильным отклонением.
Подключил моторчик. Напряжение не проседает.
Данный блок питания прост и не отображает ток нагрузки. Может это и минус, но данный корпус не вместил бы еще амперметра и регулировки тока не предусмотрено. Так что с поставленной задачей я справился.
Такой вот регулируемый блок питания получился. Данная конструкция простая и доступна для повторения каждому. Детали не являются редкими.
Всем удачи в изготовлении!
Смотрите видео
sdelaysam-svoimirukami.ru