Схема компаратора: Поваренная книга разработчика аналоговых схем: Операционные усилители 25

Содержание

Поваренная книга разработчика аналоговых схем: Операционные усилители 25

21 августа 2019

Тим Грин, Пит Семиг, Колин Веллс (Texas Instruments)

Перед вами – глава из «Поваренной книги разработчика аналоговой электроники», созданной инженерами компании Texas Instruments (TI). Поваренная книга – сборник рецептов, а данный цикл статей – сборник стандартных схем с операционными усилителями. Каждой схеме посвящена отдельная статья, содержащая пример типового расчета с указанием формул и последовательности действий. Результаты расчетов дополнительно проверяются в программе SPICE-моделирования. Расчеты выполнены для конкретных усилителей из производственной линейки TI. Разработчик может использовать и другие изделия, широкий выбор которых представлен на страницах каталога компании КОМПЭЛ. От читателя требуется понимание базовых принципов работы операционных усилителей. Если же знаний недостаточно, следует вначале ознакомиться с учебными курсами TI Precision Labs (TIPL). Авторы обещают обновлять и дополнять статьи цикла.

Мы публикуем главы Поваренной книги на нашем сайте регулярно – дважды в месяц.

Подписаться на получение уведомлений о публикации новых глав

Компаратор с гистерезисом и без гистерезиса

Исходные данные для расчета представлены в таблицах 74 и 75.

Таблица 74. Исходные данные для расчета компаратора

Вход Выход Питание
ViMin ViMax VoMin VoMax Vcc Vee Vref
0 В 5 В 0 В 5 В 5 В 0 В 5 В

Таблица 75. Пороговые значения

Нижний порог переключения VL Верхний порог переключения VH
VH – VL
2,3 В 2,7 В 0,4 В

Описание схемы

Компараторы используются, чтобы сравнить два входных сигнала и сформировать выходной сигнал в зависимости от того, какой из входных сигналов больше (рисунок 84). Шум или дребезг входных сигналов могут привести к множественным переключениям компаратора. Для борьбы с такими переключениями используется гистерезис, устанавливающий верхнюю и нижнюю границу переключения.

Рис. 84. Схемы компараторов с гистерезисом (слева) и без гистерезиса (справа)

Рекомендуем обратить внимание:

  • следует использовать компаратор с минимальным собственным током потребления;
  • точность задания пороговых значений гистерезиса определяется точностью номиналов резисторов;
  • задержка срабатывания определяется параметрами используемого компаратора.

Порядок расчета компаратора с гистерезисом

  • Выбираем значение резистора R1 = 100 кОм. Значения пороговых напряжений были определены в таблице исходных данных (таблица 74): V
    L
    = 2,3 В, VH = 2,7 В.
  • Рассчитаем R2 по формуле 1:

$$R_{2}=\frac{V_{L}}{V_{CC}-V_{H}}\times R_{1}=\frac{2.3\:В}{5\:В-2.7\:В}\times 100\:кОм=100\:кОм\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

  • Рассчитаем R3 по формуле 2:

$$R_{3}=\frac{V_{L}}{V_{H}-V_{L}}\times R_{1}=\frac{2.3\:В}{2.7\:В-2.3\:В}\times 100\:кОм=576\:кОм\:(номинал)\qquad{\mathrm{(}}{2}{\mathrm{)}}$$

  • Проверяем полученное значение гистерезиса, согласно формуле 3:

$$V_{H}-V_{L}=\frac{R_{1}\times R_{2}}{R_{1}\times R_{3}+R_{3}\times R_{2}+R_{1}\times R_{2}}\times V_{CC}=0.399\:В\qquad{\mathrm{(}}{3}{\mathrm{)}}$$

Порядок расчета компаратора без гистерезиса

 
  1. Выбираем пороговое значение Vth = 2,5 В.
  2. Выбираем значение резистора R4 = 100 кОм.
  3. Рассчитываем R5 по формуле 4:

$$R_{5}=\frac{V_{th}}{V_{CC}-V_{th}}\times R_{4}=\frac{2.5\:В}{5\:В-2.5\:В}\times 100\:кОм=100\:кОм\qquad{\mathrm{(}}{4}{\mathrm{)}}$$

Моделирование схемы

Временные диаграммы работы схемы представлены на рисунках 85 и 86.

Рис. 85. Временные диаграммы работы схемы: шум присутствует только в начальный короткий интервал времени 0…120 мкс

Рис. 86. Увеличенная осциллограмма напряжений: интервал 40…110 мкс

Рекомендации

Дополнительную информацию вы найдете в к документе TIPD144.

Параметры компаратора, используемого в расчете, приведены в таблице 76.

Таблица 76. Параметры компаратора, используемого в расчете

TLV3201
Vсс 2,7…5,5 В
VinCM Vee – 200 мВ…Vсс + 200 мВ
Vout Vee + 230 мВ…Vcc – 210 мВ (при 4 мА)
Vos 1 мВ
Iq 40 мкА
Ib 1 пА
UGBW
SR
Число каналов 1, 2

Список ранее опубликованных глав

      1. Поваренная книга разработчика аналоговых схем: Операционные усилители
      2. Инвертирующий усилитель
      3. Неинвертирующий усилитель
      4. Инвертирующий сумматор
      5. Дифференциальный усилитель
      6. Интегратор
      7. Дифференциатор
      8. Трансимпедансный усилитель
      9. Однополярная схема измерения тока
      10. Биполярная схема измерения тока
      11. Однополярная схема измерения тока с широким рабочим диапазоном (3 декады)
      12. ШИМ-генератор на ОУ
      13. Инвертирующий усилитель переменного напряжения (активный фильтр высоких частот)
      14. Неинвертирующий усилитель переменного напряжения (активный фильтр высоких частот)
      15. Активный полосовой фильтр
      16. Однополупериодный инвертирующий выпрямитель
      17. Выпрямитель на ОУ
      18. Низковольтный выпрямитель с однополярным питанием
      19. Ограничитель скорости изменения напряжения
      20. Схема формирования дифференциального сигнала
      21. Схема инвертирующего усилителя со смещением инвертирующего входа
      22. Схема неинвертирующего усилителя со смещением инвертирующего входа
      23. Схема неинвертирующего усилителя со смещением неинвертирующего входа
      24. Схема инвертирующего усилителя со смещением неинвертирующего входа

Перевел Вячеслав Гавриков по заказу АО КОМПЭЛ

•••

Наши информационные каналы

Схема компаратора с гистерезисом — Мастер Фломастер

Общие сведения

Компаратор — это сравнивающее устройство. Аналоговый компаратор предназначен для сравнения непрерывно изменяющихся сигналов. Входные аналоговые сигналы компаратора суть Uвх — анализируемый сигнал и Uоп — опорный сигнал сравнения, а выходной Uвых — дискретный или логический сигнал, содержащий 1 бит информации:

(1)

Выходной сигнал компаратора почти всегда действует на входы логических цепей и потому согласуется по уровню и мощности с их входами. Таким образом, компаратор — это элемент перехода от аналоговых к цифровым сигналам, поэтому его иногда называют однобитным аналого-цифровым преобразователем.

Неопределенность состояния выхода компаратора при нулевой разности входных сигналов нет необходимости уточнять, так как реальный компаратор всегда имеет либо конечный коэффициент усиления, либо петлю гистерезиса (рис. 1).

Рис. 1. Характеристики компараторов

Рис. 2. Процессы переключения компараторов

Чтобы выходной сигнал компаратора изменился на конечную величину |U 1 вых — U 0 вых| при бесконечно малом изменении входного сигнала, компаратор должен иметь бесконечно большой коэффициент усиления (эпюра 1 на рис. 2) при полном отсутствии шумов во входном сигнале. Такую характеристику можно имитировать двумя способами — или просто использовать усилитель с очень большим коэффициентом усиления, или ввести положительную обратную связь.

Рассмотрим первый путь. Как бы велико усиление не было, при Uвх близком к нулю характеристика будет иметь вид рис. 1а. Это приведет к двум неприятным последствиям. Прежде всего, при очень медленном изменении Uвх выходной сигнал также будет изменяться замедленно, что плохо отразится на работе последующих логических схем (эпюра 2 на рис. 2). Еще хуже то, что при таком медленном изменении Uвх около нуля выход компаратора может многократно с большой частотой менять свое состояние под действием помех (так называемый «дребезг», эпюра 3). Это приведет к ложным срабатываниям в логических элементах и к огромным динамическим потерям в силовых ключах. Для устранения этого явления обычно вводят положительную обратную связь, которая обеспечивает переходной характеристике компаратора гистерезис (рис. 1б). Наличие гистерезиса хотя и вызывает некоторую задержку в переключении компаратора (эпюра 4 на рис. 2), но существенно уменьшает или даже устраняет дребезг Uвых.

В качестве компаратора может быть использован операционный усилитель (ОУ) так, как это показано на рис. 3. Усилитель включен по схеме инвертирующего сумматора, однако, вместо резистора в цепи обратной связи включены параллельно стабилитрон VD1 и диод VD2.

Рис. 3. Схема компаратора на ОУ

Пусть R1 = R2. Если Uвх — Uоп > 0, то диод VD2 открыт и выходное напряжение схемы небольшое отрицательное, равное падению напряжения на открытом диоде. При Uвх — Uоп m А710 (отечественный аналог — 521СА2), разработанного Р. Видларом (R.J.Widlar) в США в 1965 г., приведена на рис. 4.

Рис. 4. Схема компаратора m А710

Она представляет собой дифференциальный усилитель на транзисторах VT1, VT2, нагруженный на каскады ОЭ на VT5 и VT6. Каскад на VT5 через транзистор VТ4 управляет коллекторным режимом входного каскада и через транзистор в диодном включении VТ7 фиксирует потенциал базы транзистора VT8, делая его независимым от изменений положительного напряжения питания. Каскад на VT6 представляет собой второй каскад усиления напряжения.

Эмиттерные выводы транзисторов VT5 и VT6 присоединены к стабилитрону VD1 с напряжением стабилизации 6,2 В, поэтому потенциалы баз указанных транзисторов соответствуют приблизительно 6,9 В. Следовательно, допустимое напряжение на входах компаратора относительно общей точки может достигать 7 В. На транзисторе VT8 выполнен эмиттерный повторитель, передающий сигнал с коллектора VT6 на выход. Постоянная составляющая сигнала уменьшается до нулевого уровня стабилитроном VD2.

Если дифференциальное входное напряжение превышает +5. +10 мВ, то транзистор VT6 закрыт, а VT5 близок к насыщению. Выходной сигнал компаратора при этом не может превысить +4 В, так как для более положительных сигналов открывается диод на VT7, не допуская излишнего роста выходного напряжения и насыщения VТ5. При обратном знаке входного напряжения VT6 насыщается, потенциал его коллектора оказывается близок к напряжению стабилизации стабилитронов VD1 и VD2, а поэтому потенциал выхода близок к нулю. Транзистор VT9 — источник тока 3 мА для смещения VT8 и VD2. Часть этого тока (до 1,6 мА) может отдаваться в нагрузку, требующую вытекающий ток на входе (один вход логики ТТЛ серии 155 или 133).

В дальнейшем эта схема развивалась и совершенствовалась. Схемы многих компараторов имеют стробирующий вход для синхронизации, а некоторые модификации снабжены на выходе триггерами-защелками, т.е. схемами, фиксирующими состояние выхода компаратора по приходу синхроимпульса. Кроме того, для повышения функциональной гибкости часть ИМС компараторов (например, МАХ917-920) содержит источник опорного напряжения, а у некоторых (например, МАХ910) порог срабатывания устанавливается цифровым кодом от 0 до 2,56 В с дискретностью 10 мВ , для чего на кристалле микросхемы имеются источник опорного напряжения и 8-разрядный цифро-аналоговый преобразователь.

Выходные каскады компараторов обычно обладают большей гибкостью, чем выходные каскады операционных усилителей. В обычном ОУ используют двухтактный выходной каскад, который обеспечивает размах напряжения в пределах между значениями напряжения питания (например, +/-13 В для ОУ типа 140УД7, работающего от источников +/-15 В). В выходном каскаде компаратора эмиттер, как правило, заземлен, и выходной сигнал снимается с «открытого коллектора». Выходные транзисторы некоторых типов компараторов, например, 521СА3 или LM311 имеют открытые, т.е. неподключенные, и коллектор и эмиттер. Две основные схемы включения компараторов такого типа приведены на рис. 5.

Рис. 5. Схемы включения выходного каскада компаратора 521СА3

На рис. 5а выходной транзистор компаратора включен по схеме с общим эмиттером. При потенциале на верхнем выводе резистора равном +5 В к выходу можно подключать входы ТТL, nМОП- и КМОП-логику с питанием от источника 5 В. Для управления КМОП-логикой с более высоким напряжением питания следует верхний вывод резистора подключить к источнику питания данной цифровой микросхемы.

Если требуется изменение выходного напряжения компаратора в пределах от U + пит до U — пит, выходной каскад включается по схеме эмиттерного повторителя (рис. 5б). При этом заметно снижается быстродействие компаратора и происходит инверсия его входов.

Некоторые модели интегральных компараторов (например, AD790, МАХ907) имеют внутреннюю неглубокую положительную обратную связь, обеспечивающую их переходной характеристике гистерезис с шириной петли, соизмеримой с напряжением смещения нуля.

На рис. 6а приведена схема включения компаратора с открытым коллектором на выходе, переходная характеристика которой имеет гистерезис (рис. 1б). Пороговые напряжения этой схемы определяются по формулам

,

Из-за несимметрии выхода компаратора петля гистерезиса оказывается несимметричной относительно опорного напряжения.

Рис. 6. Компаратор с положительной обратной связью

В заключение, перечислим некоторые особенности компараторов по сравнению с ОУ.

  1. Несмотря на то, что компараторы очень похожи на операционные усилители, в них почти никогда не используют отрицательную обратную связь, так как в этом случае весьма вероятно (а при наличии внутреннего гистерезиса — гарантировано) самовозбуждение компараторов.
  2. В связи с тем, что в схеме нет отрицательной обратной связи, напряжения на входах компаратора неодинаковы.
  3. Из-за отсутствия отрицательной обратной связи входное сопротивление компаратора относительно низко и может меняться при изменении входных сигналов.
  4. Выходное сопротивление компараторов значительно и различно для разной полярности выходного напряжения.

Двухпороговый компаратор

Двухпороговый компаратор (или компаратор «с окном») фиксирует, находится ли входное напряжение между двумя заданными пороговыми напряжениями или вне этого диапазона. Для реализации такой функции выходные сигналы двух компараторов необходимо подвергнуть операции логического умножения (рис. 7а). Как показано на рис. 7б, на выходе логического элемента единичный уровень сигнала будет иметь место тогда, когда выполняется условие U1 m А711 (отечественный аналог — 521СА1).

Рис. 7. Схема двухпорогового компаратора (а) и диаграмма его работы (б)

Параметры компараторов

Параметры, характеризующие качество компараторов, можно разделить на три группы: точностные, динамические и эксплуатационные.

Компаратор характеризуется теми же точностными параметрами, что и ОУ.

Основным динамическим параметром компаратора является время переключения tп. Это промежуток времени от начала сравнения до момента, когда выходное напряжение компаратора достигает противоположного логического уровня. Время переключения замеряется при постоянном опорном напряжении, подаваемом на один из входов компаратора и скачке входного напряжения Uвх, подаваемого на другой вход. Это время зависит от величины превышения Uвх над опорным напряжением. На рис. 8 приведены переходные характеристики компаратора mА710 для различных значений дифференциального входного напряжения Uд при общем скачке входного напряжения в 100 мВ. Время переключения компаратора tп можно разбить на две составляющие: время задержки tз и время нарастания до порога срабатывания логической схемы tн. В справочниках обычно приводится время переключения для значения дифференциального напряжения, равного 5 мВ после скачка.

Рис. 8. Переходная характеристика компаратора m А710 при различных превышениях скачка входного напряжения Uд над опорным: 1 — на 2 мВ; 2 — на 5 мВ; 3 — на 10 мВ; 4 — на 20 мВ

Компараторы — название произошло от принципа работы – сравнения. Так функционируют приборы, производящие измерения способом сравнивания с эталоном: весы с одинаковыми плечами, электрические потенциометры.

По своей принципиальной работе компараторы делятся на механические, электрические и оптические. Приборы с механической конструкцией применяются для проверки конечных мер длины. Компараторы для таких целей впервые применены во Франции в 1792 году, об этом имеется информация в энциклопедиях. Такой компаратор на механической основе работал для поверки эталонного метра во время появления метрической системы Франции. Точность таких замеров компаратора рычагами доходила до 0,0005 мм. Это большая точность для того периода времени.

Наша задача рассмотреть компараторы, применяющиеся в современное время в электротехнике для напряжения.

Принцип работы и виды интегральных компараторов

Компаратор с двумя входами и одним выходом. Причем один из входов является прямым, а другой инверсным. На эти входы поступает напряжение, которые устройство сравнивает. В зависимости от этого сравнения на своем выходе устройство устанавливает либо логический ноль, когда напряжение на инверсном входе выше, чем на прямом, либо логическую 1, когда напряжение входа прямого выше, чем на инверсном.

На схеме видно стандартное обозначение компаратора. Компаратор сам по себе достаточно универсален и находит широкое применение в радиолюбительской деятельности. На основе компаратора можно собрать таймер, мультивибратор и даже драйвер для светодиодов.

При выборе компаратора следует обратить внимание на следующие параметры:
  • Диапазон напряжения питания.
  • Диапазон входных напряжений.
  • Максимальный ток на выходе компаратора.
  • Тип выхода.

Не все компараторы могут установить плюс питания на выходе. Рассмотрим работу компаратора на простой схеме.

Данная схема построена на переменном резисторе 20 кОм, двух постоянных резисторов 10 кОм, которые образуют собой делитель напряжения на постоянных резисторах. Они подключены к инвертирующему входу. К нему же подключен делитель напряжения на переменном резисторе.

Выход компаратора представляет собой коллектор внутреннего транзистора, эмиттер которого подключен к земле. Этот транзистор либо подключает выход к земле, либо отключает его, поэтому плюса питания на выходе быть не может. Поэтому мы подтягиваем выход компаратора через резистор номиналом 1 кОм к плюсу питания.

Когда на неинвертирующем входе напряжение выше, чем на инвертирующем, транзистор закрывается. Добавленный нами резистор подтягивает к его к плюсу питания, вследствие чего светодиод загорается. Когда на неинвертирующем входе напряжение ниже, чем на инвертирующем, то транзистор открывается и притягивает выход компаратора к земле, вследствие чего светодиод перестает светиться.

Если же на двух входах напряжение примерно одинаковое, то выход компаратора логично переключается из одного состояния в другое и обратно под воздействием внутренних и внешних помех. Для борьбы с помехами и четкого переключения компаратора из одного состояния в другое собираются схемы с гистерезисом.

Обозначения выводов выглядят следующим образом:

Первая ножка – это выход первого компаратора, вторая ножка – инвертирующий вход первого компаратора, третья – неинвертирующий вход первого компаратора, четвертая – земля, восьмая ножка – напряжение питания. Второй компаратор не используется. Выход подключен желтым проводом к подтягивающему резистору и к светодиоду, зеленый провод подключен к делителю напряжения на постоянных резисторах, белый провод подключен к средней ножке переменного резистора, который является делителем напряжения.

При измерении напряжения питания на делителе напряжения на постоянных резисторах 10 кОм. При включении схемы загорается красный светодиод. Включаем мультиметр для измерения постоянного напряжения диапазона до 20 В, подключим его ко второй ножке микросхемы. Показания напряжения 2,4 В. Это постоянные резисторы, делитель напряжения не будет изменять само напряжение. Так как переменный резистор установлен на неинвертирующем входе, то переключаемся на него. Показания 0,87 В. На неинвертирующем входе напряжение ниже, чем на инвертирующем. Следовательно светодиод не горит.

При превышении напряжения выше 2,4 В светодиод начинает светиться. При воздействии внешних помех происходит хаотичное переключение выхода компаратора. Здесь может пригодиться схема гистерезиса.

Компараторы применяются в интегральном исполнении в качестве составных деталей микросхем. Интегральные таймеры имеют в составе два входных компаратора. Этим определяется особенность работы прибора. Микроконтроллеры производят со встроенными компараторами. Независимо от конструкции и схемы принцип действия прибора не отличается.

Новые компараторы похожи на операционные усилители, у них высокий усиливающий коэффициент, не имеют обратной связи, входы такого же типа.

Работа компаратора напряжения

В различных описаниях работы устройства приводятся примеры сравнения с рычажными весами. На одну сторону весов ложится гиря – эталон, на другую товар. Когда вес товара станет равным массе гири, или больше, то гири поднимаются вверх, на этом взвешивание окончено.

С работой компаратора напряжения происходит похожий процесс. Вместо гирь выступает опорное напряжение, вместо товара – сигнал входа. При возникновении логической единицы на выходе устройства происходит сравнение напряжений. Это называют «пороговой чувствительностью» компаратора.

Для тестирования устройства не нужно сложной схемы. Необходимо включить вольтметр на выход устройства, а на входы подключить напряжение, которое регулируется. При изменении входного напряжения на вольтметре будет видна работа компаратора.

Характеристики компараторов

При применении приборов нужно учесть характеристики, делящиеся на динамические и статические. Статические – это параметры установившегося режима. Это пороговая чувствительность. Она является наименьшей разностью сигналов входа. При ней возникает логический сигнал на выходе.

Некоторые компараторы оснащены выводами для смещающего напряжения, осуществляющего смещение характеристики передачи от идеального положения. Важным параметром является гистерезис, то есть разница напряжений входа. Он обусловлен обратной связью положительного значения, предназначенного для устранения «дребезга» сигнала выхода при переключении компаратора.

Устройство

Схема прибора довольно сложная, большая и не слишком понятная. Рассмотрим простую функциональную схему по рисунку.

Показан дифференциальный каскад входа, схема уровневого смещения, логика выхода. Дифференциальный каскад производит основное усиление сигнала разности. Устройством смещения осуществляется оптимальное состояние выхода. Это дает возможность выбрать тип логики для работы. Такая настройка производится подстроченным резистором на выводах «балансировки».

Компаратор с памятью и стробированием

Современные инновационные компараторы оснащены стробирующим входом. Это значит, что сравнение сигналов входа осуществляется только при подаче импульса. Это дает возможность сравнить сигналы входа в необходимый момент.

Простая схема структуры устройства со стробированием.

Устройства по рисунку с парафазным выходом, подобно триггеру – прямой верхний выход, нижний (кружок) – инверсный. С – стробирующий вход. На рисунке а) стробирование сигналов входа осуществляется по высокому уровню входа С. На обозначении входа С изображают знак инверсии маленьким кружком.

Рисунке б) стробирующий вход с чертой /. Это значит, что стробирование проходит по восходящему импульсу. Стробирующий сигнал – разрешение сравнения. Итог сравнения появляется на выходе при действии импульса стробирования. На некоторых устройствах есть память (с триггером). Они сохраняют результат до следующего импульса.

Время импульса стробирования (фронта) должно хватать для того, чтобы сигнал входа успевал проходить через дифференциальный каскад до срабатывания ячейки памяти. Использование стробирования повышает защиту от помех, так как помеха изменяет состояние устройства за время импульса.

Классификация

Компараторы делятся на три группы: общего применения, прецизионные и быстродействующие. В практической деятельности чаще применяются устройства общего применения.

Такие устройства имеют особенности и свойства, привлекающие к себе внимание. Они потребляют небольшую мощность, могут работать при малом напряжении питания. В одном корпусе можно разместить 4 устройства. Эта группа иногда дает возможность производить полезные устройства.

Это простой преобразователь сигнала в унитарный цифровой код, который можно преобразовать в двоичный, цифровым преобразованием. На схеме имеется 4 компаратора. Напряжение опорное подается на инвертирующие входы по делителю резистивного типа. При одинаковых резисторах на инвертирующих входах устройства напряжение будет равно n * Uоп / 4, n – номер устройства. Напряжение входа подается на неинвертирующие входы, которые соединены вместе.

В итоге сравнения напряжения входа с опорным, на компараторных выходах образуется цифровой унитарный код напряжения входа.

В данной статье разберёмся как работает компаратор на операционном усилителе.

Операционные усилители – очень мощный инструмент современного радиолюбителя. Одной из самых простых схем его использования является подключение по схеме компаратора.

Название компаратор прижилось в отечественной литературе. Произошло оно от заимствования с английского слова compare = сравнить. Поэтому многие радиолюбители называют компаратор сравнивающим устройством.

Обычно для экономии стоимости данные схемы реализуют на операционных усилителях, но бывают и специализированные микросхемы компараторов. Они, как правило, имеют лучшее быстродействие и меньшее падение напряжения на самой микросхеме, но их невозможно использовать в качестве операционного усилителя. В данной статье речь пойдёт о использовании именно операционника (ОУ) в качестве компаратора. А вариант с использованием специализированных компараторов будет рассмотрен позже.

Наглядно эта схема показана на следующем рисунке:

Рис.1. Схема подключения операционного усилителя в качестве компаратора.

Давайте вместе разберемся в её работе.

Наиболее понятно, работа данной схемы представляется в виде работе некоторого постоянно сравнивающего устройства, которое постоянно сравнивает сигнал 1 и сигнал 2 подаваемые на вход компаратора. Выход оно устанавливает исходя из следующего:

Сигнал 1 больше по напряжению, чем сигнал 2?

Если да, то выход устанавливается в 10В (напряжение питание операционного усилителя). Если нет, то в 0В.

Рис.2. Наглядное описание работы компаратора

На первый взгляд в работе данной схемы нет ничего необычного, но существует бесчисленное множество применений работы данной схемы. В основном это устройства, которые переводят аналоговый сигнал в некоторую логическую величину: ДА или НЕТ. Это может быть и индикатор зарядки батареи, и датчик критического уровня жидкости в сосуде или любой другой аналоговый сигнал, который переходи какое-то определённое значение.

Разберём несколько из примеров использования компараторов (рекомендованных для домашней сборки), для того чтобы лучше разобраться в том, как работает данная схема.

1. Датчик перегрева радиатора

Данная схема работает по следующему принципу: В зависимости от температуры терморезистор R5 будет иметь разное значение сопротивления. С ростом температуры его сопротивление увеличивается.

Если температура не достигла заданной, то напряжение на выходе компаратора равно 0, и светодиод не горит.

При достижении температуры, установленной потенциометром R3, компаратор переключается, светодиод загорается, информируя нас о том, что терморезистор R5 перегрелся. В этот момент нужно как-то охладить работу вашей схемы, например, включив вентилятор или насос для прокачки воды. Это легко реализовать подключением в качестве нагрузки к выходу компаратора обычное электромагнитное реле.

Рис.3. Схема подключения датчика температуры.

2. Индикатор зарядки/разрядки батареи с двумя фиксированными уровнями.

Задача данного датчика крайне проста: проинформировать держателя батарейки о полном её заряде и скором прекращении работы. Данная схема отличается от предыдущей тем, что строиться на базе не одного, а двух компараторах, но это не беда для современной техники. Дело в том, что большинство современных операционных усилителей выпускаются в корпусе DIP8/SO8 и в своём составе содержат два операционных усилителя. К примеру, вот фрагмент даташита (технического описания микросхемы) используемого мною ОУ:

Рис. 4. Расположение выводов у микросхемы ОУ NE5532.

Решается она следующим образом: входное напряжение поступает на сложный делитель R3-R5-R7. В результате получаются два аналоговых уровня соответствующих не инвертирующим входам ОУ.

Тот, что получается между резисторами R3-R5 будет говорить нам о глубоком разряде аккумулятора, так как он будет срабатывать при достаточно низком напряжении.

Тот, что получается между резисторами R5-R7 будет говорить нам о полном заряде аккумулятора, так как он будет срабатывать при высоком напряжении на клеммах аккумулятора.

Сразу замечу, что схема мной собиралась не раз и тестировалась на лабораторном блоке питания и реальной батарейке. По этому все комментарии по настройке тут особо не нужны, так как схема работает сразу практически без настройки. Схема отлично работает с 9В свинцовыми и МеОН аккумуляторами. Для популярных в последнее время Li-ion батареек она несколько изменяется: современные Li-ion батарейки работают в диапазоне 4,2-2,4В. Для них питание операционного усилителя выбирается на уровне 2,4В (под стандартный стабилизатор), фиксированный уровень сравнения вместо 2,5В становится 1,2В и используются низковольтные ОУ. В остальном схема точно такая-же.

Рис.5. Схема индикатора зарядки/разрядки батареи.

Несколько тонкостей работы с компараторами.

Данный материал написан для людей, которые уже попробовали поработать с компараторами и хотят углубиться в данной теме:

1. Чувствительность компаратора зависит от величины минимального напряжения между входами. Если вы стараетесь сделать очень точные измерения, по типу вытащить 0,001*С из схемы срабатывания охлаждения, то будьте готовы к тому, что у вас это не получиться в виду ограничений микросхемы

2. Во время переключения некоторое время компаратор переключается. Это свойство проявляется в основном при детекции вч сигналов. Если ваши рабочие частоты лежат до 100 кГц, то о данном параметре на всех современных ОУ можете не заморачиваться. В противном случае смотрите на величину скорости роста сигнала. Обычно у современных ОУ эта величина составляет единицы/десятки вольт в микросекунду. В вашем случае она считается по формуле:

Если данная величина получилась больше, чем параметр ОУ, то меняйте оу. На экране осциллографа при этом у вас будет сильное сваливание от прямоугольного сигнала на выходе ОУ к треугольному сигналу.

3. В некоторых случаях полезно реализовать гистерезис(запаздвание) на положительной обратной связи, но это рассмотрим подробнее в одном из следующих занятий практикума.

В конце концов вот вам приятный подарок, раз уж вы дочитали до конца. Вот видео автора данной статьи о компараторах, из которого можно подчеркнуть много интересного и полезного.

Заключение

А теперь собственно ваше практическое задание: на основе вышеизложенного собрать простую схему на компараторе и показать её любому своему знакомому с объяснениями как это работает. Особенно рекомендую собрать схему на датчик перегрева и протестировать её работу на примере стакана с горячей водой. Присылайте свои фото и комментарии с практикумом на адрес info<собака>meanders.ru. А в качестве бонуса фотографии самого интересного практикума я выложу ниже в данной статье со ссылками на собравшего.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Что такое компаратор и триггер Шмидта

Компаратор нулевого уровня. Инвертирующая и неинвертирующая схемы

Компаратор – это устройство, предназначенное для сравнения двух входных сигналов, также это элемент перехода от аналоговых к цифровым сигналам. В данной схеме (рис. 1) на неинвертирующий вход подается ноль, а на инвертирующий напряжение Uвх (обычно с амплитудой не более 15В). Входной сигнал имеет синусоидальную форму, а на выходе компаратора сигнал имеет прямоугольную форму (меандр). В компараторе напряжение Uвх сравнивается с нулем и в моменты, когда напряжение Uвх = 0 происходит переключение компаратора.

Рис. 1. Схема компаратора нулевого уровня

Из графиков видно, что сдвиг по фазе между входным сигналом и первой гармоникой выходного сигнала составляет 180 градусов (Δφ = 180º). Если подавать напряжение Uвх на неинвертирующий вход, а Uвх = 0 на инвертирующий, то такой сдвиг по фазе составляет ноль градусов (Δφ = 0º).

Компаратор ненулевого уровня

В данной схеме входное напряжение сравнивается с ненулевым опорным напряжением (Uоп ≠ 0). Опорное напряжение подается с резистивного делителя напряжения, выполненного на резисторах R1 и R2. Необходимую величину опорного напряжения легко получить с помощью подбора резисторов R1 и R2. В моменты, когда входное напряжение сравнивается с опорным напряжением, происходит переключение компаратора.

Относительная продолжительность включения – это отношение продолжительности t1 состояния выхода компаратора с положительным напряжением Uвых >0 к периоду T выходного напряжения

Рис. 2. Схема компаратора ненулевого уровня

Компараторы, представленные на схемах (рис. 1 – 2), имеют ряд недостатков, одним из основных является дребезг выходного напряжения при повышенном уровне шумов во входном сигнале.



Схема операционного усилителя с положительной обратной связью
(Триггер Шмитта)

Триггер Шмитта или схема компаратора с положительной обратной связью позволяет устранить недостатки простых схем компаратора (рис. 3), избежать дребезга выходного напряжения, возникающего вследствие неизбежного наличия шумов во входном сигнале

В триггере Шмитта на инвертирующий вход подаѐтся входной сигнал, а на неинвертирующий поступает сигнал положительной
обратной связи – опорное напряжение Uоп. Величину опорного напряжения можно регулировать с помощью резисторов R1 и R2. В цепи отрицательной обратной связи два стабилитрона VD1 и VD2 включены встречно — последовательно. Данные стабилитроны предназначены для ограничения амплитуды выходного прямоугольного сигнала на некотором заданном уровне.

Регулировочная характеристика триггера Шмитта представляет собой прямоугольную петлю гистерезиса. Это позволяет использовать схему в качестве формирователя прямоугольных импульсов из некоторого входного напряжения, в частности, из синусоидального.

Рассмотрение работы схемы начнѐм с момента t = 0. В данной схеме входное напряжение Uвх сравнивается с положительным опорным напряжением Uоп, и как только входное напряжение превысит опорное напряжение, схема переключится и на выходе появится отрицательное напряжение.

После момента переключения входное напряжение, достигнув некоторого максимального значения, снова уменьшится до величины, равной входному напряжению в момент переключения, однако компаратор не переключится. Это связано с тем, что

опорное напряжение снимается с резистивного делителя, подключенного к выходу компаратора, и изменение знака выходного напряжения при переключении приводит к изменению знака опорного напряжения. В дальнейшем входное гармоническое напряжение не только спадает до нуля, но меняет свой знак и увеличивается до величины равной отрицательному опорному напряжению. Именно в этот момент будет происходить переключение схемы и на выходе установится положительное выходное напряжение.

Рис. 3. Триггер Шмидта

Схема триггера Шмитта не реагирует на шумы, т.е. переключение происходит только в те моменты, когда входное напряжение превышает модуль опорного напряжения

Операционный усилитель с положительной обратной связью и односторонней петлѐй гистерезиса

Как можно видеть из рисунка 4, отличие данной схемы от схемы триггера Шмитта состоит в наличии в цепи положительной обратной связи диода VD1.

Рис. 4. Схема операционного усилителя с положительной обратной связью и односторонней петлей гистерезиса

Данный диод, находящийся в цепи положительной обратной связи, необходим для подачи на неинвертирующий вход отрицательного опорного напряжения, что приводит к уменьшению ширины петли гистерезиса в два раза.

См. также: Использование встроенного модуля компаратора в контроллерах Microchip PIC. Приемы, трюки, лайфхаки…


Схемы компаратора | 2 важных типа | инвертирование

Схема компаратора

Первоначальный загрузчик изображения обложки был —  Зефирис at Английский Википедия., Микросхемы, CC BY-SA 3.0

Contents [show]

Что такое схема компаратора?

Компаратор или компаратор напряжения — это устройство, используемое для сравнения двух уровней напряжения. Мы можем определить, какой уровень напряжения выше, по выходу компаратора. Это применение типичных операционных усилителей, и, кроме того, у него есть приложения.

Что делает схема компаратора?

A компаратор сравнивает два заданных входных напряжения и выдает выходной сигнал, показывающий, какое напряжение имеет более высокое значение. Схема принимает вход с помощью инвертирующих и неинвертирующих клемм и обеспечивает выход с выходной клеммы. Выходной диапазон лежит между положительным напряжением насыщения и отрицательным напряжением насыщения.

Схема компаратора | схема компаратора операционного усилителя

На изображении ниже представлена ​​принципиальная схема схемы компаратора. Как мы можем заметить, схема содержит только операционный усилитель, и входное напряжение подается в нее через инвертирующие и неинвертирующие клеммы.

Схема компаратора

Схема компаратора разработана с использованием операционного усилителя. Для его готовности к работе предусмотрены входные напряжения. В нем нет встроенной системы обратной связи. Опорное напряжение и сигнал напряжения обеспечиваются через ОУ. Также предусмотрены входы положительного и отрицательного напряжения насыщения. Ориентировочный выходной сигнал собирается с выхода операционного усилителя.

Как работает схема компаратора?

Принцип работы компаратора довольно прост. Как правило, он сравнивает два источника напряжения и обеспечивает большую мощность. Ниже упомянутые два пункта констатируют работу.

  • Если напряжение на неинвертирующем выводе выше, чем напряжение на инвертирующем выводе, выход переключается на положительное напряжение насыщения операционного усилителя.
  • Если напряжение инвертирующего терминала выше, чем напряжение на неинвертирующем терминале, выход переключается на отрицательное напряжение насыщения операционного усилителя.

Схема компаратора напряжения на ОУ 741

Операционный усилитель 741 — это интегральная схема, содержащая операционный усилитель. Компаратор напряжения может быть создан с использованием операционного усилителя 741. На рисунке ниже представлена ​​принципиальная схема неинвертирующего компаратора напряжения с использованием операционного усилителя 741.

Компаратор на ОУ 741

блок-схема компаратора

Работу компаратора можно представить с помощью блок-схем. На следующем изображении представлена ​​блок-схема компаратора.

Блок-схема компаратора

реле цепи компаратора

Реле — это переключатели, которые могут управлять цепью. Он может включать или выключать цепь, а также подключать и отключать цепь от другой цепи. Компаратор широко используется в качестве реле.

схема компаратора использует

Компаратор — ценное и важное устройство. Есть несколько применений компараторов. Некоторые применения компараторов перечислены ниже.

  • Детектор нуля: Если значение равно нулю, детектор нуля обнаруживает его. Компаратор обычно представляет собой усилитель с высоким коэффициентом усиления, а для управляемых входов компаратор подходит для обнаружения нуля.
  • Сдвиг уровня: Сдвигатель уровня может быть сконструирован с использованием одного операционного усилителя. Используя подходящее подтягивающее напряжение, схема обеспечивает большую гибкость при выборе интерпретируемых напряжений.
  • Аналого-цифровой преобразователь (АЦП): Компараторы используются для создания аналого-цифровых преобразователей. В преобразователе выход показывает, какое напряжение выше. Эта операция аналогична 1-битному квантованию. Именно поэтому компараторы используются практически в каждом аналого-цифровом преобразователе.
  • Помимо упомянутых приложений, существует множество других компараторов, таких как — Осциллятор релаксации, в детекторах абсолютных значений, в детекторах перехода через ноль, в оконных детекторах и т. Д.

нечеткая цепь компаратора

Схемы Fuzz могут быть разработаны с использованием компараторов. Микросхема LM311 является таким примером нечеткого компаратора. Мы обсудим это позже, когда речь идет о LM311.

Как сделать компаратор?

Компаратор — это особенное и простое в изготовлении электрическое устройство. Чтобы построить компаратор, нам понадобится операционный усилитель и напряжения питания. Сначала на операционный усилитель подается положительное и отрицательное напряжение насыщения. Выход будет изменяться в этом диапазоне напряжений. Затем вводятся их инвертирующие и неинвертирующие клеммы. Опорное напряжение предусмотрено в неинвертирующем терминале, и входное напряжение обеспечиваются в инвертирующем терминале. С этой схемой не связана система обратной связи.

Схема компаратора напряжения

Схема компаратора может обнаруживать высокие напряжения между двумя напряжениями. Компараторы, которые обычно сравнивают с напряжениями, известны как схема компаратора напряжения.

Принципиальная схема фазового компаратора

Фазовый компаратор — это аналоговая логическая схема, способная смешивать и умножать. Он обнаруживает разность фаз между двумя заданными сигналами, генерируя сигнал напряжения. На изображении ниже представлена ​​принципиальная схема фазового компаратора.

микросхемы компаратора

Как упоминалось ранее, компаратор сравнивает два сигнала напряжения и выдает ориентировочный выходной сигнал. Компараторы встроены в интегральную схему для удобства использования. На изображении ниже представлены схемы для компаратора ic.

Типичный компаратор IC

Схема компаратора lM358

lm358 — это микросхема компаратора, состоящая из двух компараторов внутри нее. Он имеет восемь контактов. Эта микросхема не требует какого-либо независимого внешнего источника питания для работы каждого компаратора. Принципиальная схема микросхемы приведена ниже.

LM358 Компаратор IC

внутренняя цепь компаратора

Компаратор разработан с использованием операционного усилителя — операционного усилителя в качестве дополнительной схемы. Внутренняя схема внутри микросхемы приведена ниже на схеме. Наблюдая за схемой, мы видим, что она состоит в основном из транзисторов, диодов и резисторов. Внутреннюю схему можно разделить на три части в зависимости от их работы. Это входной каскад, каскад усиления и выходной каскад.

Схема компаратора | Схема транзисторного компаратора

Принципиальная схема компаратора приведена ниже. Внутренняя принципиальная схема такая же, как и схема внутреннего компаратора. В нем есть диоды, транзисторы и резисторы. Компоненты с внутренним подключением работают как компаратор.

Схема компаратора триггера Шмитта

Триггер Шмитта — это вирусная схема, используемая для повышения помехоустойчивости и снижения вероятности множественного переключения.

Триггер Шмитта — это схема компаратора с отдельными уровнями переключения входов для изменения выходов. Схема компаратора триггера Шмитта изображена на диаграмме ниже.

Схема компаратора таймера 555

Таймер 555 представляет собой схему генератора. Он известен как таймер 555, поскольку в нем есть три резистора по 5 кОм, которые внутренне подключены для обеспечения опорных напряжений для обоих компараторов схем таймера. Микросхема таймера A555 используется в таймерах задержки, светодиодных индикаторах, генерации импульсов и т. Д. Базовая блок-схема микросхемы таймера 555 приведена ниже. Есть два компаратора, транзистор NPN, триггер, три резистора 5 кОм и выходной драйвер.

схема компаратора с использованием lm324

lm324 — это микросхема операционного усилителя общего назначения, внутри которой расположены четыре операционных усилителя. Его также можно использовать в качестве компаратора. Операционные усилители обладают более высокой стабильностью и более широкой полосой пропускания. LM324 имеет 14 контактов. Схема выводов lm324 приведена ниже.

Номер контактаОписание
1Выход первого компаратора
2Инвертирующий вход первого компаратора
3Неинвертирующий вход первого компаратора
4Напряжение питания 5В
5Неинвертирующий вход второго компаратора
6Инвертирующий вход второго компаратора
7Выход второго компаратора
8Выход третьего компаратора
9Инвертирующий вход третьего компаратора
10Неинвертирующий вход третьего компаратора
11Контакт заземления (GND)
12Неинвертирующий вход четвертого компаратора
13Инвертирующий вход четвертого компаратора
14Выход четвертого компаратора

Принципиальная схема компаратора LM324 изображена на схеме ниже.

схема компаратора lm139

lm139 — еще одна микросхема компаратора. Он имеет четыре отдельных прецизионных компаратора. Микросхема предназначена для работы от одного источника питания. Он специально разработан для прямого взаимодействия с транзисторно-транзисторной логикой и дополнительной МОП-логикой. IC имеет задержку распространения 0.7 микросекунды.

На изображении ниже изображена внутренняя принципиальная схема компаратора lm139.

схема компаратора lm319

lm319 — еще одна микросхема компаратора с 14 контактами. Он имеет два отдельных прецизионных компаратора. Микросхема предназначена для работы в широком диапазоне напряжений питания. Он специально разработан для прямого взаимодействия с транзисторно-транзисторной логикой и комплементарной МОП-логикой, RTL, DTL. IC имеет задержку распространения 0.025 микросекунды.

Схема компаратора напряжения lm311

lm311 — еще одна микросхема компаратора с восемью контактами. Имеет единственный компаратор. Микросхема имеет время отклика минимум 0.200 наносекунды и типичное усиление напряжения 200.

На изображении ниже изображена внутренняя принципиальная схема компаратора lm311.

LM 311 Компараторы

схема компаратора lm339

lm339 — еще одна микросхема компаратора. Он имеет четыре отдельных прецизионных компаратора. Микросхема предназначена для работы от одного источника питания и для широкого диапазона напряжений. Он специально разработан для прямого взаимодействия с транзисторно-транзисторной логикой, дополнительной МОП-логикой и DTL, ECL, MOS-логикой. IC имеет задержку распространения 0.7 микросекунды.

пример схемы компаратора операционного усилителя

Компараторные схемы операционного усилителя используются в различных приложениях. Например, чтобы убедиться, что входное значение достигло пика или определенного значения или нет, или для квантования в АЦП, также в оконных детекторах, детекторах перехода через ноль и т. Д.

Схема компаратора окна напряжения

Оконный компаратор относится к схеме, которая работает только в определенном кадре, окне или напряжении. Компаратор напряжения сравнивает два сигнала и выдает выходной сигнал. Для схемы компаратора окна, есть то, что называется сэндвич эффект: если входное напряжение идет выше, чем опорное напряжение низкого уровня. Контур включен, и если входное напряжение становится выше, чем опорное напряжение высокого уровня, то схема выключена.

Компоненты, необходимые для компаратора окна напряжения:

  • Операционные усилители LM741 (2)
  • Чип инвертора 4049 (1)
  • Резистор 470 Ом (1)
  • 1N4006 Диоды (2)
  • LED

Схема компаратора окна напряжения представлена ​​на рисунке ниже.

схема компаратора с фиксацией

Компаратор с защелкой разработан с использованием защелки StrongArm. Защелка StrongArm считается первичным каскадом усиления решения. На следующем этапе используется фиксирующий элемент, несущий выходную нагрузку.

схема компаратора операционного усилителя с гистерезисом

Разница между верхней точкой срабатывания и нижней точкой срабатывания — гистерезис. Гистерезис основан на концепции триггера Шмитта. Если типичный компаратор разработан с положительной обратной связью, эта схема вызывает гистерезис. На изображении ниже изображена принципиальная схема.

схема рекуперативного компаратора

Схема триггера Шмитта также называется схемами рекуперативного компаратора. Они используются для повышения помехоустойчивости и снижения вероятности многократного переключения схем регенеративного компаратора для разработки других сложных схем. Они используются в АЦП, схемах слайсеров, считывании памяти и т. Д. Принципиальная схема триггера Шмитта упоминается как принципиальная схема схемы рекуперативного компаратора.

схема компаратора температуры

Температурный контур — это цифровая электронная схема, которая измеряет, ниже ли температура на входе заданной эталонной температуры. Это один из основных примеров схемы компаратора. Датчики температуры включают компаратор.

Часто задаваемые вопросы

1. как работает схема компаратора?

Ответ: Принцип работы компаратора довольно прост. Как правило, он сравнивает два источника напряжения и обеспечивает большую мощность. Ниже упомянутые два пункта констатируют работу.

  • Если напряжение на неинвертирующем выводе выше, чем напряжение на инвертирующем выводе, выход переключается на положительное напряжение насыщения операционного усилителя.
  • Если напряжение инвертирующего терминала выше, чем напряжение на неинвертирующем терминале, выход переключается на отрицательное напряжение насыщения операционного усилителя.

2. Типы схем компаратора

Ответ: Есть несколько типов компараторов. Некоторые из широко используемых усилителей перечислены ниже.

  • Механические компараторы
  • Механические, оптические компараторы
  • Электронные компараторы
  • Пневматические компараторы

3. Почему выходное напряжение в схеме компаратора операционного усилителя равно напряжению насыщения?

Ответ: Цепи компаратора не имеют обратной связи. Таким образом, операционный усилитель имеет коэффициент усиления без обратной связи. Для идеального операционного усилителя коэффициент усиления без обратной связи бесконечен, а для практичного операционного усилителя коэффициент усиления очень высокий. Теперь напряжение насыщения типичных операционных усилителей составляет + — 15 В. Операционный усилитель насыщается при +13 или -13 В. Теперь операционный усилитель быстро насыщается при небольшом входном напряжении. Именно поэтому выходное напряжение в схеме компаратора равно напряжению насыщения.

4. В схеме компаратора ОУ, почему используется опорное напряжение

Ответ: Сравнение производится между двумя или более количествами. Чтобы указать, что более важно, нам нужна ссылка, чтобы решить. Нам нужно определить, какое напряжение более важно для компаратора. Поэтому опорное напряжение используется, чтобы принять решение.

5. Как схема цифрового компаратора различает меньшее и большее значащее число?

Ответ: Цифровой компаратор сравнивает два двоичных числа. Компаратор сначала определяет эквивалентное напряжение двоичных чисел, а затем определяет, какое число меньше, какое число является значимым.

Дополнительные статьи по электронике нажмите сюда

О судипте Рой

Я энтузиаст электроники и в настоящее время занимаюсь электроникой и коммуникациями.
Я очень заинтересован в изучении современных технологий, таких как искусственный интеллект и машинное обучение.
Мои статьи посвящены предоставлению точных и обновленных данных всем учащимся.
Мне доставляет огромное удовольствие помогать кому-то в получении знаний.

Подключимся через LinkedIn — https://www.linkedin.com/in/sr-sudipta/

Как работает компаратор на операционном усилителе(ОУ). » Хабстаб

Прежде чем начнём разбираться с компаратором, давайте вспомним, что такое операционный усилитель(ОУ). Операционный усилитель имеет пять выводов и на схемах обозначается треугольником, как показано на рисунке ниже.

Давайте подробнее рассмотрим назначение выводов:
  • два вывода для подключения питания, плюс и минус напряжения питания;
  • два входа, один неинвертирующий, обозначенный V+ и один инвертирующий, обозначенный V-;
  • один выход, обозначенный Vвых;

Скорее всего, у того кто до этого не был знаком с операционным усилителем возникнет вопрос, что такое инвертирующий и неинвертирующий вход, давайте рассмотрим это на примере.

На рисунке выше видно, что если напряжение на неинвертирующем входе больше чем на инвертирующем, то на выходе будет плюс напряжение питания.

Если, наоборот, напряжение на инвертирующем входе будет больше чем на неинвертирующем, то на выходе будет минус напряжение питания.
По сути мы рассмотрели как работает компаратор. Компаратор от английского слова compare – сравнить, то есть он сравнивает два напряжения и в зависимости от того на каком из входов оно выше, устанавливает на выходе плюс или минус напряжения питания. Также, можно сказать, что компараторэто схема включения ОУ без отрицательной обратной связи, обладающая большим коэффициентом усиления. Под отрицательной обратной связью понимают, соединение инвертирующего входа с выходом, напрямую или через электронный компонент, например, резистор, кондесатор или диод.

Для демонстрации, того как работает компаратор рассмотрим схему, изображённую ниже.

В этой схеме с помощью делителя, резисторами 10К и 100К, устанавливается на инвертирующем входе напряжение 0,45V, его ещё называют опорным. Пока напряжение на неинвертирующем входе меньше 0,45V, на выходе будет 0V и светодиод не загорится, как только напряжение на неинвертирующем входе превысит это значение, на выходе станет 5V и светодиод загорится. Таким образом, вращая потенциометр, мы можем зажигать и гасить светодиод. Схема непрактичная, но наглядная.
В одной из статей описывается как работает пиковый детектор, там как раз можно увидеть ОУ включённый как компаратор. Для увеличения можно кликнуть по фото.

Давайте немного упростим схему.

И подключим осциллограф к входам компаратора. Первый канал — неинвертирующий вход, второй — инвертирующий.

Во время хлопков в ладоши возникают всплески, если при этом амплитуда всплесков(жёлтые) превышает опорное напряжение(бирюзовый), на выходе появляется плюс напряжения питания, иначе минус.
В этом случае в качестве датчика у нас выступает микрофон, также в качестве датчика может выступать фотодиод, для включения света при низком уровне освещенности, а его мы задаем опорным напряжением.
Ранее, мы договорились, что компаратор — это схема включения ОУ без отрицательной обратной связи. Но кроме отрицательной обратной связи существует, ещё положительная обратная связь.

Схема, изображенная выше, называется инвертирующий триггер Шмитта, по сути это тот же компаратор, только с положительной обратной связью. Принцип его работы заключается в следующем, помните на осциллограмме когда жёлтые линии пересекали бирюзовую, изменялось напряжение на выходе. Так вот здесь линий, которые можно пересечь две, при превышении верхней линии на выходе появляется минус напряжения питания, если значение опустится ниже нижней линии —плюс, а в промежутке между линиями система сохраняет своё состояние.

Так же существует неинвертирующий триггер Шмитта, он изображен на схеме ниже.

Логичным вопросом будет, почему того же Отто Герберт Шмитт не устроил обычный компаратор и он изобрел свой. Ответ прост, если на вход компаратора без положительной обратной связи подать зашумленный сигнал, это вызовет множество ложных срабатываний, для того чтобы избежать этого был придуман триггер Шмитта, у которого два порога переключения.
Правда и у него тоже есть, что доработать. Хотелось бы избавиться от двуполярного питания и так как пороги срабатывания задаются с помощью делителя, то они симметричны относительно нуля, а хотелось бы выбирать их произвольно.
Пожалуй это всё, что хотелось рассказать про компараторы на ОУ, если появилось желание разобраться более подробно, добро пожаловать сюда.

Схема компаратора на транзисторе

Общие сведения

Компаратор – это сравнивающее устройство. Аналоговый компаратор предназначен для сравнения непрерывно изменяющихся сигналов. Входные аналоговые сигналы компаратора суть Uвх – анализируемый сигнал и Uоп – опорный сигнал сравнения, а выходной Uвых – дискретный или логический сигнал, содержащий 1 бит информации:

(1)

Выходной сигнал компаратора почти всегда действует на входы логических цепей и потому согласуется по уровню и мощности с их входами. Таким образом, компаратор – это элемент перехода от аналоговых к цифровым сигналам, поэтому его иногда называют однобитным аналого-цифровым преобразователем.

Неопределенность состояния выхода компаратора при нулевой разности входных сигналов нет необходимости уточнять, так как реальный компаратор всегда имеет либо конечный коэффициент усиления, либо петлю гистерезиса (рис. 1).

Рис. 1. Характеристики компараторов

Рис. 2. Процессы переключения компараторов

Чтобы выходной сигнал компаратора изменился на конечную величину |U 1 вых – U 0 вых| при бесконечно малом изменении входного сигнала, компаратор должен иметь бесконечно большой коэффициент усиления (эпюра 1 на рис. 2) при полном отсутствии шумов во входном сигнале. Такую характеристику можно имитировать двумя способами – или просто использовать усилитель с очень большим коэффициентом усиления, или ввести положительную обратную связь.

Рассмотрим первый путь. Как бы велико усиление не было, при Uвх близком к нулю характеристика будет иметь вид рис. 1а. Это приведет к двум неприятным последствиям. Прежде всего, при очень медленном изменении Uвх выходной сигнал также будет изменяться замедленно, что плохо отразится на работе последующих логических схем (эпюра 2 на рис. 2). Еще хуже то, что при таком медленном изменении Uвх около нуля выход компаратора может многократно с большой частотой менять свое состояние под действием помех (так называемый «дребезг», эпюра 3). Это приведет к ложным срабатываниям в логических элементах и к огромным динамическим потерям в силовых ключах. Для устранения этого явления обычно вводят положительную обратную связь, которая обеспечивает переходной характеристике компаратора гистерезис (рис. 1б). Наличие гистерезиса хотя и вызывает некоторую задержку в переключении компаратора (эпюра 4 на рис. 2), но существенно уменьшает или даже устраняет дребезг Uвых.

В качестве компаратора может быть использован операционный усилитель (ОУ) так, как это показано на рис. 3. Усилитель включен по схеме инвертирующего сумматора, однако, вместо резистора в цепи обратной связи включены параллельно стабилитрон VD1 и диод VD2.

Рис. 3. Схема компаратора на ОУ

Пусть R1 = R2. Если Uвх – Uоп > 0, то диод VD2 открыт и выходное напряжение схемы небольшое отрицательное, равное падению напряжения на открытом диоде. При Uвх – Uоп m А710 (отечественный аналог – 521СА2), разработанного Р. Видларом (R.J.Widlar) в США в 1965 г., приведена на рис. 4.

Рис. 4. Схема компаратора m А710

Она представляет собой дифференциальный усилитель на транзисторах VT1, VT2, нагруженный на каскады ОЭ на VT5 и VT6. Каскад на VT5 через транзистор VТ4 управляет коллекторным режимом входного каскада и через транзистор в диодном включении VТ7 фиксирует потенциал базы транзистора VT8, делая его независимым от изменений положительного напряжения питания. Каскад на VT6 представляет собой второй каскад усиления напряжения.

Эмиттерные выводы транзисторов VT5 и VT6 присоединены к стабилитрону VD1 с напряжением стабилизации 6,2 В, поэтому потенциалы баз указанных транзисторов соответствуют приблизительно 6,9 В. Следовательно, допустимое напряжение на входах компаратора относительно общей точки может достигать 7 В. На транзисторе VT8 выполнен эмиттерный повторитель, передающий сигнал с коллектора VT6 на выход. Постоянная составляющая сигнала уменьшается до нулевого уровня стабилитроном VD2.

Если дифференциальное входное напряжение превышает +5. +10 мВ, то транзистор VT6 закрыт, а VT5 близок к насыщению. Выходной сигнал компаратора при этом не может превысить +4 В, так как для более положительных сигналов открывается диод на VT7, не допуская излишнего роста выходного напряжения и насыщения VТ5. При обратном знаке входного напряжения VT6 насыщается, потенциал его коллектора оказывается близок к напряжению стабилизации стабилитронов VD1 и VD2, а поэтому потенциал выхода близок к нулю. Транзистор VT9 – источник тока 3 мА для смещения VT8 и VD2. Часть этого тока (до 1,6 мА) может отдаваться в нагрузку, требующую вытекающий ток на входе (один вход логики ТТЛ серии 155 или 133).

В дальнейшем эта схема развивалась и совершенствовалась. Схемы многих компараторов имеют стробирующий вход для синхронизации, а некоторые модификации снабжены на выходе триггерами-защелками, т.е. схемами, фиксирующими состояние выхода компаратора по приходу синхроимпульса. Кроме того, для повышения функциональной гибкости часть ИМС компараторов (например, МАХ917-920) содержит источник опорного напряжения, а у некоторых (например, МАХ910) порог срабатывания устанавливается цифровым кодом от 0 до 2,56 В с дискретностью 10 мВ , для чего на кристалле микросхемы имеются источник опорного напряжения и 8-разрядный цифро-аналоговый преобразователь.

Выходные каскады компараторов обычно обладают большей гибкостью, чем выходные каскады операционных усилителей. В обычном ОУ используют двухтактный выходной каскад, который обеспечивает размах напряжения в пределах между значениями напряжения питания (например, +/-13 В для ОУ типа 140УД7, работающего от источников +/-15 В). В выходном каскаде компаратора эмиттер, как правило, заземлен, и выходной сигнал снимается с «открытого коллектора». Выходные транзисторы некоторых типов компараторов, например, 521СА3 или LM311 имеют открытые, т.е. неподключенные, и коллектор и эмиттер. Две основные схемы включения компараторов такого типа приведены на рис. 5.

Рис. 5. Схемы включения выходного каскада компаратора 521СА3

На рис. 5а выходной транзистор компаратора включен по схеме с общим эмиттером. При потенциале на верхнем выводе резистора равном +5 В к выходу можно подключать входы ТТL, nМОП- и КМОП-логику с питанием от источника 5 В. Для управления КМОП-логикой с более высоким напряжением питания следует верхний вывод резистора подключить к источнику питания данной цифровой микросхемы.

Если требуется изменение выходного напряжения компаратора в пределах от U + пит до U – пит, выходной каскад включается по схеме эмиттерного повторителя (рис. 5б). При этом заметно снижается быстродействие компаратора и происходит инверсия его входов.

Некоторые модели интегральных компараторов (например, AD790, МАХ907) имеют внутреннюю неглубокую положительную обратную связь, обеспечивающую их переходной характеристике гистерезис с шириной петли, соизмеримой с напряжением смещения нуля.

На рис. 6а приведена схема включения компаратора с открытым коллектором на выходе, переходная характеристика которой имеет гистерезис (рис. 1б). Пороговые напряжения этой схемы определяются по формулам

,

Из-за несимметрии выхода компаратора петля гистерезиса оказывается несимметричной относительно опорного напряжения.

Рис. 6. Компаратор с положительной обратной связью

В заключение, перечислим некоторые особенности компараторов по сравнению с ОУ.

  1. Несмотря на то, что компараторы очень похожи на операционные усилители, в них почти никогда не используют отрицательную обратную связь, так как в этом случае весьма вероятно (а при наличии внутреннего гистерезиса – гарантировано) самовозбуждение компараторов.
  2. В связи с тем, что в схеме нет отрицательной обратной связи, напряжения на входах компаратора неодинаковы.
  3. Из-за отсутствия отрицательной обратной связи входное сопротивление компаратора относительно низко и может меняться при изменении входных сигналов.
  4. Выходное сопротивление компараторов значительно и различно для разной полярности выходного напряжения.

Двухпороговый компаратор

Двухпороговый компаратор (или компаратор «с окном») фиксирует, находится ли входное напряжение между двумя заданными пороговыми напряжениями или вне этого диапазона. Для реализации такой функции выходные сигналы двух компараторов необходимо подвергнуть операции логического умножения (рис. 7а). Как показано на рис. 7б, на выходе логического элемента единичный уровень сигнала будет иметь место тогда, когда выполняется условие U1 m А711 (отечественный аналог – 521СА1).

Рис. 7. Схема двухпорогового компаратора (а) и диаграмма его работы (б)

Параметры компараторов

Параметры, характеризующие качество компараторов, можно разделить на три группы: точностные, динамические и эксплуатационные.

Компаратор характеризуется теми же точностными параметрами, что и ОУ.

Основным динамическим параметром компаратора является время переключения tп. Это промежуток времени от начала сравнения до момента, когда выходное напряжение компаратора достигает противоположного логического уровня. Время переключения замеряется при постоянном опорном напряжении, подаваемом на один из входов компаратора и скачке входного напряжения Uвх, подаваемого на другой вход. Это время зависит от величины превышения Uвх над опорным напряжением. На рис. 8 приведены переходные характеристики компаратора mА710 для различных значений дифференциального входного напряжения Uд при общем скачке входного напряжения в 100 мВ. Время переключения компаратора tп можно разбить на две составляющие: время задержки tз и время нарастания до порога срабатывания логической схемы tн. В справочниках обычно приводится время переключения для значения дифференциального напряжения, равного 5 мВ после скачка.

Рис. 8. Переходная характеристика компаратора m А710 при различных превышениях скачка входного напряжения Uд над опорным: 1 – на 2 мВ; 2 – на 5 мВ; 3 – на 10 мВ; 4 – на 20 мВ

Для сравнения двух напряжений не обязательно обращаться к операционному усилителю. С подобной задачей вполне может справиться простая и дешевая схема компаратора на транзисторе, которая представлена на рис. 1.

Рис. 1. Схема компаратора на транзисторе.

Транзистор p-n-p типа сравнивает опорное напряжение на эмиттере с частью контролируемого напряжения, поданной на базу через резистивный делитель R1R2.

Когда напряжение на базе падает ниже опорного, транзистор открывается и выход компаратора (коллектор транзистора) переходит в состояние с высоким потенциалом. Такая схема может использоваться, например, для контроля напряжения батареи питания.

Компара́тор аналоговых сигналов (от лат. comparare «сравнивать») — сравнивающее устройство [1] : электронная схема, принимающая на свои входы два аналоговых сигнала и выдающая сигнал высокого уровня, если сигнал на неинвертирующем входе («+») больше, чем на инвертирующем (инверсном) входе («−»), и сигнал низкого уровня, если сигнал на неинвертирующем входе меньше, чем на инверсном входе. Значение выходного сигнала компаратора при равенстве входных напряжений, в общем случае не определено. Обычно в логических схемах сигналу высокого уровня приписывается значение логической 1, а низкому — логического 0.

Через компараторы осуществляется связь между непрерывными сигналами, например, напряжения и логическими переменными цифровых устройств.

Применяются в различных электронных устройствах, АЦП и ЦАП, устройствах сигнализации, допускового контроля и др.

Одно из напряжений (сигналов), подаваемое на один из входов компаратора обычно называют опорным или пороговым напряжением. Пороговое напряжение делит весь диапазон входных напряжений, подаваемых на другой вход компаратора на два поддиапазона. Состояние выхода компаратора, высокое или низкое, указывает, в каком из двух поддиапазонов находится входное напряжение. Компаратор с одним входным пороговым напряжением принято называть однопороговым компаратором, существуют компараторы с двумя или несколькими пороговыми напряжениями, которые, соответственно делят диапазон входного напряжения на число поддиапазонов на 1 большее числа порогов.

Сравниваемый сигнал может подаваться как на инвертирующий, так и на неинвертирующий вход компаратора. Соответственно, в зависимости от этого компаратор называют инвертирующим или неинвертирующим.

Содержание

Математическое описание компаратора [ править | править код ]

В аналитическом виде идеальный однопороговый неинвертирующий компаратор задаётся следующей системой неравенств:

U_end>>»> U o u t = < U 0 , if U i n U r e f не определено , if U i n = U r e f U 1 , if U i n >U r e f <displaystyle U_=<eginU_<0>,&<mbox>U_ U_end>> U_end>>»/> где U r e f <displaystyle U_> — напряжение порога сравнения, U o u t <displaystyle U_> — выходное напряжение компаратора, U i n <displaystyle U_> — входное напряжение на сигнальном входе компараторе.

Третьему, неопределённому значению, в случае бинарного состояния выхода можно:

  1. присвоить U 0 <displaystyle U_<0>>или U 1 <displaystyle U_<1>>,
  2. присвоить U 0 <displaystyle U_<0>>или U 1 <displaystyle U_<1>>случайным образом динамически,
  3. учитывать предыдущее состояние выхода и считать равенство недостаточным для переключения,
  4. учитывать первую производную по времени выходного сигнала и её равенство нулю считать недостаточным для переключения.

В случае использования многозначной логики, например, троичной для учёта третьего состояния (равенство) применить соответствующую троичную функцию из чёткой троичной логики с чётким третьим значением.

Схемотехника компараторов [ править | править код ]

Схемотехнически простейший компаратор представляет собой дифференциальный усилитель с высоким коэффициентом усиления (в идеале — бесконечным). Обычно в качестве компараторов напряжения в современной электронике применяют микросхемы операционных усилителей (ОУ). Но существуют и выпускаются специализированные для применения в качестве компараторов микросхемы.

Микросхема компаратора отличается от обычного линейного (ОУ) устройством и входного, и выходного каскадов:

  • Входной каскад компаратора должен выдерживать широкий диапазон дифференциальных входных напряжений (между инвертирующим и неинвертирующим входами), вплоть до значений питающих напряжений, а также полный диапазон синфазных напряжений.
  • Выходной каскад компаратора обычно конструируют совместимым по логическим уровням и токам с распространённым типом входов логических схем (технологий ТТЛ, ЭСЛ и т. п.). Возможны исполнения выходного каскада компаратора на одиночном транзисторе с открытым коллектором, что обеспечивает одновременную совместимость с ТТЛ и КМОП логическими микросхемами.
  • Микросхемы компараторов не рассчитаны для работы с отрицательной обратной связью как ОУ и при их применении отрицательная обратная связь не используется. И наоборот, для формирования гистерезисной передаточной характеристики компараторы часто охватывают положительной обратной связью. Эта мера позволяет избежать быстрых нежелательных переключений состояния выхода, обусловленном шумами во входном сигнале, при медленно изменяющемся входном сигнале.
  • При проектировании микросхем компараторов уделяется особое внимание быстрому восстановлению входного каскада после перегрузки и смены знака разности входных напряжений. В быстродействующих компараторах для повышения быстродействия схемотехнически не допускают захода биполярных транзисторов в выходном каскаде в режим насыщения.

Компараторы охваченные положительной обратной связью имеют гистерезис и по сути являются двухпороговыми компараторами, часто такой компаратор называют триггером Шмитта.

При равенстве входных напряжений реальные компараторы и ОУ, включенные по схеме компараторов дают хаотически изменяющийся выходной сигнал из-за собственных шумов и шумов входных сигналов. Обычная мера подавления такого хаотического переключения — введение положительной обратной связи для получения гистерезисной передаточной характеристики.

При программном моделировании компаратора возникает проблема выходного напряжения компаратора при одинаковых напряжениях на обоих входах компаратора. В этой точке компаратор находится в состоянии неустойчивого равновесия. Проблему можно решить множеством разных способов, описанных в подразделе «программный компаратор».

Программное моделирование компаратора [ править | править код ]

В программах в качестве первого приближения можно использовать простейшую модель асимметричного компаратора, в котором третье значение с равными величинами сравниваемых входных переменных постоянно приписывается к «0» или к «1», в примере, приведенном ниже, третье значение постоянно приписывается к «0»:

В более сложных моделях симметричных компараторов третье значение можно, в рамках двоичной логики:

  1. приписать к «0» или к «1» постоянно,
  2. приписывать к «0» или к «1» случайным образом динамически,
  3. учитывать предыдущее значение и считать равенство недостаточным для переключения,
  4. учитывать первую производную и её равенство нулю считать недостаточным для переключения,

или выйти за рамки двоичной логики и:

  1. для учёта третьего значения (равенство) применить соответствующую троичную функцию из чёткой троичной логики с чётким третьим значением.

Существующая проблема третьего состояния при программном моделировании, когда два числа, представленные кодовыми словами, могут быть в точности равны, на практике не имеет места: два напряжения не могут в точности совпадать, так как, во-первых, аналоговое напряжение величина неквантуемая, а во-вторых, существует шум, напряжение смещения входов компаратора, и иные возмущения, разрешающие неоднозначность даже в случае равенства входных напряжений аналогового компаратора.

Компараторы с двумя и более напряжениями сравнения [ править | править код ]

Строятся на двух и более обычных компараторах.

Двухпороговый (троичный) компаратор [ править | править код ]

Двухпороговый (троичный) компаратор имеет два напряжения сравнения и состоит из двух обычных компараторов. Два напряжения сравнения делят весь диапазон входных напряжений на три нечётких поддиапазона в нечёткой (fuzzy) троичной логике, которым присваиваются три чётких значения в чёткой троичной логике. Двухбитный троичный (2B BCT) логический сигнал (трит) на выходе троичного компаратора указывает, в каком из трёх поддиапазонов находится входное напряжение. Логическая часть троичного компаратора выполняет унарную троичную логическую функцию — «повторитель» (F1073 = F810). Двухбитный троичный трит (2B BCT) может быть преобразован в трёхбитный трит (3B BCT) или в трёхуровневый трит (3LCT). [ источник не указан 591 день ]

В аналитическом виде двухпороговый (троичный) компаратор задаётся следующими системами неравенств:

U_\U_=<egin0,&<mbox>U_ U_end>\U_=<egin0,&<mbox>U_ U_end>end>>»> < U r e f 2 >U r e f 1 U o u t 1 = < 0 , if U i n U r e f 1 u n d e f i n e d , if U i n = U r e f 1 1 , if U i n >U r e f 1 U o u t 2 = < 0 , if U i n U r e f 2 u n d e f i n e d , if U i n = U r e f 2 1 , if U i n >U r e f 2 <displaystyle <eginU_>U_\U_=<egin0,&<mbox>U_ U_end>\U_=<egin0,&<mbox>U_ U_end>end>> U_\U_=<egin0,&<mbox>U_ U_end>\U_=<egin0,&<mbox>U_ U_end>end>>»/>

где:
Uref1 и Uref2 — напряжения нижнего и верхнего порогов сравнения,
Uout1 и Uout2 — выходные напряжения компараторов, а
Uin — входное напряжение на компараторах.

Двухпороговый (троичный) компаратор является простейшим одноразрядным троичным АЦП.

Троичный компаратор является переходником из нечёткой (fuzzy) троичной логики в чёткую троичную логику для решения задач нечёткой троичной логики средствами чёткой троичной логики.

Тумблеры и переключатели на 3 положения без фиксации (ON)-OFF-(ON) [2] [3] являются механоэлектрическими троичными (двухпороговыми) компараторами, в которых входной величиной является механическое отклонение рычага от среднего положения.

Двухпороговый (троичный) компаратор выпускается в виде отдельной микросхемы MA711H (К521СА1).

Троичный компаратор низкого качества с двоичными компараторами на цифровых логических элементах 2И-НЕ применён в троичном индикаторе напряжения источника питания с преобразованием трёх диапазонов входного напряжения в один трёхбитный одноединичный трит (3B BCT) [4] . Для построения прецизионного триггера Шмитта в этой схеме не хватает двоичного RS-триггера, который можно выполнить на двух дополнительных логических элементах 2И-НЕ (например, использовать два из четырёх логических элементов 2И-НЕ микросхемы К155ЛА3).-1> напряжений сравнения, где n — количество битов выходного кода. Разность соседних уровней сравнения в таких многовходовых компараторах обычно постоянна.

Примеры интегральных микросхем компараторов [ править | править код ]

Пример широко известных компараторов: LM311 (российский аналог — КР554СА3), LM339 (российский аналог — К1401СА1). Эта микросхема часто встречается, в частности, на системных платах ЭВМ, а также в системах управления ШИМ контроллеров в блоках преобразования напряжения (например, в компьютерных блоках питания с системой питания ATX) [5] [6] .

Параметры компараторов [ править | править код ]

Параметры, характеризующие качество компараторов, можно разделить на три группы: точностные, динамические и эксплуатационные. Компаратор характеризуется теми же точностными параметрами, что и ОУ. Основным динамическим параметром компаратора является время переключения tп. Это промежуток времени от начала сравнения до момента, когда выходное напряжение компаратора достигает противоположного логического уровня. Время переключения замеряется при постоянном опорном напряжении, подаваемом на один из входов компаратора и скачке входного напряжения Uвх, подаваемого на другой вход. Это время зависит от величины превышения Uвх над опорным напряжением. На рис. 8 приведены переходные характеристики компаратора mА710 для различных значений дифференциального входного напряжения Uд при общем скачке входного напряжения в 100 мВ. Время переключения компаратора tп можно разбить на две составляющие: время задержки tз и время нарастания до порога срабатывания логической схемы tн. В справочниках обычно приводится время переключения для значения дифференциального напряжения, равного 5 мВ после скачка.

Компаратор схема на логических элементах

Компаратором (устройством сравнения) называется КЦУ, которое предназначено для сравнения двух двоичных чисел. УГО компаратора представлено на рисунке 31.

Рисунок 31 – Условное графическое обозначение четырехразрядного компаратора двоичных чисел

Компаратор имеет две группы входов. На одну из них поступают разряды числа А, на другую группу – разряды числа В.

Появление одиночного сигнала на одном из трех выходов компаратора фиксирует результат сравнения. Эти соотношения используются как логические условия (признаки) в микропрограммах, в устройствах автоматического контроля и диагностики и т.д.

В таблице 7 показана связь между сигналами на выходах и входах компаратора при сравнении одноразрядных чисел ai и bi, которые могут быть равны единице или нулю. На соответствующем выходе появляется единичный сигнал, когда в должном соотношении находятся коды на входах. Например, если ai = 1, bi = 1 (числа одинаковы), то функция, характеризующая равенство чисел, FA=B = 1, а функции, характеризующие их неравенство, FAB = 0. Аналогично заполняются другие строки таблицы.

Таблица 7 – Таблица истинности одноразрядного компаратора

Логические аргументы Логические функции
ai bi FAB

По данным таблицы 7 запишем логические функции для одноразрядного компаратора в СДНФ:

(18)

Если значения ai и bi таковы, что правые части функций принимают единичные значения, то соотношения, указанные в индексах левых частей, выполняются. Если правые части функций принимают нулевые значения, то соотношения между ai и bi противоположны указанным.

Логическая схема одноразрядного компаратора, реализующая функции (18), приведена на рисунке 32.

Рисунок 32 – Логическая схема одноразрядного компаратора

Остановимся подробнее на равенстве чисел. Заметим, что функция FA=B – функция «Равнозначность». По смыслу она противоположна функции FAB «Неравнозначность»:

, т.е. (19)

Поэтому проверку равенства одноименных разрядов двух чисел можно осуществить, используя логический элемент «Исключающее ИЛИ», дополненный инвертором (рисунок 33).

Рисунок 33 – Логическая схема для проверки равенства двух многоразрядных двоичных чисел

Когда цифры в одноименных разрядах чисел А и В одинаковы, то на выходах всех логических элементов «Исключающее ИЛИ» нулевые сигналы и функция FA=B = 1. Если хотя бы в одной паре разрядов находятся разные цифры, то на выходе соответствующего логического элемента «Исключающее ИЛИ» единичный сигнал и функция FA=B = 0, что указывает на неравенство чисел А и В.

Рассмотрим теперь неравенство чисел, используя выражение (18). Пусть А > В. Выявление такого неравенства начинается со старших разрядов; если они равны, то сравнивается следующая пара одноименных разрядов и т. д. Например, в случае трехразрядных чисел могут быть следующие варианты:

– неравенство цифр в старших разрядах (a2>b2), что в соответствии с (18) представляется выражением . При этом неравенство чисел А > В описывается тем же выражением;

– равенство цифр в старших разрядах (a2=b2), что представляется выражением и неравенство цифр в средних разрядах (a1>b1), что описывается выражением . При этом неравенство чисел А > В представляется конъюнкцией двух приведенных выражений ;

– равенство цифр в старших и средних разрядах (a2=b2, a1=b1), что описывается выражениями и , и неравенство цифр в младших разрядах (a>b), что описывается выражением . При этом неравенство чисел А > В представляется конъюнкциями трех предыдущих выражений .

Поскольку возможен любой из трех вариантов, то выражение, учитывающее все варианты, запишется в виде дизъюнкций приведенных конъюнкций:

(20)

Если на выходе схемы (рисунок 34), элементы которой реализуют выражение (20) устанавливается единичный сигнал, то число А > B.

Рисунок 34 – Логическая схема для проверки неравенства двух трехразрядных двоичных чисел

На рисунке 35 предыдущая схема дополнена логическим элементом «Исключающее ИЛИ — НЕ» (на входы которого подаются разряды a, b), конъюнктором (на выходе которого формируется функция FA=B) и элементом ИЛИ – НЕ (на выходе которого формируется функция FAB = 0 и FA=B = 0, то на выходе элемента ИЛИ – НЕ единичный сигнал (FA

Рисунок 35 – Логическая схема трехразрядного компаратора

По аналогичным схемам (см. рисунок 35) строятся компараторы для сравнения двоичных чисел с большей разрядностью.

На рисунке 36 показана схема наращивания разрядности компараторов.

Рисунок 36 – Схема наращивания разрядности компараторов

Каждый компаратор на рисунке 36 предназначен для сравнения четырехразрядных слов и имеет выходы A B. Аналогичные входы служат для наращивания разрядности компараторов. Результат сравнения на выходах первого компаратора второй компаратор воспринимает как единую пару младших разрядов, с учетом которой формируется окончательный результат сравнения. Подобным образом можно осуществлять дальнейшее наращивание разрядности. Указанные потенциалы на входах компаратора младших разрядов обеспечивают правильное функционирование многокаскадного компаратора на микросхемах.

1 Калабеков, Б. А. Цифровые устройства и микропроцессорные системы : учеб. для техникумов связи / Б. А. Калабеков. – М. : Горячая линия – Телеком, 2002. – 336 с.

2 Калабеков, Б. А. Цифровые устройства и микропроцессорные системы : учеб. для техникумов связи / Б. А. Калабеков, И. А. Мамзелев. – М. : Радио и связь, 1987. – 400 с.

3 Лысиков, Б. Г. Цифровая и вычислительная техника : учеб. для техникумов связи / Б. Г. Лысиков. – Мн. : УП Экоперспектива, 2002. – 264 с.

4 Угрюмов, Е. П. Цифровая схемотехника : учеб. пособие для вузов / Е. П. Угрюмов. – Спб. : БХВ-Петербург, 2002. – 582 с.

5 Цифровые и микропроцессорные устройства : лабораторный практикум для студентов специальностей 2-45 01 03 – Сети телекоммуникаций, 2‑45 01 02 – Системы радиосвязи, радиовещания и телевидения. В 4 ч. / сост. В. И. Богородов. – Минск : ВГКС, 2009. – Ч. 1 – 84 с.; Ч. 2 – 65 с.

6 Цифровые интегральные микросхемы : справочник, 2-е изд., перераб. и доп. / М. И. Богданович [и др.]. – Мн. : Беларусь, Полымя, 1996. – 605 с.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8408 — | 7321 — или читать все.

188.64.173.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник: studopedia.ru

Пороговые устройства на элементах цифровой логики

Пороговые устройства, называемые также компараторами, предназначены для преобразования аналогового сигнала в цифровую информацию. Например, на выходе порогового элемента формируется сигнал какого-либо логического уровня, если входной аналоговый сигнал по своему значению меньше определенного напряжения, если же он больше, то на выходе порогового устройства формируется сигнал противоположного логического уровня.

Кроме регистрации или сигнализации о превышении (или снижении) напряжения контролируемого сигнала, пороговые устройства применяют в аналого-цифровых преобразователях, генераторах импульсов различной формы.

В составе некоторых серий аналоговых микросхем есть компараторы, пригодные для совместной работы с цифровыми микросхемами, но они не всегда доступны. Многие из них требуют двухполярного источника питания, что усложняет конструкцию. Поэтому в ряде случаев оказывается целесообразным использовать в качестве пороговых устройств элементы, что обеспечивает полное согласование логических уровней без каких-либо специальных мер.

В принципе, сам элемент представляет собой пороговое устройство, в чем легко убедиться, взглянув на рис. 18, на котором показаны передаточные характеристики идеального порогового устройства 1 и элемента КМОП 2. У идеального порогового устройства прямоугольная характеристика, элемент же имеет характеристику с некоторым наклоном, поэтому вблизи порогового напряжения возникает зона неопределенности, которая в итоге и определяет чувствительность порогового устройства. В тех случаях, когда не требуется высокой точности, в качестве порогового устройства можно использовать логический элемент.

Для повышения точности пороговых устройств на основе элементов применяют специальные схемные решения. Схема простого порогового устройства на двух элементах ТТЛ приведена на рис. 19,а. Благодаря наличию положительной обратной связи (ПОС) по постоянному току через резистор R2 передаточная характеристика становится прямоугольной (рис. 19,6). Устройство работает следующим образом. При входном сигнале меньше порогового на выходе будет напряжение низкого уровня. С увеличением входного напряжения до U2 на выходе элемента DD1.2 напряжение также начнет увеличиваться. Это напряжение через резистор R2 поступит на вход элемента DD1.1, что приведет к еще большему увеличению напряжения на выходе элемента DD1.2 и т. д. Таким образом, пороговое устройство скачком переходит в устойчивое состояние с высоким уровнем напряжения на выходе. Дальнейшее увеличение входного напряжения состояние порогового устройства не изменяет.

Рис. 18. Характеристики порогового устройства и элемента КМОП

При уменьшении входного напряжения до U] пороговое устройство скачком переходит в устойчивое состояние с низким уровнем напряжения на выходе. Разность напряжений U2—U1 называют шириной петли гистерезиса, она зависит от соотношения номиналов резисторов R1 и R2. От этих же резисторов зависит и чувствительность. При увеличении сопротивления резистора R2 и уменьшении R1 чувствительность повышается, а ширина петли гистерезиса уменьшается. Однако элементы ТТЛ работают с входными токами, поэтому сопротивление этих резисторов должны лежать в определенных пределах. Так, для микросхем серий К133 и К155 сопротивление резистора R1 может быть в пределах 0,1 . 2 кОм, a R2 — в пределах 2. 10 кОм.

Такое пороговое устройство не имеет на входе разделительного конденсатора, поэтому нижняя граница его частотной характеристики простирается вплоть до постоянного напряжения, а вот верхняя, из-за наличия к цепи сигнала резистора R1, ограничена частотой 8. 10 МГц.

Если необходимо пороговое устройство, реагирующее только на переменную составляющую сигнала, его следует несколько изменить в соответствии с рис. 20. Сопротивления резисторов R2 и R3 должны быть примерно равны, емкость конденсатора С1 определяет нижнюю частотную границу рабочего диапазона.

Большей граничной частотой обладает пороговое устройство на логических расширителях по ИЛИ микросхемы К155ЛД1 (рис. 21), по схемному построению аналогичное триггеру Шмитта на транзисторах. Порог срабатывания зависит от соотношения номиналов резисторов R1 и R3. Ширина петли гистерезиса составляет около 0,1 В, а порог срабатывания можно регулировать от 0,02 до і В. Номинал резистора SR1! должен быть в пределах 0,(1 . 1 кОм, a R2 — 22.

Рис. 19. Пороговое устройство на элементе ТТЛ

Рис. 20. Принципиальная схема порогового устройства на элементе ТТЛ

Рис. 21. Принципиальная схема порогового устройства на микросхеме К155ЛД1

Недостатком такого устройства является несколько повышенное, чем обычно, напряжение низкого логического уровня, за счет падения напряжения на резисторе R3.

Выполнить пороговый элемент можно и на элементах КМОП (рис. 22). Его отличительной особенностью является экономичность, а недостатком — низкая чувствительность. Поскольку элементы КМОП работают без входных токов и обладают невысокой нагрузочной способностью по току, то сопротивления резисторов R1 и R2 обычіно выбирают большими — десятки и сотни килорм. Для повышения чувствительности устройства на его вход следует подавать начальное смешение от источника питания через делитель R3R4.

При .контроле сигнала, уровень которого может изменяться в больших пределах, например музыкального сигнала, возможна ситуация, когда сигнал на очень короткое время превысит пороговое значение. Хотя устройство и сработает, но этого времени может не хватить, например, для включения индикатора. В таком случае будет полезным пороговое устройство с «памятью» (,рис. 23), которое на определенное время сохранит информацию о том, что сигнал превысил пороговое напряжение или был меньше него. От предыдущего устройства оно отличается тем, что в цепь ПОС между выходом элемента DD1.2 и одним из входов элемента DD1.1 включен конденсатор С2. Как только на выходе элемента DD1.таймеры), различных индикаторах, генераторах и многих других. Цифровые микросхемы широко используют для генерирования сигналов с разными параметрами. Благодаря большому коэффициенту усиления н хорошим частотным свойствам на базе их логических элементов удается реализовать генераторы с частотой от долей герца до десятков и сотен мегагерц, к тому же самой различной формы.

Рис. 22. Принципиальная схема порогового устройства на элементе КМОП

Рис. 23. Принципиальная схема порогового устройства с «памятью»

Литература: И. А. Нечаев, Массовая Радио Библиотека (МРБ), Выпуск 1172, 1992 год.

Источник: radiostorage.net

Компараторы и триггеры Шмитта на ОУ

Всем доброго времени суток. В предыдущих статьях я рассказывал о применении операционных усилителей в линейных схемах, где ОУ охвачен отрицательной обратной связью, которая позволяет строить усилители, параметры которых будут в основном определяться элементами обвязки ОУ. Данная статья расскажет о применении ОУ без обратной связи или даже с положительной обратной связью (ПОС).

Работа операционного усилителя без обратной связи

Как известно напряжение на выходе ОУ UВЫХ определяется произведением входного дифференциального напряжения UД (разность напряжений между входными выводами) на коэффициент усиления ОУ по напряжению КU

Операционные усилители имеют очень большой коэффициент усиления ОУ по напряжению КU = 10 5 … 10 6 , а выходное напряжение не может выйти за пределы напряжения питания (обычно несколько меньше). Поэтому, для того чтобы ОУ работал в качестве усилителя напряжения максимальное входное дифференциальное напряжение не должно превышать нескольких десятков мкВ (при UПИТ = 15 В, КU = 10 5 , UД ≈ 150 мкВ). С учётом вышесказанного можно сделать вывод, что без применения отрицательной обратной связи, которая снижает усиление ОУ в схеме, применение ОУ бесполезно, так как при входных напряжениях в несколько милливольт ОУ войдёт в насыщение с выходным напряжением равным напряжению питания.

Но существуют схемы, в которых операционные усилители применяются без обратной отрицательной связи, а в некоторых случаях специально вводят положительную обратную связь (ПОС) для увеличения коэффициента усиления схем. Одним из видов таких схем являются пороговые устройства, в состав которых входят различные компараторы, триггеры Шмитта, детекторы уровней напряжения.

Принцип работы компаратора

Простейшим пороговым устройством является компаратор. Он сравнивает напряжение, которое поступает на один из его входов, с опорным напряжением, которое присутствует на другом его входе. Простейший компаратор получается из операционного усилителя, в котором отсутствует отрицательная обратная связь. Рассмотрим принцип работы компаратора напряжений на основе ОУ, схема которого изображена ниже


Использование ОУ в качестве компаратора и графики входного и выходного напряжений.

В основе компаратора лежит ОУ на инвертирующий вход, которого поступает входное напряжение UBX, а неинвертирующий вход соединён с источником опорного напряжения UОП. Принцип работы компаратора изображённого на рисунке заключается в следующем: когда входное напряжение UBX больше опорного UОП, то выходное напряжение принимает значение отрицательного напряжения насыщения –UНАС и остаётся неизменным пока входное напряжение UBX не уменьшиться ниже опорного напряжения UОП, в этом случае на выходе будет напряжение положительного насыщения +UНАС.

На рисунке изображен компаратор с инвертирующим выходным сигналом по отношению к входному сигналу. Для того, чтобы не происходило инверсии на выходе необходимо поменять подключение выводов ОУ, то есть входной сигнал должен поступать на неивертирующий вход, а опорное напряжение на инвертирующий вывод. Тогда при превышении опорного напряжения на выходе ОУ будет положительное напряжение насыщения, а при входном напряжении меньше, чем опорное напряжение на выходе будет присутствовать отрицательное напряжение насыщения ОУ.

Основные схемы компаратора

Существует много разновидностей компараторов, но в из основе лежат две основные схемы: одновходовая и двухвходовая. Одновходовая схема позволяет сравнивать разнополярные напряжения по модулю, то есть по абсолютной величине. Двухвходовый же компаратор сравнивает два напряжения с учётом знака. Расссмотрим обе схемы подробнее.


Схема одновходового компаратора.

На рисунке выше изображён одновоходовый компаратор, позволяющий сравнивать два разнополярных напряжения по абсолютному значению (по модулю). В его основе лежит инвертирующий сумматор, в котором отсутствует отрицательная обратная связь, поэтому ослабления коэффициент усиления операционного усилителя не происходит. В результате чего на инвертирующем входе ОУ происходит суммирование входного напряжения UBX и опорного напряжения UОП приведённого к инвертирующему входу UПРИВ, а результат суммирования усиливается ОУ и выводится на его выход. Для того чтобы происходило сравнение необходимо фактически производить операцию вычитания, то есть напряжения на входах UBX и UПРИВ должны иметь разную полярность.

Приведённое напряжение UПРИВ можно вычислить по следующему выражению

Резистор R3 предназначен для компенсации входного тока смещения и должен быть равен величине параллельно соединённых резисторов R1 и R2

Основным недостатком данной схемы является необходимость использования стабилизированного отрицательного напряжения, что приводит к усложнению схемы. Поэтому одновходовый компаратор не получил широкого распространения.

Наибольшее распространение получила схема двухвходового компаратора, в котором отсутствует необходимость в отрицательном напряжении. Схема данного компаратора приведена ниже


Схема двухвходового компаратора.

В основе двухвходового компаратора лежит дифференциальный усилитель, в котором отсутствует отрицательная обратная связь, поэтому разность между входным напряжением UBX и UОП опорным напряжение усиливается ОУ, не имеющего снижения коэффициента усиления из-за отсутствуя ООС, и выделяется на выходе ОУ. В данной схеме входные резисторы R1 и R2 имеют одинаковое значение.

Компараторы применяются в широком спектре схем:

  1. Триггеры Шмитта и в схемах формирования сигнала, преобразующих сигнал произвольной формы в прямоугольный или импульсный сигнал.
  2. Детекторы уровня – схемы, в которых происходит индицирование момента достижения входным сигналом заданного уровня опорного напряжения.
  3. Генераторы импульсных сигналов, например, треугольной или прямоугольной формы.

При использовании компаратора в схемах, где входное напряжение медленно меняется и амплитуда сигнала очень близка к опорному напряжению, то шумы на входном выводе могут вызвать ложные срабатывания компаратора и на его выходе могут появиться дополнительные импульсы, что продемонстрировано на рисунке ниже


Появление ложных импульсов на выходе компаратора.

Для устранения таких ложных срабатываний компаратора, в его схему вводится некоторый гистерезис, путём добавления положительной обратной связи (ПОС) к операционному усилителю.

Триггер Шмитта

Как сказано выше для устранения ложных срабатываний компаратора, известных, как «дребезг контактов» необходимо использовать схему компаратора с петлёй гистерезиса, которая получила название триггера Шмитта.

В одной из статей я рассказывал о триггере Шмитта выполненном на транзисторах. Он характеризуется тем, что в отличие от компаратора имеет так называемую петлю гистерезиса. То есть компаратор переключается из высокого уровня напряжения в низкий при одной и той же величине входного напряжения, а триггер Шмитта имеет два уровня (порога) переключения. Данное различие иллюстрирует изображение ниже


Изменение входного и выходного напряжения компаратора (справа) и триггера Шмитта (слева).

Уровни напряжения, при которых происходит переключение триггера Шмитта называются верхним уровнем (порогом) срабатывания триггера UВП и нижним уровнем (порогом) срабатывания триггера UНП.

Для реализации триггера Шмитта применяют ОУ охваченные положительной обратной связью (ПОС), которая реализуется подачей на неинвертирующий вход части выходного напряжения. Схема триггера Шмитта изображена ниже


Триггер Шмитта на операционном усилителе.

Работа триггера Шмитта во многом похожа на работу компаратора, только в отличие от него в триггере опорное напряжение не постоянно, а зависит от разности выходного и опорного напряжений, то есть имеет различные значения.

Рассмотрим инвертирующий триггер Шмитта. В исходном входное напряжение не превышает верхнего уровня срабатывания триггера UВП, поэтому на выходе присутствует положительное напряжение насыщения UНАС+ (примерно на 1 – 2 В ниже положительного напряжения питания UПИТ+). Когда входное напряжение достигает верхнего порога переключения UВП выходное напряжение резко упадёт до уровня отрицательного напряжения насыщения UНАС-(примерно на 1 – 2 В выше отрицательного напряжения питания UПИТ-). Верхний уровень напряжения переключения триггера Шмитта определяется следующим выражением

Далее триггер остаётся в устойчивом состоянии до тех пор, пока входное напряжение не станет меньше нижнего порога срабатывания UНП, а на выходе триггера установится положительное напряжение насыщения UНАС+. Нижний порог срабатывания триггера определяется следующим выражением

Таким образом, петля гистерезиса будет зависеть от соотношения резисторов R2 и R3, а ширина петли гистерезиса UГИС определяется разностью верхнего порога срабатывания UВП и нижнего порога срабатывания UНП

Триггеры Шмитта на ОУ являются основой для построения различных генераторов импульсов, поэтому важнейшими характеристиками ОУ работающих в импульсных схемах является быстродействие, которое зависит от задержек срабатывания и времени нарастания выходного напряжения.

Ограничение уровня выходного напряжения компаратора и триггера Шмитта

Применение положительной обратной связи (ПОС) в компараторах и триггерах Шмитта ускоряет переключение схем, но в связи с тем, что выходное напряжение UВЫХ изменяется от UНАС+ до UНАС-, то время переключения составляет довольно значительную величину (от долей до единиц микросекунд).

Кроме того существует проблема несовместимостей уровней выходного напряжения, к примеру, при напряжении питания ОУ UПИТ = ±15 В, выходное напряжение составит UВЫХ ≈ ±14 В (UНАС+ ≈ +14 В, а UНАС- ≈ -14 В), в то время как уровни ТТЛ микросхем составляют около +5 В или 0 В.

Для устранения вышеописанных проблем применяют так называемую привязку или ограничение уровня выходного напряжения, для этого в компаратор или триггер Шмитта вводят ООС в виде различных схем ограничения. Простейшими ограничительными схемами являются диоды или стабилитроны. Схема триггера Шмитта с ограничение выходного напряжения показана ниже


Триггер Шмитта с ограничением выходного напряжения при помощи стабилитрона в цепи ООС.

Ограничение выходного напряжения в триггере Шмитта работает следующим образом. При поступлении на инвертирующий вход напряжения меньше, чем напряжение опорного уровня (UВХ

Триггер Шмитта с симметричным ограничением выходного напряжения.

В данной схеме реализуется симметричное ограничение выходного напряжения относительно опорного напряжения, причем выходное напряжение выше опорного напряжения ограничивается стабилитроном VD1, а напряжение при этом составит на 0,7 В больше напряжения стабилизации. В случае же выходного напряжения ниже опорного, то выходное напряжение будет на 0,7 В ниже напряжения стабилизации стабилитрона VD2.

При расчёте компараторов и триггеров Шмитта с ограничением выходного напряжения в качестве UНАС+ необходимо использовать UСТ (когда используется один стабилитрон) или UСТVD1 (при двухстороннем ограничении). А вместо UНАС- необходимо использовать значение падения напряжения на диоде примерно 0,7 В (при одном стабилитроне) или UСТVD2 (при двухстороннем ограничении).

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник: www.electronicsblog.ru

Цифровые устройства: триггеры, компараторы и регистры

Цифровые устройства строятся на логических элементах, поэтому подчиняются законам алгебры логики. Основными устройствами цифровой техники, на ряду с логическими устройствами, являются триггеры.

Триггер (англ. trigger – курок) — электронное устройство, обладающее двумя устойчивыми состояниями и способное скачком переходить из одного состояния в другое под воздействием внешнего импульса.

Триггерами или точнее триггерными системами называют большой класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознается по значению выходного напряжения.

Каждому состоянию триггера соответствует определённый (высокий или низкий) уровень выходного напряжения:

1) триггер установлен в единичное состояние – уровень «1».

2) триггер сброшен в нуль — уровень «0» на выходе.

Установившееся состояние сохраняется сколь угодно долго и может быть изменено внешним импульсом или отключением напряжения питания. Т.о. триггер являются элементарным элементом памяти, способным хранить наименьшею единицу информацию (один бит) «0» или «1».

Триггеры могут быть построены на дискретных элементах, логических элементах, на ИМС или входят в состав ИМС.

К основным типам триггеров относят: RS-, D-, T- и JK-триггеры . Кроме того, триггеры делятся на асинхронные и синхронные. В асинхронных триггерах переключение из одного состояния в другое осуществляется непосредственно с поступлением сигнала на информационный вход. В тактируемых триггерах помимо информационных входов имеется вход тактовых импульсов. Их переключение производится только при наличии разрешающего, тактирующего импульса.

RS-триггер имеет минимум два входа: S (set – устанавливать) — производится установка триггера в состояние уровня «1» и R (reset) — сброс триггера в состояние уровня «0». (рис. 1).

При наличии входа С триггер является синхронным – переключение триггера (изменение состояния выхода) может происходить только в момент прихода тактирующего (синхронизирующего) импульса на вход С.

Рисунок 1 — Условно-графическое обозначение RS-триггера и назначение выводов а) асинхронный, б) синхронный

Кроме прямого выхода, триггер может иметь также инверсный выход, сигнал на котором будет противоположным.

В таблице 1 представлены состояния, которые может принимать триггер в процессе работы. В таблице указаны значения входных сигналов S и R в некоторый момент времени tn и состояние триггера (на прямом выходе) в следующий момент времени tn+1 после прихода очередных импульсов. На новое состояние триггера влияет также предыдущее состояние Q n.

Т.о. если необходимо записать в триггер «1» — подаем импульс на вход S, если «0» — подаем импульс на вход R.

Комбинация S = 1, R =1 является запретной комбинацией, т.к. нельзя предугадать какое состояние установится на выходе.

Таблица 1 — Таблица состояний синхронного RS-триггера

Работу триггера также можно рассматривать с помощью временных диаграмм (рис. 2).

Рисунок 2 – Временные диаграммы работы асинхронного RS-триггера

D-триггер (от англ. delay – задержка) имеет один информационный вход и тактируемый (синхронизирующий) вход (рис. 3).

D-триггер запоминает и хранит на выходе Q сигнал, который был на информационном входе D в момент прихода тактового импульса С. Т.о. триггер хранит информацию, записанную при С=1.

Таблица 2 — Таблица состояний D-триггера

Рисунок 3 – D-триггер: а) условно-графическое обозначение, б) временные диаграммы работы

T-триггеры (от англ. tumble – опрокидываться, кувыркаться), называемые также счётными триггерами, имеют один информационный вход Т. Каждый импульс (спад импульса) на Т-входе (счетном входе) переключает триггер в противоположное состояние.

На рисунке 4 показа условно-графическое обозначение (а) Т-триггера и временные диаграммы работы (б).

Рисунок 4 – T-триггер а) условно-графическое обозначение, б) временные диаграммы работы в) таблица состояний

JK-триггер (от англ. jump – скачок, kеер – держать) имеет два информационных входа J и К, и тактируемый вход С. Назначение выводов J и К аналогично назначению выводов R и S, но при этом триггер не имеет запретных комбинаций. Если J = К = 1 он изменяет свое состояние на противоположное (рис. 5).

При соответствующем подключении входов, триггер может выполнять функции RS-, D-, T-триггеров, т.е. является универсальным триггером.

Рисунок 5 – JK -триггер а) условно-графическое обозначение, б) сокращённая таблица состояний

Компаратор (compare – сравнивать) – устройство, сравнивающее два напряжения – входное Uвх с опорным Uоп. Опорное напряжение представляет собой неизменное по величине напряжение положительной или отрицательной полярности, входное напряжение изменяется во времени. Простейшая схема компаратора на операционном усилителе приведена на рисунке 6, а. Если Uвх Uоп на выходе U –нас (рис. 6, б).

Рисунок 6 – Компаратор на ОУ: а) простейшая схема б) характеристика работы

Компаратор с положительной обратной связью называется триггером Шмитта. Если у компаратора переключение с «1» на «0» и обратно происходит при одном и том же напряжении, то у триггера Шмитта — при разных напряжениях. Опорное напряжение создает цепь ПОС R1R2, входной сигнал подается на инвертирующий вход ОУ. На рисунке 7, б, приведена передаточная характеристика триггера Шмитта.

При отрицательном напряжении на инвентирующем входе ОУ Uвых = U+нас. Значит на неинвертирующем входе действует положительное напряжение. При увеличении входного напряжения в момент Uвх > Uнеинв. (Uср – срабатывания) компаратор переключается в состояние Uвых = U-нас. На неинвертирующем входе действует отрицательное напряжение. Соответственно при уменьшении входного напряжения в момент Uвх

Рисунок 7 – Триггер Шмитта на ОУ: а) простейшая схема б) характеристика работы

Пример. На рисунке 8 представлена релейно-контакторная схема управления электродвигателем, позволяющая выполнять его пуск, остановку и реверс.

Рисунок 8 – Релейно-контакторная схема управления электродвигателем

Коммутацию электродвигателя выполняют магнитные пускатели КМ1, КМ2. Свободно замкнутые контакты КМ1, КМ2 предотвращают одновременное срабатывание магнитных пускателей. Свободно разомкнутые контакты КМ1, КМ2 обеспечивают самоблокировку кнопок SB2 и SB3.

Для повышения надёжности работы требуется заменить релейно-контакторные цепи управления и силовые цепей на бесконтактную систему с использованием полупроводниковых приборов и устройств.

На рисунке 9 представлена бесконтактная схема управления электродвигателем.

Силовые контакты магнитных пускателей заменены оптосимистрами: КМ1 – VS1-VS3, КМ2 – VS4-VS6. Применение именно оптосисимистров позволяет обеспечить изоляцию слаботочной цепи управления от мощной силовой цепи

Триггеры обеспечивают самоблокировку кнопок SB2, SB3. Логические элементы И обеспечивают одновременное включение только одного из магнитных пускателей.

При открывании транзистора VT1 ток протекает через светодиоды первой группы оптосимистров VS1-VS3, обеспечивая тем самым протекание тока через обмотки электродвигателя. Открывание транзистора VT2 запитывает вторую группу оптосимистров VS4-VS6, обеспечивая вращение электродвигателя в другую сторону.

Рисунок 9 – Бесконтактная схема управления электродвигателем

Регистр – электронное устройство, предназначенное для кратковременного хранения и преобразования многоразрядных двоичных чисел. Регистр состоит из триггеров, количество которых определяет, сколько разрядов двоичного числа может хранить регистр – разрядность регистра (рис. 10, а). Для организации работы триггеров могут быть использованы логические элементы.

Рисунок 10 – Регистр: а) общее представление, б) условно-графическое обозначение

По способу ввода и вывода информации регистры подразделяются на параллельные и последовательные.

В последовательном регистре триггеры соединены последовательно, т. е. выходы предыдущего триггера передают информацию на входы последующего. Тактовые входы С триггеров соединены параллельно. Такой регистр имеет один информационный вход и вход управления — тактовый вход С.

В параллельном регистре запись в триггеры происходит одновременно, для чего имеется четыре информационных входа.

На рисунке 10, представлено УГО и назначение выводов четырёхразрядного параллельно-последовательного регистра.

Источник: electricalschool.info

Построение компараторов на основе логических элементов

Прежде чем перейти к построению схем компараторов, необходимо вспомнить порядок построения схем, реализующих функции «Равнозначность» и «Неравнозначность» (см. п.2.3.2).

Составим функции «Равнозначность» и «Неравнозначность», которые будем использовать в дальнейшем. Функция «Равнозначность» принимает значение 1, если две ее входные переменные имеют одинаковые логические потенциалы: x1=x2=1 ИЛИ x1=x2=0. Поэтому ее представляют как . Условное изображение элемента «Равнозначность» приведено на рис.3.17,а.

Рис.3.17. Условные изображения элементов «Равнозначность» (а) и «Неравнозначность» (б).

Функция «Неравнозначность» принимает значение 1, если две ее входные переменные имеют разные логические потенциалы: x1=1, x2=0 ИЛИ x1=0, x2=1. Поэтому ее представляют в следующем виде:

,

где значок — символизирует функцию «Неравнозначность».

Функцию «Неравнозначность» иначе называют «Исключающее ИЛИ». Ей присуще интересное свойство: если на один ее вход подать лог.1, то логический потенциал, поданный на второй вход, будет на выходе инвертирован; если же вместо лог.1 на один вход подать лог.0, то функция будет вести себя как повторитель логического потенциала, поданного на другой вход. Это легко проверит это самостоятельно. Условное изображение элемента «Неравнозначность» дано на рис.3.17,б. Вместо приведенного значка (=1) используется значок m2, указывающий на то, что «Исключающее ИЛИ» функционирует по правилам сложения одноразрядных двоичных чисел (сложение по модулю 2): 1+0=1; 0+1=1; 0+0=0; 1+1=0 (при арифметическом сложении единица переносится в соседний более старший разряд).

Пример 3.3.Построить схему сравнения чисел с использованием элементов «Равнозначность» и базисных логических элементов.

Остановимся подробнее на равенстве чисел. Заметим, что функция Fa=b — функция «Равнозначность». По смыслу она противоположна функции «Неравнозначность» («Исключающее ИЛИ»):

, т.е. .

Поэтому проверку равенства одноименных разрядов двух чи­сел можно осуществить, используя элемент «Равнозначность» (рис.4, а).

Два многоразрядных числа A и В равны, если их одноименные разряды содержат одинаковые цифры (а=b И а1=b1 И . И аn-1=bn-1), т.е. функция, характеризующая соотношение чисел, должна быть конъюнкцией функций, характеризующих соотношение цифр в их одноименных разрядах:

.

Когда цифры в одноименных разрядах чисел А и В одинаковы, то на выходах всех элементов «Равнозначность» стоят лог.1 и FA=B=1 (см.рис.3.18). Если хотя бы в одной паре разрядов находятся разные цифры, то на выходе соответствующего элемента «Равнозначность» будет лог.0, и функция FA=B=0, что указывает на неравенство чисел А и В.

Рис.3.18. Схема сравнения двух чисел на базе

Построение схем сравнения (компараторов) для неравенства чисел.Рассмотрим теперь неравенство чисел, используя выражение

; ; . (3.5)

Пусть А>В. Выявление такого неравенства начинается со старших разрядов; если они равны, то сравнивается следующая пара одноименных разрядов и т. д. Так, в случае 3-разрядных чисел могут быть следующие варианты:

1) неравенство цифр в старших разрядах (а2>b2), что в соответствии с (1) представляется выражением . При этом неравенство чисел А>В описывается тем же выражением;

2) равенство цифр в старших разрядах (а2=b2), что представляется выражением ( ) и неравенство цифр в средних разрядах чисел (а1>b1), что описывается выражением . При этом неравенство чисел А>В представляется конъюнкцией двух приведенных выражений .

3) равенство цифр в старших и средних разрядах (а2=b2, а1=b1), что описывается выражениями и , и неравенство цифр в младших разрядах (a>b), что описывается выражением . При этом неравенство чисел А>В представляется конъюнкциями трех предыдущих выражений .

Пример 3.4. Построить схему на основе базисных логических элементов для сравнения многоразрядных чисел.

Поскольку возможен любой из трех вариантов, то выражение, учитывающее все варианты, запишется в виде дизъюнкции приведенных конъюнкций:

. (3.6)

Если на выходе схемы, элементы которой реализуют приведенные конъюнкции и дизъюнкцию из выражения (3.6), устанавливается лог.1, то число А>В. Этому соответствует схема, приведенная на рис.3.19.

Рис. 3.19. Схемы сравнения определения А>В

По аналогичным схемам (см. рис.5б) выполняются компараторы для сравнения чисел с большей разрядностью.

Дата добавления: 2016-11-12 ; просмотров: 1065 | Нарушение авторских прав

Источник: lektsii.org

Что такое компараторы? — Основы схемотехники

Компараторы — это устройства, которые сравнивают два напряжения или тока и выдают цифровой сигнал, указывающий, какой из них больше. Он имеет два аналоговых входа и один двоичный цифровой выход. Выходное значение компаратора указывает, какой из входов больше или меньше. Компаратор сравнивает два примененных к нему входных сигнала и производит сравнение в качестве выходных данных.

использует

Эти устройства часто используются для проверки того, достиг ли вход заданного значения.В большинстве случаев компаратор реализуется с использованием специальной микросхемы компаратора, но в качестве альтернативы можно использовать операционные усилители.

На схемах компаратора

и схемах операционных усилителей используются одни и те же символы. Они состоят из специализированных дифференциальных усилителей с высоким коэффициентом усиления. Они обычно используются в устройствах для измерения и оцифровки аналоговых сигналов, таких как АЦП последовательного приближения и релаксационные генераторы. Компараторы используются для определения, когда произвольно изменяющийся входной сигнал достигает опорного уровня или определенного порогового уровня.Такие устройства могут быть разработаны с использованием различных компонентов, таких как диоды, транзисторы и операционные усилители. Их можно найти во многих электронных устройствах для управления логическими схемами.

Определение момента повышения температуры выше определенного порога важно для многих приложений. Компаратор может использоваться с термистором, чтобы определять, когда определенная температура поднимается выше порогового значения.

Если внимательно присмотреться к символу компараторов, вы узнаете его как символ операционного усилителя (операционного усилителя).Однако их нельзя считать одинаковыми. На аналоговом входе работает операционный усилитель. Он может усиливать или ослаблять этот вход и выполнять математические операции, такие как сложение, вычитание, интегрирование и дифференцирование.

Из-за широкого диапазона применения операционные усилители встречаются в большинстве электрических цепей. Операционный усилитель предназначен для приема аналоговых сигналов и выдачи аналогового сигнала, тогда как компаратор выдает только выходной сигнал в виде цифрового сигнала. Хотя в качестве компараторов можно использовать обычный операционный усилитель, их нельзя использовать непосредственно в схемах компаратора напряжения.Операционные усилители и компараторы могут показаться взаимозаменяемыми из-за их символов и выводов, но это не одно и то же.

Инвертирующий компаратор

Инвертирующий компаратор — это компаратор на базе операционного усилителя, в котором опорное напряжение прикладывается к его неинвертирующему выводу, а входное напряжение прикладывается к его инвертирующему выводу. Этот компаратор называется инвертирующим компаратором, потому что входное напряжение, которое необходимо сравнить, подается на инвертирующий вывод операционного усилителя.

Инвертирующий компаратор работает очень просто. Он выдает одно из двух значений и на выходе на основе значений входного и опорного напряжения. Принципиальная схема инвертирующего компаратора показана на следующем рисунке.

Неинвертирующий компаратор

Неинвертирующий компаратор — это компаратор на базе ОУ, в котором опорное напряжение подается на его инвертирующий вывод. Входное напряжение, с другой стороны, подается на его неинвертирующий вывод.Этот компаратор на базе операционного усилителя называется неинвертирующим компаратором, потому что входное напряжение, которое необходимо сравнить, подается на неинвертирующий вывод операционного усилителя. Принципиальная схема неинвертирующего компаратора показана на следующем рисунке.

LM324 (IC)

ИС операционного усилителя LM324 может работать как компаратор. Эта ИС имеет четыре независимых операционных усилителя на одной микросхеме. Это маломощный четырехъядерный операционный усилитель с высокой стабильностью и полосой пропускания, предназначенный для работы от одного источника питания в широком диапазоне напряжений.Счетверенный усилитель может работать при напряжении питания от 3,0 В до 3,2 В с токами покоя, составляющими примерно одну пятую от тех, которые связаны с MC174. Диапазон синфазного входа включает отрицательное питание, что устраняет необходимость во внешних компонентах смещения во многих приложениях. Диапазон выходного напряжения также включает отрицательное напряжение источника питания. Схема компаратора LM324 состоит из напряжения датчика, опорного напряжения, Vcc, земли и выходных контактов.

Один источник питания может работать с LM324, но он также может использовать два источника питания.Используемые клеммы или контакты — это контакты 4 и 11. Источники питания обеспечивают работу всех четырех операционных усилителей.

Для первого операционного усилителя инвертирующий вход подается на вывод 2, а неинвертирующий — на вывод 3. Выход первого операционного усилителя получается на выводе 1.

Для второго операционного усилителя инвертирующий вход подается на вывод 6, а неинвертирующий — на вывод 5. Выход второго операционного усилителя получается на выводе 7.

Для третьего операционного усилителя инвертирующий вход подается на вывод 9, а неинвертирующий — на вывод 10.Выход третьего операционного усилителя получается на выводе 8.

Наконец, для четвертого операционного усилителя инвертирующий вход подается на вывод 13, а неинвертирующий — на вывод 12. Выход четвертого операционного усилителя получается на выводе 14.

Пример схемы с использованием компаратора (

DARK Detector )
Компаратор Redstone

— Minecraft Wiki

Компаратор красного камня — это блок, используемый в схемах красного камня для поддержания, сравнения или вычитания уровня сигнала или для измерения определенных состояний блока (в первую очередь, заполненности контейнеров).

Получение []

Нарушение []

Компаратор красного камня можно мгновенно сломать любым инструментом, включая кулак игрока, и он выпадает как предмет.

Компаратор красного камня удаляется и выпадает как предмет, если:

  • его присоединительный блок перемещен, удален или уничтожен;
  • вода течет в его пространство; ‌ [ Java Edition только ]
  • : поршень пытается толкнуть его или перемещает блок в его пространство.

Если лава течет в пространство компаратора красного камня, компаратор красного камня уничтожается, но не падает как предмет.

Ремесло []

Использование []

Компаратор из красного камня может быть размещен на вершине любого непрозрачного блока с твердой верхней поверхностью во всю высоту (включая перевернутые плиты и перевернутые лестницы). В Bedrock Edition компаратор также можно разместить на стенах и заборах. Для получения дополнительной информации о размещении на прозрачных блоках см. Непрозрачность / Размещение.

Компаратор из красного камня имеет переднюю и заднюю части — стрелка в верхней части компаратора указывает вперед. При размещении компаратор смотрит в сторону от игрока. Компаратор имеет два миниатюрных факела из красного камня сзади и один спереди. Задние фонари включаются, когда выход компаратора больше нуля (стрелка вверху также становится красной). Передний фонарь имеет два состояния, которые можно переключать с помощью компаратора:

  • Выключен и отключен (указывает, что компаратор находится в «режиме сравнения»)
  • Включен и включен (это означает, что компаратор находится в «режиме вычитания»)

Компаратор красного камня может принимать входной сигнал мощности как с задней, так и с обеих сторон.Боковые входы принимаются только от красной пыли, повторителей красного камня и других компараторов. Передняя часть компаратора красного камня — это его выход.

Для прохождения сигналов через компаратор красного камня, сзади или сбоку, требуется 1 тик красного камня (2 игровых тика или 0,1 секунды без задержки). Это касается изменения силы сигнала, а также простого включения и выключения. Компараторы Redstone обычно не реагируют на 1-тактовые колебания мощности или мощности сигнала — например, 1-тактовый вход рассматривается как всегда сбоку и всегда включен сзади.

Компаратор красного камня имеет четыре функции: поддержание мощности сигнала, сравнение мощности сигнала, вычитание мощности сигнала и измерение определенных состояний блоков (в первую очередь, заполненности контейнеров).

Поддерживать уровень сигнала []

Компаратор красного камня без запитанных сторон выводит сигнал той же мощности, что и его задний вход.

Сравнить мощность сигнала []

Компараторы в режиме сравнения.

Компаратор красного камня в режиме сравнения (передняя горелка опущена и отключена) сравнивает свой задний вход с двумя боковыми входами.Если любой боковой вход больше, чем задний вход, выход компаратора отключается. Если ни один из боковых входов не превышает задний вход, компаратор выводит сигнал той же силы, что и его задний вход.

Формула для расчета мощности выходного сигнала выглядит следующим образом:

выход = задний × [ левый задний И правый задний ]

Вычесть мощность сигнала []

Компаратор красного камня в режиме вычитания (передний фонарь включен и включен) вычитает мощность сигнала верхнего бокового входа из уровня заднего входа.

мощность = макс ( сзади - макс ( слева , справа ), 0)

Например: если уровень сигнала равен 6 на левом входе, 7 на правом входе и 4 сзади, выходной сигнал имеет мощность макс (4 — макс (6, 7), 0) = макс. (4−7, 0) = max (−3, 0) = 0 .

Если мощность сигнала составляет 9 сзади, 2 на правом входе и 5 на левом входе, выходной сигнал имеет мощность макс (9 — макс (2, 5), 0) = макс (9− 5, 0) = 4 .

Измерение состояния блока []

Компаратор красного камня может измерять заполненность сундука, а также другие состояния блока, даже через блок.

Компаратор красного камня обрабатывает определенные блоки за ним как источники питания и выдает мощность сигнала, пропорциональную состоянию блока. Компаратор может быть отделен от измеряемого блока сплошным блоком. Однако в Java Edition , если сплошной блок запитан до уровня сигнала 15, то компаратор выдает 15 независимо от заполнения контейнера. [1]

Контейнеры []
Минимальные позиции для мощности сигнала контейнера
Контейнеры







Всего слотов 3 5 9 27 54 1
Уровень мощности Количество позиций Музыкальный диск
0 0 0 0 0 0 Без диска
1 1 1 1 1 1 «13»
2 14 23 42 1 с 60 3 с 55 «кот»
3 28 46 1 с 19 3 с 55 7с 46 «блоков»
4 42 1 с 5 1 с 60 5s 51 11с 37 «чирикать»
5 55 1 с 28 2с 37 7с 46 15 с 28 «далеко»
6 1 с 5 1 с 51 3с 14 9с 42 19 с 19 «ТЦ»
7 1с 19 2с 10 3 с 55 11с 37 23с 10 «меллохи»
8 1 с 32 2 с 32 4с 32 13с 32 27с «сталь»
9 1с 46 2 с 55 5с 10 15 с 28 30 с 55 «страд»
10 1 с 60 3с 14 5s 51 17с 23 34с 46 «палата»
11 2с 10 3с 37 6с 28 19 с 19 38с 37 «11»
12 2с 23 3 с 60 7с 5 21 с 14 42с 28 «подождите»
13 2с 37 4с 19 ​​ 7с 46 23с 10 46с 19 «Свинка»
14 2с 51 4с 42 8с 23 25 с 5 50-е годы 10
15 27с 54с

Использование компаратора красного камня для измерения состояния контейнера будет выводить мощность сигнала, пропорциональную степени заполнения контейнера (0 для пустого, 15 для полного и т. Д.).

Контейнеры, которые можно измерить с помощью компаратора, включают:

Вообще говоря, мощность выходного сигнала компаратора представляет собой среднюю заполненность слотов в зависимости от того, сколько из этих элементов образуют полный стек (64, 16 или 1 для элементов, не складываемых в стек).

В таблице Minimum Items for Container Signal Strength (справа) показано минимальное количество из 64 элементов, складываемых в стек, необходимое для создания сигналов различной мощности от каждого типа контейнера. Цифры, за которыми следует буква «s», указывают количество обычных эквивалентов с 64 стеками («s») и дополнительных элементов, меньших, чем требуется стопка.Для предметов, которые складываются максимум в 16 (снежки, знаки, жемчужины края и т. Д.), Нормальное значение должно быть разделено на 4, каждая единица равна 4. Пример: 3 жемчужины края × 4 = 12 обычных штабелируемых элементов. Каждый элемент, не складываемый в стек, считается одним полным стеком (64 элемента).

Например, для получения сигнала мощностью 10 от бункера требуется эквивалент 3 полных стеков плюс еще 14 элементов, или всего 206 элементов, если все они складываются в 64.

Когда компаратор измеряет большой сундук или большой сундук с ловушкой, он измеряет весь большой сундук (54 ячейки), а не только половину непосредственно за компаратором.Сундук или сундук-ловушка, который нельзя открыть (либо потому, что над ним есть непрозрачный блок, оцелот или кошка) всегда дает результат 0, независимо от того, сколько предметов находится в контейнере — коробки шалкера всегда можно измерить, даже если они не могут открыться.

Расчет мощности сигнала по элементам
Когда контейнер пуст, вывод отключен.
Когда он не пустой, мощность выходного сигнала рассчитывается следующим образом:
мощность сигнала = этаж (1 + (( сумма заполнений всех слотов ) / ( количество слотов в контейнере )) × 14)
заполнение слота = количество элементов в слоте / максимальный размер стопки для этого типа элемента
Пример: 300 блоков в дозаторе (который имеет 9 слотов), где каждый блок складывается максимум до 64, выдает выходной сигнал с силой сигнала 8:

1 + ((300 элементов / 64 элемента в слоте) / 9 ячеек) × 14 = 8.292, эт 8

Обратите внимание, что не штабелируемый элемент считается полным слотом (1 элемент в слоте с максимальным размером стопки 1: 1/1 = 1.0), а предметы, которые складываются до 16 (например, жемчуг Края, снежки и яйца) аналогично считается полным слотом на 16.
Расчет элементов по силе сигнала
В схемах красного камня может быть полезно использовать контейнеры с компараторами для создания сигналов определенной силы. Количество элементов, необходимых в контейнере для создания сигнала желаемой силы, рассчитывается следующим образом:
требуемых элементов = макс ( желаемый уровень сигнала , округление ((общее количество слотов в контейнере × 64/14) × (желаемая мощность сигнала - 1)))
Пример: Чтобы использовать печь (которая имеет 3 слота) для создания сигнала уровня 9, игрокам необходимо 110 предметов:

max (9, (3 × 64/14) × (9−1)) = 109.714, округляем вверх 110

Разное []

Компараторы, используемые для измерения контейнеров.

Некоторые неконтейнерные блоки можно также измерить с помощью компаратора красного камня:

Улей и пчелиное гнездо
Улей или гнездо выдает сигнал с мощностью, равной количеству меда в улье / гнезде.
Торт
Торт выводит мощность сигнала относительно количества оставшегося торта.Каждый срез соответствует уровню сигнала 2, всего 7 срезов, на выходе 14 для полного торта.

Уровень сигнала котла

Котел
Котел выдает сигнал разной мощности в зависимости от количества воды внутри. От полностью пустого до полностью заполненного, выходные значения равны 0, 1, 2 и 3. Если лава внутри, сила всегда равна 3.

Уровень сигнала Composter

Composter
Компостер выдает другой сигнал сильные стороны в зависимости от уровня внутри.От полностью пустого до полностью заполненного, выходные значения: 0, 1, 2, 3, 4, 5, 6, 7 и 8.
Командный блок
Командный блок хранит «счетчик успешных» последняя выполненная команда, которая представляет, сколько раз успешно выполнялась последняя использованная команда этого командного блока. «Успех» определяется условиями успеха команды: если в чате возвращается красное сообщение об ошибке, команда не была успешной.
Большинство команд могут быть успешными один раз за выполнение, но некоторые команды (например, те, которые принимают игроков в качестве аргументов) могут быть успешными несколько раз, и компаратор выводит количество успешных попыток (максимум 15 при отправке в пыль красного камня, но в коде может достигать 32-битного целочисленного предела и может использоваться в хитростях без пыли красного камня с этими значениями).
Командный блок продолжает хранить счетчик успехов последней выполненной команды до тех пор, пока он не выполнит свою команду снова, таким образом, компаратор продолжает выводить сигнал той же мощности даже после того, как командный блок больше не активируется (он не выключается при отключении сигнала на командный блок).
Конечный фрейм портала
Конечный фрейм портала выводит полный сигнал 15, если он содержит окошко конца, и ноль в противном случае.

Компаратор может измерять наличие и вращение содержимого фрейма элемента.

Фрейм элемента
Компаратор может измерять состояние содержимого фрейма элемента. Компаратор фрейма элемента выводит 0, если фрейм элемента пуст, или от 1 до 8 для любого элемента в зависимости от его поворота: 1 при первоначальном размещении, плюс 1 для каждого поворота на 45 °, максимум 8.
Для рамка элемента, содержащая карту, единица вращения — 90 ° вместо 45 °, но компаратор по-прежнему выводит уровни мощности от 1 до 8.Для циклического перебора всех выходов компаратора требуется два полных оборота, и каждая ориентация карты соответствует двум выходным уровням, которые отличаются на 4.
Компаратор должен быть размещен за блоком, к которому прикреплена рамка элемента, лицом от рамка элемента. Блок должен быть целым, а раму предмета нельзя погружать в воду. Наличие знака в том же блоке, что и фрейм элемента, также не позволит фрейму посылать сигнал. диск в данный момент воспроизводится.См. Таблицу «Минимум для уровня сигнала контейнера » выше.
Кафедра
Кафедра выводит мощность сигнала, которая зависит от того, на какой странице находится игрок в данный момент (например, книга с 15 страницами дает 1 уровень красного камня на страницу, или книга с 5 страницами излучает 3 уровня сигнала на страницу ).
Якорь возрождения
Якорь возрождения выдает уровень сигнала 0, 3, 7, 11 или 15, в зависимости от «заряженного» значения.
Датчик сдвига
Датчик сдвига выдает мощность сигнала в зависимости от типа обнаруженной вибрации.

Звуки []

Универсальный []

Java Edition :

Bedrock Edition:

Звук Источник Описание Расположение ресурса Громкость Шаг
? Блоки После того, как блок сломался dig.дерево 1,0 0,8
? Блоки Падение на блок с повреждениями при падении fall.wood 0.4 1.0
? Блоки Пока блок находится в процессе разрушения hit.wood 0,23 0,5
? Блоки Прыжок с блока Прыжок.дерево 0,12 1,0
? Блоки Падение на блок без повреждений при падении land.wood 0,18 1,0
? Блоки Ходьба по блоку ступенька. Дерево 0,3 1,0
? Блоки При установке блока используйте дерево 1.0 0,8

Уникальный []

Java Edition :

Значения данных []

ID []

Java Edition :

Имя Расположение ресурса Форма Ключ перевода
Компаратор Redstone компаратор Блок и элемент block.minecraft.comparator
149202 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902
Компаратор Redstone Расположение ресурса Числовой идентификатор Форма Ключ трансляции
Блок без питания Компаратор без источника питания 902 Блокunpowered_comparator.name
Активный блок powered_comparator 150 Блок tile.powered_comparator.name item.comparator.name
Имя ID сохранения
Блок объекта Компаратор

В Bedrock Edition компараторы красного камня используют следующие значения данных: Данные блока компаратора красного камня определяют его ориентацию, режим и состояние питания.

Биты Значения
0x1
0x2
Двухбитовое поле, хранящее значение от 0 до 3, определяющее ориентацию компаратора красного камня:
  • 0: Лицом на север.
  • 1: Лицом на восток.
  • 2: Лицом на юг.
  • 3: Лицом на запад.
0x4 Установите, если в режиме вычитания (передний резак включен и включен).
0x8 Установите, если запитано (на любом уровне мощности).

Состояния блока []

Java Edition :

Имя Значение по умолчанию Допустимые значения Описание
лицом север восток
север
юг
запад
Направление от выхода на сторону входа на вход или сторону компаратора противоположно направлению, в котором смотрит игрок при установке компаратора.
режим сравнить сравнить
вычесть
Задает текущий режим компаратора Redstone.
с питанием false false
true
True, если питание компаратора Redstone подается.

Bedrock Edition:

Имя Значение по умолчанию Допустимые значения Описание
направление 0 0
1
2
3
Направление от стороны выхода к стороне входа 50 или компаратора противоположно направлению, в котором смотрит игрок при установке компаратора.
output_lit_bit 0 0
1
Истинно, если на компаратор Redstone подается питание.
output_subtract_bit 0 0
1
Определяет текущий режим компаратора Redstone.

Данные блока []

Компаратор красного камня имеет связанный с ним объект блока, который содержит дополнительные данные о блоке.

Java Edition :

  • Блок данных объекта
    • OutputSignal: Представляет силу аналогового выходного сигнала этого компаратора красного камня.


Bedrock Edition:

См. Формат уровня Bedrock Edition / Формат объекта блока.

Видео []

История []

В этом разделе отсутствует информация о влиянии ли MC-50242 на компараторы ?. Пожалуйста, разверните раздел, чтобы включить эту информацию. Более подробная информация может быть на странице обсуждения.

Для более подробной информации об изменениях в текстурах и моделях повторителя, включая набор визуализаций для каждой комбинации состояний, см. / История активов

Java Edition
24 ноября 2012 г. Джеб заявил, что в Minecraft может быть «конденсатор». [требуется ссылка ]
27 декабря 2012 г. Диннербоун опубликовал изображения первой версии «компаратора», заявив, что это замена идеи «конденсатора» с переменными альтернативными входами.
2 января 2013 г. Dinnerbone опубликовал еще одну фотографию компаратора. Сама картинка показывает цифро-аналоговый преобразователь, использующий компаратор в качестве основного блока.
1,5 13w01a Добавлены компараторы красного камня.
Компараторы Redstone имеют нулевую задержку.
13w01b Задержка в 1 игровой тик ( 1 2 тик красного камня) теперь добавлена ​​к компараторам красного камня для исправления ошибок.
Добавлена ​​возможность измерения контейнеров для компараторов красного камня.
13w02a Внешний вид компараторов красного камня был изменен — ​​верхняя текстура изменилась, чтобы показать кварц в середине, а по бокам теперь используется текстура гладкого камня, а не текстура гладкой стороны каменной плиты.
Алгоритм измерения контейнеров теперь изменен, так что компараторы красного камня выдают сигнал, когда в контейнере находится всего один элемент.
13w02b Компараторы Redstone теперь обрабатывают большие сундуки как единый контейнер.
13w03a Компараторы Redstone теперь выводят количество успешных командных блоков.
Компараторы Redstone теперь измеряют контейнерные вагонетки на направляющих детектора.
13w04a Компараторы Redstone теперь измеряют музыкальные автоматы.
13w05a Компараторы Redstone больше не вызывают постоянные обновления блоков.Теперь задержка согласована, и боковой вход больше не вызывает импульсный выход.
Блок 150 ( powered_comparator ) больше не используется; Состояние питания теперь представлено битом 8s в блоке 149 ( unpowered_comparator ).
13w05b Задержка компаратора редстоуна теперь изменена с 1 игрового тика (1/2 тика редстоуна) на 2 игровых тика (1 тик красного камня).
13w09c Сила сигнала красного камня от компаратора красного камня рядом с пивоваренным стендом с 3 бутылками с водой в нем теперь такая же, как и с 3 бутылками с водой и 1 ингредиентом в нем.
1.6.1 13w18a Компараторы Redstone теперь измеряют котлы и концевые портальные рамы.
1,8 14w04a Компараторы Redstone теперь измеряют рамки элементов.
14w10a Резаки под компараторами красного камня теперь укорочены, что изменило внешний вид нижней стороны с на.
14w25a Резаки на компараторах теперь подвержены влиянию окружающей среды.
Компараторы, установленные в режим вычитания, по-видимому, также получают питание независимо от входящей мощности. Модель только вычитания все еще существует и может быть реализована с помощью / setblock .
14w25b Теперь передний резак с приводом в режиме вычитания опускается ниже.
Компараторы, настроенные на вычитание вручную, теперь снова отображаются нормально.
14w28a Компараторы Redstone теперь измеряют лепешки.
1,9 15w42a С добавлением слота для горючего порошка, пивоваренные стойки теперь имеют 5 слотов вместо 4. Их исходные сравнительные значения мощности компараторов Redstone перечислены ниже:
Исходные значения
  • 0: 0
  • 1: 1
  • 2: 19
  • 3: 37
  • 4: 55
  • 5: 1 с 10
  • 6: 1 с 28
  • 7: 1 с 46
  • 8: 2 с
  • 9: 2с 19
  • 10: 2с 37
  • 11: 2с 55
  • 12: 3с 10
  • 13: 3с 28
  • 14: 3с 46
  • 15: 4s
15w47a Боковые входы компараторов Redstone теперь получают питание от блоков Redstone.
1,13 17w47a Все 3 идентификатора для компаратора красного камня теперь объединены в один идентификатор: компаратор .
Компараторы Redstone теперь отображают свою нижнюю сторону, а нижняя сторона изменилась с на.
До The Flattening числовые идентификаторы этих блоков были 149 и 150, а также 404 элемента.
1.14 18w43a Текстуры компараторов Redstone были изменены.
19w02a Компараторы Redstone теперь измеряют кафедры.
19w03a Компараторы Redstone теперь измеряют компостеры.
19w12b Компараторы Redstone теперь можно размещать на стекле, льду, светящемся камне и морских фонариках.
1,15 19w34a Компараторы Redstone теперь измеряют количество меда внутри пчелиных ульев и пчелиных гнезд.
1.16 20w06a Теперь способ вычисления входных сигналов компараторов красного камня был изменен.
20w11a Изменения в способе вычисления входных сигналов компараторов красного камня из 20w06a теперь отменены.
20w16a Компараторы Redstone теперь измеряют музыкальные диски Pigstep в музыкальных автоматах.
1,17 20w45a Компараторы Redstone теперь измеряют котлы лавы.
20w46a Компараторы Redstone теперь измеряют котлы для порошкового снега.
Карманное издание Alpha
v0.14.0 build 1 [ verify ] Добавлены компараторы красного камня.
Pocket Edition
1.0.0 alpha 0.17.0.1 Компараторы Redstone теперь измеряют концевые портальные рамы.
1.0.5 alpha 1.0.5.0 Компараторы Redstone теперь выводят количество успешных командных блоков.
1.1.0 alpha 1.1.0.0 Компараторы Redstone теперь измеряют коробки шалкера.
Bedrock Edition
1.2.0 beta 1.2.0.2 Компараторы Redstone теперь измеряют музыкальные автоматы.
Компараторы Redstone теперь отображают свою нижнюю сторону, которая изменила их нижнюю сторону с на
1.10.0 beta 1.10.0.3 Текстуры компараторов Redstone были изменены.
1.11.0 beta 1.11.0.1 Компараторы Redstone теперь измеряют коптильни, доменные печи, кафедры и компостеры.
Legacy Console Edition
TU19 CU7 1.12 Patch 1 1.0.1 [ verify ] Добавлены компараторы Redstone.
TU31 CU19 1,22 Патч 3 Компараторы Redstone теперь могут измерять рамки элементов.
1,90 [ проверить ] Текстуры компараторов красного камня теперь изменены.
New Nintendo 3DS Edition
0.1.0 [ проверить ] Добавлены компараторы красного камня.

Редстоун компаратор «предметы» []

Следующее содержимое включено из технических блоков / Redstone Comparator.
Java Edition
1,5 13w01a Компараторы Redstone имеют дополнительные, недоступные формы элементов, соответствующие их идентификаторам блоков.Их можно получить с помощью команды / give или редакторов инвентаря с числовыми идентификаторами предметов 149 и 150.
1.7.2 13w37a Прямые формы предметов компараторов Redstone были удалены из игры. Они больше не могут существовать как предметы, только как размещенные блоки.
Карманное издание Alpha
? Компараторы Redstone, вероятно, существуют как элемент.
Появления []
Компаратор без питания []
Java Edition
1.5 13w01a Элемент компаратора без питания использует эту текстуру в инвентаре, когда он удерживается в виде от первого или третьего лица, как выпавший элемент или когда находится в рамке элемента
13w02a Элемент компаратора без питания теперь использует эту текстуру в инвентаризациях, при просмотре от первого или третьего лица, в виде выпавшего предмета или во фрейме предмета.
Это связано с серьезными изменениями в хранении текстур в этой версии.
Компаратор с приводом []
Java Edition
1.5 13w01a Активный элемент компаратора использует эту текстуру в инвентаре, когда он удерживается в виде от первого или третьего лица, как выпавший элемент или когда в рамке элемента
13w02a Активный элемент компаратора теперь использует эту текстуру в инвентаризациях, при просмотре от первого или третьего лица, в виде брошенного предмета или во фрейме предмета.
Это связано с серьезными изменениями в хранении текстур в этой версии.
Bedrock Edition
? Активные компараторы используют эту текстуру. [2]
? Активные компараторы используют эту текстуру. [3]
Имена []
Компаратор без питания []
Java Edition
  • 13w01a — 13w25b: [не имеет определенного имени, отображается текстовое поле минимальной длины, если оно выделено]
  • 13w25c — 13w36b: tile.comparator.name

При использовании команды / give он объявляется как плитка .имя-компаратора .

Компаратор с приводом
[]
Java Edition
  • 13w01a — 13w25b: [не имеет определенного имени, отображается текстовое поле минимальной длины, если оно выделено]
  • 13w25c — 13w36b: tile.comparator.name

При использовании команды / give он объявляется как tile.comparator.name .

выпусков []

Проблемы, связанные с «Redstone Comparator», поддерживаются в системе отслеживания ошибок.Сообщайте о проблемах здесь.

Общая информация []

  • Компараторы специально разработаны Mojang так, чтобы не выделять частицы красного камня при включении, в отличие от фонарей и повторителей красного камня. [4]

Ссылки []

Компаратор напряжения на операционном усилителе. Инвертирующий компаратор напряжения, неинвертирующий компаратор операционных усилителей, практическая схема компаратора

Схема компаратора напряжения.

Компаратор напряжения — это схема, которая сравнивает два напряжения и переключает выход в высокое или низкое состояние в зависимости от того, какое напряжение выше.Здесь показан компаратор напряжения на базе операционного усилителя. На фиг.1 показан компаратор напряжения в инвертирующем режиме, а на фиг.

Компаратор напряжения

Неинвертирующий компаратор.

В неинвертирующем компараторе опорное напряжение подается на инвертирующий вход, а сравниваемое напряжение — на неинвертирующий вход. Когда сравниваемое напряжение (Vin) превышает опорное напряжение, выход операционного усилителя переключается на положительное насыщение (V +) и наоборот.На самом деле происходит то, что разница между Vin и Vref (Vin — Vref) будет положительной величиной и будет увеличиваться до бесконечности операционным усилителем. Поскольку резистор обратной связи Rf отсутствует, операционный усилитель находится в режиме разомкнутого контура, поэтому коэффициент усиления по напряжению (Av) будет близок к бесконечности. Таким образом, выходное напряжение достигает максимально возможного значения, т.е. V +. Вспомните уравнение Av = 1 + (Rf / R1). Когда Vin опускается ниже Vref, происходит обратное.

Инвертирующий компаратор.

В случае инвертирующего компаратора опорное напряжение подается на неинвертирующий вход, а сравниваемое напряжение подается на инвертирующий вход.Когда входное напряжение (Vin) превышает Vref, выход операционного усилителя переключается на отрицательное насыщение. Здесь разница между двумя напряжениями (Vin-Vref) инвертируется и усиливается до бесконечности операционным усилителем. Помните уравнение Av = -Rf / R1. Уравнение для усиления напряжения в инвертирующем режиме: Av = -Rf / R1. Поскольку резистора обратной связи нет, коэффициент усиления будет близок к бесконечности, а выходное напряжение будет как можно более отрицательным, т. Е. V-.

Практическая схема компаратора напряжения.

Практический неинвертирующий компаратор на базе операционного усилителя uA741 показан ниже. Здесь опорное напряжение устанавливается с помощью цепи делителя напряжения, состоящей из R1 и R2. Уравнение Vref = (V + / (R1 + R2)) x R2. Подстановка значений, приведенных на принципиальной схеме, в это уравнение дает Vref = 6V. Когда Vin превышает 6 В, выход переключается на ~ + 12 В постоянного тока и наоборот. Схема питается от двойного источника питания +/- 12 В постоянного тока.

Компаратор напряжения с использованием 741

Несколько других схем, связанных с операционными усилителями, которые могут вас заинтересовать.

Интегратор, использующий операционный усилитель : для интегрирующей схемы выходной сигнал будет интегралом входного сигнала. Например, синусоидальная волна при интегрировании дает косинусоидальную волну, прямоугольная волна при интегрировании дает треугольную волну и т. Д.

Инвертирующий усилитель : В инвертирующем усилителе выходной сигнал будет инвертированной версией входного сигнала и усилен в определенном размере.

Инструментальный усилитель : это тип дифференциального усилителя с дополнительными буферными каскадами на входе.Это приводит к высокому входному сопротивлению и простому согласованию. Инструментальный усилитель имеет лучшую стабильность, высокий CMRR, низкое напряжение смещения и высокое усиление.

Конфигурации схем операционного усилителя / компаратора

| Основы электроники

Конфигурация схемы операционного усилителя

Конфигурация внутренней схемы стандартного операционного усилителя показана ниже.
Обычно операционные усилители делятся на 3 ступени: вход, усиление и выход.

Входной каскад включает в себя дифференциальный усилитель, который усиливает дифференциальное напряжение между двумя входными контактами, в то время как компонент синфазного сигнала (одинаковое напряжение на обоих контактах без разницы потенциалов между ними) работает для противодействия без усиления.

Поскольку коэффициент усиления при использовании только схемы дифференциального усилителя недостаточен, коэффициент усиления ОУ увеличивается на этапе усиления. Обычно между каскадом усиления подключается емкость для компенсации фазы, чтобы предотвратить внутренние колебания.

Выходной каскад подключается в качестве буфера для предотвращения изменений характеристик операционного усилителя в зависимости от нагрузки (т. Е. Сопротивления, подключенного к выходному контакту).
Изменения выходных характеристик в зависимости от нагрузки (искажения, падение напряжения) во многом зависят от конфигурации схемы и токовой нагрузки.

Существует несколько различных типов выходных каскадов, классифицируемых по величине управляющего тока, протекающего в выходной цепи (разные напряжения смещения): класс A, класс B, класс C и класс AB.

Как правило, различные типы сортируются по наименьшему количеству искажений:
класс A, класс AB, класс B, класс C и т. Д.

Конфигурация схемы компаратора

Схема схемы стандартного компаратора показана ниже. Это то же самое, что и операционный усилитель, но поскольку компараторы не используются для настройки отрицательной обратной связи, емкость компенсации фазы для предотвращения колебаний не встроена.

Поскольку емкость фазовой компенсации ограничивает рабочую скорость между входами и выходами, время отклика значительно меньше, чем у операционных усилителей. Конфигурацию выходной цепи компараторов можно разделить на два типа: открытый коллектор (открытый сток) и двухтактный.

Эквивалентная схема BA10393 показана ниже. Выходная цепь — с открытым коллектором.

Гистерезис компаратора — Circuit Cellar

Мы, наверное, все знакомы с компараторами.Типичная схема «инвертирующего» компаратора показана на рис. 1 . Резисторы R1 и R2 обеспечивают опорное напряжение на неинвертирующем входе, а входное напряжение Vin подается на инвертирующий вход. Большинство компараторов имеют выходы с открытым стоком, поэтому на выходе требуется подтягивающий резистор Rp. Резистор Rh обеспечивает гистерезис. Выход компаратора будет высоким, когда входное напряжение ниже, чем напряжение в узле, где встречаются R1, R2 и Rh.

РИСУНОК 1. Классический «инвертирующий» компаратор с гистерезисом.Входной импеданс высокий, поскольку вход подключен непосредственно к инвертирующему входу компаратора.

В отсутствие Rh это напряжение будет фиксироваться делителем, образованным R1 и R2. Когда входное напряжение действительно близко к этому напряжению, выход компаратора может колебаться между состояниями, особенно если есть какие-либо помехи на входе или напряжении питания. Не очень желательно. Решение состоит в том, чтобы ввести гистерезис через Rh. Когда Vin низкий, открытый сток компаратора будет иметь высокий импеданс, и выход будет повышен за счет Rp.Теперь Rp и Rh фактически параллельны R1, и напряжение на неинвертирующем входе будет немного выше, чем было без гистерезиса. Теперь, когда Vin высокий, на выходе компаратора устанавливается низкий уровень. Теперь Rh фактически включен параллельно R2, немного уменьшая напряжение на неинвертирующем входе по сравнению с тем, где оно было бы без гистерезиса.

График справа от Рисунок 1 показывает это графически — теперь у нас фактически есть два порога: более высокий, когда Vin превышает номинальный порог, и более низкий, когда он падает.Если мы сделаем гистерезис шире, чем шум, мы сможем устранить любое дребезжание или колебания при прохождении порога. Уравнения, описывающие два порога, приведены ниже.

Но что, если нам нужен «неинвертирующий» компаратор? Мы можем использовать схему, показанную на рис. 2 . Он имеет фиксированную ссылку на инвертирующем входе, полученную от делителя, образованного R1 и R2. Rin, Rh и Rp обеспечивают гистерезис.

РИСУНОК 2. Недостатком неинвертирующей версии является относительно низкий входной импеданс и, что еще хуже, он изменяется в зависимости от состояния выхода компаратора.Любое сопротивление источника влияет на пороговые значения.

Формулы для этого немного сложнее вычислить.

Недостатком этой схемы по сравнению с «инвертирующей» версией является то, что входной импеданс ниже и изменяется в зависимости от состояния компаратора. Любое полное сопротивление источника будет составлять часть Rin и должно приниматься во внимание при вычислении гистерезиса. Неряшливый.

Другой подход — использовать полевой МОП-транзистор, как показано на рис. 3 . Vin подается непосредственно на неинвертирующий вход компаратора, поэтому проблемы с сопротивлением исчезают.Когда входное напряжение низкое, выходное напряжение компаратора также низкое и полевой МОП-транзистор выключен. Порог переключения устанавливается делителем, образованным R1 и R2 + R3. Когда на входе высокий уровень, выход компаратора имеет высокий импеданс, и Rp включает полевой МОП-транзистор, удаляя R3 из цепочки делителя и уменьшая порог переключения.

РИСУНОК 3. Эта версия неинвертирующего компаратора устраняет проблемы, показанные на рисунке 2. Он имеет высокий фиксированный входной импеданс, и на пороговые значения не влияет импеданс источника.Это достигается за счет дополнительного полевого МОП-транзистора.

Уравнения для повышения и понижения пороговых значений легко выводятся.

Ссылки:

Кей, Артур и Тимоти Клейкомб. «Компаратор с гистерезисным эталонным дизайном». Texas Instruments, 2014. https://www.ti.com/lit/ug/tidu020a/tidu020a.pdf.

«Руководство по добавлению дополнительного гистерезиса к компараторам | Максим Интегрированный ». По состоянию на 18 сентября 2020 г. https://www.maximintegrated.com/en/design/technical-documents/app-notes/3/3616.html.

Эндрю Левидо ([email protected]) получил степень бакалавра электротехники в Сиднее, Австралия, в 1986 году. Прежде чем перейти на руководящие должности, он несколько лет работал в сфере НИОКР в компаниях силовой электроники и телекоммуникаций. В свободное время Эндрю проявлял непосредственный интерес к электронике, особенно к встроенным системам, силовой электронике и теории управления. За эти годы он написал ряд статей для различных изданий по электронике и время от времени предоставляет консультационные услуги, если позволяет время.

Спонсируйте эту статью

Как использовать операционный усилитель в качестве схемы компаратора

В этом посте мы всесторонне узнаем, как использовать любой операционный усилитель в качестве компаратора в схеме для сравнения входных дифференциалов и создания соответствующих выходов.

Что такое компаратор на операционном усилителе

Мы использовали микросхему операционного усилителя, вероятно, с тех пор, как начали изучать электронику. Я имею в виду эту замечательную маленькую микросхему IC 741, с помощью которой практически любое проектирование схемы на основе компаратора становится возможным.

Здесь мы обсуждаем одну из простых схем применения этой ИС, где она конфигурируется как компаратор, неудивительно, что следующие приложения могут быть изменены множеством различных способов в соответствии с предпочтениями пользователя.

Как следует из названия, компаратор операционных усилителей относится к функции сравнения между определенным набором параметров или может быть всего лишь парой величин, как в данном случае.

Поскольку в электронике мы в первую очередь имеем дело с напряжениями и токами, эти факторы становятся единственными агентами и используются для работы, регулирования или управления различными задействованными компонентами.

В предлагаемой конструкции компаратора операционного усилителя используются два разных уровня напряжения на входных контактах для их сравнения, как показано на диаграмме ниже.

ПОМНИТЕ, НАПРЯЖЕНИЕ НА ВХОДНЫХ КОНТАКТАХ НЕ ДОЛЖНО ПРЕВЫШАТЬ УРОВЕНЬ ПИТАНИЯ ПОСТОЯННОГО ТОКА ОПУ, НА РИСУНКЕ НЕ ДОЛЖНО ПРЕВЫШАТЬ +12 В.

Два входных контакта операционного усилителя называются инвертирующими (с знак минус), а неинвертирующий вывод (со знаком плюс) становятся входами считывания операционного усилителя.

При использовании в качестве компаратора на один из двух выводов подается фиксированное опорное напряжение, в то время как на другой вывод подается напряжение, уровень которого необходимо контролировать, как показано ниже.

Мониторинг вышеуказанного напряжения осуществляется по фиксированному напряжению, приложенному к другому дополнительному выводу.

Следовательно, если напряжение, которое необходимо контролировать, становится выше или ниже фиксированного опорного порогового напряжения, выход меняет состояние или изменяет свое исходное состояние или меняет полярность выходного напряжения.

Видео-демонстрация

Как работает компаратор на операционных усилителях

Давайте проанализируем приведенное выше объяснение, изучив следующий пример схемы переключателя светового датчика.

Глядя на принципиальную схему, мы обнаруживаем, что схема сконфигурирована следующим образом:

Мы видим, что контакт № 7 операционного усилителя, который является контактом питания +, подключен к положительной шине, аналогично его контакту № 4, который является отрицательный вывод питания подключен к отрицательной или, скорее, нулевой шине питания.

Вышеупомянутая пара контактов обеспечивает питание ИС, чтобы она могла выполнять свои функции.

Теперь, как обсуждалось ранее, контакт №2 ИС подключен к стыку двух резисторов, концы которых подключены к положительной и отрицательной шинам источника питания.

Такое расположение резисторов называется делителем потенциала, что означает, что потенциал или уровень напряжения на стыке этих резисторов будет примерно половиной напряжения питания, поэтому, если напряжение питания равно 12, переход делителя потенциала сеть будет 6 вольт и тд.

Если напряжение питания хорошо отрегулировано, указанный выше уровень напряжения также будет хорошо зафиксирован и, следовательно, может использоваться в качестве опорного напряжения для контакта №2.

Следовательно, что касается напряжения перехода резисторов R1 / R2, это напряжение становится опорным напряжением на выводе №2, что означает, что ИС будет отслеживать и реагировать на любое напряжение, которое может превышать этот уровень.

Измеряемое напряжение, которое необходимо контролировать, подается на контакт № 3 ИС, в нашем примере через LDR. Контакт № 3 подключается к месту соединения вывода LDR и предустановленной клеммы.

Это означает, что этот переход снова становится делителем потенциала, уровень напряжения которого на этот раз не фиксирован, потому что значение LDR не может быть зафиксировано и будет меняться в зависимости от условий внешней освещенности.

Теперь предположим, что вы хотите, чтобы схема определяла значение LDR в какой-то момент сразу после наступления сумерек, вы настраиваете предустановку так, чтобы напряжение на выводе № 3 или на стыке LDR, и предустановка просто пересекала отметку 6 В. .

Когда это происходит, значение поднимается выше фиксированного задания на выводе # 2, это информирует IC о повышении напряжения считывания выше опорного напряжения на выводе # 2, это мгновенно меняет выходной сигнал IC, который изменяется на положительный по сравнению с исходным. положение нулевого напряжения.

Вышеупомянутое изменение состояния ИС с нуля на положительное запускает каскад драйвера реле, который включает нагрузку или индикаторы, которые могут быть подключены к соответствующим контактам реле.

Помните, что значения резисторов, подключенных к выводу №2, также могут быть изменены для изменения порога чувствительности вывода №3, поэтому все они взаимозависимы, что дает вам широкий угол изменения параметров схемы.

Еще одна особенность R1 и R2 заключается в том, что они исключают необходимость использования источника питания с двойной полярностью, что делает задействованную конфигурацию очень простой и аккуратной.

Замена параметра измерения параметром настройки

Как показано ниже, описанный выше рабочий ответ можно просто изменить, поменяв местами положения входных контактов ИС или рассмотрев другой вариант, в котором мы только меняем местами положения LDR. и предустановка.

Вот как ведет себя любой базовый операционный усилитель, когда он настроен как компаратор.

Подводя итог, можно сказать, что в любом отсеке на базе операционных усилителей выполняются следующие операции:

Практический пример № 1

1) Когда на инвертирующий вывод (-) подается фиксированное опорное напряжение, а на неинвертирующий ( +) входной контакт подвергается изменяющемуся напряжению считывания, выход операционного усилителя остается 0 В или отрицательным, пока напряжение на контакте (+) остается ниже уровня напряжения эталонного контакта (-).

Поочередно, как только напряжение на выводе (+) становится выше, чем напряжение (-), на выходе быстро устанавливается положительный уровень постоянного тока питания.

Пример № 2

1) И наоборот, когда на неинвертирующий вывод (+) подается фиксированное опорное напряжение, а на инвертирующий (-) входной вывод подается изменяющееся напряжение считывания, на выходе операционного усилителя остается питание. Уровень постоянного тока или положительный, пока напряжение на выводе (-) остается ниже уровня напряжения на опорном выводе (+).

Поочередно, как только напряжение на выводе (-) становится выше, чем напряжение (+), выход быстро становится отрицательным или переключается на 0В.

Интегральные схемы (ИС) | Линейный — Компараторы

.25 мкА при 5 В

9207lectronics 9202-2000 STMicroelectronics 9202-1

-753 Tape (0,173 дюйма, ширина 4,40 мм) A, SC-74119 753

1 -753 (0,173 дюйма, ширина 4,40 мм) Технология

1 Micro

1

Технология

1 Micro

1

° 85 ° C 9202 9202 9205 9204 9203 9202 9202 920 Texas Instruments

IC COMPARATOR TINY LV SOT353

$ 0.50000

59,817 — Немедленно

Diodes Incorporated Diodes Incorporated

1

LMV331SE-7DITR-ND

LMV331-ND

Tape & Reel (TR)

Cut Tape (CT)

Digi-Reel®

Active общего назначения 1 Открытый коллектор 2,7 В ~ 5,5 В 7 мВ при 5 В 0 84 мА при 5 В 120 мкА 450 нс -40 ° C ~ 125 ° C 5-TSSOP, SC-70-5, SOT-353 Крепление на поверхность SOT-353

ИС КОМПАРАТОР ДВОЙНОЙ 8-UFSON 2X2

$ 0,48000

4381 — Немедленно

00 STMicroelectronics -ND

497-11134-1-ND

497-11134-6-ND

Лента и катушка (TR)

Cut Tape (CT)

Digi-Reel®

Активный общего назначения 2 CMOS, DTL, ECL, MOS, открытый коллектор, TTL 2 В ~ 36 В, ± 1 В ~ 18 В 2.5 мА 8-UFDFN Открытая прокладка Поверхностный монтаж 8-UFSON (2×2)
9 SG0002 IC COMPY0002 9205 9 SG0002 IC COMPYSO2

292 — Немедленно

onsemi onsemi

1

LM2901DR2GOSTR-ND

LM2901DR2GOSTR-ND

LM2901DR2GOSCT-ND

Cut Tape (CT)

Digi-Reel®

Active общего назначения 4 CMOS, открытый коллектор, TTL 3 В ~ 36 В, ± 1.5 В ~ 18 В 7 мВ при 5 В 0,25 мкА при 5 В 16 мА при 5 В 2,5 мА -40 ° C ~ 105 ° C 14-SOIC (0,1 , Ширина 3,90 мм) поверхностный монтаж 14-SOIC

IC COMP LO PWR SGL V SOT 23-5L

$ 0,71000

42,538 — Immediate

0

1

497-2275-2-ND

497-2275-1-ND

497-2275-6-ND

Лента и катушка (TR)

Cut Tape (CT)

Digi-Reel®

Active общего назначения 1 CMOS, DTL, ECL, с открытым коллектором, TTL 2 В ~ 36 В, ± 1 В ~ 18 В 5 мВ при 5 В 902 0.25 мкА при 5 В 16 мА при 5 В 1,25 мА -40 ° C ~ 125 ° C SC-74A, SOT-753 Поверхностный монтаж SOT-23- 5

СРАВНИТЕЛЬ ИС RR SOT-23-5

$ 0,34000

13,593 — Немедленно

Microchip Technology Microchip Technology -2000

1

1

1

1

1 9206-2000 -ND

576-2901-1-ND

576-2901-6-ND

IttyBitty®

Лента и катушка (TR)

Cut Tape (CT)

Digi-Reel®

Активный Общего назначения 1 Открытый дренаж 2.2 В ~ 10 В 10 мВ при 5 В 0,5 пА при 5 В 25 мкА 70 дБ CMRR, 90 дБ PSRR 5 мкс -40 ° C ~ SCOT Поверхностный монтаж SOT-23-5

IC COMP SGL OPN DRN 1,6 В SOT23-5

$ 0,43000

8,479 — Немедленная технология 2069

1

0 Micro Технология

1

MCP6546T-I / OTTR-ND

MCP6546T-I / OTCT-ND

MCP6546T-I / OTDKR-ND

Лента (CT)

Digi-Reel®

Active общего назначения 1 CMOS, открытый сток, Rail-to-Rail, TTL 1.6 В ~ 5,5 В 7 мВ при 5,5 В 1 пА при 5,5 В 30 мА 1 мкА 70 дБ CMRR, 80 дБ PSRR 8 мкс 6,5 мВ -40 ° C 74A, SOT-753 Поверхностный монтаж SOT-23-5

IC COMP OPENDRN 1,6 В SNGL SC70-5

$ 0,43000

13,757 — Немедленно

Microchip Technology

1

MCP6546T-I / LTTR-ND

MCP6546T-I / LTCT-ND

MCP6546T-I / LTDKR-ND

-902 TRape -902 TRape -902 TRape

Cut Tape (CT)

Digi-Reel®

Active общего назначения 1 CMOS, открытый дренаж, Rail-to-Rail, TTL 1.6 В ~ 5,5 В 7 мВ при 5,5 В 1 пА при 5,5 В 30 мА 1 мкА 70 дБ CMRR, 80 дБ PSRR 8 мкс 6,5 мВ -40 ° C 21 ~ 85-90 ° C TSSOP, SC-70-5, SOT-353 Поверхностный монтаж SC-70-5

IC COMP 1,6V SNGL PP SOT23-5

$ 0,43000

— Немедленно 10,136

Microchip Technology Microchip Technology

1

MCP6541RT-E / OTTR-ND

MCP6541RT-E / OTCT-ND

MCP6541RT-E / OTCT-ND

MCP6541R 9-E / E / 9-E

03 & Reel (TR)

Cut Tape (CT)

Digi-Reel®

Active общего назначения 1 CMOS, Push-Pull, Rail-to-Rail, TTL 1.6 В ~ 5,5 В 7 мВ при 5,5 В 1 пА при 5,5 В 30 мА 1 мкА 70 дБ CMRR, 80 дБ PSRR 8 мкс 6,5 мВ -40-90 ° C 74A, SOT-753 Поверхностный монтаж SOT-23-5

IC COMP MICROPWR QUAD V 14 TSSOP

$ 0,87000

282067 STM 902 Micro21electronics

282902 902

1

497-2266-2-ND

497-2266-1-ND

497-2266-6-ND

Лента и катушка (TR)

Отрезанная лента ( CT)

Digi-Reel®

Активный общего назначения 4 CMOS, открытый сток 2.7 В ~ 16 В, ± 1,35 В ~ 8 В 5 мВ при 10 В 1 пА при 5 В 20 мА 25 мкА 75 дБ CMRR -40 ° C ~ 125119 ° C Поверхностный монтаж 14-TSSOP

СРАВНИТЕЛЬ ИМС 1,2 В REF SOT-23-6

$ 0,51000

920,251 —

12 920,251 — Технология

Microchip Technology

1

MCP65R41T-1202E / CHYTR-ND

MCP65R41T-1202E / CHYCT-ND

MCP65R41T-1202E / CHYCT-ND

MCP65R41T-1202E / CHYD3 9203 9203 9203 )

Cut Tape (CT)

Digi-Reel®

Active с опорным напряжением 1 CMOS, Push-Pull, TTL 1.8 В ~ 5,5 В 10 мВ при 5,5 В 1 пА при 5,5 В 50 мА 4 мкА 70 дБ CMRR, 80 дБ PSRR 8 мкс 5 мВ -40 ° C 21 ~ 125 ° C -6 Поверхностный монтаж SOT-23-6

СРАВНИТЕЛЬ ИС 2,4 В REF SOT-23-6

$ 0,51000

8,995 — Immediate Technology

1 9202 9202 Технологии

1

MCP65R41T-2402E / CHYTR-ND

MCP65R41T-2402E / CHYCT-ND

MCP65R41T-2402E / CHYDKR-ND

— 9202 9202 9202 9202 Лента (CT)

Digi-Reel®

Активный с опорным напряжением 1 CMOS, Push-Pull, TTL 1.8 В ~ 5,5 В 10 мВ при 5,5 В 1 пА при 5,5 В 50 мА 4 мкА 70 дБ CMRR, 80 дБ PSRR 8 мкс 5 мВ -40 ° C 21 ~ 125 ° C -6 Поверхностный монтаж SOT-23-6

IC COMPARATOR SINGLE SOT23-5

$ 0,

8,210 — Immediate

STM 920electronics

STMicro21 9201

497-10555-2-ND

497-10555-1-ND

497-10555-6-ND

Лента и катушка (TR)

Cut Tape (CT)

Digi-Reel®

Активный Общего назначения 1 Открытый дренаж 1.6 В ~ 5 В 5 мВ при 5 В 0,04 мкА при 5 В 93 мА при 5 В 26 мкА 79 дБ CMRR 720 нс -40 ° C ~ 125 ° C поверхностный монтаж SOT-23-5

IC COMPARATOR PUSH-PULL SC70-5

$ 0,87000

21,032 — Immediate

1 Аналоговые устройства

1

1 Аналоговые устройства

1 Inc.

1

505-ADCMP371AKSZ-REEL7TR-ND

505-ADCMP371AKSZ-REEL7CT-ND

505-ADCMP371AKS85-REEL7DKR3 9202 9202 9202 9202 9000 Cut Tape (CT)

Digi-Reel®

Active общего назначения 1 Push-Pull 2.25 В ~ 5,5 В 9 мВ при 5,5 В 0,05 мкА при 5,5 В 7 мкА 5 мкс -40 ° C ~ 85 ° C 5-TSSOP, SC 70-5, SOT-353 Поверхностный монтаж SC-70-5

IC COMP ДВОЙНОЙ НИЗКОЙ МОЩНОСТИ 8-SOIC

$ 0,95000

296263 90Micro21e 9202

STMicroelectronics

1

497-6992-2-ND

497-6992-1-ND

497-6992-6-ND

Лента и катушка

(TR) Cut Tape (CT)

Digi-Reel®

Active общего назначения 2 CMOS, DTL, ECL, MOS, открытый коллектор, TTL 2V ~ 36V, ± 1V ~ 18V 5 мВ @ 30 В 0.25 мкА при 5 В 18 мА при 5 В 2,5 мА -55 ° C ~ 125 ° C 8-SOIC (0,154 дюйма, ширина 3,90 мм) Крепление на поверхность 8-SOIC

ИС КОМПАРАТОР RR INPUT SOT23-5

$ 0,52000

15000 — Немедленно

Microchip Technology 9207 2-ND

576-1318-1-ND

576-1318-6-ND

IttyBitty®

Лента и катушка (TR)

Cut Tape (CT)

Digi-Reel®

Активный Общего назначения 1 Push-Pull 2.2 В ~ 10 В 10 мВ при 5 В 0,5 пА при 5 В 25 мкА 70 дБ CMRR, 90 дБ PSRR 5 мкс -40 ° C ~ SCOT Поверхностный монтаж SOT-23-5

IC COMP QUAD CMOS MCRPWR 14TSSOP

$ 1.02000

13,77421 STEELTONIC

02

02 90Micro21emediate

02

497-4064-2-ND

497-4064-1-ND

497-4064-6-ND

Лента и катушка (TR)

Отрезанная лента (CT)

Digi-Reel®

Активный Общего назначения 4 CMOS, Push-Pull 2.7 В ~ 16 В, ± 1,35 В ~ 8 В 5 мВ при 10 В 1 пА при 5 В 20 мА 25 мкА 80 дБ CMRR -40 ° C ~ 125119 ° C Поверхностный монтаж 14-TSSOP

ИС КОМПАРАТОР TINY DUAL 8-SOIC

$ 1,04000

2,064 — Немедленно

Texas Instruments Texas Instruments

1

LMV393MX / NOPBTR-ND

LMV393MX / NOPBCT-ND

LMV393MX / NOPBDKR

MX / NOPBDKR-ND

TRape

9000

Лента (CT)

Digi-Reel®

Active общего назначения 2 CMOS, открытый коллектор, TTL 2.7 В ~ 5,5 В 7 мВ при 5 В 0,25 мкА при 5 В 84 мА при 5 В 300 мкА 600 нс -40 ° C ~ 85 ° C 4 8-SOIC , Ширина 3,90 мм) Поверхностный монтаж 8-SOIC

IC COMP SNGL W / REF SC70-5

$ 0,70000

51,880 — Immediate

21 9202ip Технологии

1

576-2923-2-ND

576-2923-1-ND

576-2923-6-ND

Teeny ™

Лента и катушка (TR)

Cut Tape (CT)

Digi-Reel®

Active с опорным напряжением 1 Push-Pull 1.5 В ~ 5,5 В 20 мА 3 мкА 12 мкс 20 мВ -40 ° C ~ 85 ° C 5-TSSOP, SC-70-5, SOT-353 Поверхностный монтаж SC-70-5

IC COMP SNGL W / REF SC70-5

$ 0,70000

16,550 — Немедленное2

576-2927-2-ND

576-2927-1-ND

576-2927-6-ND

Teeny ™

Лента и катушка (TR)

Cut Tape ( CT)

Digi-Reel®

Активный с опорным напряжением 1 Push-Pull 1.5 В ~ 5,5 В 20 мА 3 мкА 12 мкс 20 мВ -40 ° C ~ 85 ° C 5-TSSOP, SC-70-5, SOT-353 Поверхностный монтаж SC-70-5

IC COMP SNGL W / REF SC70-5

$ 0,70000

10,906 — Немедленное2

576-2928-2-ND

576-2928-1-ND

576-2928-6-ND

Teeny ™

Лента и катушка (TR)

Cut Tape ( CT)

Digi-Reel®

Активный с опорным напряжением 1 Открытый сток 1.5 В ~ 5,5 В 20 мА 3 мкА 12 мкс 20 мВ -40 ° C ~ 85 ° C 5-TSSOP, SC-70-5, SOT-353 поверхностный монтаж SC-70-5

IC COMPARATOR SGL 5.5V SSOP-5

$ 1.27000

14mic 911 — Немедленно

90h221
Roductor 90h221 1

BU7231GTR-ND

BU7231GCT-ND

BU7231GDKR-ND

Лента и катушка (TR)

9000 Dig2000 Reel (CT)
3 9000 Dig2 Cut Tape (CT) 3 Общего назначения 1 Push-Pull 1.8 В ~ 5,5 В, ± 0,9 В ~ 2,75 В 11 мВ при 3 В 1 пА при 3 В 6 мА при 3 В 15 мкА 80 дБ CMRR, 80 дБ PSRR 1,7 мкс SC-74A, SOT-753 Поверхностный монтаж 5-SSOP

IC COMPARATOR QUAD VOLT 14-SOIC

$ 1,14000

Texas Instruments

1

LM2901MX / NOPBTR-ND

LM2901MX / NOPBCT-ND

LM2901MX / NOPBDKR-ND 9202 9203 9203 9203 9203 (CT)

Digi-Reel®

Активный общего назначения 4 CMOS, DTL, ECL, MOS, открытый коллектор, TTL 2 В ~ 36 В, ± 1 В ~ 18 В 7 мВ при 30 В 0.25 мкА при 5 В 16 мА при 5 В 2,5 мА -40 ° C ~ 85 ° C 14-SOIC (0,154 дюйма, ширина 3,90 мм) Крепление на поверхность 14-SOIC

IC COMPARATOR SNGL SC70-5

$ 1,29000

30,782 — Немедленно

Maxim Integrated Maxim Integrated

MAX9031AXK + TCT-ND

MAX9031AXK + TDKR-ND

Лента и катушка (TR)

Cut Tape (CT)

Digi-Reel®

Active Purpose 1 CMOS, Rail-to-Rail, TTL 2.5 В ~ 5,5 В 1 мВ при 5 В 0,008 мкА при 5 В 55 мкА 100 дБ CMRR, 100 дБ PSRR 228 нс 4 мВ -40 ° C 215119 ~ 125 ° C SC-70-5, SOT-353 Поверхностный монтаж SC-70-5

IC COMP ULTRALOW PWR VOLT 6WLCSP

$ 1,36000

2
Inc. 1
Analog Devices Inc.

1

ADCMP380-1ACBZ-RL7TR-ND

ADCMP380-1ACBZ-RL7CT-ND

ADCMP380-1ACBZ-RL7DKR-ND

Cut

Обрезка

(CT)

Digi-Reel®

Active с опорным напряжением 1 Открытый сток 2 В ~ 5,5 В 19021 —
10.3 мВ -40 ° C ~ 85 ° C 6-WFBGA, WLCSP Поверхностный монтаж 6-WLCSP (0,96×1,46)

IC COMP DUAL 1,8 В OD 8-SOIC

$ 0,85000

13878 — Немедленно

Microchip Technology Microchip Technology

1

MCP6567T-ECP SNTR-ND

MCP6567T-ECP / SNTR-ND

-MCT0002 ED

-MCT0002 SNDKR-ND

Лента и катушка (TR)

Cut Tape (CT)

Digi-Reel®

Active общего назначения 1 2 1 902 CMOS, с открытым стоком .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *