Как работают импульсные стабилизаторы напряжения и тока. Какие бывают схемы импульсных преобразователей. В чем преимущества импульсных стабилизаторов перед линейными. Как выбрать подходящий импульсный стабилизатор.
Принцип работы импульсных стабилизаторов напряжения
Импульсные стабилизаторы напряжения получили широкое распространение благодаря высокому КПД, достигающему 85-95%. Их работа основана на быстром переключении силового ключа, что позволяет эффективно передавать энергию от входа к выходу.
Основными элементами импульсного стабилизатора являются:
- Силовой ключ (транзистор)
- Индуктивность (дроссель)
- Диод
- Конденсатор
- Схема управления
Принцип действия заключается в накоплении энергии в магнитном поле дросселя при открытом ключе и передаче ее в нагрузку при закрытом. За счет изменения скважности импульсов управления поддерживается стабильное выходное напряжение.
Основные типы импульсных преобразователей
Выделяют следующие базовые схемы импульсных преобразователей:

Понижающий преобразователь (buck)
Выходное напряжение ниже входного. Ток в дросселе всегда течет в одном направлении. Применяется для питания низковольтных устройств.
Повышающий преобразователь (boost)
Выходное напряжение выше входного. Дроссель постоянно подключен к источнику. Используется для получения высоких напряжений.
Инвертирующий преобразователь (buck-boost)
Позволяет получить напряжение противоположной полярности. Выходное напряжение может быть как выше, так и ниже входного по модулю.
Преимущества импульсных стабилизаторов
По сравнению с линейными стабилизаторами импульсные имеют ряд важных достоинств:
- Высокий КПД (до 95%)
- Малые габариты и вес
- Возможность как понижения, так и повышения напряжения
- Широкий диапазон входных напряжений
- Низкое тепловыделение
Это делает их незаменимыми в портативных устройствах, системах телекоммуникаций, промышленной электронике и многих других областях.
Схемы импульсных стабилизаторов тока
Импульсные стабилизаторы тока по принципу действия аналогичны стабилизаторам напряжения. Основное отличие заключается в наличии датчика тока в цепи нагрузки и управлении по току вместо напряжения.

Типовая схема стабилизатора тока включает:
- Силовой ключ на MOSFET-транзисторе
- Датчик тока (шунт)
- Компаратор для сравнения с опорным значением
- ШИМ-контроллер
- Выходной LC-фильтр
Такие стабилизаторы широко применяются для питания мощных светодиодов, лазерных диодов, заряда аккумуляторов.
Выбор импульсного стабилизатора напряжения
При выборе импульсного стабилизатора следует учитывать следующие параметры:
- Диапазон входных и выходных напряжений
- Максимальный выходной ток
- КПД
- Уровень пульсаций
- Частота преобразования
- Температурный диапазон
- Наличие защит
Для большинства применений оптимальным выбором будут готовые модули на специализированных микросхемах. При необходимости получения высоких мощностей или специфических параметров может потребоваться разработка собственной схемы.
Области применения импульсных стабилизаторов
Благодаря своим преимуществам импульсные стабилизаторы нашли широкое применение в различных областях:
- Источники питания компьютеров и бытовой электроники
- Зарядные устройства для мобильных гаджетов
- Драйверы светодиодов
- Системы электропитания промышленного оборудования
- Источники бесперебойного питания
- Преобразователи для альтернативных источников энергии
Развитие элементной базы и схемотехники позволяет создавать все более эффективные и компактные импульсные преобразователи, расширяя сферы их применения.

Особенности проектирования импульсных стабилизаторов
При разработке импульсных стабилизаторов необходимо учитывать ряд важных аспектов:
- Выбор топологии схемы в зависимости от требований
- Расчет параметров силовых компонентов (дросселя, конденсаторов)
- Проектирование цепей обратной связи и компенсации
- Обеспечение электромагнитной совместимости
- Тепловой расчет и выбор систем охлаждения
- Реализация защитных функций
Современные САПР позволяют автоматизировать многие этапы проектирования и моделирования импульсных преобразователей, что существенно упрощает разработку.
7 схем импульсных стабилизаторов напряжения
Благодаря высокому КПД импульсные стабилизаторы напряжения получают в последнее время все более широкое распространение, хотя они, как правило, сложнее и содержат большее число элементов. Поскольку в тепловую энергию преобразуется лишь малая доля подводимой к импульсному стабилизатору энергии, его выходные транзисторы меньше нагреваются, следовательно, за счет снижения площади теплоотводов снижаются масса и размеры устройства.
Ощутимым недостатком импульсных стабилизаторов является наличие на выходе высокочастотных пульсаций, что заметно сужает область их практического использования чаще всего импульсные стабилизаторы используют для питания устройств на цифровых микросхемах.
Стабилизатор с выходным напряжением, меньшим входного, можно собрать на трех транзисторах (рис. 6.1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (ѴТЗ) является усилителем сигнала рассогласования.
Рис. 6. 1. Схема импульсного стабилизатора напряжения с КПД 84%.
Устройство работает в автоколебательном режиме. Напряжение положительной обратной связи с коллектора составного транзистора ѴТ1 через конденсатор С2 поступает в цепь базы транзистора ѴТ2.
Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѴТЗ. Его эмиттер подключен к источнику опорного напряжения стабилитрону VD2, а база к делителю выходного напряжения R5 R7.
В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением скважности работы ключа. Включением/выключением транзистора VT1 по сигналу транзистора ѴТЗ управляет транзистор ѴТ2. В моменты, когда транзистор ѴТ1 открыт, в дросселе L1, благодаря протеканию тока нагрузки, запасается электромагнитная энергия. После закрывания транзистора запасенная энергия через диод VD1 отдается в нагрузку. Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, СЗ.
Характеристики стабилизатора целиком определяются свойствами транзистора ѴТ1 и диода VD1, быстродействие которых должно быть максимальным. При входном напряжении 24 В, выходном 15 В и токе нагрузки 1 А измеренное значение КПД было равно 84%.
Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100. Его индуктивность при токе подмагничивания 1 А около 1 мГн.
Схема простого импульсного стабилизатора показана на рис. 6.2. Дроссели L1 и L2 намотаны на пластмассовых каркасах, помещенных в броневые магнитопроводы Б22 из феррита М2000НМ. Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитопровода вложена прокладка толщиной 0,8 мм. Активное сопротивление обмотки дросселя L1 27 мОм. Дроссель L2 имеет 9 витков жгута из 10 проводов ПЭВ-1 0,35. Зазор между его чашками 0,2 мм, активное сопротивление обмотки 13 мОм. Прокладки можно изготовить из жесткого теплостойкого материала текстолита, слюды, электрокартона. Винт, скрепляющий чашки магнитопровода, должен быть из немагнитного материала.
Рис. 6.2. Схема простого ключевого стабилизатора напряжения с КПД 60%.
Для налаживания стабилизатора к его выходу подключают нагрузку сопротивлением 5…7 Ом и мощностью 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, подбирая величину конденсатора С4, устанавливают такую частоту генерации (примерно 18…20 кГц), при которой высокочастотные выбросы напряжения на конденсаторе СЗ минимальны.
Выходное напряжение стабилизатора можно довести до 8…10В, увеличив величину резистора R7 и установив новое значение рабочей частоты. При этом мощность, рассеиваемая на транзисторе ѴТЗ, также увеличится.
В схемах импульсных стабилизаторов желательно использовать электролитические конденсаторы К52-1. Необходимую величину емкости получают параллельным включением конденсаторов.
Основные технические характеристики:
Входное напряжение, В 15. ..25.
Выходное напряжение, В 5.
Максимальный ток нагрузки, А 4.
Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, мВ, не более 50.
КПД, %, не ниже 60.
Рабочая частота при входном напряжении 20 б и токе нагрузки 3А, кГц—20.
В сравнении с предыдущим вариантом импульсного стабилизатора в новой конструкции А. А. Миронова (рис. 6.3) усовершенствованы и улучшены такие его характеристики, как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки.
Рис. 6.3. Схема импульсного стабилизатора напряжения.
Оказалось, что при работе прототипа (рис. 6.2) возникает так называемый сквозной ток через составной ключевой транзистор. Этот ток появляется в те моменты, когда по сигналу узла сравнения ключевой транзистор открывается, а коммутирующий диод еще не успел закрыться. Наличие такого тока вызывает дополнительные потери на нагревание транзистора и диода и уменьшает КПД устройства.
Еще один недостаток значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями в стабилизатор (рис. 6.2) был введен дополнительный выходной LC-фильтр (L2, С5). Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только уменьшением активного сопротивления дросселя L2. Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно увеличится пульсация выходного напряжения.
Поэтому оказалось целесообразным исключить этот выходной фильтр, а емкость конденсатора С2 увеличить в 5… 10 раз (параллельным соединением нескольких конденсаторов в батарею).
Цепь R2, С2 в исходном стабилизаторе (рис. 6.2) практически не изменяет длительности спада выходного тока, поэтому ее можно удалить (замкнуть резистор R2), а сопротивление резистора R3 увеличить до 820 Ом. Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в исходном устройстве), будет увеличиваться в 1,7 раза, а мощность рассеивания в 3 раза (до 0,7 Вт). Подключением нижнего по схеме вывода резистора R3 (на схеме доработанного стабилизатора это резистор R2) к плюсовому выводу конденсатора С2 этот эффект можно ослабить, но при этом сопротивление R2 (рис. 6.3) должно быть уменьшено до 620 Ом.
Один из эффективных путей борьбы со сквозным током увеличение времени нарастания тока через открывшийся ключевой транзистор. Тогда при полном открывании транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно достигнуть, если форма тока через ключевой транзистор будет близка к треугольной. Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГч.
Еще один путь применение более быстродействующего коммутирующего диода VD1, например, КД219Б (с барьером Шотки). У таких диодов выше быстродействие и меньше падение напряжения при одном и том же значении прямого тока по сравнению с обычными кремниевыми высокочастотными диодами. Конденсатор С2 типа К52-1.
Улучшение параметров устройства может быть получено и при изменении режима работы ключевого транзистора. Особенность работы мощного транзистора ѴТЗ в исходном и улучшенном стабилизаторах состоит в том, что он работает в активном режиме, а не в насыщенном, и поэтому имеет высокое значение коэффициента передачи тока и быстро закрывается. Однако из-за повышенного напряжения на нем в открытом состоянии рассеиваемая мощность в 1,5…2 раза превышает минимально достижимое значение.
Уменьшить напряжение на ключевом транзисторе можно подачей положительного (относительно плюсового провода питания) напряжения смещения на эмиттер транзистора ѴТ2 (см. рис. 6.3). Необходимую величину напряжения смещения подбирают при налаживании стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения можно предусмотреть отдельную обмотку на трансформаторе. Однако при этом напряжение смещения будет изменяться вместе с сетевым.
Для получения стабильного напряжения смещения стабилизатор надо доработать (рис. 6.4), а дроссель превратить в трансформатор Т1, намотав дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1=UBыx + U VD1. Поскольку напряжение на выходе и на диоде в это время меняется незначительно, то независимо от значения входного напряжения на обмотке II напряжение практически стабильно. После выпрямления его подают на эмиттер транзистора VT2 (и VT1).
Рис. 6.4. Схема модифицированного импульсного стабилизатора напряжения.
Потери на нагрев снизились в первом варианте доработанного стабилизатора на 14,7%, а во втором на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на теплоотвод.
В стабилизаторе варианта 1 (рис. 6.3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-1 0,35. Обмотку помещают в броневой магнитопровод Б22 из феррита 2000НМ. Между чашками нужно заложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 6.4) трансформатор Т1 образован намоткой поверх катушки дросселя L1 двух витков провода ПЭВ-1 0,35. Вместо германиевого диода Д310 можно использовать кремниевый, например, КД212А или КД212Б, при этом число витков обмотки II нужно увеличить до трех.
Стабилизатор с широтно-импульсным управлением (рис. 6.5) по принципу действия близок к стабилизатору, описанному в, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или увеличении тока, потребляемого нагрузкой.
При подаче питания на вход устройства ток, текущий через резистор R3, открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего в цепи транзистор VT1 дроссель L1 нагрузка резистор R9 возникает ток. Происходит заряд конденсатора С4 и накопление энергии дросселем L1. Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 Б, и стабилитрон VD4 открывается. Это приводит к открыванию транзисторов VT5, ѴТЗ и закрыванию ключевого элемента, а благодаря наличию диода VD3 дроссель L1 отдает накопленную энергию нагрузке.
Рис. 6.5. Схема стабилизатора с широтно-импульсным управлением с КПД до 89%.
Технические характеристики стабилизатора:
Входное напряжение 15…25 В.
Выходное напряжение 12 6.
Номинальный ток загрузки 1 А.
Пульсации выходного напряжения при токе нагрузки 1 А 0,2 В. КПД (при UBX =18 6, Ін=1 А) 89%.
Потребляемый ток при UBX=18 В в режиме замыкания цепи нагрузки 0,4 А.
Выходной ток короткого замыкания (при UBX =18 6) 2,5 А.
По мере уменьшения тока через дроссель и разряда конденсатора С4 напряжение на нагрузке также уменьшится, что приведет к закрыванию транзисторов VT5, ѴТЗ и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.
Конденсатор С3, снижающий частоту колебательного процесса, повышает эффективность стабилизатора.
При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открыванию транзистора ѴТ4 и закрыванию ключевого элемента. Далее процесс протекает аналогично описанному выше. Диоды VD1 и VD2 способствуют более резкому переходу устройства из режима стабилизации напряжения в режим ограничения тока.
Во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки. Транзистор ѴТ1 следует установить на теплоотводе размерами 40×25 мм.
Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМЗ. Магнитопровод имеет зазор толщиной 0,5 мм из немагнитного материала.
Стабилизатор несложно перестроить на другое выходное напряжение и ток нагрузки. Выходное напряжение устанавливают выбором типа стабилитрона VD4, а максимальный ток нагрузки пропорциональным изменением сопротивления резистора R9 или подачей на базу транзистора ѴТ4 небольшого тока от отдельного параметрического стабилизатора через переменный резистор.
Для снижения уровня пульсаций выходного напряжения целесообразно применить LC-фильтр, аналогичный используемому в схеме на рис. 6.2.
Рис. 6.6. Схема импульсного стабилизатора напряжения с КПД преобразования 69…72%.
Рис. 6.7. Схема импульсного стабилизатора напряжения с малыми пульсациями.
Импульсный стабилизатор напряжения (рис. 6.6) состоит из узла запуска (R3, VD1, ѴТ1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (ѴТ2, DD1.2, ѴТ5), транзисторного ключа (ѴТЗ, ѴТ4), индуктивного накопителя энергии с коммутирующим диодом (VD3, L2) и фильтров входного (L1, С1, С2) и выходного (С4, С5, L3, С6). Частота переключения индуктивного накопителя энергии в зависимости от тока нагрузки находится в пределах 1,3…48 кГц.
Все катушки индуктивности L1 L3 одинаковы и намотаны в броневых магнитопроводах Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм. Обмотки содержат по 20 витков жгута из четырех проводов ПЭВ-2 0,41. Можно применить также кольцевые ферритовые магнитопроводы с зазором.
Номинальное выходное напряжение 5 В при изменении входного от 8 до 60 б и КПД преобразования 69. ..72%. Коэффициент стабилизации 500. Амплитуда пульсаций выходного напряжения при токе нагрузки 0,7 А не более 5 мВ. Выходное сопротивление 20 мОм. Максимальный ток нагрузки (без теплоотводов для транзистора VT4 и диода VD3) 2 А.
Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20…25 В обеспечивает на выходе стабильное напряжение 12 В при токе нагрузки 1,2 А. Пульсации на выходе до 2 мВ. Благодаря высокому КПД в устройстве не используются теплоотводы. Индуктивность дросселя L1 470 мкГч.
Аналоги транзисторов: ВС547 КТ3102А] ВС548В КТ3102В. Приблизительные аналоги транзисторов ВС807 КТ3107; BD244 КТ816.
Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.
Импульсный стабилизатор тока
Довольно часто возникают ситуации, когда характеристики электрического тока в сети не позволяют нормально эксплуатировать различные приборы и оборудование. Для решения этой проблемы используется импульсный стабилизатор тока, конструктивно напоминающий стабилизирующее устройство напряжения, работающего на основе импульсного преобразователя. Основной функцией импульсного стабилизатора является контроль над состоянием тока через нагрузку. В случае снижения тока в нагрузке подкачивается дополнительная мощность, а при повышении тока – мощность понижается.
Содержание
Устройство импульсного стабилизатора
Схемы импульсных преобразователей, получившие наиболее широкое распространение, оборудуются реактивным элементом – дросселем, к которому энергия подкачивается определенными порциями с помощью специального ключа, еще называемого коммутатором. Подкачка осуществляется от входной цепи и далее поступает на нагрузку. В результате, такой режим работы дает существенную экономию электроэнергии, особенно, если стабилизатор работает на полевом транзисторе.
Однако, несмотря на явные преимущества, у импульсных преобразователей имеется ряд недостатков, для преодоления которых используются различные технические и конструктивные решения. В первую очередь это связано с электромагнитными и другими помехами, возникающими в процессе работы импульсного конвертера, а также сложной конструкцией устройства. Во время эксплуатации невозможно достичь максимального эффекта, поскольку происходит нагрев и энергия затрачивается впустую.
Немаловажное значение имеет высокая стоимость импульсных устройств. Тем не менее, для многих схем экономия электроэнергии выступает на передний план, поэтому негативное влияние недостатков в большинстве случаев удается максимально снизить.
Схемы импульсных преобразователей
Основой каждого стабилизатора тока данного типа является импульсный преобразователь. Кроме того, в схеме предусмотрен ключ, находящийся только в двух позициях – выключенной и включенной. В состоянии «выключено» ток не проводится, поэтому выделение мощности отсутствует. В положении «включено» ключ начинает проводить ток, обладая при этом, незначительным сопротивлением, стремящимся к нулю. Соответственно выделение мощности происходит со значением также близком к нулю.
Порционная передача энергии с помощью ключа от входа к выходу осуществляется без каких-либо потерь мощности. Однако по сравнению с линейным источником питания, ток и напряжение на выходе такого ключа будут импульсными, то есть нестабильными. Для стабилизации этих параметров используются фильтры, хорошо зарекомендовавшие себя для светодиодов.
Лучше всего зарекомендовали себя фильтры, обладающие свойствами индуктивности, что позволяет избежать потерь мощности. Основное полезное свойство индуктивности заключается в постепенном возрастании тока, проходящего через нее. Происходит преобразование электрической энергии в магнитную и ее накапливание в сердечнике. После того как ключ оказывается выключенным, ток в индуктивности остается прежним, а напряжение изменяет полярность.
В результате, зарядка выходного конденсатора продолжается, а сама индуктивность превращается в источник тока. Данная индуктивность, выполняющая передачу мощности, и является дросселем. В правильно работающем устройстве ток в дросселе присутствует постоянно, то есть его работа происходит в так называемом неразрывном режиме.
Если происходит снижение нагрузочного тока, наступает рост напряжения в преобразователе. Снижается энергия, накопленная в дросселе, и устройство начинает работать в разрывном режиме при прерывистом токе. В результате, наблюдается резкий рост магнитных помех, создаваемых устройством. Чтобы избежать помех и намагничивания сердечника, используется особая конструкция дросселя, в которой присутствуют магнитные материалы.
Одним из элементов импульсного стабилизатора тока является устройство для регулировки работы ключа в соответствии с подключенной нагрузкой. Регистрация напряжения на нагрузке производится стабилизатором, изменяющим работу ключа. С помощью стабилизатора тока выполняется измерение тока, проходящего через нагрузку. Обычно для этих целей используется небольшое измерительное сопротивление, включаемого последовательно с нагрузкой.
Включение ключа преобразователя производится с различной скважностью, в зависимости от сигнала регулятора. Наибольшее распространение получил способ широтно-импульсной модуляции, а также работа в токовом режиме. В первом случае применяется управление длительностью импульсов с сохранением частоты следования. Вторая схема импульсного стабилизатора предполагает измерение пикового тока в дросселе, с одновременным интервалом между импульсами.
На основе импульсного устройства создано несколько видов преобразователей:
- Понижающий преобразователь. Получил свое название в связи с тем, что напряжение на нагрузке всегда меньше напряжения источника питания. Течение тока в дросселе постоянно происходит в одном направлении, поэтому требования к конденсатору, установленному на выходе, несколько снижены. В некоторых схемах дроссель и выходной конденсатор используются в качестве фильтра. Существуют схемы, где конденсатор вообще отсутствует, например, в стабилизаторах для светодиодов.
- Повышающий преобразователь. Данная микросхема импульсного стабилизатора тока также содержит дроссель, постоянно подключенный к выходу источника питания. Когда ключ находится в разомкнутом положении, питание на нагрузку поступает через диод и дроссель.
При замыкании ключа в дросселе происходит накопление энергии и при размыкании ключа его ЭДС, возникающая на выводах, добавляется к ЭДС источника питания. Это приводит к возрастанию напряжения на нагрузке. В данной схеме, в отличие от предыдущей, для зарядки выходного конденсатора используется прерывистый ток. Поэтому параметры выходного конденсатора должны быть большими, в некоторых случаях может потребоваться установка дополнительного фильтра.
- Инвертирующий преобразователь. Работает по такой же схеме, что и повышающее устройство.
- Прямоходовой и обратноходовой преобразователи. Нередко схемы блоков питания содержат такой элемент как трансформатор. С его помощью обеспечивается гальваническая развязка вторичной цепи от источника питания. Благодаря таким схемам эффективность работы устройств достигает 98% и выше. Передача энергии в прямоходовом преобразователе осуществляется от источника в нагрузку при включенном состоянии ключа. Фактически он является модифицированным понижающим преобразователем.
Энергия в обратноходовом преобразователе происходит от источника к нагрузке в выключенном состоянии.
Импульсный конвертер как стабилизатор тока
Многие импульсные блоки питания оборудованы системой стабилизации выходного напряжения. Подобные схемы, особенно повышенной мощности, помимо обратной связи с выходным напряжением, включают в свой состав систему контроля тока ключевого элемента.
В этом качестве может использоваться резистор с незначительным сопротивлением. Наличие такого контроля обеспечивает работу дросселя в необходимом режиме. Подобные контрольные элементы используются в простейших стабилизаторах тока, сделанных своими руками, и эффективно стабилизируют выходной ток.
Анализ схемы стабилизатора напряжения
Стабилизатор напряжения представляет собой цепь источника питания или устройство источника питания, которое может автоматически регулировать выходное напряжение. Его функция заключается в стабилизации напряжения источника питания, которое сильно колеблется и не соответствует требованиям электрооборудования в пределах установленного диапазона значений. Стабилизатор напряжения предназначен для обеспечения нормальной работы различных цепей или электрооборудования при номинальном рабочем напряжении.
Крупногабаритные стабилизаторы напряжения на десятки и даже сотни киловатт используются для обеспечения рабочей мощности крупногабаритной экспериментальной аппаратуры. Существуют также небольшие стабилизаторы переменного напряжения от нескольких ватт до нескольких киловатт, обеспечивающие качественное питание небольших лабораторий или бытовой техники.
В самом начале стабилизатор напряжения стабилизировал напряжение биением реле. Когда напряжение сети колеблется, схема автоматической коррекции стабилизатора напряжения будет активирована, чтобы активировать внутреннее реле и заставить выходное напряжение оставаться близким к установленному значению. Преимущество этой схемы в том, что схема проста, а недостаток в том, что точность регулирования напряжения невысока, а каждое биение и сдвиг реле будет вызывать мгновенное прерывание подачи питания и искровые помехи.
Это вызовет большие помехи при чтении и записи компьютерного оборудования, и легко вызвать неверные сигналы в компьютере. В тяжелых случаях жесткий диск будет поврежден.
Современные высококачественные небольшие стабилизаторы напряжения в основном используют метод угольных щеток с приводом от двигателя для стабилизации напряжения. Этот тип стабилизатора напряжения мало влияет на электрическое оборудование, а точность регулирования напряжения относительно высока. Это продукт без искажения формы волны.
Анализ схемы стабилизатора напряжения
Цепь стабилизации напряжения источника питания состоит из силового трансформатора Т3, выпрямительных диодов VDl-VD4, фильтрующего конденсатора Cl-C3 и трехвыводных интегральных схем стабилизации напряжения ICl и IC2.
Входная схема сравнения состоит из резистора Rl, потенциометра RPl-RP9, конденсатора C6-Cl4 и Nl-Ng внутри интегральной схемы операционного усилителя lC3-1C5.
Схема управления кодом состоит из интегральной схемы без затвора IC6-1C8, интегральной схемы с затвором и без затвора IC9, глазурованный диод IClO VD8-VDl5, резистор R4-R11, конденсатор Cl5-C22.
Выходная цепь компенсации состоит из интегральных схем электронного переключателя ICl (Sl-S4), IC17 (S5-S8), тиристоров VTl-VT8, компенсационного главного трансформатора Tl, компенсационного вспомогательного трансформатора T2, контактора переменного тока KM, вольтметра PV и амперметр ПА.
Схема защиты от перенапряжения/понижения напряжения состоит из незатвора D9 в IC7, диодов VD5-VD7, резисторов R2, R3, транзистора V и реле К.
Относительно простой стабилизатор напряжения переменного тока 220 В может использовать электронное обнаружение и механическую регулировку. Сравнивая понижающее и выпрямленное напряжение постоянного тока 220 В со стандартным напряжением, полученным интегральной схемой стабилизатора напряжения, можно обнаружить, что при низком напряжении источника питания 220 В выпрямленное выходное напряжение постоянного тока относительно низкое по сравнению со стандартным. Напряжение. Если цепь триодного переключателя приводится в действие для срабатывания реле, контакт реле заставляет регулирующий двигатель вращаться вперед. Затем однофазный трансформатор регулирования напряжения, приводимый в действие регулирующим двигателем, повышает напряжение источника питания до тех пор, пока разница между напряжением постоянного тока, выдаваемым схемой обнаружения, и стандартным напряжением не станет меньше напряжения проводимости схемы переключения. Реле отпущено, и форсирование окончено. Если напряжение 220 В слишком высокое, необходимо включить соответствующую схему выключателя, чтобы заставить регулирующий двигатель двигаться в обратном направлении и понижать его.
Этот метод в основном предназначен для обнаружения цепи управления приводом. Используя различные регуляторы мощности или трансформаторы, можно просто изменить мощность регулятора. Однако точность этого метода стабилизации напряжения невелика и может достигать в основном порядка 5 %.
T1 — понижающий трансформатор переменного тока. Если вы хотите уменьшить напряжение 220 В переменного тока до более низкого напряжения, для этого источника питания с линейной стабилизацией на выходе 12 В достаточно установить вторичное напряжение T1 на 14–15 В.
Мост выпрямителя, состоящий из D1, D2, D3 и D4, может преобразовывать напряжение переменного тока, выдаваемое вторичной обмоткой T1, в однонаправленное пульсирующее напряжение.
C1 и C2 — конденсаторы входного фильтра, которые могут преобразовывать однонаправленное пульсирующее напряжение в постоянное напряжение с небольшой пульсацией. В дополнение к пульсациям это постоянное напряжение также будет изменяться при колебаниях напряжения сети, которое нестабильно.
C3 и C4 — конденсаторы выходного фильтра, их основная функция — подавление самовозбуждающихся колебаний, которые может производить 7812, чтобы обеспечить его нормальную работу.
Сборка 2-ступенчатой схемы стабилизатора сетевого питания — Весь дом
В этой статье мы узнаем, как сделать 2-релейную или двухступенчатую схему стабилизатора напряжения для управления и регулирования сетевого напряжения 220 В или 120 В с помощью простой схемы.
Введение
В этой схеме стабилизатора мощности одно реле подключено для выбора высокого или низкого отвода от трансформатора стабилизатора при определенном уровне напряжения; в то время как второе реле поддерживает нормальное сетевое напряжение включенным, но в момент колебания напряжения оно переключается и выбирает соответствующий ГОРЯЧИЙ отвод через контакты первого реле.
Обсуждаемая здесь простая схема стабилизатора питания очень проста в сборке, но при этом способна обеспечить двухступенчатую коррекцию входной сети.
Простой метод преобразования обычного трансформатора в стабилизирующий трансформатор также обсуждался с использованием принципиальных схем.
Работа схемы
Как показано на соседнем рисунке, всю работу схемы можно понять по следующим пунктам:
Основная идея состоит в том, чтобы заставить реле №1 переключаться при двух различных крайних значениях сетевого напряжения (высоком и низком), которые считаются не подходящими для приборов.
Это переключение позволяет этому реле выбирать подходящее кондиционированное напряжение от другого реле через его размыкающие контакты.
Как подключить контакты реле
Контакты этого второго реле № 2 обеспечивают выбор соответствующего напряжения от стабилизирующего трансформатора и держат его готовым для реле № 1 всякий раз, когда оно переключается при опасных уровнях напряжения. При нормальном напряжении реле №1 остается включенным и выбирает нормальное напряжение через свои нормально разомкнутые контакты.
Транзисторы Т1 и Т2 используются как датчики напряжения. Реле №1 подключено к этой конфигурации на коллекторе T2.
Пока напряжение в норме, T1 остается выключенным. Следовательно, Т2 в этот момент остается включенным. Реле №1 активировано, и его нормально разомкнутые контакты подключают НОРМАЛЬНЫЙ переменный ток к устройству.
Если напряжение имеет тенденцию к росту, Т1 медленно проводит, и при определенном уровне (определяется настройкой Р1) Т1 полностью проводит и отключает Т2 и реле №1.
Реле немедленно подключает скорректированное (пониженное) напряжение, подаваемое реле №2, через свои размыкающие контакты к выходу.
Теперь, в случае низкого напряжения T1 и T2 оба перестанут проводить, что даст тот же результат, что и выше, но на этот раз подаваемое напряжение от реле № 2 к реле № 1 будет высоким, так что выход получает требуемое скорректированный уровень напряжения.
Реле №2 получает питание от T3 при определенном уровне напряжения (в соответствии с настройкой P3) между двумя крайними значениями напряжения. Его контакты подключены к отводу трансформатора стабилизатора, так что он соответствующим образом выбирает нужное напряжение.
Как собрать схему
Конструкция этой схемы очень проста. Это можно сделать, выполнив следующие действия:
Отрежьте небольшой кусок платы общего назначения (примерно 10 на 5 мм).
Начните сборку, сначала вставив транзисторы, оставив достаточно места между ними, чтобы остальные можно было разместить вокруг каждого из них. Припаяйте и отрежьте их выводы.
Затем вставьте остальные компоненты и соедините их друг с другом и с транзисторами пайкой. Воспользуйтесь электрической схемой для их правильной ориентации и размещения.
Наконец, закрепите реле, чтобы завершить сборку платы.
Следующая страница посвящена конструкции трансформатора стабилизатора мощности и процедуре испытаний. После завершения этих процедур вы можете интегрировать проверенную сборку схемы в соответствующие трансформаторы.
Вся установка может быть помещена в прочный металлический корпус и установлена для выполнения необходимых операций.
Список деталей
R1, R2, R3 = 1K, 1/4W,
P1, P2,P3 = 10K, ЛИНЕЙНЫЕ ПРЕДУСТАНОВКИ,
C1 = 1000 мкФ/25 В
Z1, Z2, Z3 = 3 В, 400 мВт стабилитрон,
T1, T2, T3 = BC 547B,
RL1, RL2= РЕЛЕ 12 В, SPDT, 4000OH -D4 = 1N4007,
TR1 = 0–12 В, 500 мА,
TR2 = 25–0–25 В, 5 А. С РАЗЪЕМНЫМ ЦЕНТРАЛЬНЫМ ОТВОДОМ, ОБЩЕЙ ПЛАТЕ, МЕТАЛЛИЧЕСКИМ КОРПУСОМ, СЕТЕВЫМ ШНУРОМ, РОЗЕТКОЙ, ДЕРЖАТЕЛЕМ ПРЕДОХРАНИТЕЛЯ И Т. Д.
Как превратить обычный трансформатор в трансформатор-стабилизатор
Трансформаторы-стабилизаторы обычно изготавливаются на заказ и недоступны на рынке в готовом виде. Поскольку от них требуется несколько отводов сетевого напряжения переменного тока (высокого и низкого), а также поскольку они специфичны для конкретного приложения, становится очень сложно приобрести их в готовом виде.
Для данной схемы также требуется трансформатор регулятора мощности, но для простоты конструкции можно использовать простой метод преобразования обычного трансформатора источника питания в трансформатор стабилизатора напряжения.
Как показано на рисунке, здесь нам нужен обычный трансформатор на 25-0-25/5 А. Центральный отвод должен быть разделен, чтобы вторичная обмотка могла состоять из двух отдельных обмоток. Теперь осталось просто подключить первичные провода к двум вторичным обмоткам, как показано на схеме.
Таким образом, следуя описанной выше процедуре, вы сможете успешно преобразовать обычный трансформатор в стабилизирующий трансформатор, очень удобный для данного приложения.
Как настроить устройство
Для процедуры настройки вам потребуется переменный источник питания 0–24 В/500 мА. Это может быть завершено следующими шагами:
Поскольку мы знаем, что колебания напряжения сети переменного тока всегда будут создавать пропорциональную величину колебаний напряжения постоянного тока от трансформатора, мы можем предположить, что для входных напряжений 210, 230 и 250, соответственно полученные эквивалентные напряжения постоянного тока должны быть 11,5, 12,5 и 13,5 соответственно.
Теперь настройка соответствующих предустановок становится очень простой в соответствии с указанными выше уровнями напряжения.
- Сначала оставьте оба трансформатора TR1 и TR2 отключенными от цепи.
- Держите ползунок P1, P2 и P3 примерно посередине.
- Подключите внешний регулируемый источник питания к цепи. Отрегулируйте напряжение примерно до 12,5.
- Теперь медленно начните регулировать P3, пока не активируется RL2.