Вечный двигатель на магнитах своими руками. Вечный двигатель на магнитах: мифы и реальность

Что такое вечный двигатель на магнитах. Как работает магнитный двигатель. Можно ли создать вечный двигатель своими руками. Какие существуют виды магнитных двигателей. Почему вечный двигатель невозможен с точки зрения физики.

Содержание

Что такое вечный двигатель на магнитах

Вечный двигатель на магнитах — это гипотетическое устройство, способное работать бесконечно долго без притока энергии извне. Идея создания такого двигателя основана на использовании свойств постоянных магнитов. Теоретически, магниты должны обеспечивать постоянное движение без затрат энергии.

Однако с точки зрения законов физики создание вечного двигателя невозможно. Это противоречит первому и второму началам термодинамики. Тем не менее, идея магнитного вечного двигателя продолжает привлекать изобретателей и энтузиастов.

Принцип работы магнитного двигателя

Магнитный двигатель основан на взаимодействии постоянных магнитов. Существует несколько схем таких двигателей:

  • С вращающимся ротором и статором из постоянных магнитов
  • С линейным перемещением магнитов
  • С использованием магнитной левитации

Принцип работы заключается в создании постоянного вращающего момента за счет сил притяжения и отталкивания магнитов. Теоретически, это должно обеспечивать непрерывное движение без затрат энергии.


Известные конструкции магнитных двигателей

За историю было предложено множество конструкций магнитных двигателей. Наиболее известные из них:

Двигатель Говарда Джонсона

Говард Джонсон запатентовал в 1979 году конструкцию магнитного двигателя с вращающимся ротором. Принцип работы основан на взаимодействии магнитов ротора и статора. Однако работоспособность двигателя не была доказана.

Двигатель Перендева

Изобретатель Майк Брэди создал в 1990-х годах двигатель с магнитами на роторе и статоре. По утверждениям автора, двигатель мог работать без внешнего источника энергии. Однако независимых подтверждений этому нет.

Колесо Минато

Японский изобретатель Кохей Минато разработал в 1990-х конструкцию с вращающимся диском и наклонно расположенными магнитами. Утверждалось, что устройство может работать без остановки, но научного подтверждения этому нет.

Возможно ли создать вечный двигатель своими руками

Многие энтузиасты пытаются собрать магнитный вечный двигатель в домашних условиях. Типичная самодельная конструкция включает:


  • Ротор в виде диска с закрепленными по окружности магнитами
  • Статор с магнитами, расположенными напротив магнитов ротора
  • Подшипники для свободного вращения ротора

Однако все попытки создать работающий вечный двигатель в домашних условиях оказываются безуспешными. Рано или поздно движение прекращается из-за трения и других потерь энергии.

Почему вечный двигатель невозможен

Создание вечного двигателя противоречит фундаментальным законам физики:

  • Первое начало термодинамики (закон сохранения энергии) — энергия не может быть создана из ничего
  • Второе начало термодинамики — в замкнутой системе энтропия всегда возрастает

Любая реальная система имеет потери энергии на трение, нагрев и другие процессы. Поэтому вечное движение без притока энергии извне невозможно.

Практическое применение магнитных двигателей

Несмотря на невозможность создания вечного двигателя, разработки в области магнитных двигателей имеют практическое применение:

  • Электродвигатели с постоянными магнитами — высокий КПД, компактность
  • Магнитные подшипники — снижение трения
  • Магнитная левитация в транспорте
  • Накопители энергии на основе сверхпроводящих магнитов

Таким образом, идея магнитного вечного двигателя стимулирует развитие технологий, даже если сама по себе неосуществима.


Перспективы развития магнитных двигателей

Хотя создание вечного двигателя невозможно, исследования в области магнитных двигателей продолжаются. Перспективные направления включают:

  • Совершенствование электродвигателей с постоянными магнитами
  • Разработка более эффективных магнитных подшипников
  • Создание сверхпроводящих магнитных систем
  • Применение новых магнитных материалов

Эти разработки могут привести к созданию более эффективных и экологичных двигателей, хотя и не вечных. Магнитные технологии остаются перспективным направлением в энергетике и машиностроении.


миф или реальность, устройство, виды

Содержание:

Что такое магнитный двигатель

Все вечные двигатели можно разделить на 2 вида:

  1. Первые;
  2. Вторые.

Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.

Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:

  • Николай Лазарев;
  • Майк Брэди;
  • Говард Джонсон;
  • Кохеи Минато;
  • Никола Тесла.

Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении.

На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:

  1. Работают благодаря энергии магнитных полей.
  2. Импульсного действия с возможностью контроля и дополнительного источника питания.
  3. Технологии, которые совмещают в себе принципы обоих силовых агрегатов.

История возникновения вечного двигателя

Прежде чем описывать вечный двигатель, стоит обратиться к истории. Откуда же взялась идея о вечном двигателе? Впервые идея о создании такого двигателя, которое бы приводило в работу машины, не используя специальную силу, появилась в Индии в седьмом веке. Но уже практический интерес к данной идее появился позже, уже в Европе в восьмом веке. Создание такого двигателя позволило бы существенно ускорить развитие науки энергетики, а также развить производительные силы.

Такой двигатель был необычайно полезен в то время. Двигатель был способен приводить в движение различные водяные насосы, крутить мельницы, а также поднимать различные грузы. Но средневековая наука была развита не настолько, чтобы делать такие большие открытия. Люди, которые мечтали создать вечный двигатель. Прежде всего они опирались на то, что движется всегда, то есть вечно. Примером тому служит движение солнца, луны, различных планет, течение рек и так далее. Однако, наука не стоит на своем. Именно поэтому, развиваясь, человечество пришло к созданию настоящего двигателя, который опирался не только на естественное стечение обстоятельств.

Первые аналоги современного вечного магнитного двигателя

В 20 веке произошло величайшее открытие – появление постоянного магнита и изучение его свойств. К тому же, в том же веке появилась идея о создании магнитного двигателя. Такой двигатель должен был работать неограниченное количество времени, то есть бесконечно. Такой двигатель назвали вечным. Однако, слово «вечно» тут не совсем подходит. Вечного нет ничего, поскольку в любую минуту какая-либо часть такого магнита может отвалиться, либо какая-нибудь деталь отколется. Именно поэтому под словом «вечно» следует принимать такой механизм, который работает беспрерывно, не требуя при этом каких-либо затрат. К примеру, на топливо и так далее.

Но существует мнение, что вечного ничего нет, вечный магнит не может существовать по законам физики. Однако стоит подметить, что постоянный магнит излучает энергию постоянно, при этом совершенно не теряет своих магнитных свойств. Каждый магнит совершает работу беспрерывно. Во время данного процесса, магнит вовлекает в данное движения все молекулы, которые содержатся в окружающей среде специальным потоком, который называется эфир.

Это единственное и самое верное объяснение механизму действия такого магнитного двигателя. На данный момент трудно установить, кто создал первый двигатель, работающий на магнитах. Он сильно отличался от нашего современного. Однако существует мнение, что в трактате величайшего индийского математика Бхскара Ачарья есть упоминание о двигателе, работающем на магните.

В Европе первые сведения о создании вечного магнитного двигателя возникли также от важной персоны. Данное известие поступило в 13 веке, от Виллара д’Оннекура. Это был величайший французский архитектор и инженер. Он, как и многие деятели того века занимался различными делами, которые соответствовали профилю его профессии. А именно: строительство различных соборов, создание сооружений по подъему грузов. Кроме того, деятель занимался созданием пил с водным приводом и так далее. Кроме того, он оставил после себя альбом, в котором оставил чертежи и рисунки потомкам. Данная книга хранится в Париже, в национальной библиотеке.

Создание вечного магнитного двигателя

Когда же был создан первый вечный магнитный двигатель? В 1969 году был изготовлен первый современный рабочий проект магнитного двигателя. Сам корпус такого двигателя был полностью выполнен из дерева, сам двигатель находился вполне в рабочем состоянии. Но существовала одна проблема. Самой энергии хватало исключительно на вращение ротора, поскольку все магниты были достаточно слабыми, а других в то время просто не изобрели. Создателем такой конструкции был Майкл Брэди. Всю жизнь он посвятил на разработку двигателей и наконец в 90-х годах прошлого века он создал абсолютно новую модель вечного двигателя на магните, за что и получил патент.

Майкл Брэди в 2002 году создавая двигатель Перендева на магнитах

На основе данного магнитного двигателя был сделан электрогенератор, который имел мощность 6 кВт. Силовым устройством являлся тот магнитный мотор, который использовал исключительно постоянные магниты. Однако, такой вид электрогенератора не обходился без своих определенных минусов. К примеру, обороты и мощность двигателя не зависели ни от каких факторов, к примеру, нагрузки, которая подключалась к электрогенератору.

Далее, шла подготовка к изготовлению электромагнитного мотора, в котором, кроме всех постоянных магнитов также использовались специальные катушки, которые называются электромагнитами. Такой мотор, работающий на электромагнит, мог успешно управлять силой момента вращения, а также самой скоростью вращения ротора. На основе двигателя нового поколения были созданы две мини электростанции. Генератор весит 350 килограмма.

Группы вечных двигателей

Магнитные двигатели и иные другие подразделяются на два вида. Первая группа вечных двигателей совершенно не извлекают энергию из окружающей среды (к примеру, тепло) Однако, при этом, физические и химические свойства двигателя по-прежнему остаются неизменными, не используя при этом энергии, кроме собственной. Как было сказано выше, именно такие машины просто не могут существовать, исходя из первого закона термодинамики. Вечные двигатели второго вида делают все с точностью наоборот. То есть их работа полностью зависит от внешних факторов. При работе они извлекают энергию из окружающей среды. Поглощая, допустим, тепло, они превращают такую энергию в механическую. Однако такие механизмы не могут существовать исходя из второго закона термодинамики. Проще говоря, первая группа относится к так называемым естественным двигателям. А вторая к физическим или искусственным двигателям.

Но к какой же группе отнести вечный магнитный двигатель? Конечно, к первой. При работе данного механизма энергия внешней среды совершенно не используется, напротив, механизм сам вырабатывает то количество энергии, которое ему необходимо.

Тейн Хайнс — презентация двигателя

Создание современного вечного магнитного двигателя

Каким же должен быть настоящий вечный магнитный двигатель нового поколения? Так, в 1985 году над этим задумался будущий изобретатель механизма Тейн Хайнс (Thane Heins). Он задумался над тем, как с помощью магнитов значительно улучшить генератор мощности. Таким образом, к 2006 году он все-таки изобрел то, о чем так долго мечтал. Именно в этом году произошло, то, что он никак не ожидал. Работая над своим изобретением, Хайнс соединил приодной вал обычного электрического мотора вместе с ротором, на котором находились маленькие круглые магниты.

Они располагались на внешнем ободе ротора. Хайнс надеялся на то, что в период, когда ротор будет вращаться, магниты будут проходить через катушку, материалом которой служила обычная проволка. Данный процесс, по мнению Хайнса, должен был вызвать протекание тока. Таким образом, используя все вышесказанное, должен был получиться настоящий генератор. Однако, ротор, который работал на нагрузку, постепенно должен был замедляться. И, конечно, в конце ротор должен был остановиться.

Но Хайнс что-то не рассчитал. Таким образом, вместо того, чтобы остановиться, ротор начал ускорять свое движение до невероятной скорости, что привело к тому, что магниты разлетелись во все стороны. Удар магнитами был действительно огромной силы, что повредило стены лаборатории.

Проводя данный эксперимент, Хайнс надеялся на то, что при данном действии должно быть установлено специальное силовое магнитное поле, в котором и должен был появиться эффект, совершенно обратной ЭДС. Такой исход эксперимента является теоретически правильный. Данный исход опирается на закон Ленца. Данный закон проявляет себя физически как обычнейший закон трения в механике.

Но, увы, предполагаемый исход эксперимента вышел из-под контроля ученого-испытателя. Дело в том, что вместо результата, который хотел получить Хайнс, обычнейшее магнитное трение превратилось в самое, что ни на есть магнитное ускорение! Таким образом возник первый современный вечный магнитный двигатель. Хайнс считает, что, вращающиеся магниты, которые формируют поле с помощью стальных проводящих ротора, а также вала действуют на электрический мотор таким образом, что происходит превращение электрической энергии в совершенно иную, кинетическую.

То есть, обратная ЭДС в нашем конкретном случае еще больше ускоряет мотор, которая соответственно заставляет вращаться ротор. То есть, таким образом, возникает процесс, имеющий положительную обратную связь. Сам изобретатель подтвердил данный процесс, заменив лишь одну деталь. Стальной вал Хайнс заменил непроводящей пластиковой трубкой. Это дополнение он сделал для того, чтобы ускорение в данном примере установки не было возможным.

И, наконец, 28 января 2008 года Хайнс испытал свой прибор Технологическом Институте Массачусетса. Что самое удивительное, прибор действительно функционировал! Однако, дальнейших новостей о создании вечного двигателя не поступало. У некоторых ученых существует мнение, что это лишь блеф. Однако сколько людей, столько и мнений.

Стоит отметить, что настоящие вечные двигатели можно обнаружить и во Вселенной, не изобретая ничего самостоятельно. Дело в том, что такие явления в астрономии называют белыми дырами. Данные белые дыры являются антиподами черных дыр, тем самым они могут быть источниками бесконечной энергии. К сожалению, данное утверждение не проверено, а существует оно лишь теоретически. Что уж говорить, если существует высказывание, что и сама Вселенная- это один большой и вечный двигатель.

Таким образом, в статье мы отразили все основные мысли по поводу магнитного двигателя, который может работать без остановки. К тому же, мы узнали о его создании, о существовании его современного аналога. К тому же, в статье можно найти имена различных изобретателей разных времен, которые трудились над созданием вечного двигателя, работающего на магните. Надеемся, что вы нашли что-то полезное для себя.

Конструктивные особенности

Из каких элементов состоит магнитный двигатель:

  1. Статор, выполненный как один постоянный магнит на пружинной основе.
  2. Ротор. Диск, обязательно выполненный из материала, который не подвержен намагничиванию. По поверхности диски расположены небольшие постоянные магниты определённых размеров. Все магниты на диске необходимо разместить в определённой форме и последовательности.
  3. Балласт. В магнитном двигателе это отдельный элемент, он обеспечивает разгон ротора и его постоянное вращение при работе.

Это пример самой простой конструкции магнитного двигателя. Мастера вроде Николы Тесла или Василия Шкондина создавали куда более изощрённые модели, а многие из конструкторов в данной сфере электротехники даже получили патенты на свои изделия.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе». Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Разновидности магнитных двигателей и их схемы

Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.

Магнитный униполярный двигатель Тесла

Значительных успехов в этой сфере достиг великий ученый, известный множеством открытий – Никола Тесла. Среди ученых, устройство ученого получило несколько иное название – униполярный генератор Тесла.

Стоит отметить, что первые исследования в этой области проводит Фарадей, но несмотря на то, что он создал прототип с похожим принципом работы, как впоследствии Тесла, стабильность и эффективность оставляли желать лучшего. Слово «униполярный», означает что в схеме устройства цилиндровый, дисковый или кольцевой проводник, находится между полюсами постоянного магнита.

Официальный патент представлял следующую схему, в которой имеется конструкция с 2-мя валами, на которых устанавливаются 2 пары магнитов: одна пара создает условно отрицательное поле, а другая пара – положительное. Между этими магнитами располагаются генерирующие проводники (униполярные диски), которые имеют связь между собой с использованием металлической ленты, которая по сути может быть использована не только для вращения диска, но и в качестве проводника.

Тесла известен большим количеством полезных изобретений.

Двигатель Минато

Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

Двигатель Лазарева

Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.

Генератор Перендева

Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.

Василия Шкондина

Получить вечный генератор Василию Шкодину не удалось, КПД такого магнитного двигателя и сегодня не превышает 83%. Но и этого более чем достаточно, чтобы его повсеместно применяли для велосипедов, байков и самокатов. Он может эксплуатироваться как в режиме тяги, так и для рекуперации электроэнергии.


Двигатель Шкондина

На рисунке приведена конструкция магнитного двигателя Шкодина. Как видите, и ротор и статор представляют собой кольца. Из магнитных деталей он содержит 11 пар неодимовых магнитов. Ротор устройства содержит 6 электромагнитов, смещенных на одинаковое расстояние друг относительно друга.

Джона Серла

От электрического мотора такой магнитный двигатель  отличает взаимодействие исключительно магнитного поля статора и ротора. Но последний выполняется наборными цилиндрами с таблетками из специального сплава, которые создают магнитные силовые линии  в противоположном направлении. Его можно считать синхронным двигателем, так как разница частот в нем отсутствует.


Двигатель Серла

Полюса постоянных магнитов расположены так, что один толкает следующий и т.д. Начинается цепная реакция, приводящая в движение всю систему магнитного двигателя, до тех пор, пока магнитной силы будет хватать хотя бы для одного цилиндра.

Свинтицкого

Еще в конце 90-х украинский конструктор предложит модель самовращающегося магнитного двигателя, который стал настоящим прорывом в технике. За основу им был взят асинхронный двигатель Ванкеля, которому не удалось решить проблему с преодолением 360° оборота.

Игорь Свинтицкий эту проблему решил и получил патент, обратился в ряд компаний, однако асинхронное магнитное чудо техники никого не заинтересовало, поэтому проект был закрыт и за его масштабное тестирование ни одна компания не взялась.

Алексеенко

Интересный вариант магнитного двигателя представил ученый Алексеенко, который создал устройство с роторными магнитами необычной формы.


Двигатель Алексеенко

Как видите на рисунке, магниты имеют необычную изогнутую форму, которая максимально сближает противоположные полюса. Что делает магнитные потоки в месте сближения значительно сильнее. При начале вращения отталкивание полюсов получается значительно большим, что и должно обеспечить непрерывное движение по кругу.

Модель Лоренца

Чтобы сделать вечный двигатель на магнитах Лоренца, необходимо использовать пять пластин. Расположить их следует параллельно друг другу. Затем по краям к ним припаиваются проводники. Магниты в данном случае крепятся на внешней стороне. Чтобы диск свободно вращался, для него необходимо установить подвеску. Далее к краям оси прикрепляется катушка.

Управляющий тиристор в данном случае устанавливается на ней. Чтобы увеличить силу магнитного поля, используется преобразователь. Вход охлажденного агента происходит вдоль кожуха. Объем сферы диэлектрика зависит от плотности диска. Параметр кулоновской силы, в свою очередь, тесно связан с температурой окружающей среды. В последнюю очередь важно установить статор над обмоткой.

Говарда Джонсона

В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:


Двигатель Джонсона

Как видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении  расстояний и зазоров между основными элементами мотора.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.

Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

Приводы были установлены так, чтобы валы вращались аналогично друг другу. В случае если на систему попробовать воздействовать пальцем или каким-то другим предметом, тогда она остановится.

Руководствуясь такой схемой, можно своими силами создать магнитный агрегат.

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Среди преимуществ таких агрегатов, можно отметить следующие:

  1. Полная автономность с максимальной экономией топлива.
  2. Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
  3. Такой двигатель работает до полного эксплуатационного износа.

Пока что, не лишены такие двигатели и недостатков:

  1. Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
  2. Большое количество моделей не может эффективно работать в бытовых условиях.
  3. Есть небольшие сложности в подключении даже готового агрегата.
  4. Стоимость таких двигателей достаточно велика.

Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.

Миф или всё же реальность?

Магнитный двигатель – это реальность. Конструкторы Игорь Свитницкий и Говард Джонсон это доказали, создав моторы, которые работали за счёт постоянного магнитного потока. Но решить основную проблему – увеличить КПД до положенных 100%, они, к сожалению, не смогли.

Поэтому магнитные двигатели существуют, а теория их массового производства вполне реальна. А вот трактовка магнитного мотора как вечного двигателя с совершенным КПД – это вымысел, незаслуживающий внимания. Вечных двигателей не существует, это доказано, но всё же не мешает появляться на свет «конструкторам», желающим данный факт оспорить.

Рекомендации

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид,год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделятькорпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

Предыдущая

РазноеДля чего и в каких случаях измеряют сопротивление изоляции. Измерение сопротивления изоляции мегаомметром

Следующая

РазноеСистемы заземления TN-C, TN-S, TN-C-S, TT, IT со схемами (ПУЭ). Системы заземлений — преимущества и недостатки

Двигатель на неодимовых магнитах

Существует немало автономных устройств, способных вырабатывать электрическую энергию. Среди них следует отметить двигатель на неодимовых магнитах, который отличается оригинальной конструкцией и возможностью использования альтернативных источников энергии. Однако существует целый ряд факторов, препятствующих широкому распространению этих устройств в промышленности и в быту. Прежде всего, это негативное влияние магнитного поля на человека, а также сложности в создании необходимых условий для эксплуатации.

Общее устройство и принцип работы

Работы над так называемым вечным двигателем ведутся уже очень давно и не прекращаются в настоящее время. В современных условиях этот вопрос становится все более актуальным, особенно в условиях надвигающегося энергетического кризиса. Поэтому одним из вариантов решения этой проблемы является двигатель свободной энергии на неодимовых магнитах, действие которого основано на энергии магнитного поля. Создание рабочей схемы такого двигателя позволит без каких-либо ограничений получать электрическую, механическую и другие виды энергий.

В настоящее время работы по созданию двигателя находятся в стадии теоретических изысканий, а на практике получены лишь отдельные положительные результаты, позволяющие более подробно изучить принцип действия этих устройств.

Конструкция двигателей на магнитах полностью отличается от обычных электрических моторов, использующих электрический ток в качестве главной движущей силы. В основе работы данной схемы лежит энергия постоянных магнитов, которая и приводит в движение весь механизм. Весь агрегат состоит из трех составных частей: сам двигатель, статор с электромагнитом и ротор с установленным постоянным магнитом.

На одном валу с двигателем устанавливается электромеханический генератор. Дополнительно на весь агрегат устанавливается статический электромагнит, представляющий собой кольцевой магнитопровод. В нем вырезается дуга или сегмент, устанавливается катушка индуктивности. К этой катушке подключается электронный коммутатор для регулировки реверсивного тока и других рабочих процессов.

Самые первые конструкции двигателей изготавливались с металлическими частями, которые должны были подвергаться влиянию магнита. Однако для возвращения такой детали в исходное положение затрачивается такое же количество энергии. То есть, теоретически использование такого двигателя нецелесообразно, поэтому данная проблема была решена путем использования медного проводника, по которому пропущен электрический ток. В результате, возникает притяжение этого проводника к магниту. Когда ток отключается, то прекращается и взаимодействие между магнитом и проводником.

Установлено, что сила воздействия магнита находится в прямой пропорциональной зависимости от ее мощности. Таким образом, постоянный электрический ток и рост силы магнита, увеличивают воздействие этой силы на проводник. Повышенная сила способствует вырабатыванию тока, который затем будет подан на проводник и пройдет через него. В результате, получается своеобразный вечный двигатель на неодимовых магнитах.

Этот принцип был положен в основу усовершенствованного двигателя на неодимовых магнитах. Для его запуска используется индуктивная катушка, в которую подается электрический ток. Полюса постоянного магнита должны быть расположены перпендикулярно зазору, вырезанному в электромагните. Под действием полярности постоянный магнит, установленный на роторе, начинает вращаться. Начинается притяжение его полюсов к электромагнитным полюсам, имеющим противоположное значение.

Когда разноименные полюса совпадают, ток в катушке выключается. Под собственным весом, ротор вместе с постоянным магнитом проходит по инерции данную точку совпадения. При этом, в катушке происходит изменение направления тока, и с наступлением очередного рабочего цикла полюса магнитов становятся одноименными. Это приводит к их отталкиванию друг от друга и дополнительному ускорению ротора.

Конструкция магнитного двигателя своими руками

Конструкция стандартного двигателя на неодимовых магнитах состоит из диска, кожуха и металлического обтекателя. Во многих схемах практикуется использование электрической катушки. Крепление магнитов осуществляется с помощью специальных проводников. Для обеспечения положительной обратной связи используется преобразователь. Некоторые конструкции могут быть дополнены ревербераторами, усиливающими магнитное поле.

В большинстве случаев для того, чтобы собственноручно изготовить магнитный двигатель на неодимовых магнитах, используется схема на подвеске. Основная конструкция состоит из двух дисков и медного кожуха, края которого должны быть тщательно обработаны. Большое значение имеет правильное подключение контактов по заранее составленной схеме. Четыре магнита располагаются с внешней стороны диска, а слой диэлектрика проходит вдоль обтекателя. Применение инерционных преобразователей позволяет избежать возникновения отрицательной энергии. В данной конструкции движение положительно заряженных ионов будет происходить вдоль кожуха. Иногда могут потребоваться магниты с повышенной мощностью.

Двигатель на неодимовых магнитах может быть самостоятельно изготовлен из кулера, установленного в персональном компьютере. В данной конструкции рекомендуется использовать диски с небольшим диаметром, а крепление кожуха выполнять с внешней стороны каждого из них. Для рамы может использоваться любая, наиболее подходящая конструкция. Толщина обтекателей составляет в среднем чуть более 2 мм. Подогретый агент выводится через преобразователь.

Кулоновские силы могут иметь разное значение, в зависимости от заряда ионов. Для повышения параметров охлажденного агента рекомендуется применение изолированной обмотки. Проводники, подключаемые к магнитам, должны быть медными, а толщина токопроводящего слоя выбирается в зависимости от типа обтекателя. Основной проблемой таких конструкций является невысокая отрицательная заряженность. Ее можно решить, используя диски с большим диаметром.

ньютоновской механики.

Почему мы не можем сделать вечный двигатель, используя магнит, чтобы притянуть кусок металла, а затем позволить ему упасть обратно?

$\begingroup$

На этот вопрос уже есть ответы здесь :

Почему этот магнитный вечный двигатель не работает? (5 ответов)

Закрыт 4 года назад.

Очевидно, что вечный двигатель невозможен ни по каким законам физики, потому что энергию нельзя «создать» или «разрушить», а только преобразовать. Тем не менее, у меня была идея вечного двигателя, и я не могу найти свою ошибку (на самом деле я очень близок к тому, чтобы построить и попробовать ее).

Вот план:

Возьмите кусок дерева и прикрепите его верхний конец к винту, чтобы он мог качаться как маятник. Затем прикрепите магнитный металл к нижнему концу дерева. Теперь поместите по два магнита с каждой стороны маятника так, чтобы при максимальной амплитуде металл едва касался магнитов и отклонялся назад из-за своего веса. Теперь, в моей голове, если вы придадите маятнику небольшой импульс, он качнется в одном направлении и слегка притянется магнитом. Таким образом, на «обратном пути» она будет иметь несколько большую амплитуду. Таким образом, он качается в другую сторону, ближе к магниту, который будет тянуть маятник еще немного вверх, тем самым еще больше увеличивая амплитуду. Теоретически это может продолжаться, и маятник никогда не остановится, на самом деле он будет набирать большую скорость в начале.

Итак, условия таковы:

  • Металл должен быть достаточно тяжелым, чтобы не прилипать к магнитам
  • Металл должен быть достаточно магнитным, чтобы мы набирали амплитуду, а не теряли ее при каждом взмахе

Вот и все. Я знаю, что конструкция не может работать, но изо всех сил пытаюсь найти, где я допустил ошибку. В любом случае, если это работает, и вы, ребята, создадите его раньше меня: я хочу 50% всей прибыли и хочу, чтобы вы назвали его Perpenduluum Mobile 😀

  • ньютоновская механика
  • электромагнетизм
  • сохранение энергии
  • рассеяние
  • вечное движение

$\endgroup$

5

$\begingroup$

Теперь, в моей голове, если дать маятнику небольшой импульс, он качнется в одном направлении и притянется магнитом совсем чуть-чуть.

Вы забыли учесть магнитное притяжение, когда маятниковый груз возвращается в свое центральное положение.

Что касается внешней ноги, вы правы в том, что притяжение магнита будет притягивать боб и давать ему больше энергии, чем в отсутствие магнита. Однако на обратном пути маятниковый груз пытается уйти от силы притяжения магнита, и это вернет всю дополнительную энергию.

(… если система идеальна, то есть. Реальные магнитные материалы будут демонстрировать некоторый гистерезис, поэтому на обратном пути боб потеряет чуть больше энергии, чем получит на выходе.)

Этот тип ошибки довольно распространен, когда у вас есть основная динамика, которая, как известно, является консервативной, и все еще, кажется, производит энергию — вы просто пренебрегаете теми частями цикла, где эта сила выполняет работу против вашей системы. Аналогичный пример в действии см. в разделе Что мешает работе этого магнитного вечного двигателя?

$\endgroup$

4

$\begingroup$

Вечный двигатель невозможен из-за диссипации или если вы предпочитаете второй принцип термодинамики, а не сохранение энергии.

Если ваш анализ предложенной установки был правильным, вы могли бы создавать механическую энергию бесплатно!

В первом анализе, пренебрегая (неизбежными) потерями в ферромагнитной среде, ваша система консервативна: у вас есть модифицированный маятник, в котором удерживающий потенциал содержит не только гравитационную часть, но и магнитную составляющую. На самом деле магнитная сила немного уменьшает крутящий момент отзыва, который был бы у вас только при гравитации, и амплитуда движения действительно будет больше. Но у вас все же будет точка поворота, где кинетическая энергия обращается в нуль, и, возвращаясь назад, вы достигнете точно такого же угла точки поворота с другой стороны. Это соответствует осциллятору с постоянной амплитудой, потому что потерями пренебрегли. Источниками потерь являются как минимум: трение в воздухе, трение об оси, ферромагнитный гистерезис, токи Фуко. Таким образом, амплитуда уменьшится, и вечное движение сведется к вечной неподвижности…

$\endgroup$

3

$\begingroup$

Вы упускаете из виду, что при прохождении металла через меняющееся магнитное поле возникают вихревые токи.

Эти токи приведут к нагреву металла (количество зависит от скорости движения и напряженности поля).

Этот нагрев в основном приводит к удалению энергии из системы; и таким образом подпрыгивание не может быть сделано навсегда; даже если остальная часть системы идеальна.

$\endgroup$

Очень активный вопрос . Заработайте 10 репутации (не считая бонуса ассоциации), чтобы ответить на этот вопрос. Требование к репутации помогает защитить этот вопрос от спама и отсутствия ответа.

магнитных полей — В чем секрет этого вечного двигателя с неодимовыми магнитами?

Задавать вопрос

спросил

Изменено 7 лет, 2 месяца назад

Просмотрено 3к раз

$\begingroup$

Следующее устройство, очевидно, основано только на магнитных силах и не имеет видимого источника энергии:

Где находится его источник энергии?

Полное видео: http://www. youtube.com/watch?v=eA0b-8pqUCk

ОБНОВЛЕНИЕ

Одним из предположений было то, что энергия исходила от тяжелого стержня над установкой, которая изначально была поднята. К сожалению, это дает нам не более

$mg dh$

энергии, а значит, энергия вращающегося колеса не превышает этого значения. Следовательно, на следующем такте он уже не сможет снова поднять стержень на прежний уровень, особенно из-за трения, возникающего в стержнеподъемном механизме.

  • магнитные поля
  • вечный двигатель

$\endgroup$

7

$\begingroup$

Когда система начинает работать, круглый конец железного ломтика сбоку оказывается сверху. Эта предварительно сохраненная гравитационная потенциальная энергия и своего рода «магнитная потенциальная энергия» используются для управления системой. Единственное, что нужно рассмотреть, это как можно бороться с трением и сопротивлением воздуха, чтобы это вращение могло поддерживаться дольше. В этом случае, когда он вращается, часть энергии сохраняется обратно в магнитное поле, так что трение забирает лишь немного энергии при каждом обороте. Однако через достаточно долгое время, я думаю, это прекратится.

В заключение, это тонкое устройство для борьбы с трением, но оно не вечно.

$\endgroup$

7

$\begingroup$

Это трение. Белый вращающийся элемент в конечном итоге перестанет вращаться, как и элемент с магнитными спицами. Также есть потеря энергии из-за того, что белая штука ударяется о перекладину наверху из-за звука, добавленная к возможной потере энергии из-за сопротивления воздуха.

$\endgroup$

$\begingroup$

В магнитах накапливается энергия за счет выравнивания магнитного момента отдельных кластеров металла таким образом, что все атомы вносят свой вклад в магнитное поле в одном направлении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *