Ветрогенераторы своими руками на 220в: Ветрогенераторы на 220В своими руками

как сделать своими руками на 220В с мощностью 4 кВт, подготовка и сборка

В плане ветроэнергетических ресурсов Россия занимает довольно двойственное положение. С одной стороны, на ее долю приходится огромная площадь, богатая равнинными местами. С другой — ветры здесь медленные, имеют низкий потенциал. Они могут быть довольно буйными в местах, где проживает мало людей. В соответствии с этим становится актуальной задача обустройства самодельного ветрогенератора.

  • Источник электричества
  • Особенности изделия
  • Ключевые узлы
  • Инструкция по изготовлению
    • Сборка генератора
    • Создание лопастей
  • Запуск и оценка эффективности
  • Процесс подключения в доме

Источник электричества

Как минимум 1 раз в год увеличиваются тарифы на услуги электроэнергии, зачастую — в несколько раз. Это бьет по карману граждан, зарплата которых не растет столь же стремительно. Домашние умельцы раньше прибегали к простому, но довольно небезопасному и незаконному способу экономии на электроэнергии.

Они прикрепляли к поверхности расходомера неодимовый магнит, после чего тот приостанавливал работу счетчика.

Если указанная схема изначально работала слаженно, то в дальнейшем с ней возникали проблемы. Объяснялось это несколькими причинами:

  1. Контролеры стали чаще ходить по домам и проводить внеплановые проверки.
  2. На счётчики стали приклеивать особые стикеры, под воздействием которых стали темнеть магнитные поля. Соответственно, вычислить такого нарушителя не составляло проблемы.
  3. Стали выпускаться новые счётчики, которые не имели восприимчивости к магнитному полю. Вместо стандартных моделей появились электронные узлы.

Всё это подтолкнуло людей к поиску альтернативных источников электроэнергии, к примеру, ветрогенераторов. Если человек проживает в областях, где регулярно дуют ветры, такие приспособления становятся для него «палочкой-выручалочкой». Устройство использует силу ветра для получения энергии.

Корпус оснащен лопастями, приводящими в движение роторы. Электроэнергия, полученная таким образом, трансформируется в постоянный ток. В дальнейшем она переходит к потребителям либо накапливается в аккумуляторе.

Самодельный ветрогенератор может выступать в качестве главного или дополнительного источника энергии. В качестве вспомогательного устройства он может греть воду в бойлере либо подпитывать домашние светильники, тогда как вся остальная электроника работает от главной сети. Возможна работа таких генераторов и в качестве главного источника там, где дома не подключены к электричеству. Здесь устройства подпитывают:

  • лампы и люстры;
  • отопительное оборудование;
  • бытовую электронику.

Ветровая электростанция способна подпитывать низковольтные и классические приборы. Первые работают от напряжения 12−24 Вольт, а ветрогенератор способен обеспечивать мощность на 220 Вольт. Он изготавливается по схеме с использованием инверторных преобразователей.

Электричество накапливается в его аккумуляторе. Есть модификации на 12−36 Вольт. Они отличаются более простой конструкцией. Для них применяются стандартные контроллеры заряда аккумулятора. Чтобы обеспечить обогрев жилища, достаточно сделать ветрогенераторы своими руками нa 220 В. 4 кВт — это мощность, которую обеспечит их двигатель.

Особенности изделия

Создавать ветряк своими руками выгодно. Достаточно узнать, что заводские изделия мощностью не больше 5 кВт стоят до 220000 р., как становится ясно, насколько лучше использовать доступные материалы и сделать их самостоятельно, ведь благодаря этому удастся сэкономить немало средств.

Безусловно, заводские модификации редко ломаются и являются более надежными. Но уж если поломка случится, придется потратить огромные суммы на покупку запасных узлов.

Магазинные модели часто недоступны большинству граждан. Чтобы окупить затраты на покупку такого устройства, требуется от 10 до 12 лет, хотя отдельные виды устройств и отбивают эти расходы чуть раньше. Сделав ветрогенератор 2 кВт своими руками, можно получить далеко не самую совершенную конструкцию, но в случае поломки ее удастся легко отремонтировать самостоятельно. Миниатюрный ветряк малой мощности способен собрать без проблем любой человек, который умеет обращаться с инструментами.

Ключевые узлы

Как говорилось, ветряной генератор можно сделать в домашних условиях. Надо подготовить определенные узлы для его надежного функционирования.

Они включают:

  1. Лопасти. Изготавливать их можно из разных материалов.
  2. Генератор. Его тоже можно собрать собственноручно или же купить готовый.
  3. Хвостовая зона. Используется для движения лопастей по направлению вектора, обеспечивая предельно возможный КПД.
  4. Мультипликатор. Увеличивает скорость вращения ротора.
  5. Мачта для крепежа. Она играет роль элемента, на котором зафиксированы все указанные узлы.
  6. Натяжные тросы. Необходимы для фиксации конструкции в целом и защиты от разрушения под воздействием ветра.
  7. Аккумулятор, инвертор и контроллер заряда. Способствуют преобразованию, стабилизации энергии и ее накапливанию.

Новичкам следует рассматривать простые схемы роторного ветрогенератора.

Инструкция по изготовлению

Ветряк можно изготавливать даже из пластиковых бутылок. Он будет крутиться под действием ветра, издавая при этом шум. Возможных схем обустройства таких изделий существует много. Ось вращения допустимо располагать в них вертикально или горизонтально. Эти устройства используются в основном для борьбы с вредителями на приусадебном участке.

Самодельный ветрогенератор похож на бутылочный ветряк по конструкции, но размеры его больше, и он отличается более основательной конструкцией.

Если к ветряку для борьбы с кротами на огороде приделать мотор, он сможет давать электроэнергию и подпитывать, например, светодиодные светильники.

Создание лопастей

В ветреную погоду из готового устройства можно добывать 3,5 кВт мощности.

При средней интенсивности воздушного потока этот показатель составляет не более 2 кВт. Устройство бесшумное, если сравнивать с моделями на электродвигателе.

Следует подумать о месте монтажа лопастей. В рассматриваемом примере изготавливается простая модификация ветрогенератора горизонтального типа с тремя лопастями. Можно попробовать изготовить вертикальной вариант, но КПД у него будет пониженным. В среднем он составит 0,3. Единственным преимуществом такой конструкции будет возможность работы при любом направлении ветра. Простые лопасти изготавливаются с помощью таких материалов:

  1. Древесина. Ее недостатком является появление трещин через некоторое время после запуска.
  2. Полипропилен. Идеальный вариант для генераторов небольшой мощности.
  3. Металл. Считается долговечным и надежным материалом, из которого можно изготавливать любые по размеру лопасти. Лучше всего подходит в данном случае дюралюминий.

Одно дело — изготовить своими руками лопасти для ветрогенератора, и совсем другое — обеспечить сбалансированность конструкции. Если все нюансы не будут учтены, сильный ветер без особого труда разрушит мачту. Как только лопасти будут изготовлены, вместе с ротором их устанавливают на монтажную площадку, где будет закреплена хвостовая часть.

Запуск и оценка эффективности

Даже если ветрогенератор был изготовлен по всем правилам, ошибочный выбор места для размещения мачты может сыграть злую шутку с мастером. Элемент должен стоять вертикально. Генератор вместе с лопастями лучше разместить как можно выше — там, где «гуляют» сильные ветры. Поблизости не должно располагаться домов, любых крупных зданий, отдельно растущих деревьев. Всё это будет загораживать потоки воздуха. Если обнаружены какие-либо помехи, следует разместить генератор на определенном расстоянии от них.

После того как установка начнёт работать, следует подсоединить мультиметр к ветви генератора и проверить, имеется ли напряжение. Систему можно считать готовой к полноценной эксплуатации. После этого остается выяснить, какое напряжение поступит в жилище и каким образом это будет происходить.

Процесс подключения в доме

После обустройства практически бесшумного ветряка с хорошей мощностью необходимо подключить к нему бытовые приборы. Собирая собственноручно такое устройство, следует позаботиться о покупке инверторного преобразователя с эффективностью 99%. В таком случае потери на переход постоянного тока в переменный будут наименьшими, а в корпусе будут присутствовать три узла:

  1. Аккумуляторный блок. Способен впрок накапливать энергию, которая генерируется устройством.
  2. Контроллер заряда. Обеспечивает более продолжительный срок службы аккумуляторных батарей.
  3. Преобразователь. Трансформирует постоянный ток в переменный.

Можно устанавливать оборудование для питания осветительных приборов и бытовой техники, которые могут функционировать на напряжении 12−24 Вольт. Потребность в инверторном преобразователе в таком случае отсутствует. Для приборов, позволяющих готовить пищу, лучше задействовать газовое оборудование с питанием от баллона.

Как сделать ветрогенератор на 220В полностью своими руками

Проживая на открытой доступной ветрам местности, просто грех не воспользоваться этим и не сделать небольшой ветряк. Он станет источником бесплатной электроэнергии, которую можно получать круглосуточно. Предлагаемая конструкция ветряка выдает напряжение 220В, что позволяет его использоваться в сочетании с некоторыми нетребовательными потребителями напрямую без дополнительного оборудования.

Материалы:

  • Туристический газовый баллон;
  • листовая сталь 1-2 мм;
  • болты, гайки М6.;
  • магниты от двигателя электровелосипеда – 16 шт.;
  • эмалированная медная проволока;
  • эпоксидная смола;
  • алюминиевая профильная труба 10х10 мм;
  • пластиковая канализационная труба 110 мм.

Процесс изготовления ветряка

Для изготовления ветряка нужно вырезать из туристического газового баллона или трубы 200 мм 2 кольца шириной 10 и 25 мм.

Затем под них вырезается по заглушке из листовой стали. Эти диски ввариваются в кольца.

Деталь из широкого кольца нужно просверлить в центре под вал ветряка. Она послужит корпусом для статора.

Вторая заготовка будет использована для ротора. Ее необходимо разделить на 3 равные сектора, и на полученных линиях приваривать по 2 болта, чтобы крепить лопасти.

В центр детали ротора изнутри приваривается под прямым углом вал, на котором будет выполняться вращения. Его можно отрезать от якоря любого сгоревшего мотора.

Под вал ветряка подбирается 2 подшипника, или же их можно снять с мотора донора. Подшипники нужно запрессовать в отрезок трубки. Если нет трубы подходящего диаметра, то можно разрезать вдоль имеющуюся большую, сузить ее и заварить.

Эта трубка приваривается внутрь статора в центр. Затем в нее впрессовываются подшипники. После этого ротор и статор стыкуются между собой.

На наружную сторону статора приваривается отрезок трубки, которая послужит кронштейном для крепления к оси вращения вехи. Также к ней в дальнейшем будет закреплен хвост с хвостовой лопастью.

Статор и ротор разбираются обратно. Внутри последнего размещаются постоянные магниты. Их нужно расположить на 4 стороны по 4 шт. Каждая группа помещается с чередованием полярности.

Чтобы закончить статор, необходимо сделать 4 намотки медного провода по 300 витков. Полученные катушки укладываются в него, и спаиваются между собой последовательно. Их концы выводятся к проводу.

Ротор и статор заливаются эпоксидной смолой. После ее высыхания генератор уже способен выдавать электричество, даже при вращении от руки.

К трубе на краю статора нужно приварить крепление для направляющего хвоста ветряка и вехи. Далее генератор окрашивается.

Лопасти ветряка делаются из пластиковых полос, вырезанных из канализационной трубы. Они прикручиваются на профильные трубы, которые в свою очередь просверливаются с краю для соединения с ротором.

Генератор устанавливается на веху таким образом, чтобы свободно вращается по оси. Затем на него прикручиваются лопасти. Хвост для улавливания направления ветра делается из отрезка профильной трубы, а его лопатка из листового металла.

В ветреную погоду такой ветряк выдает достаточно много энергии. Он способен безопасно питать нетребовательные потребители напрямую. К примеру, к нему можно подключить ТЭН, даже если обороты ветряка небольшие. При сильном ветре от него будут работать даже слабенькие электродвигатели на 220В.

Смотрите видео

Как сделать ветрогенератор из редуктора болгарки и другого хлама — https://sdelaysam-svoimirukami.ru/7621-kak-sdelat-vetrogenerator-iz-reduktora-bolgarki-i-drugogo-hlama.html

Простейшая схема генератора ветряной мельницы | Самодельные схемы

для зарядки аккумуляторов или для работы любого электрооборудования днем ​​и ночью бесплатно.

Содержание

Солнечная панель против ветряной мельницы

Одним из самых больших недостатков электричества от солнечных батарей является то, что оно доступно только в дневное время и только при ясном небе. Более того, пик солнечного света только в полдень, а не в течение всего дня делает его использование очень неэффективным. полагаться на сезонные изменения.

Однако ветряной генератор может работать с максимальной эффективностью только в том случае, если он установлен или расположен в определенных регионах, например, на больших высотах, вблизи морских или речных берегов и т. д.

Чтобы самодельный ветряк был наиболее эффективным, его необходимо разместить на крыше дома, чтобы получить максимально возможную эффективность скорости ветра, чем выше, тем лучше.

Говорят, что на высоте более 100 метров от земли скорость ветра максимальна, и он активен в течение всего года без перерыва, что доказывает, что чем выше высота, тем лучше эффективность ветра.

Проектирование генератора ветряной мельницы

Простая схема генератора ветряной мельницы, представленная здесь, может быть собрана любым любителем для зарядки небольших аккумуляторов в домашних условиях совершенно бесплатно и с незначительными усилиями.

Более крупные модели можно попробовать для достижения большей выходной мощности, которую можно использовать для питания небольших домов.

Принцип работы

Принцип работы основан на традиционной концепции двигателя-генератора, в которой шпиндель двигателя с постоянными магнитами интегрирован с турбиной или пропеллерным механизмом для необходимого использования энергии ветра.

Как видно на приведенной выше диаграмме, используемый воздушный винт или конструкция турбины выглядят иначе. Здесь используется витая S-образная система винтов, которая имеет явное преимущество перед винтами традиционного самолетного типа.

В этой конструкции вращение турбины не зависит от направления ветра, а одинаково хорошо и эффективно реагирует независимо от того, с какой стороны дует ветер, это позволяет системе избавиться от сложного рулевого механизма, который обычно используется в обычных ветряные мельницы, чтобы пропеллер самостоятельно регулировал свое переднее положение в соответствии с потоком ветра.

В представленной концепции двигатель, соединенный с турбиной, продолжает вращаться с максимальной эффективностью независимо от того, с какой стороны или угла дует ветер, что позволяет ветряной мельнице быть чрезвычайно эффективной и активной в течение всего года.

Интеграция электронного регулятора напряжения

Электричество, вырабатываемое вращением катушки двигателя в ответ на крутящий момент от турбины, может использоваться для зарядки аккумулятора или для питания светодиодной лампы или любой другой электрической нагрузки в соответствии с предпочтение пользователя.

Однако, поскольку скорость ветра может быть изменчивой и никогда не быть постоянной, может оказаться необходимым включить какую-либо схему стабилизатора на выходе двигателя.

Использование понижающего повышающего преобразователя

Мы можем решить эту проблему, добавив схему повышающего или понижающего преобразователя в соответствии со спецификациями подключенной нагрузки.

Но если характеристики вашего двигателя немного выше, чем нагрузка, и если есть достаточный ветер, вы можете исключить задействованную повышающую цепь и напрямую соединить выход ветряка с нагрузкой после мостового выпрямителя.

На схеме показан повышающий преобразователь, используемый после выпрямления электроэнергии ветряной электростанции через сеть мостового выпрямителя.

На следующем изображении показаны детали используемых схем, которые также не так сложны и могут быть построены с использованием большинства обычных компонентов.

Настройка схемы

На изображении выше показана простая схема повышающего преобразователя со каскадом усилителя ошибки с обратной связью. Выходной сигнал ветряной мельницы соответствующим образом выпрямляется соответствующей сетью мостового выпрямителя и подается в схему повышающего выпрямителя на основе IC 555.

Предполагая, что среднее выходное напряжение двигателя ветряка составляет около 12 В, можно ожидать, что схема повышения напряжения повысит это напряжение до 60 В+, однако ступень T2 в схеме предназначена для ограничения этого напряжения до заданного стабилизированного выхода.

Стабилитрон на базе T2 определяет уровень регулирования и может быть выбран в соответствии с требуемыми спецификациями ограничения нагрузки.

На схеме показан аккумулятор ноутбука, подключенный для зарядки от генератора ветряка, другие типы аккумуляторов также можно заряжать по той же схеме, просто регулируя номинал стабилитрона Т2.

В качестве альтернативы число витков повышающей катушки индуктивности также может быть изменено и настроено для получения других диапазонов напряжения в зависимости от индивидуальных спецификаций приложения.

Видео:

На следующем видео показан небольшой ветряк, в котором можно увидеть повышающий преобразователь, прикрепленный к двигателю и преобразующий малую выходную мощность двигателя для освещения светодиодом мощностью 1 Вт.

Здесь мотор вращается вручную пальцами, так что результаты не очень хорошие. Если к установке прикреплена турбина, результат может быть намного лучше.

Использование микросхемы LTC1042

Новейшая микросхема LTC1042, двигатель с постоянным магнитом 12 В постоянного тока, а также недорогой мощный полевой транзистор можно использовать для создания базового зарядного устройства для ветряных батарей. Выходное напряжение эквивалентно частоте вращения двигателя постоянного тока, который используется в качестве генератора. LTC1042 управляет выходным напряжением и выполняет следующие необходимые задачи:

  • Цепь управления работает, и никель-кадмиевая батарея заряжается с помощью источника тока LM334 всякий раз, когда выходное напряжение генератора ветряной мельницы ниже 13,8 В. Свинцово-кислотная батарея в этой ситуации не получает тока.
  • Свинцово-кислотная батарея на 12 В начинает заряжаться со скоростью около 1 А/ч, как только выходное напряжение генератора становится между 13,8 В и 15,1 В. (ограничено мощностью полевого транзистора).
  • Если напряжение генератора превышает 15,1 В (из-за высокой скорости ветра или полностью заряженной 12-вольтовой батареи), фиксированная нагрузка 36 Ом 5 ​​Вт переключается крайним правым MOSFET, ограничивая обороты генератора и предотвращая любые возможные повреждения.
  • Там, где много энергии ветра, например, на борту яхт или в удаленных местах с радиоретрансляторами, это зарядное устройство можно использовать в качестве удаленного источника энергии. В отличие от солнечных батарей, это устройство можно использовать в ненастную погоду, а также ночью.
О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *