Схема чпу станка: ЧПУ-станок (планы, схемы, чертежи)

Содержание

ЧПУ-станок (планы, схемы, чертежи)



В последнее время ЧПУ-станки не выглядят уже какой-то диковинкой и стали более доступны для приобретения или сборки своими руками. Практически все комплектующие для сборки можно приобрести в интернет-магазинах.

В этой статье мастер-самодельщик познакомить нас со своим опытом изготовления ЧПУ-станка, предоставить нам чертежи, схемы, расскажет об ошибках и изменениях. Этот станок он позиционирует, как недорогой и изготовленный с помощью обычных инструментов, кроме 3D-принтера.


Инструменты и материалы:
-Березовая фанера толщиной 15 мм.
-МДФ 600×570 мм толщиной 10-20 мм;
-Алюминиевый T-образный профиль 1м — 8 шт;
-Шуруп для дерева длиной от 22 до 30 мм -142 шт;
-Болт с гайкой M4 с плоской головкой длиной 25 мм — 8 шт;
-Болт M5 с шестигранной головкой, гайкой и шайбой длина 35 мм — 32 шт;
-Болт M5 с шестигранной головкой, гайкой и шайбой длина 16 мм — 32 шт;
-Резьбовой стержень M5 — 1 м;
-Резьбовой стержень M8 — 1 м;
— M8 гайка — 12 шт;
-Шайба М8 — 20 шт;
-Подшипник с V-образной канавкой — 16 шт;
— GT2 ремень GT2 шириной 6 мм, шаг 2 мм 5 метров;
-Ремень GT2 280, ширина 6 мм, шаг 2 мм;
-Два держателя для ремня GT2;
-Три GT2 шкива 6,35 мм;
-MR148zz подшипник для резьбового стержня на оси Z;
-GT2 шкив 8 мм;
-Подшипник шкива GT2 5 мм — 2 шт;
-300-мм ходовой винт оси Z;
-Разъем питания;
-Блок питания 24В 15А;
-608zz шарикоподшипник Dint 8 мм — 8 шт;
— Nema 23 шаговый двигатель 270oz.in, 3A, модель 23HS8430 — 3 шт;
-Драйвер шагового двигателя TB6560 3A — 3шт;
-Провода 22AWG по 2 метра каждый, 4 цвета;
-684ZZ подшипники — 20 шт;
-Фрезер Makita RT0700C;
-Ардуино;
-Дрель;
-Гравер;
-Лобзик;
-Слесарный инструмент;


Шаг первый: подготовка деталей
Детали корпуса, а также некоторые другие детали мастер будет делать из МДФ и фанеры. Часть деталей он сделал сам, часть ему изготовили в мастерской.

Ниже можно скачать архив с подробными чертежами.
Plans.zip

Шаг второй: корпус и ось Y
Мастер рекомендует точно собрать направляющую оси X. Направляющие нужно установить четко по уровню с равным расстоянием по всей длине. Мастер советует использовать винт 6 -10 между Case_bottom и Case_side, и 3–4 между Case_side и Case_insideBack / Case_back



Шаг третий: ось Х
Дальше мастер собирает ось Х. Начинает со сборки деревянных деталей. Затем крепит направляющие.

Шаг четвертый: ось Z
Собирает ось Z.

На этой фото узел с двумя моторами. Вверху мотор для оси Z, внизу мотор для оси Х. Сбоку между ними установлен подшипник. Подшипник рядом с двигателем будет использоваться для ремня оси X.


С обратной стороны устанавливаются стержни М5.


Устанавливает крепление для фрезера. Крепление печатается на 3D-принтере.

Файлы для печати можно скачать ниже.
Axe_z_guideRail.stl
Axe_z_supportDefonceuse.stl
Axe_z_solidification.stl

Шаг пятый: сборка
Дальше мастер приступает к сборке станка.


Собирает ось Х и Z вместе. Между двумя подшипниками должны быть размещены две 3D-печатные детали.
Устанавливает резьбовой стержень со шкивом и ремень.


Чтобы установить деталь, которая удерживает фрезер, можно использовать 3D-деталь или сделать из алюминия.

На задней стороне узла оси X мастер закрепил ремень с помощью шурупа. Это, наверное, не лучшая идея, но она работает. Этот ремень ГРМ проходит через ось Z на подшипнике и моторизованном шкиве.


Ось Y перемещает ось X вперед/назад. Мастер устанавливает ремень между двумя направляющими.

У мастера была возможность сделать некоторые детали из алюминия, но они так же есть и в файлах для печати.


На задней панели находится система, которая соединяет два ремня с одним шаговым двигателем через вал. Вал — это резьбовой стержень M8. Он вращается в подшипниках. Нижняя часть крепится с помощью трех шурупов. Две шпильки M5 нужны для крепления опоры с подшипником и регулировки натяжения.


Файлы для печати можно скачать здесь.
Axe_y_support_poulie.stl
Support_moteur_axe_y.stl
Support_tige_axe_y_p1_v2.stl
Support_tige_axe_y_p2_v2.stl

Шаг шестой: электроника
Для станка с ЧПУ требуется всего несколько электронных компонентов:

Блок питания
Драйвер
Arduino uno
Мастер использовать программное обеспечение GRBL 0,9 с эскизом Arduino, доступным здесь . Чтобы загрузить его, просто следуйте инструкциям на сайте. Затем нужно подключить три шаговых драйвера к Arduino, следуя фотографиям.


Подключает блок питания.

Приклеил и подключил светодиодную ленту. Светодиоды загораются, когда станок включен.

Шаг седьмой: настройка
Теперь, когда электроника смонтирована и GRBL установлена на Arduino, нужно произвести некоторые настройки. Мастер использует программуUniversal Gcode Sender. Шаги по настройке:
Сначала подключите Arduino к компьютеру с установленным Universal Gcode Sender.
Запустите программу.
Установите скорость передачи 115200 и выберите «Firmware GRBL».
Клик «Open».
Должно быть такое меню.

Затем нужно настроить GRBL с помощью этих инструкций. На вкладке «Machine Control» можно переместить три оси и проверить их работу.
Дальше мастер проверяет работу устройства, сначала установив карандаш.


Устанавливает фрезу и вырезает снежинку.


Пробует на древесине.

Все готово. Мастер доволен работой. Станок получился с простым дизайном. Его легко построить. Пыль не разлетается по всей комнате. Большая точность по осям Z и Y. Стоимость не превышает 550 долларов.
Есть и куда улучшатся.

Мастер планирует:
уменьшит шум из-за вибрации шагового двигателя и фрезера в корпусе добавив прокладку из пробки или резины
повысить точность, улучшив линейное движение по оси X с помощью дизайна, аналогичного оси Z
упростить дизайн с помощью большего количества 3D-деталей
установить защиту от пыли сверху станка


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Как собрать самодельный фрезерный станок с ЧПУ + Чертежи и схемы!

Возможно, меня уволят за это!

Я давно хотел разместить серию постов по теме самодельных станков с ЧПУ. Но всегда останавливал тот факт, что Станкофф — станкоторговая компания. Дескать, как же так, мы же должны продавать станки, а не учить людей делать их самостоятельно. Но увидев этот проект я решил плюнуть на все условности и поделиться им с вами.

И так, в рамках этой статьи-инструкции я хочу, что бы вы вместе с автором проекта, 21 летним механиком и дизайнером, изготовили свой собственный настольный фрезерный станок с ЧПУ. Повествование будет вестись от первого лица, но знайте, что к большому своему сожалению, я делюсь не своим опытом, а лишь вольно пересказываю автора сего проекта. 

В этой статье будет достаточно много чертежей, примечания к ним сделаны на английском языке, но я уверен, что настоящий технарь все поймет без лишних слов. Для удобства восприятия, я разобью повествование на «шаги».

Предисловие от автора

Уже в 12 лет я мечтал построить машину, которая будет способна создавать различные вещи. Машину, которая даст мне возможность изготовить любой предмет домашнего обихода. Спустя два года я наткнулся на словосочетание

ЧПУ или если говорить точнее, то на фразу «Фрезерный станок с ЧПУ». После того как я узнал, что есть люди способные сделать такой станок самостоятельно для своих нужд, в своем собственном гараже, я понял, что тоже смогу это сделать. Я должен это сделать! В течение трех месяцев я пытался собрать подходящие детали, но не сдвинулся с места. Поэтому моя одержимость постепенно угасла.

В августе 2013 идея построить фрезерный станок с ЧПУ вновь захватила меня. Я только что окончил бакалавриат университета промышленного дизайна, так что я был вполне уверен в своих возможностях. Теперь я четко понимал разницу между мной сегодняшним и мной пятилетней давности. Я научился работать с металлом, освоил техники работы на ручных металлообрабатывающих станках, но самое главное я научился применять инструменты для разработки. Я надеюсь, что эта инструкция вдохновит вас на создание своего станка с ЧПУ! 

Шаг 1: Дизайн и CAD модель

Все начинается с продуманного дизайна. Я сделал несколько эскизов, чтобы лучше прочувствовать размеры и форму будущего станка. После этого я создал CAD модель используя SolidWorks. После того, как я смоделировал все детали и узлы станка, я подготовил технические чертежи. Эти чертежи я использовал для изготовления деталей на ручных металлообрабатывающих станках: токарном и фрезерном.

Признаюсь честно, я люблю хорошие удобные инструменты. Именно поэтому я постарался сделать так, чтобы операции по техническому обслуживанию и регулировке станка осуществлялись как можно проще. Подшипники я поместил в специальные блоки для того, чтобы иметь возможность быстрой замены. Направляющие доступны для обслуживания, поэтому моя машина всегда будет чистой по окончанию работ.

Файлы для скачивания «Шаг 1»

Габаритные размеры

Шаг 2: Станина

Станина обеспечивает станку необходимую жесткость. На нее будет установлен подвижной портал, шаговые двигатели, ось Z и шпиндель, а позднее и рабочая поверхность. Для создания несущей рамы я использовал два алюминиевых профиля Maytec сечением 40х80 мм и две торцевые пластины из алюминия толщиной 10 мм. Все элементы я соединил между собой на алюминиевые уголки. Для усиления конструкции внутри основной рамы я сделал дополнительную квадратную рамку из профилей меньшего сечения. 

Для того, чтобы в дальнейшем избежать попадания пыли на направляющие, я установил защитные уголки из алюминия.  Уголок смонтирован с использованием Т-образных гаек, которые установлены в один из пазов профиля.

На обоих торцевых пластинах установлены блоки подшипников для установки приводного винта.

Несущая рама в сборе

Уголки для защиты направляющих

Файлы для скачивания «Шаг 2»

Чертежи основных элементов станины

Шаг 3: Портал

Подвижной портал — исполнительный орган вашего станка, он перемещается по оси X и несет на себе фрезерный шпиндель и суппорт оси Z. Чем выше портал, тем толще заготовка, которую вы можете обработать. Однако, высокий портал менее устойчив к нагрузкам которые возникают в процессе обработки. Высокие боковые стойки портала выполняют роль рычагов относительно линейных подшипников качения.

Основная задача, которую я планировал решать на своем фрезерном станке с ЧПУ — это обработка алюминиевых деталей. Поскольку максимальная толщина подходящих мне алюминиевых заготовок 60 мм, я решил сделать просвет портала (расстояние от рабочей поверхности до верхней поперечной балки) равным 125 мм.  В SolidWorks все свои измерения я преобразовал в модель и технические чертежи. В связи со сложностью деталей, я обработал их на промышленном обрабатывающем центре с ЧПУ, это дополнительно мне позволило обработать фаски, что было бы весьма затруднительно сделать на ручном фрезерном станке по металлу.

Файлы для скачивания «Шаг 3»

Шаг 4: Суппорт оси Z

В конструкции оси Z я использовал переднюю панель, которая крепится к подшипникам перемещения по оси Y, две пластины для усиления узла, пластину для крепления шагового двигателя и панель для установки фрезерного шпинделя. На передней панели я установил две профильные направляющие по которым будет происходить перемещение шпинделя по оси Z. Обратите внимание на то, что винт оси Z не имеет контропоры внизу.

Файлы для скачивания «Шаг 4»

Шаг 5: Направляющие

Направляющие обеспечивают возможность перемещения во всех направлениях, обеспечивают плавность и точность движений. Любой люфт в одном из направлений может стать причиной неточности в обработке ваших изделий. Я выбрал самый дорогой вариант — профилированные закаленные стальные рельсы. Это позволит конструкции выдерживать высокие нагрузки и обеспечит необходимую мне точность позиционирования. Чтобы обеспечить параллельность направляющих, я использовал специальный индикатор во время их установки. Максимальное отклонение относительно друг друга составило не более 0,01 мм.

Шаг 6: Винты и шкивы

Винты преобразуют вращательное движение от шаговых двигателей в линейное. При проектировании своего станка вы можете выбрать несколько вариантов этого узла: Пара винт-гайка или шарико-винтовая пара (ШВП). Винт-гайка, как правило, больше подвергается силам трения при работе, а также менее точна относительно ШВП. Если вам необходима повышенная точность, то однозначно необходимо остановить свой выбор на ШВП. Но вы должны знать, что ШВП достаточно дорогое удовольствие.

Я все же решил использовать винт-гайку для своего станка. Я выбрал гайки со специальными пластиковыми вставками которые уменьшают трение и исключают люфты.

Необходимо обработать концы винтов в соответствии с чертежами. На концы винтов устанавливаются шкивы

Файлы для скачивания «Шаг 6»

Шаг 7: Рабочая поверхность

Рабочая поверхность — это место на котором вы будете закреплять заготовки для последующей обработки. На профессиональных станках часто используется стол из алюминиевого профиля с Т-пазами. Я решил использовать лист обычной березовой фанеры толщиной 18 мм.

Шаг 8: Электрическая схема

Основными  компонентами электрической схемы являются:

  1. Шаговые двигатели
  2. Драйверы шаговых двигателей
  3. Блок питания
  4. Интерфейсная плата
  5. Персональный компьютер или ноутбук
  6. Кнопка аварийного останова 

Я решил купить готовый набор из 3-х двигателей Nema, 3-х подходящих драйверов, платы коммутации и блока питания на 36 вольт. Также я использовал понижающий трансформатор для преобразования 36 вольт в 5 для питания управляющей цепи. Вы можете использовать любой другой готовый набор или собрать его самостоятельно. Так как мне хотелось быстрее запустить станок, я временно собрал все элементы на доске. Нормальный корпус для системы управления сейчас находится в разработке )).

Электрическая схема станка

Шаг 9: Фрезерный шпиндель

Для своего проекта я использовал фрезерный шпиндель Kress. Если есть необходимость, средства и желание, то вы вполне можете поставить высокочастотный промышленный шпиндель с водяным или воздушным охлаждением. При этом потребуется незначительно изменить электрическую схему и добавить несколько дополнительных компонентов, таких как частотный преобразователь.

Шаг 10: Программное обеспечение

В качестве управляющей системы для своего детища я выбрал MACh4. Это одна из самых популярных программ для фрезерных станков с ЧПУ. Поэтому про ее настройку и эксплуатацию я не буду говорить, вы можете самостоятельно найти огромное количество информации на эту тему в интернете.

Шаг 11: Он ожил! Испытания

Если вы все сделали правильно, то включив станок вы увидите, что он просто работает!

Я уверен, моя история вдохновит вас на создание собственного фрезерного станка с ЧПУ.

Послесловие

Друзья, если вам понравилась история, делитесь ей в социальных сетях и обсуждайте в комментариях. Успехов вам в ваших проектах!

Схема ЧПУ станка – Применяется интерфейсная плата ЧПУ

Схема подключения ЧПУ

Когда я решил делать домашний ЧПУ станок, мне понадобилась схема ЧПУ станка. Но в интернете я не нашёл схемы станков ЧПУ. Так как к моему сожалению, всё что я находил было фрагментировано. Потому что информация была не полная. Поэтому на страницах своего сайта я буду выкладывать всё, что я сделал. Так что можно будет без проблем сделать обычный станок на три оси. Возможно и вы искали описание как сделать ЧПУ станок своими руками

Я нарисовал и конечно проверил работу схемы чпу. Так как в силу своих привычек и специальности я привык к работе по схемам. Схема ЧПУ станка особо ничем не выделяется. Но есть некоторые особенности. Возможно кто то уже делал так и до меня. Но я ничего не находил в интернете.

схема ЧПУ станка

 

Принципиальная схема ЧПУ. Описание.

Приступим к описанию схема ЧПУ станка. Если лень читать, то посмотрите видео на канале железкин электроника ЧПУ станка.Схема.В схеме для управления станком с ЧПУ используется интерфейсная плата ЧПУ синего цвета. Но возможно применение и другой подобной этой плате. Так как практически все они одинаковые. Возможно, и даже лучше если вы найдёте плату без оптронов на выходе. То есть выхода платы для подключения драйверов без оптронов. Потому что как раз вот эта развязка и влияете на пропуск шагов. Но вы учтите, что вход LPT порта должен быть развязан с компьютером  через оптроны.

Я использовал в своём станке драйвера шагового двигателя TB6600. Потому что это не дорогие и не плохие драйвера. Лучше конечно поискать что то другое. Но на тот момент я не имел достаточно средств.

На схеме я всё понятно нарисовал как подключать драйвера. Поэтому на этом не будем останавливаться. В качестве блоков питания я использовал уже готовые источники. Но приведённые на схеме блоки питания вполне работоспособны. Источники 5 вольт и 12 вольт должны длительное время держать токи 1 ампер и 500 ма соответственно. Для питания шаговых двигателей не менее трёх ампер. Лучше посмотрите параметры на свои шаговые двигатели. Внимание! Минусовые провода +5 в и +12 не соединять вместе. Так как они должны быть гальванически развязаны. +5 это питание микросхем платы. А +12 вольт необходимо для питания оптронов на входной колодке и ШИМ. К которой подключаются концевики и другие входные устройства.

Подключение частотника к плате не требует объяснения. Так как всё понятно из схемы. Но учтите, что все частотные преобразователи разные и перед подключением посмотрите паспорт. По оси Y я использую два шаговых двигателя. Но подключил я оба двигателя к одному драйверу. Смотрите схему, на которой все цвета соответствуют подключению.

Подключение концевых выключателей ЧПУ

Ну вот я и подошёл к главному, что требует объяснения. Левая колодка служит для входных сигналов. Как вы видите, концевые выключатели ЧПУ и выключатели баз подключены к разным клеммам. Но все они имеют последовательное соединение. Особенностью являются параллельное соединение базовых выключателей по оси Y. На канале железкин я выложил видео Подключение концевых выключателей чпу

Так как по оси Y я использую двигатель Nema 17 два штуки, возможно нарушение синхронизации. Для этого я и поставил два концевых выключателя ЧПУ. Один концевой с левой стороны. Второй концевой с правой стороны. При нажатии на кнопку возврат в базы, ось Y остановится только когда будут разомкнуты оба выключателя. Если есть нарушение синхронизации, то левый и правый ШВП поставят ось  Y в своё начальное положение не сразу. Сначала подойдёт одна из сторон, а потом другая. Так вот, пока отстающая сторона не достигнет своего положения, нажатия на концевой не будет. А будет продолжение движения до нажатия на концевые выключатели ЧПУ. Таким образом устраняется нарушение синхронизации.

Подключение концевых выключателей ЧПУ осуществляется к  контакту Р 13 платы. Как и базовые они соединены последовательно. Но к контакту Р 13 я подключил ещё и кнопку, которую назвал «откат». Для чего она нужна? Потому что при работе станка возможны выходы за границы рабочего поля. Так как в таких случаях невозможно будет вывести ось в рабочее положение из за нажатого концевого выключателя. Поэтому придётся сначала освободить концевой от нажатия. Это возможно сделать разными способами. Но всё это долго и не очень удобно. Вот поэтому я и поставил такую кнопку.

Заключение.

Кнопку я подключил параллельно с концевыми. При выходе оси за пределы достаточно нажать на кнопку, и не отпуская её вывести ось в рабочее положение. Другими словами кнопка при нажатии шунтирует работу концевых Остальное я думаю не требует пояснений. В настройках программы я сконфигурировал концевые и базы таким образом. При нажатии на кнопку принять базы, концевые подключенные к Р 11 работают как базовые. Но при выполнении программы эти же концевые ЧПУ будут  выполнять функцию аварийных концевых. По настройке программы можно почитать в моей статье, а также на канале Железкин в ютуб есть видео схема ЧПУ станка. А так же много по чпу и другим самоделкам.

Ответ на комментарий Евгения.

Подключение индуктивного датчика к контроллеру

У Вас нормально разомкнутые датчики, поэтому надо подключить индуктивный датчик к разным входам на плате. Потому что входов на плате мало, поэтому сделайте подключение к разным контактам только базовых. Но помните,что они же будут концевыми по этим осям (x+ y+ z+) . Подключение концевых выключателей по x—,z—,y— сделайте последовательно и подключите к одному пину.

На каждом индуктивном датчике поставьте сопротивление по 1к-2.7к, между проводами чёрного цвета и синего.Концевые по минусу движения осей соедините последовательно, как на схеме ниже.

подключение индуктивного датчикасхема подключения индуктивного датчика

коричневый плюс (+),синий  GND,чёрный сигнальный

Например вариант конфигурации:

 X Home 11,он же концевик по x+. провод чёрный

Z Home 12,он же концевик по z+. провод чёрный

Y Home 13,он же концевик по y+. провод чёрный

x—,z—,y— к контакту 15,соединение трёх датчиков последовательное. Как на схеме выше.

Какие настройки сделать в мач3

Синий GND подключите к контакту GND на интерфейсной плате, но именно на колодке входных сигналов. Коричневый плюс (+) подключите к контакту +12-24 на интерфейсной плате.В меню настройка (mach4) (Config) выберите порты и контакты (ports and pins). Нажмите на кнопку входящие сигналы (input signals) и Вы попадёте в настройки концевых и баз. В первом столбике Enabled поставьте галочки напротив.

X Home
Z Home
Y Home
x++
z++
y++
x—
z—
y—

В столбике Pin Number укажите номера контактов к которым подключите датчики.

X Home 11
Z Home 12
Y Home 13
X Home 11
Z Home 12
Y Home 13
x++ 11
z++ 12
y++ 13
x— 15
z— 15
y— 15

В столбике Active Low поставьте галочки напротив выбранных контактов.

11,12,13 для Home x.y.z.
11,12,13 для x++.z++.y++
15 для x—,z—,y—

Посмотрите видео подключение концевых выключателей на канале Железкин и поймёте суть. Наверное сделаю видео mach4 настройка датчиков.

Евгений спасибо за комментарий, это поможет мне устранить недоработки, допущенные мной. Я к станку не подключал индуктивный датчик, но думаю что я не допустил ошибки.Указывайте на ошибки, я тоже не эксперт.

Задавайте вопросы и я буду устранять недоработки в видео и на сайте.

Скачать схему можно по ссылке с Яндекс диск

 

 

 

 

Большой портальный фрезерный станок с ЧПУ своими руками / Хабр Здравствуй дорогой читатель, в этой статье хочу поделиться своим опытом постройки фрезерного портального станка с числовым программным управлением.



Подобных историй в сети очень много, и я наверное мало кого удивлю, но может эта статья будет кому то полезна. Эта история началась в конце 2016 года, когда я со своим другом – партнером по разработке и производству испытательной техники аккумулировали некую денежную сумму. Дабы просто не прогулять деньги (дело то молодое), решили их вложить в дело, после чего пришла в голову идея изготовления станка с ЧПУ. У меня уже имелся опыт постройки и работы с подобного рода техникой, да и основной областью нашей деятельности является конструирование и металлообработка, что сопутствовало идее с постройкой станка ЧПУ.

Вот тогда то и началась движуха, которая длиться и по сей день…

Продолжилось все с изучения форумов посвященных ЧПУ тематике и выбора основной концепции конструкции станка. Предварительно определившись с обрабатываемыми материалами на будущем станке и его рабочим полем, появились первые бумажные эскизы, в последствии которые были перенесены в компьютер. В среде трех мерного моделирования КОМПАС 3D, станок визуализировался и стал обрастать более мелкими деталями и нюансами, которых оказалось больше чем хотелось бы, некоторые решаем и по сей день.


Одним из начальных решений было определение обрабатываемых на станке материалов и размеры рабочего поля станка. Что касается материалов, то решение было достаточно простым — это дерево, пластик, композитные материалы и цветные металлы (в основном дюраль). Так как у нас на производстве в основном металлообрабатывающие станки, то иногда требуется станок, который обрабатывал бы быстро по криволинейной траектории достаточно простые в обработке материалы, а это в последствии удешевило бы производство заказываемых деталей. Отталкиваясь от выбранных материалов, в основном поставляемых листовой фасовкой, со стандартными размерами 2,44х1,22 метра (ГОСТ 30427-96 для фанеры). Округлив эти размеры пришли к таким значениям: 2,5х1,5 метра, рабочее пространство определенно, за исключением высоты подъёма инструмента, это значение выбрали из соображения возможности установки тисков и предположили что заготовок толще 200мм у нас не будет. Так же учли тот момент, если потребуется обработать торец какой либо листовой детали длиной более 200мм, для этого инструмент выезжает за габариты основания станка, а сама деталь/заготовка крепится к торцевой стороне основания, тем самым может происходить обработка торца детали.

Конструкция станка представляет собой сборное рамное основание из 80-й профильной трубы со стенкой 4мм. По обе стороны длинны основания, закреплены профильные направляющие качения 25-го типоразмера, на которые установлен портал, выполненный в виде трех сваренных вместе профильных трубы того же типоразмера что и основание.

Станок четырех осевой и каждую ось приводит в движение шарико-винтовая передача. Две оси расположены параллельно по длинной стороне станка, спаренных программно и привязанных к Х координате. Соответственно оставшиеся две оси – это Y и Z координаты.


Почему именно остановились на сборной раме: изначально хотели делать чисто сварную конструкцию с закладными приваренными листами под фрезеровку, установку направляющих и опор ШВП, но для фрезеровки не нашли достаточно большого фрезерно-координатного станка. Пришлось рисовать сборную раму, чтобы была возможность обработать все детали своими силами с имеющимися на производстве металлообрабатывающими станками. Каждая деталь, которая подвергалась воздействию электродуговой сварки, была отожжена для снятия внутренних напряжений. Далее все сопрягаемые поверхности были выфрезерованны, и в последствии подгонки пришлось местами шабрить.

Залезая вперед, сразу хочу сказать, что сборка и изготовление рамы оказалась самым трудоемким и финансово затратным мероприятием в постройке станка. Первоначальная идея с цельно сваренной рамой по всем параметрам обходит сборную конструкцию, по нашему мнению. Хотя многие могут со мной и не согласиться.

Многие любители и не только, собирают такого рода и размера (и даже большего) станки у себя в мастерской или гараже, делая целиком сварную раму, но без последующего отжига и механической обработки за исключением сверления отверстий под крепление направляющих. Даже если повезло со сварщиком, и он сварил конструкцию с достаточно хорошей геометрией, то в последствии работы этого станка ввиду дребезга и вибраций, его геометрия будет уходить, меняться. Я конечно могу во многом ошибаться, но если кто то в курсе этого вопроса, то прошу поделиться знаниями в комментариях.

Сразу хочу оговориться, что станки из алюминиевого конструкционного профиля мы тут пока рассматривать не будем, это скорее вопрос другой статьи.

Продолжая сборку станка и обсуждая его на форумах, многие начали советовать сделать внутри рамы и снаружи диагональные стальные укосины для добавления еще большей жесткости. Мы этим советом пренебрегать не стали, но и добавлять укосины в конструкцию то же, так как рама получилась достаточно массивной (около 400 кг). А по завершению проекта, периметр обошъётся листовой сталью, что дополнительно свяжет конструкцию.

Давайте теперь перейдем к механическому вопросу этого проекта. Как было ранее сказано, движение осей станка осуществлялось через шарико–винтовую пару диаметром 25мм и шагом 10мм, вращение которой передается от шаговых двигателей с 86 и 57 фланцами. Изначально предполагали вращать непосредственно сам винт, дабы избавиться от лишних люфтов и дополнительных передач, но без них не обошлось в виду того, что при прямом соединении двигателя и винта, последний на больших скоростях начало бы разматывать, особенно когда портал находится в крайних положениях. Учитывая тот факт, что длина винтов по Х оси составила почти три метра, и для меньшего провисания был заложен винт диаметром 25мм, иначе хватило бы и 16 мм-го винта.

Этот нюанс обнаружился уже в процессе производства деталей, и пришлось быстрым темпом решать эту проблему путем изготовления вращающейся гайки, а не винта, что добавило в конструкцию дополнительный подшипниковый узел и ременную передачу. Такое решение так же позволило хорошо натянуть винт между опорами.

Конструкция вращающейся гайки довольно проста. Изначально подобрали два конических шарикоподшипника, которые зеркально одеваются на ШВП гайку, предварительно нарезав резьбу с ее конца, для фиксации обоймы подшипников на гайке. Подшипники вместе с гайкой вставали в корпус, в свою очередь вся конструкция крепится на торце стойки портала. Спереди ШВП гайки закрепили на винты переходную втулку, которую в последствии в собранном виде на оправке обточили для придания соостности. На неё одели шкив и поджали двумя контргайками.


Очевидно, что некоторые из вас, зададутся вопросом о том – «Почему бы не использовать в качестве механизма передающего движения зубчатую рейку?». Ответ достаточно прост: ШВП обеспечит точность позиционирования, большую двигающую силу, и соответственно меньший момент на валу двигателя (это то, что я с ходу вспомнил). Но есть и минусы – более низкая скорость перемещения и если брать винты нормального качества, то соответственно и цена.
Кстати, мы взяли ШВП винты и гайки фирмы TBI, достаточно бюджетный вариант, но и качество соответствующее, так как из взятых 9 метров винта, пришлось выкинуть 3 метра, ввиду несоответствия геометрических размеров, ни одна из гаек просто не накрутилась…


В качестве направляющих скольжения, были использованы профильные направляющие рельсового типоразмера 25мм, фирмы HIWIN. Под их установку были выфрезерованны установочные пазы для соблюдения параллельности между направляющими.

Опоры ШВП решили изготовить собственными силами, они получились двух видов: опоры под вращающиеся винты (Y и Z оси) и опоры под не вращающиеся винты (ось Х). Опоры под вращающиеся винты можно было купить, так как экономии ввиду собственного изготовления 4 деталей вышло мало. Другое дело с опорами под не вращающиеся винты – таких опор в продаже не найти.

Из сказанного ранее, ось Х приводится в движение вращающимися гайками и через ременную зубчатую передачу. Так же через ременную зубчатую передачу решили сделать и две другие оси Y и Z, это добавит большей мобильности в изменении передаваемого момента, добавит эстетики в виду установки двигателя не вдоль оси винта ШВП, а сбоку от него, не увеличивая габариты станка.

Теперь давайте плавно перейдем к электрической части, и начнем мы с приводов, в качестве них были выбраны шаговые двигатели, разумеется из соображений более низкой цены по сравнению с двигателями с обратной связью. На ось Х поставили два двигателя с 86-м фланцем, на оси Y и Z по двигателю с 56-м фланцем, только с разным максимальным моментом. Ниже постараюсь представить полный список покупных деталей…

Электрическая схема станка довольно проста, шаговые двигатели подключаются к драйверам, те в свою очередь подключается к интерфейсной плате, она же соединяется через параллельный порт LPT с персональным компьютером. Драйверов использовал 4 штуки, соответственно по одной штуке на каждый из двигателей. Все драйвера поставил одинаковые, для упрощения монтажа и подключения, с максимальным током 4А и напряжением 50В. В качестве интерфейсной платы для станков с ЧПУ использовал относительно бюджетный вариант, от отечественного производителя, как указанно на сайте лучший вариант. Но подтверждать или опровергать это не буду, плата проста в своем применении и самое главное, что она работает. В своих прошлых проектах применял платы от китайских производителей, они тоже работают, и по своей периферии мало отличаются, от использованной мной в этом проекте. Заметил во всех этих платах, один может и не существенный, но минус, на них можно всего лишь установить до 3-х концевых выключателя, но на каждую ось требуется как минимум по два таких выключателя. Или я просто не разобрался? Если у нас 3-х осевой станок, то соответственно нам надо установить концевые выключатели в нулевых координатах станка (это еще называется «домашнее положение») и в самых крайних координатах чтобы в случае сбоя или не хватки рабочего поля, та или иная ось просто не вышла из строя (попросту не сломалась). В моей схеме использовано: 3 концевых без контактных индуктивных датчика и аварийная кнопка «Е-СТОП» в виде грибка. Силовая часть запитана от двух импульсных источников питания на 48В. и 8А. Шпиндель с водяным охлаждением на 2,2кВт, соответственно включенный через частотный преобразователь. Обороты устанавливаются с персонального компьютера, так как частотный преобразователь подключен через интерфейсную плату. Обороты регулируются с изменения напряжения (0-10 вольт) на соответствующем выводе частотного преобразователя.

Все электрические компоненты, кроме двигателей, шпинделя и конечных выключателей были смонтированы в электрическом металлическом шкафу. Все управление станком производится от персонального компьютера, нашли старенький ПК на материнской плате форм фактора ATX. Лучше бы, чуть ужались и купили маленький mini-ITX со встроенным процессором и видеокартой. При не малых размерах электрического ящика, все компоненты с трудом разместились внутри, их пришлось располагать достаточно близко друг к другу. В низу ящика разместил три вентилятора принудительного охлаждения, так как воздух в нутрии ящика сильно нагревался. С фронтальной стороны прикрутили металлическую накладку, с отверстиями под кнопки включения питания и кнопки аварийного останова. Так же на этой накладке разместили панельку для включения ПК, ее я снял с корпуса старого мини компьютера, жаль, что он оказался не рабочим. С заднего торца ящика тоже закрепили накладку, в ней разместили отверстия под разъемы для подключения питания 220V, шаговых двигателей, шпинделя и VGA разъем.

Все провода от двигателей, шпинделя, а также водяные шланги его охлаждения проложили в гибкие кабель каналы гусеничного типа шириной 50мм.


Что касается программного обеспечение, то на ПК размещенного в электрическом ящике, установили Windows XP, а для управления станком применили одну из самых распространенных программ Mach4. Настройка программы осуществляется в соответствии с документацией на интерфейсную плату, там все описано достаточно понятно и в картинках. Почему именно Mach4, да все потому же, был опыт работы, про другие программы слышал, но их не рассматривал.

Технические характеристики:

Рабочее пространство, мм: 2700х1670х200;
Скорость перемещения осей, мм/мин: 3000;
Мощность шпинделя, кВт: 2,2;
Габариты, мм: 2800х2070х1570;
Вес, кг: 1430.

Список деталей:

Профильная труба 80х80 мм.
Полоса металлическая 10х80мм.
ШВП TBI 2510, 9 метров.
ШВП гайки TBI 2510, 4 шт.
Профильные направляющие HIWIN каретка HGh35-CA, 12 шт.
Рельс HGh35, 10 метров.
Шаговые двигатели:
NEMA34-8801: 3 шт.
NEMA 23_2430: 1шт.
Шкив BLA-25-5M-15-A-N14: 4 шт.
Шкив BLA-40-T5-20-A-N 19: 2 шт.
Шкив BLA-30-T5-20-A-N14: 2 шт.

Плата интерфейсная StepMaster v2.5: 1 шт.
Драйвер шагового двигателя DM542: 4шт. (Китай)
Импульсный источник питания 48В, 8А: 2шт. (Китай)
Частотный преобразователь на 2,2 кВт. (Китай)
Шпиндель на 2,2 кВт. (Китай)

Основные детали и компоненты вроде перечислил, если что-то не включил, то пишите в комментарии, добавлю.


Опыт работы на станке: В конечном итоге спустя почти полтора года, станок мы все же запустили. Сначала настроили точность позиционирования осей и их максимальную скорость. По словам более опытных коллег максимальная скорость в 3м/мин не высока и должна быть раза в три выше (для обработки дерева, фанеры и т.п.). При той скорости, которой мы достигли, портал и другие оси упершись в них руками (всем телом) почти не остановить — прёт как танк. Начали испытания с обработки фанеры, фреза идет как по маслу, вибрации станка нет, но и углублялись максимум на 10мм за один проход. Хотя после заглубляться стали на меньшую глубину.

По игравшись с деревом и пластиком, решили погрызть дюраль, тут я был в восторге, хоть и сломал сначала несколько фрез диаметром 2 мм, пока подбирал режимы резания. Дюраль режет очень уверенно, и получается достаточно чистый срез, по обработанной кромке.

Сталь пока обрабатывать не пробовали, но думаю, что как минимум гравировку станок потянет, а для фрезеровки шпиндель слабоват, жалко его убивать.

А в остальном станок отлично справляется с поставленными перед ним задачами.



Вывод, мнение о проделанной работе: Работа проделана не малая, мы в итоге изрядно приустали, так как ни кто не отменял основную работу. Да и денег вложено не мало, точную сумму не скажу, но это порядка 400т.р. Помимо затрат на комплектацию, основная часть расходов и большая часть сил, ушла на изготовление основания. Ух как мы с ним намаялись. А в остальном все делалось по мере поступления средств, времени и готовых деталей для продолжения сборки.

Станок получился вполне работоспособным, достаточно жестким, массивным и качественным. Поддерживающий хорошую точность позиционирования. При измерении квадрата из дюрали, размерами 40х40, точность получилась +- 0,05мм. Точность обработки более габаритных деталей не замеряли.

Что дальше…: По станку есть еще достаточно работы, в виде закрытия пыле — защитой направляющих и ШВП, обшивки станка по периметру и установки перекрытий в середине основания, которые будут образовывать 4 больших полки, под объем охлаждения шпинделя, хранения инструмента и оснастки. Одну из четвертей основания хотели оснастить четвертой осью. Также требуется на шпиндель установить циклон для отвода и сбора стружки о пыли, особенно если обрабатывать дерево или текстолит, от них пыль летит везде и осаждается повсюду.

Что касается дальнейшей судьбы станка то тут все не однозначно, так как у меня возник территориальный вопрос (я переехал в другой город), и станком заниматься сейчас почти некому. И вышеперечисленные планы не факт что сбудутся. Не кто этого два года назад и предположить не мог.

В случае продажи станка с его ценником все не понятно. Так как по себестоимости продавать откровенно жалко, а адекватная цена в голову пока не приходит.

На этом я пожалуй закончу свой рассказ. Если что-то я не осветил, то пишите мне, и я постараюсь дополнить текст. А в остальном многое показано в видео про изготовления станка на моем YouTube канале.

Строим самодельный ЧПУ фрезерный станок: пошаговая инструкция Фрезерный

Самодельный ЧПУ фрезерный станок: подробности процесса сборки, обзор нужных комплектов и наборов, личный опыт. Откроем секреты сборки станка своими руками.

Итак, вы решили построить самодельный ЧПУ фрезерный станок или, может быть, вы просто над этим только задумываетесь и не знаете с чего начать? Есть много преимуществ в наличии машины с ЧПУ. Домашние станки могут производить фрезерование и резать практически все материалы. Будь вы любитель или мастер, это открывает большие горизонты для творчества. Тот факт, что один из станков может оказаться в вашей мастерской, еще более соблазнителен.

Есть много причин, по которым люди хотят построить собственный фрезерный станок ЧПУ своими руками. Как правило, это происходит потому, что мы просто не можем позволить себе купить его в магазине или от производителя, и в этом нет ничего удивительного, ведь цена на них немаленькая. Или же вы можете быть похожи на меня и получать массу удовольствия от собственной работы и создания чего-то уникального. Вы можете просто заниматься этим для получения опыта в машиностроении.

Личный опыт

Когда я впервые начал разрабатывать, продумывать и делать первый ЧПУ фрезер своими руками, на создание проекта ушел примерно один день. Затем, когда начал покупать части, я провел небольшое исследование. И нашел кое-какие сведения в различных источниках и форумах, что привело к появлению новых вопросов:

  • Мне действительно нужны шарико-винтовые пары, или обычные шпильки и гайки будут работать вполне нормально?
  • Какой линейный подшипник лучше, и могу ли я его себе позволить?
  • Двигатель с какими параметрами мне нужен, и лучше использовать шаговик или сервопривод?
  • Деформируется ли материал корпуса слишком сильно при большом размере станка?
  • И т.п.

самодельный фрезерный станок с чпу

К счастью, на некоторые из вопросов я смог ответить благодаря своей инженерно-технической базе, оставшейся после учебы. Тем не менее, многие из проблем, с которыми я бы столкнулся, не могли быть рассчитаны. Мне просто нужен был кто-то с практическим опытом и информацией по этому вопросу.

Конечно, я получил много ответов на свои вопросы от разных людей, многие из которых противоречили друг другу. Тогда мне пришлось продолжить исследования, чтобы выяснить, какие ответы стоящие, а какие – мусор.

Каждый раз, когда у меня возникал вопрос, ответ на который я не знал, мне приходилось повторять тот же процесс. По большему счету это связано с тем, что у меня был ограниченный бюджет и хотелось взять лучшее из того, что можно купить за мои деньги. Такая же ситуация у многих людей, создающих самодельный фрезерный станок с ЧПУ.

самодельный чпу фрезер

Комплекты и наборы для сборки фрезеров с ЧПУ своими руками

Да, есть доступные комплекты станков для ручной сборки, но я еще не видел ни одного, который можно было бы подстроить под определенные нужды.

Также нет возможности вносить изменения в конструкцию и тип станка, а ведь их много, и откуда вы знаете, какой из них подойдет именно вам? Независимо от того, насколько хороша инструкция, если конструкция продумана плохо, то и конечная машина будет плохой.

Вот почему вам нужно быть осведомленным относительно того, что вы строите и понимать какую роль играет каждая деталь!

самодельный фрезерный чпу

Руководство

Это руководство нацелено на то, чтобы не дать вам совершить те же ошибки, на которые я потратил свое драгоценное время и деньги.

Мы рассмотрим все компоненты вплоть до болтов, глядя на преимущества и недостатки каждого типа каждой детали. Я расскажу о каждом аспекте проектирования и покажу, как создать ЧПУ фрезерный станок своими руками. Проведу вас через механику к программному обеспечению и всему промежуточному.

Имейте в виду, что самодельные чертежи станков с ЧПУ предлагают немного способов решения некоторых проблем. Это часто приводит к «неаккуратной» конструкции или неудовлетворительному функционированию машины. Вот почему я предлагаю вам сначала прочитать это руководство.

чпу фрезерный станок своими руками

ДАВАЙТЕ НАЧНЕМ

ШАГ 1: Ключевые конструктивные решения

В первую очередь необходимо рассмотреть следующие вопросы:

  1. Определение подходящей конструкции конкретно для вас (например, если будете делать станок по дереву своими руками).
  2. Требуемая площадь обработки.
  3. Доступность рабочего пространства.
  4. Материалы.
  5. Допуски.
  6. Методы конструирования.
  7. Доступные инструменты.
  8. Бюджет.

схема самодельного фрезерного станка с чпу

ШАГ 2: Основание и ось X-оси

Тут рассматриваются следующие вопросы:

  1. Проектирование и построение основной базы или основания оси X.
  2. Разбивка различных конструкций на элементы.
  3. Жестко закрепленные детали.
  4. Частично закрепленные детали и др.

фрезер чпу по дереву своими руками

ШАГ 3: Проектирование козловой оси Y

В этом пункте рассматриваются следующие вопросы:

  1. Проектирование и строительство портальной оси Y.
  2. Разбивка различных конструкций на элементы.
  3. Силы и моменты на портале и др.

собираем фрезерный чпу станок

ШАГ 4: Схема сборки оси Z

Здесь рассматриваются следующие вопросы:

  1. Проектирование и сборка сборки оси Z.
  2. Силы и моменты на оси Z.
  3. Линейные рельсы / направляющие и расстояние между подшипниками.
  4. Выбор кабель-канала.

чпу фрезер по металлу своими руками

ШАГ 5: Линейная система движения

В этом пункте рассматриваются следующие вопросы:

  1. Подробное изучение систем линейного движения.
  2. Выбор правильной системы конкретно для вашего станка.
  3. Проектирование и строительство собственных направляющих при малом бюджете.
  4. Линейный вал и втулки или рельсы и блоки?

Строим самодельный фрезерный ЧПУ станок

ШАГ 6: Компоненты механического привода

В этом пункте рассматриваются следующие аспекты:

  1. Детальный обзор частей привода.
  2. Выбор подходящих компонентов для вашего типа станка.
  3. Шаговые или серводвигатели.
  4. Винты и шарико-винтовые пары.
  5. Приводные гайки.
  6. Радиальные и упорные подшипники.
  7. Муфта и крепление двигателя.
  8. Прямой привод или редуктор.
  9. Стойки и шестерни.
  10. Калибровка винтов относительно двигателей.

фрезерный чпу своими руками

ШАГ 7: Выбор двигателей

В этом шаге необходимо рассмотреть:

  1. Подробный обзор двигателей с ЧПУ.
  2. Типы двигателей с ЧПУ.
  3. Как работают шаговые двигатели.
  4. Типы шаговых двигателей.
  5. Как работают сервомоторы.
  6. Типы серводвигателей.
  7. Стандарты NEMA.
  8. Выбор правильного типа двигателя для вашего проекта.
  9. Измерение параметров мотора.

фрезерный станок с чпу своими руками

ШАГ 8: Конструкция режущего стола

В этом шаге рассматриваются следующие вопросы:

  1. Проектирование и строительство собственных столов при малом бюджете.
  2. Перфорированный режущий слой.
  3. Вакуумный стол.
  4. Обзор конструкций режущего стола.
  5. Стол можно вырезать при помощи фрезерного станка с ЧПУ по дереву.

стол самодельного чпу станка

ШАГ 9: Параметры шпинделя

В этом шаге рассматриваются следующие вопросы:

  1. Обзор шпинделей с ЧПУ.
  2. Типы и функции.
  3. Ценообразование и затраты.
  4. Варианты монтажа и охлаждения.
  5. Системы охлаждения.
  6. Создание собственного шпинделя.
  7. Расчет нагрузки стружки и силы резания.
  8. Нахождение оптимальной скорости подачи.

фрезер чпу по дереву своими руками

ШАГ 10: Электроника

В этом пункте рассматриваются следующие вопросы:

  1. Панель управления.
  2. Электропроводка и предохранители.
  3. Кнопки и переключатели.
  4. Круги MPG и Jog.
  5. Источники питания.

схема подключения чпу контроллера

ШАГ 11: Параметры контроллера Программного Управления

В этом шаге рассматриваются следующие вопросы:

  1. Обзор контроллера ЧПУ.
  2. Выбор контроллера.
  3. Доступные опции.
  4. Системы с замкнутым контуром и разомкнутым контуром.
  5. Контроллеры по доступной цене.
  6. Создание собственного контроллера с нуля.

как собрать чпу фрезер своими руками

ШАГ 12. Выбор программного обеспечения

В этом пункте рассматриваются следующие вопросы:

  1. Обзор программного обеспечения, связанного с ЧПУ.
  2. Подбор программного обеспечения.
  3. Программное обеспечение CAM.
  4. Программное обеспечение САПР.
  5. Програмное обеспечение NC Controller.

——————————————————————————————————————————————————–

Станок ЧПУ своими руками, конструкции

В наше время у рукодельных людей всё чаще можно встретить новые станки, которые управляются не руками, как мы все привыкли, а компьютерной программной и компьютеризированной оснасткой. Такое новшество получило название ЧПУ (числовое программное управление).

Такая технология применяется во многих учреждениях, на больших производствах, а также в хозяйских мастерских. Автоматизированная система управления позволяет сэкономить очень много времени, а также повысить качество производимой продукции.

Автоматизированной системой управляет программа с компьютера. В эту систему входят асинхронные двигатели с векторным управлением, имеющие три оси движения электрического гравера: X, Z, Y. Ниже мы рассмотрим, какими бывают станки с автоматическим управлением и расчётами.

Общие понятия

Как правило, на всех станках с ЧПУ используется электрический гравер, либо фрезер, на котором можно менять насадки. Станок с числовым управлением применяется для придания тем или иным материалам элементов декора и не только. ЧПУ станки, в связи с продвижениями в компьютерном мире, должны иметь множество функций. К таким функциям относятся:

Фрезерование

Механический процесс обработки материала, в процессе которого, режущий элемент (насадка, в виде фрезы), производит вращательные движения на поверхности заготовки.

Гравировка

Заключается в нанесении того или оного изображения на поверхности заготовки. Для этого используют либо фрезы, либо штихель (стальной стержень с заострённым под углом одним концом).

Сверление

Механическая обработка материала резаньем, с помощью сверла, за счёт которого получаются отверстия разных диаметров и отверстия, имеющие много граней различных сечений и глубин.

Лазерная резка

Способ раскроя и резанья материала, при котором отсутствует механическое воздействие, сохраняется высокая точность заготовки, а также деформации, совершаемые данным способом, имеют минимальные деформации.

Графопостроитель

Производится высокоточное рисование сложнейших схем, чертежей, географических карт. Рисование производится за счёт пишущего блока, посредством специализированного пера.

Рисование и сверление печатных плат

Производство плат, а также рисование электропроводящих цепей на поверхности диэлектрической пластины. Также сверление маленьких отверстий под радиодетали.

Какие функции будет выполнять ваш будущий станок с программным управлением решать только вам. А дальше рассмотрим конструкцию станка ЧПУ.

Разновидность станков ЧПУ

Технологические признаки и возможности данных станков приравниваются к универсальным станкам. Однако, в современном мире, выделяют три разновидности станков ЧПУ:

Токарные

Предназначение таких станков заключается в создании деталей по типу тел вращения, которое заключается в обработке поверхности заготовки. Также производство внутренних и наружных резьб.

Фрезерные

Автоматизированная работа этих станков заключается в обработке плоскостей и пространств различных корпусных заготовок. Осуществляют фрезеровку плоскую, контурную и ступенчатую, под различными углами, а также с нескольких сторон. Производят сверление отверстий, нарезание резьб, развёртывание и растачивание заготовок.

Сверлильно — расточные

Выполняют рассверливание, сверление отверстий, растачивание и развёртывание, зенкерование, фрезеровка, нарезание резьб и многое другое.

Как мы видим, станки ЧПУ имеют большой ряд функционала, которые они совершают. Поэтому и приравниваются к универсальным станкам. Все они стоят очень дорого и купить какую-нибудь установку из вышеперечисленных просто невозможно, в силу финансовой недостаточности. И можно подумать, что придётся совершать все эти действия вручную, на протяжении всей жизни.

Можно не расстраиваться. Умелые руки страны, ещё с первого появления заводских станков ЧПУ, начали создавать самодельные прототипы, которые работают не хуже профессиональных.

Все комплектующие материалы для станочков ЧПУ можно заказать в интернете, где они находятся в свободном доступе и стоят довольно-таки недорого. Кстати, корпус автоматизированного станка можно изготовить своими руками, а за правильными размерами можно обратиться в интернет.

Совет: Перед выбором станка ЧПУ определитесь с тем, какой материал вы будете обрабатывать. Этот выбор будет иметь главное значение при сооружении станка, так как это напрямую зависит от размеров оборудования, а также затрат на него.

Конструкция

Конструкция станка ЧПУ полностью зависит от вашего выбора. Можно приобрести уже готовый стандартный набор всех необходимых деталей и просто собрать его в своём гараже или мастерской. Или заказывать всё оснащение отдельно.

Рассмотрим стандартный набор деталей на фото:

Конструкция

Фото: набор деталей.

  1. Непосредственно рабочая область, которая производится из фанеры — это столешница и боковой каркас.
  2. Направляющие элементы.
  3. Держатели направляющих.
  4. Линейные подшипники и втулки скольжения.
  5. Опорные подшипники.
  6. Ходовые винты.
  7. Контролёр шаговых двигателей.
  8. Блок питания контролёра.
  9. Электрический гравер или фрезер.
  10. Муфта, соединяющая вал ходового винта с валом шаговых двигателей.
  11. Шаговые двигатели.
  12. Ходовая гайка.

Используя данный перечень деталей, вы смело сможете создать свой собственный фрезерный по дереву с ЧПУ станок с автоматизированной работой. Когда вы соберёте всю конструкцию, можете смело приступать к работе.

""

Фото: конструкция.

Принцип работы

Пожалуй, самым главным элементом на этом станке является фрезер, гравер или шпиндель. Это зависит от вашего выбора. Если у вас будет стоять шпиндель, то хвостик фрезы, который имеет цангу для крепления, будет плотно крепиться в цанговый патрон.

Сам патрон непосредственно закреплён на шпиндельном вале. Режущая часть фрезы подбирается исходя из выбранного материала. Электрический мотор, который располагается на движущейся каретке, вращает шпиндель с фрезой, что позволяет обрабатывать поверхность материала. Управление шаговыми двигателями происходит от контролера, на который подаются команды с компьютерной программы.

Электроника станка работает непосредственно на обеспечении компьютерного обеспечения, которое должно поставляться с заказываемой электроникой. Программа передаёт команды, в виде G — кодов на контролер. Тем самым эти коды сохраняются в оперативной памяти контролера.

После выбора на станке программы обработки (чистовой, черновой, трёхмерной), команды распределяются на шаговые двигатели, после чего происходит обработка поверхности материала.

Совет: Перед началом работы, необходимо протестировать станок, специализированной программой и пропустить пробную деталь, чтобы убедиться в правильности работы ЧПУ.

Сборка

Сборка станка своими руками не займёт у вас слишком много времени. Тем более что в интернете сейчас можно скачать очень много различных схем и чертежей. Если вы купили набор деталей для самодельного станка, то его сборка будет очень быстрой.

Итак, разберём один из чертежей собственно ручного станка.

Чертёж

Чертёж самодельного станка ЧПУ.

Как правило, первым делом из фанеры, толщиной 10-11 миллиметров, изготавливается каркас. Столешница, боковые стенки и подвижный портал для установки фрезера или шпинделя, изготавливаются только из фанерного материала. Столешница делается подвижной, используются мебельные направляющие соответствующих размеров.

В итоге должен получиться вот такой вот каркас. После того, как каркасная конструкция готова, в дело вступает дрель и специальные коронки, с помощью которых можно сделать отверстия в фанере.

Каркас ЧПУ

Каркас будущего станка ЧПУ.

В готовом каркасе необходимо подготовить все отверстия, чтобы установить в них подшипники, направляющие болты. После этой установки, можно производить установку всех крепёжных элементов, электрических установок и т.д.

После того, как сборка завершена, важным этапом становится настройка программного обеспечения станка и компьютерной программы. При настройке программы проверяется работа станка на правильность заданных размеров. Если всё готово, можно приступать к долгожданным работам.

Совет: Перед началом работы необходимо проверить правильность крепления заготовочного материала и надёжность крепления рабочей насадки. Также убедиться в том, что выбранный материал соответствует изготовленному станку.

Наладка оборудования

Наладка станка ЧПУ производится непосредственно с рабочего компьютера, на котором установлена программа для работы со станком. Именно в программу загружаются необходимые чертежи, графики, рисунки. Которые в последовательности преобразуются программой в G — коды, необходимые для управления станком.

Когда всё загружено, совершаются пробные действия, относительно выбранного материала. Именно при этих действиях совершается проверка всех необходимых предустановленных размеров.

Совет: Только после тщательной проверки работоспособности станка можно приступать к полноценной работе.

Техника безопасности

Правила и техника безопасности при работе с данным станком ничем не отличается от работы на всех остальных станках. Ниже будут представлены самые основные:

  • Перед работой проверить исправность станка.
  • Одежда должна быть заправлена должным образом, чтобы нигде ничего не торчало и не могло попасть в рабочую зону станка.
  • Должен быть одет головной убор, который будет прижимать ваши волосы.
  • Около станка должен быть резиновый коврик или невысокая деревянная обрешётка, которые защитят от утечки электричества.
  • Доступ к станку детям должен быть категорически запрещён.
  • Перед работой со станком проверить все крепёжные элементы на их прочность.

Совет: К работе на станке необходимо подходить с трезвой головой и пониманием, что при неправильной работе вы можете нанести себе непоправимый вред.

С полными требованиями к безопасности при работе со станком вы сможете найти во всемирной паутине, т.е. в интернете и ознакомиться с ними.

Видео обзоры

Обзор сборки станка самодельного с ЧПУ

Видео обзор простого станка с ЧПУ

Обзор возможностей самодельного ЧПУ станка

Обзор шаговых двигателей

Обзор видео многоканального драйвера для шаговых двигателей

ЧПУ станок своими руками: чертежи и схемы

Считается, что ЧПУ станок сложен в изготовлении, кроме технических составляющих, он имеет электронное устройство, установить которое в состоянии только специалист. Вопреки этому мнению, возможность собрать ЧПУ станок своими руками велика, если заранее подготовить необходимые чертежи, схемы и комплектующие материалы.

Проведение подготовительных работ

При проектировании ЧПУ своими руками в домашних условиях необходимо определиться, по какой схеме он будет работать.

Часто в качестве основы будущего аппарата берут использованный сверлильный станок.

Сверлильный станок

Сверлильный станок может быть использован как основа для ЧПУ станка

В нем потребуется замена рабочей головки на фрезерную.

Наибольшее затруднение при проектировании ЧПУ станка своими руками вызывает создание устройства, при помощи которого рабочий инструмент перемещается в трех плоскостях.

Частично решить задачу помогут каретки, взятые из обычного принтера. Инструмент сможет двигаться в обеих плоскостях. Выбирать каретки для ЧПУ станка лучше из того принтера, который имеет большие габариты.

Подобная схема позволяет в дальнейшем подключать к станку управление. Минус в том, что фрезерный станок с ЧПУ работает только с деревянными, пластиковыми изделиями, изделиями из тонкого металла. Это связано с тем, что каретки принтера не имеют нужной жесткости.

Внимание необходимо уделить двигателю будущего агрегата. Его роль сводится к передвижению рабочего инструмента. От этого зависит качество работы и возможность выполнения фрезерных операций.

Удачным вариантом для самодельного ЧПУ фрезера является шаговый двигатель.

Шаговый двигатель

Шаговый двигатель

Альтернативой такому двигателю является электромотор, предварительно усовершенствованный и подогнанный под стандарты аппарата.

Любой фрезерный станок по дереву, использующий шаговый двигатель, позволяет не использовать винтовую передачу, это никак не влияет на возможности такого ЧПУ по дереву. Рекомендуется использовать для фрезерования на таком агрегате ремни зубчатого типа. В отличие от стандартных ремней они не проскальзывают на шкивах.

Требуется правильно спроектировать фрезер будущего станка, для этого понадобятся подробные чертежи.

Материалы и инструменты, необходимые для сборки

Общий набор материалов для станка с ЧПУ включает в себя:

  • шпиндель;
  • кабель длиной 14–19 м;
  • фрезы, обрабатывающие дерево;
  • патрон для фрезы;
  • преобразователь частот, имеющий одинаковую мощность со шпинделем;
  • подшипники;
  • плата для управления;
  • водяная помпа;
  • охлаждающий шланг;
  • три двигателя шагового типа для трех осей перемещения конструкции;
  • болты;
  • защитный кабель;
  • шурупы;
  • фанера, ДСП, плита из дерева или металлическая конструкция на выбор в качестве корпуса будущего аппарата;
  • муфта мягкого типа.
Муфта мягкого типа

Муфта мягкого типа

Рекомендуется при изготовлении устройства с ЧПУ по дереву своими руками использовать шпиндель с охлаждающей жидкостью. Это позволит не отключать его каждые 10 минут для остужения. Для работы подойдет самодельный станок с ЧПУ, мощность его составляет не меньше 1,2 кВт. Оптимальным вариантом станет устройство мощностью 2 кВт.

Набор инструментов, требующийся для изготовления агрегата, включает в себя:

  • молотки;
  • изоленту;
  • сборочные ключи;
  • клей;
  • отвертку;
  • паяльник, герметик;
  • болгарку, ее часто заменяют на ножовку;
  • пассатижи, агрегат для сварки, токарный станок, ножницы, плоскогубцы.

Простой ЧПУ станок своими руками

Порядок действий при сборке станка

Самодельный ЧПУ фрезерный станок собирается по схеме:

  • изготовление чертежей и схем устройства с указанием системы электрооборудования;
  • покупка материалов, содержащих в себе будущий самодельный ЧПУ станок;
  • установка станины, на ней будут крепиться двигатели, рабочая поверхность, портал, шпиндель;
  • установка портала;
  • установка оси Z;
  • фиксация рабочей поверхности;
  • установка шпинделя;
  • установка водоохлаждающей системы;
  • установка электросистемы;
  • подключение платы, с ее помощью осуществляется управление аппаратом;
  • настройка программного обеспечения;
  • стартовый пуск агрегата.

В качестве основы для станины берется материал, сделанный из алюминия.

Для станины берется материал, сделанный из алюминия.

Станину нужно делать с алюминия

Профили из этого металла выбирают с сечением 41*81 мм с толщиной пластин 11 мм. Сам корпус станины соединяют при помощи алюминиевых уголков.

От установки портала будет зависеть, какой толщины изделие сможет обработать станок ЧПУ. Особенно если он, сделанный своими руками. Чем выше портал, тем более толстое изделие он сможет обработать. Важно не установить его слишком высоко, так как такая конструкция будет менее прочной и надежной. Портал движется по оси Х и несет шпиндель на себе.

В качестве материала для рабочей поверхности агрегата применяют профиль из алюминия. Часто берут профиль, имеющий Т-пазы. Для домашнего использования принимают фанеру, ее толщина составляет не менее 17 мм.

После того как каркас устройства будет готов, приступают к установке шпинделя. Важно устанавливать его вертикально, так как в дальнейшем потребуется его регулировка, это проводится для фиксации требуемого угла.

Для установки электросистемы необходимо присутствие таких компонентов:

  • блок питания;
  • компьютер;
  • шаговый двигатель;
  • плата;
  • кнопка остановки;
  • драйверы двигателя.
Драйвер шагового двигателя

Драйвер шагового двигателя

Для работы системы требуется порт LPT. Помимо этого, устанавливается программа, управляющая работой аппарата и позволяющая отвечать на вопрос, как сделать ту или иную операцию. Управление подключается через двигатели к самому фрезерному станку.

После того как электроника будет установлена на станок, потребуется загрузка драйверов и необходимых для работы программ.

Распространенные ошибки при сборке

Часто встречающейся ошибкой при сборке станка с числовым программным управлением является отсутствие чертежа, но по нему и проводится сборка. В результате этого возникают упущения в проектировании и установке конструкций аппарата.

Часто неправильная работа станка связана с неверно подобранными частотником и шпинделем.

Шпиндель станка

Для корректной работы станка необходимо правильно подбирать шпиндель

Во многих случаях шаговые двигатели не получают должного питания, поэтому для них необходимо выбирать специальный отдельный блок питания.

Необходимо учитывать то, что правильно установленная электросхема и программное обеспечение позволяет выполнять на устройстве многочисленные операции разного уровня сложности. Станок ЧПУ своими руками выполнить под силу мастеру среднего звена, конструкция агрегата имеет ряд особенностей, но с помощью чертежей собрать детали несложно.

С ЧПУ, своими руками составленным, работать легко, необходимо изучить информативную базу, провести ряд тренировочных работ и проанализировать состояние агрегата и детали. Не стоит торопиться, дергать движущиеся детали или вскрывать ЧПУ.

Видео по теме: ЧПУ станок своими руками

Что такое ЧПУ и станки с ЧПУ? [2020 Easy Guide]

Краткая история ЧПУ

Первые коммерческие станки с ЧПУ были построены в 1950-х годах и работали на перфоленте. Хотя концепция сразу доказала, что она может сэкономить затраты, она была настолько отличной, что очень медленно завоевывала популярность у производителей.

Чтобы способствовать более быстрому внедрению, армия США купила 120 станков с ЧПУ и одолжила их различным производителям, чтобы они могли лучше познакомиться с идеей числового управления.К концу 50-х годов NC начал завоевывать популярность, хотя ряд проблем все еще оставался.

Например, g-код, почти универсальный язык ЧПУ, который мы имеем сегодня, не существует. Каждый производитель выдвигал свой собственный язык для определения числового управления или программ обработки деталей (программ, которые станки будут выполнять для создания детали).

1959 Станок с ЧПУ: Милуоки-Матик-II был первым станком с устройством смены инструмента…

В течение 1960-х годов ряд ключевых разработок быстро развился с помощью ЧПУ:

— Стандартный язык G-кода для программ обработки деталей. Происхождение g-кода восходит к MIT, примерно в 1958 году, когда он использовался в Лаборатории сервомеханизмов MIT.Альянс электронной промышленности стандартизировал g-код в начале 1960-х годов.

— САПР стал самостоятельным и начал быстро заменять бумажные чертежи и чертежников в 60-х годах. К 1970 году САПР стала достаточно крупной отраслью, в которой были такие игроки, как Intergraph и Computervision, с которыми я консультировался еще в студенческие годы.

— Мини-компьютеры, такие как DEC PDP-8 и Data General Nova, стали доступны в 60-х годах и сделали станки с ЧПУ более дешевыми и мощными.

К 1970 году экономика большинства западных стран замедлилась, а расходы на занятость росли.С 60-х годов, предоставив прочную технологическую базу, которая была необходима, ЧПУ взлетел и начал неуклонно вытеснять старые технологии, такие как гидравлические трассеры и ручная обработка.

американских компаний в основном начали революцию с ЧПУ, но они были чрезмерно сосредоточены на высоком уровне. Немцы первыми увидели возможность снизить цены на ЧПУ, и к 1979 году немцы продавали больше ЧПУ, чем американские компании. Японцы повторили ту же формулу в еще более успешной степени и отняли лидерство у немцев всего год спустя, к 1980 году.В 1971 году все 10 крупнейших компаний с ЧПУ были американскими, но к 1987 году остался только Цинциннати Милакрон, и они заняли 8 место.

В последнее время микропроцессорная технология сделала управление ЧПУ еще дешевле, что привело к появлению ЧПУ для хобби и персонального рынка ЧПУ.

Доступное оборудование с ЧПУ также проложило путь к использованию ЧПУ в прототипировании наряду с 3D-печатью. Ранее использование ЧПУ ограничивалось прежде всего производственными цехами.

Проект Enhanced Machine Controller, или EMC2, был проектом по внедрению контроллера ЧПУ с открытым исходным кодом, который был запущен NIST, Национальным институтом стандартов и технологий в качестве демонстрации.Некоторое время в 2000 году проект был передан в общественное достояние и Open Source, а EMC2 появился немного позже, в 2003 году.

Mach4 был разработан основателем Artsoft Арт Фенерти как ответвление ранних версий EMC для работы на Windows вместо Linux, что делает его еще более доступным для персонального рынка ЧПУ. ArtSoft, компания ArtSoft, была основана в 2001 году. Появление Mach4 впервые сделало ЧПУ доступным вне промышленных цехов.

Как программы EMC2 (теперь называемые LinuxCNC), так и программы Mach4 CNC сегодня живы и процветают, как и многие другие технологии ЧПУ.

Мы прошли долгий путь со времен старых числовых контрольных дней!

Easy Guide 2020 [+ Учебные пособия по обработке]

Изучение основ ЧПУ: общая картина и концепции

cnc basics tutorial beginners learn

Лично я всегда начинаю с общей картины и основных понятий. Они являются основой для более глубокого понимания и дают вам очень важный обзор того, как большие кусочки сочетаются в головоломке. Разобравшись с основами ЧПУ, вы можете углубиться и научиться работать с чпу кусками размером с укус.

Этот общий вид будет выглядеть вполне нормально, если вы планируете зарабатывать на жизнь в мире производства с ЧПУ.Но, для многих любителей, они хотят прыгнуть и купить или построить станок с ЧПУ прямо сейчас.

Вот в чем дело — сначала изучите основы ЧПУ, прежде чем пытаться приобрести станок. Понимание этих основ ЧПУ поможет вам понять характеристики и документацию вашего потенциального нового станка. Они помогут вам понять, о чем говорят люди на форумах (отличные учебные ресурсы!). Это может потенциально сэкономить вам деньги и разочарование.

Вот общая картина, которая поможет вам обойти эти базовые концепции ЧПУ fast .

Изображение большего размера: пошаговое руководство по изготовлению деталей с ЧПУ

Существует 9 шагов для изготовления детали с ЧПУ, описанной ниже. Нажмите на название любого, чтобы развернуть и посмотреть детали для каждого шага.

1

Поставка: создание идеализированной модели CAD детали

design part cad software

Разработайте деталь в программном обеспечении САПР на основе эскизов, фотографий, спецификаций и любых других идей, которые у нас есть для детали. Часть «Идеализирована», потому что мы еще не сделали серьезную домашнюю работу, чтобы оценить, насколько легко будет изготовить деталь.Опытные дизайнеры на этом этапе избегают многих производственных проблем, а новички обнаружат, что им нужно немного изменить, чтобы облегчить изготовление детали.

2

Поставляется: готовая модель САПР + ведомость настройки. Схема, по которой изготавливается деталь

design part cad software

80% стоимости изготовления изделия определяется во время проектирования…

На этом этапе мы оценим, насколько легко изготовить нашу деталь, изменим конструкцию по желанию, чтобы упростить ее изготовление, и составим план изготовления детали, которую мы запишем в нашем Схеме настройки. ,

3

Поставляется: Программа обработки деталей G-Code + Готовый лист настройки

design part cad software

Использование MeshCAM для создания программы обработки деталей G-Code…

Вооружившись моделью САПР и нашим Планом установки, мы готовы погрузиться в CAM, Разговорное программирование, Ручное кодирование или любой другой метод, который мы хотим использовать для создания программы обработки деталей G-Code.

4

Поставка: станок с ЧПУ настроен для выполнения детали

design part cad software

Установка

— это то, где мы получаем станки с ЧПУ, готовые к запуску детали.Мы должны убедиться, что в устройстве смены инструмента есть все нужные инструменты, загружена правильная программа gcode и, в общем, машина готова к работе.

5

Поставка: Программа проверена, готов к запуску детали

cnc program proofing and simulation

Проверка программы — последний шаг перед тем, как мы действительно сделаем реальные сокращения. Целью проверки является проверка правильности программы и правильности настройки станка с ЧПУ, чтобы не было проблем при первом запуске g-кода.Проверка может быть выполнена либо с помощью Cutting Air (простой, но очень трудоемкий), либо с помощью симулятора ЧПУ (также называемого симулятором G-кода).

Щелкните заголовок раздела, чтобы развернуть его и посмотреть, что лучше.

6

Поставка: детали с ЧПУ

cnc program proofing and simulation

После всей подготовки мы наконец-то готовы изготовить несколько стружек и станков с ЧПУ.

7

Поставка: проверенные детали, готовые к чистовой обработке

cnc program proofing and simulation

Закончив обработку на ЧПУ, пришло время для контроля качества.Мы проверим детали, чтобы убедиться, что они соответствуют требуемым спецификациям, допускам и поверхностной отделке.

8

Поставка: часть готова!

cnc program proofing and simulation

Наш последний шаг включает в себя отделку деталей. Это необязательно, поскольку наши запчасти могут не требовать этого. Но существует множество форм отделки, от краски до анодирования, дробеструйной обработки и многого другого.

,Скачать бесплатно

Diagram cnc machine для Windows

11 MeeSoft 7443 Freeware

Diagram Designer — это графический редактор для редактирования графических данных.

94 Корпорация МетаПродукты 4 Freeware

Net Activity Diagram (NAD) — это приложение для Windows 9x / NT / 2000 / ME / XP, которое контролирует ваш компьютер Int….

1 Effexis Software 66 условно-бесплатная

Создает потоки вызовов и диаграммы последовательности UML из текстовых входов.

96 Анинда Чаттерджи

Это программное обеспечение подходит для начинающих и опытных астрономов.

59 ЧПУ Простой 29 Freeware

Бесплатная утилита для создания gcode, системы параметров.

9 Predator Software, Inc. 189 Freeware

Он моделирует и проверяет работу ваших станков с ЧПУ на вашем ПК.

99 ЧПУ-симулятор 2255 Freeware

CncSimulator является «программным обеспечением возврата» с полной бесплатной лицензией.

3 GoCNC 26 Freeware

Может использоваться для управления любым станком с ЧПУ, который имеет параллельный порт.

1 RoutOut ЧПУ 6 условно-бесплатная

Это позволит вам контролировать ваше новое дополнение к мастерской.

10 CNCSimple.ком 87 Freeware

Чертежи могут быть сохранены в формате DXF или в собственном формате XML, удобочитаемом для человека.

36 Нанкин Свансофт 4708 демонстрация

Swansoft CNC Simulator — это приложение для симуляции систем 3D станков с ЧПУ в режиме реального времени.

4 Денфорд Лимитед 114 демонстрация

Denford VR CNC Milling — это мощная программа управления станком с ЧПУ.

9 SourceRabbit 283 Открытый источник

Программное обеспечение для управления ЧПУ для каждого GRBL-совместимого станка с ЧПУ.

Northwood Designs, Inc. 284 условно-бесплатная

MCU работает с траекториями, используя те же файлы, которые вы отправляете на ваш станок с ЧПУ.

7 Cadem Technologies Pvt.Ltd. 109 Freeware

NCnet Lite — это бесплатный DNC для одного станка с ЧПУ, который поддерживает одну передачу DNC.

6 Гиббс и партнеры 325 коммерческий

GibbsCAM — это компьютерная система CAM для программирования станков с ЧПУ.

ASD Soft 281 условно-бесплатная

Создание вложенных чертежей DXF для вашего станка с ЧПУ быстро.

3 MR Soft 408 условно-бесплатная

Создание траекторий ISO и G-кода для станков с ЧПУ из файлов JPG и BMP.

1 Cadem Technologies Pvt. Ltd. 43 Freeware

NCnet Lite — это бесплатный DNC для 1 станка с ЧПУ — абсолютно бесплатно, без привязок.

Дамиан Вробель 279 Открытый источник

Преобразование 2D-чертежей в GCode, совместимый с станками с ЧПУ.

,

Cnc machine файлы файлов скачать бесплатно для Windows

11 MeeSoft 7443 Freeware

Diagram Designer — это графический редактор для редактирования графических данных.

94 Корпорация МетаПродукты 4 Freeware

Net Activity Diagram (NAD) — это приложение для Windows 9x / NT / 2000 / ME / XP, которое контролирует ваш компьютер Int….

1 Effexis Software 66 условно-бесплатная

Создает потоки вызовов и диаграммы последовательности UML из текстовых входов.

96 Анинда Чаттерджи

Это программное обеспечение подходит для начинающих и опытных астрономов.

59 ЧПУ Простой 29 Freeware

Бесплатная утилита для создания gcode, системы параметров.

9 Predator Software, Inc. 189 Freeware

Он моделирует и проверяет работу ваших станков с ЧПУ на вашем ПК.

99 ЧПУ-симулятор 2255 Freeware

CncSimulator является «программным обеспечением возврата» с полной бесплатной лицензией.

3 GoCNC 26 Freeware

Может использоваться для управления любым станком с ЧПУ, который имеет параллельный порт.

1 RoutOut ЧПУ 6 условно-бесплатная

Это позволит вам контролировать ваше новое дополнение к мастерской.

10 CNCSimple.ком 87 Freeware

Чертежи могут быть сохранены в формате DXF или в собственном формате XML, удобочитаемом для человека.

36 Нанкин Свансофт 4708 демонстрация

Swansoft CNC Simulator — это приложение для симуляции систем 3D станков с ЧПУ в режиме реального времени.

4 Денфорд Лимитед 114 демонстрация

Denford VR CNC Milling — это мощная программа управления станком с ЧПУ.

9 SourceRabbit 283 Открытый источник

Программное обеспечение для управления ЧПУ для каждого GRBL-совместимого станка с ЧПУ.

Northwood Designs, Inc. 284 условно-бесплатная

MCU работает с траекториями, используя те же файлы, которые вы отправляете на ваш станок с ЧПУ.

7 Cadem Technologies Pvt.Ltd. 109 Freeware

NCnet Lite — это бесплатный DNC для одного станка с ЧПУ, который поддерживает одну передачу DNC.

6 Гиббс и партнеры 325 коммерческий

GibbsCAM — это компьютерная система CAM для программирования станков с ЧПУ.

ASD Soft 281 условно-бесплатная

Создание вложенных чертежей DXF для вашего станка с ЧПУ быстро.

3 MR Soft 408 условно-бесплатная

Создание траекторий ISO и G-кода для станков с ЧПУ из файлов JPG и BMP.

1 Cadem Technologies Pvt. Ltd. 43 Freeware

NCnet Lite — это бесплатный DNC для 1 станка с ЧПУ — абсолютно бесплатно, без привязок.

Дамиан Вробель 279 Открытый источник

Преобразование 2D-чертежей в GCode, совместимый с станками с ЧПУ.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *