Частотный преобразователь схема: Самодельный частотник. Разрабатываем преобразователь вместе

Содержание

Преобразователь частоты: тиристорный, высоковольтный, обзор цен

Для стабилизации электрического тока используются различные устройства. Предлагаем рассмотреть, что такое электромашинный преобразователь частоты, как работает высоковольтный, тиристорный и однофазный прибор, его назначение, где можно купить, а также схема, как его сделать своими руками.

Общая информация

Простейший преобразователь напряжения тока или частоты (ПЧ) – это электромагнитный, электронный или электромеханический прибор, который преобразует переменный ток одной частоты в переменный ток другой. Устройство может также изменить напряжение, но для этого необходимо  использовать специальные настройки и компоненты. На нашем рынке они представлены такими марками и типами как CSACS550, ACS800, Aqua, ATV, ATV312, ATV61, CIMR, Commander, Control, Cue, Drive, F740, Fdu40, Frenic, Frn, Fuji, Hvac, IC5, Innovert, Keb, L100, L200, L300p, Matlab, Micromaster, Mini, N100, N50, N700e, Nxs, Pr6000, Prostar, S11, Schneider, Sinamics, Smd, Unidrive, Vector, Vfs11, Winner, Yaskawa.

Фото — Цифровой преобразователь частоты

Преобразователь напряжение-частота широко используется для того, чтобы сохранить энергию механических систем, к примеру, двигателя, насоса, вентилятора и т.д. Выбираются приборы в соответствии с кривыми двигателя для обеспечения оптимальной скорости и нагрузки, транзисторный преобразователь может помочь сэкономить энергию двигателя, снижая потери энергии и увеличивая КПД. Это достигается путем преобразования фиксированной частоты входящего переменного тока напряжения в постоянный ток, а затем, варьируя частоту переконвертировать его обратно в переменное напряжение, используя биполярные транзисторы с изолированным затвором (IGBT).

Бывают преобразователи высокой частоты таких видов:

  1. Работающие при помощи звена постоянного тока;
  2. Работающие с непосредственной связью.

В основном используется первый тип электропривода, т.к. он обеспечивает двойное преобразование частоты вращения двигателя, при этом контролируется как вход сигнала, так и выход. Рассмотрим подробнее их принцип действия.

Фото — Современные преобразователи частоты

Принцип работы и характеристики

Преобразователь частоты для асинхронных двигателей работает путем преобразования входного синусоидального напряжения переменного тока в напряжение постоянного тока, а затем его изменения обратно в переменное напряжение. Это преобразование происходит с помощью либо кремниевых выпрямителей или IGBT-транзисторов. Напряжение постоянного тока включается с помощью транзисторов для создания постоянного выходного напряжения переменного тока (так называемый инвертор). Транзисторы могут включать и выключать питание, чтобы создать нужное напряжение сигнала тока, который обеспечивает питание двигателя. Частота, на которой происходит переключение (несущая), варьируется в зависимости от серии и компании, которой изготовлен преобразователь напряжения и частоты (Vacon, Mitsubishi, Toshiba, Altivar, FDU, Danfoss – Данфосс, Delta Hyundai, Emotron, ABB, Lenze, Hitachi, Siemens, Omron, Electric и т.д.)

Фото — Частотный преобразователь дельта

Статический трехфазный ПЧ имеет шесть диодов в качестве мостового выпрямителя переднего плана, которые преобразуют переменный ток в постоянный. ПЧ может также иметь 12 диодов — два комплекта на фазу (2 × 2 × 3 = 12 импульсов), или 18 диодов — три набора на фазу (3 × 2 × 3 = 18 импульсов) и т.д. Один набор диодов подается от трансформатора дельта, чтобы создать фазовый сдвиг на стороне источника переменного тока между двумя выпрямителями, чем  уменьшить гармонику и отразить сигнал назад к входу напряжения.

  1. 6-диодный преобразователь наиболее часто используется в строительной сфере. Суммарный коэффициент гармонических искажений, отраженный обратно к источнику, может быть выше, чем поступающий на входящие контакты. Вы можете установить встроенную катушку индукционного типа, чтобы уменьшить отражение гармоника обратно в точку сцепления. ПЧ снижает искажение тока в ​​источнике.
  2. 12-импульсный преобразователь повышенной частоты (его еще называют, плавный) может отменить отражение гармоник обратно к источнику. Фазы сдвига трансформатора могут быть настроены для уменьшения гармонических искажений на входных клеммах.
  3. 18-импульсный силовой преобразователь использует как синхронный, так и асинхронный двигатель. Он обеспечивает низкий уровень гармонических искажений в электрической сети, благодаря поэтапной отмене первичных гармоник (5-м и 7-м) и гармоник высокого порядка, которые могут привести к резонансу на емкостных и индуктивных нагрузках (например, фильтрах, трансформаторах и т. д.). Их стоимость зачастую очень высокая, поэтому используются они только в производственных цехах. КНИ на входных клеммах может быть менее 5%, поэтому ниже общее напряжение гармонических искажений будет реализовано в источнике, в зависимости от схемы импеданса. Часто этот прибор цифровой, что значительно облегчает работу  с ним.

Основные характеристики:

  • Напряжение – 220-480 В;
  • Защита Ip54;
  • Температурный барьер для нормальной работы – от +10 до -40 градусов;
  • Мощность – от 1 кВт.

Также существует двухзвенный преобразователь (ТТПТ, ТОШИБА, УХЛ4, ТПЧ, ТРИОЛ), матричный и векторный прибор, он состоит из ПЧ переменного тока и напряжения для создания нужной амплитуды. Обеспечивает пуск в течение 2 секунд от включения, дорогой, в последнее время теряет свою актуальность.

Этот ПЧ выполнен коммутацией естественного типа, оснащен отдельным источником напряжения с повышенной частотой. У него достаточно узкий круг использования, в основном это городские или квартальные электростанции.

В зависимости от области использования, нужно выбрать оптимальный преобразователь, иначе Вы не только переплатите за устройство, но и можете подвергнуть опасности жизни своих близких и работников.

Обязательно перед покупкой должна быть прочитана документация, проверена мощность и пропускные способности. Настройка и сборка преобразователей может производиться продавцом-консультантом непосредственно на месте покупки.

Фото — Двухзвенный преобразователь

Для чего нужен преобразователь: для подключения и работы лифтов (ПЧВН, ППЧВ), регулировки частоты станочного двигателя (к примеру, VLT, VFD), автомобильного мотора (Мицубиси, Opel Omega – Омега) и т.д.

Описание самостоятельного подключения

Предлагаем рассмотреть, как можно самому собрать и подключить простой самодельный инверторный преобразователь частоты для небольшого трехфазного электродвигателя в виде подробной инструкции.

Рассмотрим создание ПЧ на примере двигателя с частотой 400Гц и напряжением электрической сети 27 Вольт. Обмотки соединены в звезду, благодаря чему средняя точка каждой выведена наружу, это позволяет существенно упростить микросхему: нужно три выходных сигнала, и один выходной ключ на каждую из фаз. Электрическая схема подключения показана на фото ниже:

Фото — Схема подключения

Данное устройство состоит из таких компонентов: генератор, формирующий импульсы, ключи на составных транзисторах и электрического двигателя.

Фото — Частотный преобразователь схема 1

Руководство, по которому можно подключить преобразователь частоты двигателя, имеет вид упрощенной схемы. На чертеже изображен двигатель, который управляется несколькими ключами. Механические контакты показаны как элементы полупроводникового типа. Питается двигатель при помощи постоянного напряжения. Естественно нельзя одновременно открывать нижние и верхние ключи,  иначе произойдет короткое замыкание, и мощность ВПЧ потока упадет до нуля, чтобы это предотвратить, нужно подключить преобразователь таким образом, чтобы при открытии нижнего ключа верхний закрывался.

Для осуществления такой технологии используются специальные контроллеры, образующие мертвую зону.

Временной интервал для мертвой зоны нужно рассчитать таким образом, чтобы гарантировать успешное закрытие всех транзисторов верхнего ряда, только тогда вероятность образования сквозных токов будет сведена к минимуму.

Ключами с гальванической связью управляет драйвер на составном резисторе, для этого часто устанавливают дополнительный оптрон для каждого ключа или канала (как и показано на схеме), эта деталь на данном чертеже выполняет роль еще одного инвертора.

Чтобы питать каждый драйвер, нужно использовать специальный выпрямитель, который в свою очередь, запитан от обмотки привода. Возможно, это является одним из недостатков схемы. Для управления длительности мертвой зоны данный преобразователь напряжения и частоты использует конденсатор.

Этот прибор относится к типу универсал, его можно подсоединять к любым двигателям, мощность которые не превышает 10 кВт.

Ремонт и обслуживание

Если ПЧ не работает на полную мощность, то рекомендуем проверить тормозной резистор для преобразователя частоты, в таблице ниже даны оптимальные показатели. В том случае, если данные Вашей детали не совпадают с ними, то необходима замена резистора:

Фото — Данные для тормозных резисторов

Система может дать сбой, если Вы выбрали очень мощный ПЧ для слабой сети. Дело в том, что большинство деталей преобразователя предназначено для постоянного напряженного состояния, если уровень сигнала не доходит до минимальных показателей ПЧ, то он не будет работать.

Есть два варианта:

  • Техническое испытание;
  • Проверка схемы выпрямления.

Также можно попробовать поискать проблемы своими силами, при помощи мультиметра:

  1. Проверьте уровень сигнала, если на преобразователе написано, что необходимо напряжении в 380 Вольт, а подается только 220 – то работать прибор не будет;
  2. Проверьте правильность подключения преобразователя к порту и плотность всех прочих соединений;
  3. В процессе эксплуатации, преобразователь напряжения и частоты нельзя подвергать воздействию воды и резким перепадам температуры;
  4. На цифровых приборах есть возможность вывести причину поломки на экран, производитель указывает как вызвать эту функцию в инструкции;
  5. Проверьте напряжение, не должно быть разрывов или сильных перепадов.

Как подключить частотный преобразователь к электродвигателю — основные этапы

Частотный преобразователь — это высокотехнологичный прибор с широкими возможностями. Подключение частотного преобразователя помогает автоматизировать различные производственные процессы, получить существенную экономию электроэнергии и заметно продлить ресурс оборудования.

Микропроцессорная база и встроенные компьютерные технологии делают прибор очень гибким по функционалу. Выбор комбинаций огромен, но для начала частотный преобразователь необходимо правильно подключить и настроить.

Установка частотника

Ошибки при подключении двигателя через частотный преобразователь способны значительно снизить срок его жизни и даже вывести электропривод из строя при первом же запуске. Важным этапом ввода в эксплуатацию является выбор предполагаемого места установки преобразователя. Необходимо учитывать комплекс условий, в числе которых:

  • Возможности питающей линии.
  • Диапазон рабочих температур.
  • Влажность.
  • Вибрации.
  • Наличие агрессивных сред (какой класс защиты IP требуется).

Частотник можно монтировать вдали от электродвигателя. Но есть нюансы с длиной кабеля. Чтобы избежать появления эффекта отраженной волны, перенапряжения и коронного заряда, длину питающего кабеля следует ограничить. При периоде ШИМ от 0,3 мс — не более 45 м, при ШИМ 0,1 мс — не более 16 м.

Если двигатель специально предназначен для работы совместно с преобразователем, то длина кабеля может быть любой. Например, двигатели, сертифицированные по стандарту NEMA Standart MG-1. Двигатель для ПЧ должен быть оснащен изоляцией класса F или выше, а также иметь фазовую изоляцию. Также, чтобы избежать нежелательных явлений при большой длине кабеля, можно установить сглаживающие реакторы и фильтры сразу после ПЧ и непосредственно перед электродвигателем.

Подключение частотного преобразователя к электродвигателю следует производить строго по инструкции производителя. Особенно внимательно нужно отнестись к подключению силовой части. Перед прибором необходимо установить автоматический выключатель, работающий с током ≥ номинальному потребляемому току электродвигателя. Входные клеммы должны быть подключены только к фазам питающей сети (заземление только к заземляющему контуру), а выходные клеммы — к питаемому электродвигателю. В компании «Веспер» разработаны наглядные схемы и даны подробные инструкции к каждой модели. Например, схема подключения частотного преобразователя «Веспер E4-8400»:

Сетевые технологии для управления

Настройка частотника и программирование режимов работы осуществляется непосредственно с панели управления, выносного пульта или, что наиболее удобно, с помощью компьютера. Операционное место может находиться за многие километры от ПЧ, для этого необходимо воспользоваться сетевыми технологиями.

Для совместной работы электродвигателя и системы автоматического управления используются различные протоколы передачи данных. Наибольшее распространение получил протокол связи Modbus с интерфейсом RS-485. Передача управляющего сигнала в линиях RS-485 осуществляется по проводу. Даже если сразу не требуется включать частотник в систему удаленного управления, на перспективу такой вариант подключения следует предусмотреть и заранее запланировать место, где удобнее проложить магистраль и подключиться к сети.

ПЧ — органы управления

Преобразователи «Веспер» оборудованы панелью с информационным ЖК-дисплеем и набором для управления и проведения пусконаладки. В зависимости от модели ПЧ, дисплеи могут отличаться количеством строчек. На дисплей прибора можно выводить данные о текущем состоянии параметров.

Для большего удобства и реализации более сложных систем управления через аналоговые и дискретные (релейные, транзисторные) выходы можно подключить выносной ДУ-пульт. А через линию интерфейсной связи — ПК (ноутбук или стационарный).

Ноутбук можно использовать в режиме осциллографа — для наблюдения за изменениями параметральных величин в реальном времени. В таком случае также необходимо заранее подготовить место с изолированной поверхностью и предусмотреть возможность работы ноутбука от батареи.

Настройка перед запуском

Частотные преобразователи — сложные компьютеризированные устройства со множеством функций и настроек. Чтобы облегчить и ускорить ввод прибора в эксплуатацию, на заводе уже проведены базовые настройки. При этом многие параметры «по умолчанию» могут быть оптимальными для решения поставленных задач.

В дополнение к базовым настройкам, преобразователи «Веспер» поддерживают функцию автонастройки — идентификационный пуск. В этом режиме ПЧ до запуска двигателя или уже у работающего двигателя автоматически определяет параметры обмоток.

Перед запуском также необходимо проверить и задать стартовый набор параметров:

  • Характеристики управляемого двигателя — напряжение, мощность, рабочий диапазон частоты вращения (эти параметры можно посмотреть в технической документации или на шильдике двигателя).
  • Канал задания — указать, из какого источника ПЧ следует брать задания (панель управления, дискретные/аналоговые выходы, удаленный интерфейс).
  • Канал управления — указать, откуда будут поступать управляющие команды (запуск/остановка). В качестве управляющего канала можно выбрать: панель управления, дискретные/аналоговые выходы, удаленный интерфейс.
  • Схема преобразования — если нет опыта, эту настройку лучше не менять, оставить по умолчанию.

Строго следуя инструкции и обладая базовыми знаниями, можно самостоятельно разобраться с тем, как подключить частотный преобразователь к электродвигателю. Но если нет желания или времени во все вникать — поручите это высококвалифицированным сотрудникам «Веспер». Они проведут пусконаладочные работы быстро и профессионально.

Видео

Вступительный фильм о типовых примерах применения преобразователей частоты Веспер. В видеоролике показаны преимущества использования частотно-регулируемого электропривода по отношению к другим типам приводов. Коротко представлена продукция нашей компании и география ее использования.


Частотные преобразователи своими руками. Схема и принцип работы частотного преобразователя :: SYL.ru

Впервые асинхронный двигатель был использован в конце 19-го века. Его успешное применение позволило внедрить данное оборудование практически на любой завод, фабрику, в любую отрасль промышленности. Однако управлять данным устройством оказалось довольно проблемно, особенно пуском и остановкой. Основной целью эксплуатации частотного преобразователя, а также целью его создания как раз и стала необходимость в устройстве, управляющем асинхронным двигателем.

Общая информация

Целесообразнее всего снабжать преобразователем частоты (ЧП) те устройства, которые обладают довольно высоким показателем мощности. Основная цель, для которой используется такое оборудование, - это изменение пускового тока. ЧП дает возможность задавать величину для этого параметра, что и обеспечивает более плавную остановку и запуск двигателя.

Также можно отметить, что эти два устройства, работающие в паре, позволяют заменить такие устройства, как электроприводы постоянного тока. С одной стороны, регулировать скорость у такой системы очень просто, однако есть и слабое место в такой сети - сам электродвигатель. В электроприводах постоянного тока именно это устройство является наиболее дорогим и ненадежным. А если сравнивать асинхронное оборудование с прибором постоянного тока, то тут можно выделить явные преимущества: более простое и надежное устройство; масса, стоимость и габариты асинхронного приспособления будут гораздо ниже, чем у аппарата постоянного тока с той же мощностью.

Что такое частотный преобразователь

Стоит сказать о том, что регулировать числовое значение тока можно и вручную. Однако на это будет уходить определенное количество времени, так как человек не способен моментально среагировать на любое изменение, как машина. А это приведет к тому, что некоторое количество энергии будет уходить впустую, а энергетический ресурс двигателя выработается быстрее.

Частотный преобразователь для электродвигателя - это практически необходимая деталь, так как те устройства, которые не имели его, обладали значением тока, превышающим номинальное значение напряжение в 5-7 раз. Такая разница не позволит создавать приемлемые условия для эксплуатации двигателя.

Принцип работы частотного преобразователя кроется в том, что в нем используется специальный электронный механизм, который и управляет работой асинхронного двигателя. Также важно отметить, что ЧП позволяет не только настроить плавный запуск, но и выбрать оптимальный показатель между напряжением и частотой. Эта характеристика рассчитывается по определенной формуле.

Основное преимущество применения частотного преобразователя для двигателя - это экономия электрической энергии, значение которой доходит до 50 %. Еще одно важное преимущество ЧП - это возможность настроить его работу так, чтобы она максимально подходила под каждую отрасль производства. Применение такого устройства основывается на принципе работы двойного преобразования напряжения.

Первый этап - это регулировка напряжения, поступающего из сети. Оно выпрямляется и фильтруется. Эти операции осуществляются посредством системы конденсаторов.

Второй этап - включение в работу электронного управления системой. Этот элемент выставляет значение тока, которое будет соответствовать частоте, а также ранее выбранному режиму работы.

Как можно заметить, принцип работы частотного преобразователя довольно прост.

Материалы для сборки

На сегодняшний день распространение и улучшение технологий и оборудования привело к тому, что, имея некоторые знания в электронике и умения, можно собрать ЧП для однофазного двигателя собственноручно.

Для того чтобы собрать это устройство, понадобятся такие материалы, как:

  • драйвер трехфазного моста модели IR2135 или 2133;
  • понадобится микроконтроллер, который будет использоваться как генератор PWM, модели AT90SPWM3B;
  • еще одна важная деталь - программатор;
  • три пары транзисторов;
  • жидкокристаллический индикатор;
  • шесть кнопок для управления системой.

Сборка устройства

Для начала работы необходимо иметь схему частотного преобразователя. Осуществлять сборку будет намного удобнее и быстрее, имея этот документ.

Первый шаг сборки - соединение обмоток двигателя. Для этого нужно использовать вариант подключения, который в электротехнике называется треугольник.

В сборке частотного преобразователя своими руками основой будут выступать две платы. Одна из них (первая) будет являться основой для размещения таких элементов, как блок питания, драйвер, транзисторы. Силовые клеммы также будут подключаться к этой плате. Вторая же плата необходима для крепления микроконтроллера и индикатора. Для того чтобы соединить эти два элемента между собой, нужно использовать гибкий шлейф. Чтобы изготовить импульсный блок, можно использовать самую простую схему.

Для того чтобы осуществлять контроль над работой двигателя, нет необходимости в добавлении внешних устройств. Однако если такое желание все же есть, то можно добавить схему IL300 в конструкцию.

Следующим важным элементом в сборке частотного преобразователя своими руками станет общий радиатор. В схеме этих устройств данный элемент используется для того, чтобы разместить на нем транзисторы и диодный мост. Один из обязательных шагов - это установка оптронов ОС2-4. Основное предназначение этих элементов - дублирование кнопок управления.

При изготовлении частотного преобразователя своими руками для двигателя с мощностью до 400 Вт можно обойтись без термодатчика. Для того чтобы измерять напряжение, можно использовать обычный усилитель (DA-1-2). Необходимо также защитить все кнопки управления. Для этого используются пластиковые толкатели. Управление устройством осуществляется при помощи опторазвязки.

Последнее, что необходимо сделать при изготовлении частотного преобразователя своими руками, - это позаботиться о подавлении помех. Это необходимо делать лишь в том случае, если в системе используются слишком длинные провода. Когда ротор двигателя уже запущен, то можно выбрать любою скорость вращения, которая лежит в пределах частоты от 1 до 40.

Подключение

Собрать ЧП - это лишь половина дела. Вторая половина - это правильное подключение преобразователя к двигателю. Частотный преобразователь для насоса, работающего посредством использования асинхронного двигателя, может подключаться по двум методам. Выбор метода зависит от напряжения сети.

Если она обладает напряжением в 220 В и всего одной фазой, то наиболее выгодная схема подключения - это треугольник. Тут важно запомнить одну вещь. Выходной ток не может превышать номинальный более чем на 50 %.

Если подключать частотный преобразователь на 380 В и трех фазах, то для подсоединения к двигателю лучше всего прибегнуть к такой схеме, как звезда. Для того чтобы максимально упростить этот процесс, на покупных ЧП имеются специальные клеммы, которые обладают нужной маркировкой. На самодельном придется обойтись без этого.

Важно не забыть, что в любой системе, самодельной или покупной, должна быть схема, имеющая клемму для заземления.

Обслуживание устройства

Как уже говорилось ранее, просто собрать ЧП и подключить его - мало. Еще одна важная часть, которая гарантирует длительный срок службы устройства, - это обслуживание прибора. Частотный преобразователь для насоса, двигателя или любого другого устройства, должен подвергаться тщательному уходу:

  1. Наиболее страшный враг электронного оборудования - это пыль. Важно следить, чтобы на внутренних контактах она не скапливалась. Для удаления этих частиц мусора можно использовать компрессор с невысокой мощностью. Пылесос использовать нежелательно, так как он не сможет убрать плотный слой пыли.
  2. Необходимо регулярно проверять работоспособность всех узлов. При возникновении неполадок сразу их менять. Нормальный срок эксплуатации электролитического конденсатора - 5 лет, для предохранителя - 10 лет. Вентиляторы, работающие внутри устройства, нужно менять каждые 2-3 года, внутренние шлейфы - каждые 6 лет.
  3. Очень важно следить за такими параметрами, как температура внутренних элементов, а также напряжение на шине постоянного тока. Если температура повысится слишком сильно, то термопаста с большой долей вероятности высохнет, что приведет к выходу из строя конденсаторов. Чтобы избежать этой проблемы, рекомендуется менять термопасту каждые три года.
  4. Важно соблюдать следующие правила эксплуатации: температура окружающего воздуха не выше +40 градусов; помещение должно быть сухим, повышенная влажность недопустима; повышенная запыленность также отрицательно скажется на приборе.

Структурное устройство ЧП

Для того чтобы точно ответить на вопрос, как сделать частотный преобразователь, необходимо разобраться еще в одном пункте. Это - структурное устройство данного прибора.

Так как ориентироваться при изготовлении нужно на покупные модели, то и схема должна быть соответствующей. А это значит, что работать он должен на структуре двойного преобразования. У этой схемы имеются основные части: звено постоянного тока, силовой импульсный инвертор и система управления.

Если рассматривать более детально, то часть с постоянным током состоит из двух соединений: неуправляемый выпрямитель и фильтр. Именно в этом элементе переменное напряжение, которое действует в сети, будет преобразовываться в постоянное.

Второй элемент - силовой импульсный инвертор. Он является трехфазным, а состоит из шести транзисторных ключей. Они предназначены для подключения соответствующей обмотки двигателя к каждому из ключей как положительному, так и отрицательному. Этот элемент отвечает за преобразование поступающего постоянного напряжения в трехфазное и переменное. Также это устройство задает нужную частоту и амплитуду.

Последний элемент - это система управления. Здесь используются силовые IGBT-транзисторы. Если сравнивать с обычными тиристорами, то частота переключения у транзисторов выше. Это позволяет вырабатывать выходной сигнал в форме синусоиды с минимальным искажением.

Частотные преобразователи на микроконтроллере

Принцип работы таких устройств является следующим. Изначально характеристики всех микроконтроллеров (МК) настраиваются так, чтобы работать в паре с напряжением в 200 В, а также частотой поля в 50 Гц. Другими словами, они настроены по умолчанию для работы в паре с наиболее примитивными асинхронными двигателями 220 В/50 Гц. Также имеется такой показатель, как скорость набора частоты. По умолчанию это значение устанавливается как 15 Гц/сек. Это означает, что разгон МК до 50 Гц будет занимать чуть более чем 3 секунды, а, к примеру, до 150 Гц за 10 секунд ровно. Также важно отметить, что изначально ЧП является скалярным. Другими словами, чем выше будет выходная частота двигателя, тем выше будет его напряжение.

Ремонт и наладка прибора

Ремонт частотных преобразователей - неотъемлемая часть работы с этими устройствами. Довольно часто случается такая проблема, как выход из строя тормозного резистора. Если это происходит, то ЧП не сможет работать на полную мощность. Для того чтобы установить, вышел ли из строя тормозной элемент или нет, имеется таблица, в которой приведены все номинальные значения для всех типов элементов. Если после сверки с этим документом выяснилось, что какой-либо параметр не совпадает, то резистор нужно менять.

Также могут быть сбои в том случае, если ЧП оказался слишком мощным или же сеть слишком слабая для этой модели. Тут дело заключается в принципе работы элементов ЧП. Он рассчитан на эксплуатацию при постоянном высоком напряжении. Если параметры сети не дотягивают до минимальных показателей, требуемых для работы, то и выполнять свои функции он не сможет. Как таковой ремонт частотного преобразователя тут не требуется, необходимо купить менее мощный прибор.

Основные показатели преобразователей

К основным характеристикам этих устройств можно отнести следующее:

  • рабочее напряжение в пределах от 220 до 480 В;
  • все модели обладают защитой lP54;
  • температурный режим, требуемый для нормальной эксплуатации, в пределах от +10 до +40 градусов по Цельсию;
  • мощность для большинства покупных моделей - от 1 кВт.

Кроме того, существуют такие модели, как двухзвенные частотные преобразователи, а также такие разновидности, как матричные и векторные устройства. К примеру, векторный тип - это ЧП переменного тока и напряжение, которое подается на него, необходимое для создания нужной амплитуды. Этот тип прибора обеспечивает включение в работу двигателя спустя 2 секунды после запуска ЧП. Однако недостатком стало то, что он довольно дорогой, а потому его популярность стремительно падает.

Очень важно заметить, что подбирать просто мощный прибор - это неправильно. Выбор должен осуществляться в соответствии с рабочими параметрами сети. Если купить слишком мощный частотный преобразователь для электродвигателя, то получится, что будет переплата за то оборудование, которое будет представлять угрозу, а не регулировать работу агрегата.

Принцип работы частотного преобразователя. Схема частотного привода.

Переити в каталог продукции: Частотные преобразователи

Электроприводы постоянного тока являются очень простыми с точки зрения организации системы регулирования скорости вращения двигателя, но сам электродвигатель является слабым звеном системы, ведь он достаточно дорогой и при этом не отличается особой надежностью. К тому же область применения данных двигателей ограничена из-за излишнего искрения щеток и, следовательно, повышенной электроэрозии и износа коллектора, что к общем не позволяет использовать двигатели постоянного тока в пыльных условиях и в средах с опасностью взрыва. Альтернативой электроприводам постоянного тока является комплексное применение асинхронных двигателей переменного тока с частотными преобразователями.

Асинхронные двигатели повсеместно используются в виду очень простого устройства и надежности, при меньших габаритах и массе они обеспечивают такую же мощность, как и двигатели постоянного тока. Главным минусом их является сложность организации системы регулирования скорости двигателя традиционными для двигателей постоянного тока методами. Теоретическая база для разработки первых частотных преобразователей, которые могли уже тогда стать решением вопроса регуляции скорости, была заложена еще в 30-е годы двадцатого века. Отсутствие микропроцессоров и транзисторов не позволяло воплотить теорию в практику, но с появлением транзисторных схем и управляющих микропроцессоров в Японии, США и Европе примерно в одно время были разработаны варианты частотных преобразователей.

При наличии других способов управления скорости вращения исполняющих механизмов (речь идет о механических вариаторах, резисторных группах, вводимыми в ротор/статор, электромеханических частотных преобразователях, гидравлике) наиболее эффективным является использование статических частотных преобразователей, который экономическим выгоднее других вариантов в виду дешевизны монтажа, эксплуатации и высокого КПД. Неприхотливость преобразователей также обусловлена отсутствием подвижных частей в виду того, что регуляция осуществляется на этапе подачи тока и основана на изменении параметров питания, а не на контроле за скоростью вращения при помощи средств механического управления.

Каков принцип частотных методов регулирования? Наглядное объяснение можно вывести из следующей формулы

Из выражения видно, что путем изменения частоты входного питающего напряжения (f1) изменяется угловая скорость статора, точнее его магнитного поля, но этом взаимозависимые характеристики. Эффект достигается при постоянном числе пар полюсов (p). Что это дает? В первую очередь, плавность регулирования (в особенности при пиковых нагрузках в момент пуска двигателя) скорости при очень высокой жесткости механических характеристик. Также достигается повышенное скольжение асинхронного двигателя, что существенно снижает потери мощности и увеличивает коэффициент полезного действия.

Высокие показатели КПД, коэффициента мощности, перегрузочной способности достигаются при одновременном изменении частоты и напряжения. Законы изменения этих параметров напрямую зависят от момента нагрузки, который может иметь статичный, вентиляторный и обратно пропорциональный скорости вращения характер.

При постоянном моменте нагрузке напряжение на статоре будет регулироваться в пропорциональной зависимости от частоты, что хорошо видно из формулы:

Если момент нагрузки имеет вентиляторный характер, то напряжение будет пропорционально квадрату частоты питающего напряжения.

Ну и моменте нагрузки, который обратно пропорционален скорости получим:

      Как видно из вышеописанного при обеспечении одновременного регулирования частоты питающего напряжения и параметров напряжения на статоре частотным преобразователем достигается плавное бесступенчатое регулирование скорости вращения вала двигателя. При этом отсутствие передач позволяет более точно регулировать скорость вращения по заданным пользователем параметрам.

Основные достоинства применения регулируемых приводов на предприятиях.

Интеграция систем регулирования качественно изменяет технические характеристики всех участников технологического процесса, нуждающегося в регуляции. Большая часть экономической эффективности заключается в возможности регулирования при помощи частотного преобразователя технологических характеристик процессов, температуры, давления, скорости движения, скорости подачи главного движения. Конечно же, максимальная эффективность достигается на объектах, предназначенных для перемещения жидких масс. До сих пор популярным способом регулирования скорости потока и мощности является применение заслонок и заглушек, в частных случаях различных регулирующих механических клапанов, но эти методы менее эффективны чем изменение скорости самого исполнительного механизма и чреваты потерями транспортируемой жидкости.

       Разница в производительности и эффективности между дросселированием посредством механических средств и применением частотных преобразователей очевидна на следующем рисунке. (схема 1) Из схемы становится ясно, что возрастает экономия ресурсов, а также нивелируются проблемы, связанные с полной потерей динамической мощности потока во время закрытия заслонок, что приводит, по сути, к холостой работе двигателя. Это увеличивает экономическую эффективность частотных преобразователей.

Конструкция типового частотного преобразователя.

Принципиальной задачей преобразователя частоты является изменение параметров электрического тока, это осуществляется при помощи транзисторного выпрямления тока и преобразования его до необходимых заданных значений. Типовой частотный преобразователь состоит из трех частей:

- Звено постоянного тока. Состоит из выпрямителя и фильтрационных устройств. Звено постоянного тока принимает входной сигнал и перенаправляет его в инвертор.

- Импульсного инвертора. Силовой трехфазный инвертор обычно имеет шесть транзисторов-ключей и осуществляет преобразование тока до заданных частот и амплитуд, а затем подает его на статор. Инвертор может состоять из тиристорной схемы.

- Микропроцессорной системы управления. Управляет системами преобразования и защиты преобразователя.

Четкая синусоида выходного сигнала – результат работы IGBT-транзисторов в качестве ключей инвертора, которые работают с более высокой частотой переключения, чем устаревшие тиристоры.

Как работает частотный преобразователь?

Схема преобразователя представлена в наглядном виде на следующем рисунке. (схема 2)

На схеме отображены основные структурные части преобразователя, а именно: инвертор, диодный силовой выпрямитель, модуль управления широтно-импульсной модуляцией, система управления, дроссель и конденсатор фильтра. Регуляция выходной частоты и напряжения (fвых. и Uвых., соответственно) осуществляется путем широтно-импульсного управления высокой частоты. Управление зависит от периодичности модуляции. Это период, в течение которого статор по очереди получает сигнал от положительного и отрицательного полюса напряжения. Длительность периода модулируется согласно синусоидальному закону гармонических частот, дополнительное преобразование происходит уже в обмотках двигателя, где после фильтрации ток имеет уже строго синусоидальную форму.

      Сама кривая выходного напряжения – это двуполярная последовательность высокой частоты, созданная прямоугольными импульсами. Данные параметры также регулируются широтно-импульсной модуляцией, а сама ширина импульсов модулируется по синусоидальному закону. Изменение характеристик выходного напряжения осуществляется одним из двух способов: изменение AP (амплитуды) путем регуляции значения входного напряжения Uвх.; при Uвх., имеющим постоянное значение, путем внесения изменений в программу, контролирующую периодичность переключения переключателей V1-V6. Наличие современных IBGT-транзисторов на микропроцессорном управлении применение второго способа является более продуктивным и широко используемым. ШИМ также позволяет добиться формы кривой тока близкой к синусоиде, но уже благодаря свойствам обмоток, выполняющих функции фильтра.

Данный метод управления также позволяет существенно увеличить коэффициент полезного действия преобразователя и по своим характеристикам полностью аналогично методике управления путем изменения амплитуды и частоты тока. В наше время существует несколько компоновок инверторов с управляемыми ключами: запираемые GTO тиристоры; биполярные IGBT-транзисторные ключи с затвором. С примером можно ознакомиться на следующем рисунке. (рисунок 2) Здесь изображена мостовая трехфазная схема с использованием IGBT-транзисторов. Инвертор автономный. В данной схеме используется комплекс из 6 транзисторных ключей (на схеме V1-V6), емкостного фильтра тока. Транзисторы включены при помощи диодов обратного тока (на схеме D1-D6) по встречно-параллельной схеме.

Алгоритм переключения вентилей задается микропроцессором, переключение преобразует постоянное Uвх. в переменное выходное напряжение с прямоугольными импульсами. Активная составляющая токового потока асинхронного двигателя проходит через транзисторы, а реактивная – через диоды обратного тока.

И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;

Сф – конденсатор фильтра;

Переити в каталог продукции: Частотные преобразователи

Методы управления преобразователем частоты.

Согласно последним данным статистики примерно 70% всей выработанной электроэнергии в мире потребляет электропривод. И с каждым годом этот процент растет.

При правильно подобранном способе управления электродвигателем возможно получение максимального КПД, максимального крутящего момента на валу электромашины, и при этом повысится общая производительность механизма. Эффективно работающие электродвигатели потребляют минимум электроэнергии и обеспечивают максимальную экономичность.

Для электродвигателей, работающих от преобразователя частоты ПЧ, эффективность во многом будет зависеть от выбранного способа управления электрической машиной. Только поняв достоинства каждого способа, инженеры и проектировщики систем электроприводов смогут получить максимальную производительность от каждого способа управления.

Для асинхронных электродвигателей, подключенных к преобразователю частоты, существуют следующие основные способа управления:

1. Скалярное

· Скалярное управление U/f;

· Скалярное управление U/f с энкодером;

2. Векторное

· Векторное управление с разомкнутым контуром;

· Векторное управление с замкнутым контуром;

Все четыре метода используют широтно-импульсную модуляцию ШИМ, которая изменяет ширину фиксированного сигнала путем изменения длительности импульсов для создания аналогового сигнала.

СКАЛЯРНОЕ РЕГУЛИРОВАНИЕ

Способ управления U/f

Скалярный метод управления асинхронным электродвигателем переменного тока, заключается в том, чтобы поддерживать постоянным отношение напряжение/частота (U/f) во всем рабочем диапазоне скоростей, при этом контролируется только величина и частота питающего напряжения.

Отношение U/f вычисляется на основе номинальных значений (напряжения и частоты) контролируемого электродвигателя переменного тока. Поддерживая постоянным значение отношения U/f мы можем поддерживать относительно постоянным магнитный поток в зазоре двигателя. Если отношение U/f увеличивается тогда электродвигатель становится перевозбужденным и наоборот если отношение уменьшается двигатель находится в невозбуждённом состоянии.

Зависимость частоты питания двигателя от времени при скалярном упрравлении

Изменение напряжения питания электродвигателя при скалярном управлении

На низких оборотах необходимо компенсировать падение напряжения на сопротивлении статора, поэтому отношение U/f на низких оборотах устанавливают выше чем номинальное значение. Скалярный метод управления наиболее широко используется для управления асинхронными электродвигателями. Он часто используется в несложных системах электропривода из-за своей простоты и минимального количества необходимых для работы параметров. Такой способ управления не требует обязательной установки энкодера и обязательных настроек для частотно-регулируемого электропривода. Это приводит к меньшим затратам на вспомогательное оборудование (датчики, провода обратных связей, реле и так далее). Управление U/f довольно часто применяют в высокочастотном оборудовании, например, его часто используют в станках с ЧПУ для привода вращения шпинделя.

U/f - это единственный способ регулирования скорости асинхронного электродвигателя, который позволяет регулирование нескольких электроприводов от одного преобразователя частоты. Соответственно все машины запускаются и останавливаются одновременно и работают с одной частотой.

Но данный способ управления имеет несколько ограничений. Например, при использовании способа регулирования U/f без энкодера нет абсолютно никакой уверенности, что вал асинхронной машины вращается. Кроме того, пусковой момент электрической машины при частоте 3 Гц ограничивается 150%. Да, ограниченного крутящего момента более чем достаточно для применения в большинстве существующего оборудования. Например, практически все вентиляторы и насосы используют способ регулирования U/f.

Данный метод относительно прост из-за его более «свободной» спецификации. Регулирование скорости, как правило, лежит в диапазоне 2% — 3% максимальной выходной частоты. Отклик по скорости рассчитывается на частоту свыше 3 Гц. Скорость реагирования частотного преобразователя определяется быстротой его реакции на изменение опорной частоты. Чем выше скорость реагирования – тем быстрее будет реакция электропривода на изменение задания скорости.

Диапазон регулирования скорости при использовании способа U/f составляет 1:40. Умножив это соотношение на максимальную рабочую частоту электропривода, получим значение минимальной частоты, на которой сможет работать электрическая машина. Например, если максимальное значение частоты 60 Гц, а диапазон составляет 1:40, то минимальное значение частоты составит 1,5 Гц.

Паттерн U/f определяет соотношение частоты и напряжения в процессе работы частотно-регулируемого электропривода. Согласно ему, кривая задания скорости вращения (частота электродвигателя) будет определять помимо значения частоты еще и значения напряжения, подводимого к клеммам электрической машины.

Операторы и технические специалисты могут выбрать необходимый шаблон регулирования U/f одним параметром в современном частотном преобразователе. Предустановленные шаблоны уже оптимизированы под конкретные применения. Также существуют возможности создания своих шаблонов, которые будут оптимизироваться под конкретную систему частотно-регулируемого электропривода или электродвигателя.

Такие устройства как вентиляторы или насосы имеют момент нагрузки, который зависит от скорости их вращения. Переменный крутящий момент (рисунок выше) шаблона U/f предотвращает ошибки регулирования и повышает эффективность. Эта модель регулирования уменьшает токи намагничивания на низких частотах за счет снижения напряжения на электрической машине.

Механизмы с постоянным крутящим моментом, такие как конвейеры, экструдеры и другое оборудование используют способ регулирования с постоянным моментом. При постоянной нагрузке необходим полный ток намагничивания на всех скоростях. Соответственно характеристика имеет прямой наклон во всем диапазоне скоростей.

Способ управления U/f с энкодером

При скалярном методе управления, скорость асинхронного электродвигателя контролируется установкой величины напряжения и частоты статора, таким образом, чтобы магнитное поле в зазоре поддерживалось на нужной величине. Для поддержания постоянного магнитного поля в зазоре, отношение U/f должно быть постоянным на разных скоростях.

При увеличении скорости напряжение питания статора так же должно пропорционально увеличиваться. Однако синхронная частота асинхронного двигателя не равна частоте вращения вала, а скольжение асинхронного двигателя зависит от нагрузки. Таким образом система контроля со скалярным управлением без обратной связи не может точно контролировать скорость при наличии нагрузки. Для решения этой задачи в систему может быть добавлена обратная связь по скорости, а следовательно и компенсация скольжения.

Таким образом, если необходимо повысить точность регулирования скорости вращения в систему управления добавляют энкодер. Введение обратной связи по скорости с помощью энкодера позволяет повысить точность регулирования до 0,03%. Выходное напряжение по-прежнему будет определятся заданным шаблоном U/f.

Данный способ управления не получил широкого применения, так как представляемые им преимущества по сравнению со стандартными функциями U/f минимальны. Пусковой момент, скорость отклика и диапазон регулирования скорости – все идентично со стандартным U/f. Кроме того, при повышении рабочих частот могут возникнуть проблемы с работой энкодера, так как он имеет ограниченное количество оборотов.

Когда используется скалярное управлени

Скалярное управление электродвигателями переменного тока - хорошая альтернатива для применений, где нет переменной нагрузки и отсутвуют высокие динамические нагрузки (вентиляторы, насосы). Для работы скалярного управления не требуется датчик положения ротора, а скорость ротора может быть оценена по частоте питающего напряжения. Когда используется скалярное управление, не требуется высокопроизводительный цифровой сигнальный процессор как в случае с векторным управлением.

Недостатки скалярного управления

При скалярном управлении электродвигателем токи статора не контролируются напрямую.

А процесс скалярного регулирования синхронного двигателя с постоянными магнитами может легко стать неуправляемым (выйти из синхронного состояния) особенно когда момент нагрузки превышает значение предельного момента электропривода. Скалярный метод не подходит для управления синхронным двигатлем на низких оборотах с высокими динамическими нагрузками.

Метод скалярного управления относительно прост в реализации, но обладает несколькими существенными недостатками:

· во-первых, если не установлен датчик скорости нельзя управлять скоростью вращения вала асинхронного двигателя, так как она зависит от нагрузки (наличие датчика скорости решает эту проблему), а вслучае с синхронным двигателем при изменении нагрузки - можно совсем потерять управление;

· во-вторых, нельзя управлять моментом. Конечно, эту задачу можно решить с помощью датчика момента, но стоимость его установки очень высока, и будет скорее всего выше самого электропривода. При этом управление моментом будет очень инерционным;

· также нельзя управлять одновременно моментом и скоростью.

Скалярное управление достаточно для большинства задач в которых применяется электропривод с диапазоном регулирования частоты вращения двигателя до 1:10.

Когда требуется максимальное быстродействие, возможность регулирования в широком диапазоне скоростей и возможность управления моментом электродвигателя используется векторное управление.

ВЕКТОРНОЕ РЕГУЛИРОВАНИЕ

Векторное управление - метод управления бесщеточными электродвигателями переменного тока, который позволяет независимо и практически безынерционно регулировать скорость вращения и момент на валу электродвигателя.

Главная идея векторного управления заключается в том, чтобы контролировать не только величину и частоту напряжения питания, но и фазу. Другими словами, контролируется величина и угол пространственного вектора. Векторное управление в сравнении со скалярным обладает более высокой производительностью. Векторное управление избавляет практически от всех недостатков скалярного управления.

Векторное управление без обратной связи

Векторное управление (ВУ) без обратной связи используется для более широкого и динамичного регулирования скорости электрической машины. При пуске от преобразователя частоты электродвигатели могут развивать пусковой момент в 200% от номинального при частоте всего 0,3 Гц. Это значительно расширяет перечень механизмов, где может быть применен асинхронный электропривод с векторным управлением. Этот метод также позволяет управлять моментом машины во всех четырех квадрантах.

Ограничение вращающего момента осуществляется двигателем. Это необходимо для предотвращения повреждения оборудования, машин или продукции. Значение моментов разбивают на четыре различных квадранта, в зависимости направления вращения электрической машины (вперед или назад) и в зависимости от того, реализует ли электродвигатель режим рекуперативного торможения. Ограничения могут устанавливаться для каждого квадранта отдельно или же пользователь может задать общий вращающий момент в преобразователе частоты.

Двигательный режим асинхронной машины будет при условии, что магнитное поле ротора отстает от магнитного поля статора. Если магнитное поле ротора начнет опережать магнитное поле статора, то тогда машина войдет в режим рекуперативного торможения с отдачей энергии, проще говоря – асинхронный двигатель перейдет в генераторный режим.

Например, машина по закупорке бутылок может использовать ограничение момента в квадранте 1 (направление вперед с положительным моментом) для предотвращения чрезмерного затягивания крышки бутылки. Механизм производит движение вперед и использует положительный момент для того, чтобы закрутить крышку бутылки. А вот устройство, такое как лифт, с противовесом тяжелее, чем пустая кабина, будет использовать квадрант 2 (обратное вращение и положительный момент). Если кабина подымается на верхний этаж, то крутящий момент будет противоположен скорости. Это необходимо для ограничения скорости подъема и недопущения свободного падения противовеса, так как он тяжелее, чем кабина.

Обратная связь по току в данных преобразователях частоты ПЧ позволяет устанавливать ограничения по моменту и току электродвигателя, поскольку при увеличении тока растет и момент. Выходное напряжение ПЧ может изменятся в сторону увеличения, если механизм требует приложения большего крутящего момента, или уменьшатся, если достигнуто его предельно допустимое значение. Это делает принцип векторного управления асинхронной машиной более гибким и динамичным по сравнению с принципом U/F.

Также частотные преобразователи с векторным управлением и разомкнутым контуром имеют более быстрый отклик по скорости – 10 Гц, что делает возможным его применение в механизмах с ударными нагрузками. Например, в дробилках горной породы нагрузка постоянно меняется и зависит от объема и габаритов обрабатываемой породы.

В отличии от шаблона управления U/F векторное управление использует векторный алгоритм, для определения максимально эффективного напряжения работы электродвигателя.

Векторное управления ВУ решает данную задачу благодаря наличию обратной связи по току двигателя. Как правило, обратная связь по току формируется внутренними трансформаторами тока самого преобразователя частоты ПЧ. Благодаря полученному значению тока преобразователь частоты проводит вычисления вращающего момента и потока электрической машины. Базовый вектор тока двигателя математически расщепляется на вектор тока намагничивания и крутящего момента.

Используя данные и параметры электрической машины ПЧ вычисляет векторы тока намагничивания и крутящего момента. Для достижения максимальной производительности, преобразователь частоты должен держать данные вектора разведенными на угол 900. Это существенно, так как sin 900 = 1, а значение 1 представляет собой максимальное значение крутящего момента.

В целом векторное управление асинхронным электродвигателем осуществляет более жесткий контроль. Регулирование скорости составляет примерно ±0,2% от максимальной частоты, а диапазон регулирования достигает 1:200, что позволяет сохранять вращающий момент при работе на низких скоростях.

Векторное управление с обратной связью

Векторное управление с обратной связью использует тот же алгоритм управления, что и ВУ без обратной связи. Основное различие заключается в наличии энкодера, что дает возможность частотно-регулируемому электроприводу развивать 200% пусковой момент при скорости 0 об/мин. Этот пункт просто необходим для создания начального момента при трогании с места лифтов, кранов и других подъемных машин, чтоб не допустить просадки груза.

Наличие датчика обратной связи по скорости позволяет увеличить время отклика системы более 50 Гц, а также расширить диапазон регулирования скорости до 1:1500. Также наличие обратной связи позволяет управлять не скоростью электрической машиной, а моментом. В некоторых механизмах именно значение момента имеет большую важность. Например, мотальная машина, механизмы закупорки и другие. В таких устройствах необходимо регулировать момент машины.

Преимущества векторного управления:

· высокая точность регулирования скорости;

· плавный старт и плавное вращение двигателя во всем диапазоне частот;

· быстрая реакция на изменение нагрузки: при изменении нагрузки практически не происходит изменения скорости;

· увеличенный диапазон управления и точность регулирования;

· снижаются потери на нагрев и намагничивание, повышается КПД электродвигателя.

К недостаткам векторного управления можно отнести:

· необходимость задания параметров электродвигателя;

· большие колебания скорости при постоянной нагрузке;

· большая вычислительная сложность.

Сравнительная таблица методов управления частотным преобразователем.

Метод управления

Диапазон управления скоростью

Погрешность скорости3, %

Время нарастания момента, мс

Пусковой момент

Цена

Описание

Скалярный

1:101

5-10

Не доступно

Низкий

Очень низкая

Имеет медленный отклик при изменении нагрузки и небольшой диапазон регулирования скорости, но при этом прост в реализации.

Векторный

Линейный

Полеориентированное управление

>1:2002

0

<1-2

Высокий

Высокая

Позволяет плавно и быстро управлять основными параметрами двигателя - моментом и скоростью. Для работы данного метода требуется информация о положении ротора.

Прямое управление моментом с ПВМ

>1:2002

0

<1-2

Высокий

Высокая

Гибридный метод, разработанный для того чтобы объединить преимущества http://engineering-solutions.ru/motorcontrol/vector/#foc и http://engineering-solutions.ru/motorcontrol/vector/#dtc.

Нелинейный

Прямое управление моментом с таблицей включения

>1:2002

0

<1

Высокий

Высокая

Имеет высокую динамику и простую схему, но характерной особенностью его работы являются высокие пульсации тока и момента.

Прямое самоуправление

>1:2002

0

<1-2

Высокий

Высокая

Имеет частоту переключения инвертора ниже чем у других методов и предназначен для уменьшения потерь при управлении электродвигателями большой мощности.

Список используемой литературы:

1. Botan Electric. «Как правильно выбрать метод управления преобразователем частоты?»: http://elenergi.ru, 2016

2. Cristian Busca. «Open loop low speed control for PMSM in high dynamic application.- Aalborg, Denmark.»: Aalborg universitet, 2010

3. Bial Akin, «Nishant Garg. Scalar (V/f) control of 3-phase induction motors. Application report. SPRABQ8.- Dallas, USA.»: Texas Instruments

4. Статьи http://engineering-solutions.ru

Как настроить частотник. – своими руками Станок с ЧПУ

Предупреждение, как настроить частотник и не спалить шпиндель.

Настройка частотника xsy-at1. Для станка с ЧПУ я приобрёл инвертор чпу в комплекте с шпинделем. Потому что частотный преобразователь  AT1-2200S рассчитанный на нагрузку 2,2 кВт. Поэтому я купил с запасом по мощности. Так как шпиндель станка будет мощностью 1,5 кВт. Как настроить частотник, читай ниже.

Частотный преобразователь AT1-2200S

 

Шпиндель 1,5 кВт.

После получения посылки, я решил сразу проверить исправность купленного оборудования.

Я конечно сразу подсоединил двигатель к частотнику. Но инструкцию конечно не читал. Так как инструкцию написали на английском языке, а я его не знаю. Но и как настроить частотник я тоже не знал.

Частотный преобразователь и шпиндель.

 

Потому что не читал инструкцию, всё соединил и включил сразу в розетку. Но не тут то- было. Потому что движок стоит. Но потом, когда я стал медленно крутить ручку по часовой стрелке, двигатель стал начинать вращение. И из него стал исходить скрипящий звук. Но звук похож на звук развалившегося подшипника, а не вращения двигателя. Так как всё это продолжалось в течении двух-трёх секунд, сработала защита частотника. Хвала за это Китайцу от чистого сердца. Когда пощупал я движок, то обомлел. Потому что за такое короткое время движок очень сильно нагрелся. Ну, думаю всё, конец шпинделю. Для того чтобы охладить двигатель я вынес его на улицу (зима). После чего пошёл в интернет разбираться как настроить частотник. Но когда я нашёл (долго искал) инструкцию на русском языке, тогда я всё понял.

После чего я сделал необходимые настройки. Но теперь у меня всё заработало. Потому что всё правильно я сделал. Так как ниже я привожу необходимые настройки для первого пуска и настройки инвертора шпинделя . Поэтому не сомневайтесь.

Настройка частотного преобразователя.

Сделаны настройки в частотном преобразователе XSY-AT1 T1-2200S

Приведены только настройки, которые необходимо сделать перед включением двигателя на 400Гц. Но для других моторов настройки будут другие. В приведённых таблицах вы можете посмотреть какие параметры возможно установить. 

 р 01-400 (50)

р 03-200 (25)

р 06-400 (50)

P 26-400 (50)

P 25-1   (00)

Р 26-рабочая частота, не рекомендуется ставить менее 100Гц. Потому что шпиндель будет греться. Но у меня стоит 400 и разницы в работе я не увидел.
Р 05-минимальная частота,если поставить скажем 100, то уже на 6000 шпиндель не будет вращаться вообще.Поэтому я поставил ноль (0)
Р 21- в таблице написано "коэффициент снижения"а снижения чего не ясно. Но я пробовал этот параметр и он влияет на мощность шпинделя при низких оборотах. Этот параметр я ставил от 11 до 20.

Возможно не лишним будет и сделать настройки по входному напряжению. Р 68 и Р 69 - нижний и верхний предел входного напряжения

Читаем дальше

В скобках я указал значения, которые установили на заводе  по умолчанию. Так как без скобок это те значения, которые надо установить, будьте внимательны.

Так как я привожу только основные данные по частотному преобразователю.

Но назначение клемм частотного преобразователя XSY-AT1 T1-2200S отличается от других преобразователей.

xsy at1 2200s инструкция на русском языке

Назначение клемм частотного преобразователя.

Назначение кнопок управления частотного преобразователя XSY-AT1 T1-2200S. Как настроить частотник.

Настройка инвертора.

Надо отметить, что частотный преобразователь может управлять работой не только двигателя на 400Гц. Так как основное его назначение, как я понял это работа с трёхфазными двигателями. Потому что эти установки  стоят по умолчанию. Вот эти три фазы, напряжением 380 вольт я и подал на свой шпиндель. Но хвала всевышнему и Китайцу, за то что я ничего не попалил. Вы не повторите моих ошибок. Потому что ниже я приведу все основные настройки частотного преобразователя XSY-AT1 T1-2200S.

Так как использование кнопок управления частотного преобразователя XSY-AT1 T1-2200S требует внимания, то будьте бдительны. настройка частотника.

Использование кнопок управления

Порядок ввода параметров.

  1. Нажать клавишу PROG для перехода в режим программирования.
  2. С помощью клавиш со стрелками и клавиши сдвига (SHIFT) выбрать

(по его номеру) параметр, значение которого надо изменить.

  1. Нажать кл. Func / DATA для доступа к числовому значению параметра.
  2. С помощью клавиш со стрелками и клавиши сдвига (SHIFT) изменить.

Значение выбранного параметра.

  1. Нажать кл. Func / DATA для сохранения значения параметра.
  2. Нажать клавишу PROG для выхода из режима программирования.

Код ошибки частотного преобразователя XSY-AT1 T1-2200S. 

Err 1- Err 9

  1 Сработала защита модуля IGBT (?)

 2 Низкое напряжение питания (на входе) ПЧ

 3 Перенапряжение по питанию (на входе) ПЧ

4 Неисправность в схеме управления

 5 Пуск ПЧ при повышении напряжения на входе (каком?)

 6 Сработала защита от перегрузки по току

 7 Превышение времени (чего? )

8 Перегрев радиатора ПЧ

9 Внешняя неисправность

Но это не всё, ниже я приведу все параметры частотного преобразователя XSY-AT1 T1-2200S.

Таблица 1 параметры Р 00 - Р 26

 

Параметр р 12 - р 26Параметры Р 27- Р47Параметры Р 48 - Р 55Параметр с Р 70 - Р 85Параметр с Р 86  по Р 114Параметры с Р 117 по Р 127

На этом можно закончить. Но если у Вас остались вопросы, то пишите в комментариях. На все вопросы отвечу. Удачи в настройке.

 

Преобразователи напряжение в частоту и преобразователи частоты в напряжение - онлайн

Преобразователи напряжения в частоту и преобразователи частоты в напряжение - онлайн | Компоненты RS

Преобразователи напряжение-частота и частота-напряжение

Преобразователи - это электрические устройства, которые можно использовать для изменения частоты и напряжения источника питания.

& nbsp;
VFC (преобразователь напряжения в частоту) - это генератор с частотой, которая линейно пропорционален управляющему напряжению и потребляет очень небольшое количество энергии.

& nbsp;
FVC (преобразователь частоты в напряжение) - это электронное устройство, которое преобразует входные сигналы тока в соответствующие выходы напряжения. Они используют аналоговые и цифровые каналы.


Для чего используются преобразователи напряжения в частоту и преобразователи частоты в напряжение?

< p> Преобразователи напряжения в частоту являются типичными компонентами аналогово-цифровых преобразователей двигателей, телекоммуникационных устройств и автомобильных компонентов.& nbsp;

& nbsp;
Преобразователи частоты в напряжение подходят для регуляторов скорости, tachometers , таймеры, датчики и переключатели.


Типы преобразователей напряжения в частоту и преобразователей частоты в напряжение

VFC поставляются с одиночной или интегральной схемой приспособления.Одноконтурные преобразователи состоят из аналоговых усилителей напряжения, схем генераторов, резисторов, конденсаторов и источников питания.

& nbsp;
FVC имеют встроенную, низкочастотную или программируемую фильтрацию. Интегральные фильтры пропускают одни частоты сигнала, но запрещают другие. Фильтры нижних частот имеют установленный порог. Сигналы ниже порога пропускаются, а сигналы выше - блокируются. & Nbsp;

Преобразователи напряжение в частоту и преобразователи частоты в напряжение - онлайн

Преобразователи напряжения в частоту и преобразователи частоты в напряжение - онлайн | Компоненты RS

Преобразователи напряжение-частота и частота-напряжение

Конвертеры - это электрические устройства, которые можно использовать для изменения частоты и напряжения источника питания.

& nbsp;
VFC (преобразователь напряжения в частоту) - это генератор с частотой, которая линейно пропорциональна управляющему напряжению и потребляет очень небольшое количество энергии.

& nbsp;
FVC (преобразователь частоты в напряжение) - это электронное устройство, которое преобразует входные сигналы тока в соответствующие выходы напряжения. Они используют аналоговые и цифровые каналы.


Для чего используются преобразователи напряжения в частоту и преобразователи частоты в напряжение?

< p> Преобразователи напряжения в частоту являются типичными компонентами аналогово-цифровых преобразователей двигателей, телекоммуникационных устройств и автомобильных компонентов.& nbsp;

& nbsp;
Преобразователи частоты в напряжение подходят для регуляторов скорости, tachometers , таймеры, датчики и переключатели.


Типы преобразователей напряжения в частоту и преобразователей частоты в напряжение

VFC поставляются с одиночной или интегральной схемой приспособления.Одноконтурные преобразователи состоят из аналоговых усилителей напряжения, схем генераторов, резисторов, конденсаторов и источников питания.

& nbsp;
FVC имеют встроенную, низкочастотную или программируемую фильтрацию. Интегральные фильтры пропускают одни частоты сигнала, но запрещают другие. Фильтры нижних частот имеют установленный порог. Сигналы ниже порога пропускаются, а сигналы выше - блокируются. & Nbsp;

Наш веб-сайт использует файлы cookie и аналогичные технологии, чтобы предоставить вам лучший сервис при поиске или размещении заказа, в аналитических целях и для персонализации нашей рекламы для вас.Вы можете изменить настройки файлов cookie, прочитав нашу политику в отношении файлов cookie. В противном случае мы будем считать, что вы согласны с использованием файлов cookie.

Хорошо, я понимаю

Преобразователи частоты по выгодной цене - Выгодные предложения на преобразователи частоты от мировых продавцов преобразователей частоты

Отличные новости !!! Вы находитесь в нужном месте для преобразователей частоты.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший преобразователь частоты вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели преобразователь частоты на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в преобразователях частоты и думаете о выборе аналогичного продукта, AliExpress - отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести преобразователь частоты по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Преобразователь частоты с лучшим соотношением цены и качества - Отличные предложения по преобразователю частоты с регулировкой от глобальных продавцов преобразователей частоты

Отличные новости !!! Вы находитесь в нужном месте для настройки преобразователя частоты.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот преобразователь частоты с максимальной регулировкой должен в кратчайшие сроки стать одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели преобразователь частоты на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не знаете, как настроить преобразователь частоты и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы согласитесь, что вы получите convert frequency converter по самой выгодной цене.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *