Схема защитного заземления: Устройство защитного заземления Рабочее заземление

Содержание

Защитное заземление — устройство, принцип работы, виды, расчет и схемы

Вне зависимости от эксплуатационных характеристик, электрифицируемое здание должно иметь качественно организованную систему защитной электробезопасности. Защитное заземление позволяет создать такую систему.

Этот тип заземления характеризуется соединением определенных элементов электроустановки с ЗУ (заземляющим устройством) и ориентирован на уменьшение показателей напряжений прикосновения и шага, возникающих при замыкании циркулирующих токов на корпусах электрооборудования.

Содержание

  • Назначение и устройство защитного заземления
  • Заземляющая система: область применения и принцип работы
  • Классификация заземляющих устройств
  • Как производится расчет параметров основных заземляющих элементов
  • Принцип расчета сопротивления заземлителей
  • Схемы заземления дома

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

Монтаж устройства защитного заземления востребован практически повсеместно.

Заземляющая система: область применения и принцип работы

При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

  1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
  2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

  1. Электрической сети напряжением менее 1 кВт:
  • с переменным током трех трехфазных проводников с изоляцией нейтрали;
  • с переменным током двух однофазных проводников, которые изолированы от земли;
  • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
  1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.

Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.

Классификация заземляющих устройств

В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных.

Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

  1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
  • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
  • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

Самыми распространенными конструкциями такого типа заземлителей выступают:

  • металлоконструкции зданий и фундаментов;
  • металлические оболочки проводников;
  • обсадные трубы.

Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.

  1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
  • определенного размера стальные трубы;
  • сталь полосовую толщиной свыше 4 мм;
  • сталь прутковую.

Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества — малозатратность производства и долговечность элементов.

Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

Как производится расчет параметров основных заземляющих элементов

На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.

Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

Выполняются расчеты на основании таких данных:

  1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
  2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
  3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
  4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
  5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
  6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
  7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
  8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.

Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.

Принцип расчета сопротивления заземлителей

Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:

  • I — показатель расчетного тока заземления;
  • R — показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.

В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).

Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна — достичь максимально низкого сопротивления системы.

Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.

Схемы заземления дома

Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.

Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:

  1. Схема TN-C-S. При организации защитного заземления объекта по данной схеме, предусмотрена реализация следующих моментов:
    • Схема TT. Прежде чем применить эту схему, необходимо аргументировать отказ от использования TN-C-S системы. Предусмотрена обязательная реализация нормативных требований, установленных к системе TT, а именно:
    • производится независимое подключение элементов, исключается соединение с нейтралью трансформатора;
    • заземлитель всех корпусов электрооборудования дома не зависит от аналогичного элемента источника питания;
    • в электрической проводке дома обязательно применяется УЗО (устройство защитного отключения).

Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.

Важно! В схеме TT полностью отсутствует организация защиты пользователя при утечке тока во время повреждения изоляции. Следовательно, монтировать УЗО для электрической проводки, реализованной по ТТ схеме, — обязательно.

В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

74. Защитное заземление.

Принцип действия, область применения, основные параметры и элементы схемы.

Защитное заземление состоит из вертикальных заземлителей, соединенных между собой полосовыми горизонтальными заземлителями и находящихся в земле на глубине H0 не менее 0,5 м. В качестве вертикальных заземлителей используются металлические элементы в виде стержней, труб, уголков, швеллера и др. для полосового заземлителя используется, как правило, металлическая полоса сечением 12×4; 16×4 мм. Соединение полосы с вертикальными заземлителями производиться в соответствии с ПУЭ не допускаются.

Принципиальная схема защитного заземления

―напряжение прикосновения, В; ― величина тока, А;― потенциальная кривая; КЭ ― корпус электроустановки;― сопротивление защитной установки;― электрическое сопротивление тела человека; З ― заземлитель вертикальный

На практике используются групповые заземлители ― параллельное соединение одиночных заземлителей и полосы. Такой заземлитель имеет меньшее сопротивление растеканию тока и создает лучшее выравнивание потенциала в объеме и на поверхности земли.

Требование к конструкции, устройству и параметрам защитного заземления определяются Правилами устройства электроустановок (ПУЭ) и ГОСТ. В качестве заземлителей, кроме искусственных, используются естественные заземлители ― это находящиеся в земле металлические предметы (водопроводные трубы, другие металлические трубы, кроме трубопроводов горючих жидкостей, горючих и взрывоопасных гозов; металлические и железобетонные конструкции зданий и сооружений, имеющие соединение с землей; свинцовые оболочки кабелей и т.п.).

Нормативные документы устанавливают значение наибольшего допустимого сопротивления защищенного заземляющего устройства в электроустановках. Так, в электроустановках да 1000 В в сети с изолированной нейтралью при мощности генератора до 1000 кВА составляет 10 Ом, а при мощности до 100 кВА составляет 4 Ом.

Предусматривается проверка состояния заземляющих устройств электроустановок в процессе их эксплуатации, каждое заземляющее устройство должно иметь паспорт, содержащий схему устройства, основные технические и расчетные данные, сведения о произведенных ремонтах, внесенных изменениях.

Занулением называется преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей оборудования, которые могут оказаться под напряжением вследствие замыкания на корпус. Происходит быстрое отключение поврежденной электроустановки от электрической сети.

Принципиальная схема зануления: 1 – корпус; 2 – аппараты защиты от токов короткого замыкания; R0 – сопротивление заземления нейтрали источника тока; RП – сопротивление повторного заземления нулевого защитного проводника; Iк – ток короткого замыкания

Принцип действия зануленияпревращение замыкания на корпус в однофазное короткое замыкание с целью вызвать большой ток, способный обеспечить срабатывание защиты и автоматически отключить поврежденное электрооборудование от питающей сети. В качестве отключающих аппаратов используются: плавкие предохранители; автоматические выключатели; магнитные пускатели и др. При этом необходимо учесть, что с момента возникновения аварии до момента автоматического отключения поврежденного оборудования от сети имеется небольшой промежуток времени, в течение которого прикосновение к корпусу опасно, т. к. он находится под напряжением Uф и отключение его от сети еще не произошло. В этот период сказывается защитная функция заземления корпуса оборудования через нулевой защитный проводник Rп.

Схема зануления требует наличия в сети следующих элементов: нулевого защитного проводника; заземления нейтрали источника тока; повторного заземления нулевого защитного проводника.

Область применения зануления – трехфазные четырехпроводные сети напряжением до 1000 В с заземленной нейтралью. Обычно это сети напряжением 380/220 В, широко применяющиеся в машино-строительной и других отраслях, а также сети 220/127 В и 660/380 В.

В качестве средств защиты могут быть плавкие предохранители, магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловыми реле, автоматы, осуществляющие защиту одновременно от токов короткого замыкания и от перегрузки.

Зануление применяют в трехфазных четырехпроводных сетях с глухозаземленной нейтралью. Занулению подлежат нетоковедущие части электрооборудования, которые должны быть заземлены. Одновременно электроустановки заземлять и занулять не запрещается, так как это улучшает условия безопасности за счет дополнительного заземления нулевого защитного провода.

В свою очередь, напряжения прикосновения и токи, проходящие через тело человека, зависят от схемы включения его в электросеть, ее напряжения, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей, их емкостной составляющей относительно земли и многих других факторов. Выбор схемы сети и, соответственно, режима нейтрали источника тока определяется как технологическими требованиями (величина рабочего напряжения, протяженность сети, количе­ство потребителей и т. п.), так и условиями безопасности.

Трехфазные сети различаются в зависимости от режима нейтрали и наличия нулевого провода

Нейтралью называется точка соединения обмоток трансформатора или генератора, не присоединенная к заземляющему устройству, либо присоединенная к нему через аппараты с большим сопротивление, либо непосредственно соединенная с заземляющим устройством.

В соответствии с ПУЭ глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление. В свою очередь, изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие большое сопротивление.

Приступая к земле: Объяснение заземления

В электрической сети система заземления является мерой безопасности, которая защищает жизнь человека и электрооборудование. Поскольку системы заземления различаются от страны к стране, важно иметь хорошее представление о различных типах систем заземления, поскольку глобальная установленная мощность фотоэлектрических систем продолжает расти. Эта статья направлена ​​на изучение различных систем заземления в соответствии со стандартом Международной электротехнической комиссии (МЭК) и их влияние на конструкцию системы заземления для фотоэлектрических систем, подключенных к сети. Примечание. Требуемая антикоррозионная краска скрыта биркой на изображении; вы бы заметили это?

Назначение заземления

Системы заземления обеспечивают функции безопасности, снабжая электроустановку низкоимпедансным путем при любых неисправностях в электрической сети. Заземление также служит точкой отсчета для правильной работы источника электропитания и защитных устройств.

Заземление электрического оборудования обычно достигается путем введения электрода в твердую массу земли и соединения этого электрода с оборудованием с помощью проводника. О любой системе заземления можно сделать два предположения:

  1. Потенциалы земли выступают в качестве статического эталона (т. е. нуля вольт) для подключенных систем. Таким образом, любой проводник, подключенный к заземляющему электроду, также будет иметь этот опорный потенциал.
  2. Провода заземления и заземляющий штырь обеспечивают путь к земле с низким сопротивлением.

Защитное заземление

Защитное заземление — это установка заземляющих проводников, предназначенная для снижения вероятности травм в результате электрического замыкания в системе. В случае неисправности на нетоконесущие металлические части системы, такие как рамы, ограждения, кожухи и т. д., может попасть высокое напряжение по отношению к земле, если они не заземлены. Если человек прикоснется к оборудованию в таких условиях, он получит удар током.

Если металлические детали подключены к защитному заземлению, ток короткого замыкания будет протекать через заземляющий провод и будет обнаружен предохранительными устройствами, которые затем надежно изолируют цепь.

Защитное заземление может быть обеспечено следующим образом:

  • Установка системы защитного заземления, в которой проводящие части соединены с заземленной нейтралью распределительной системы через проводники.
  • Установка устройств защиты от перегрузок по току или токов утечки на землю, которые работают для отключения затронутой части установки в течение определенного времени и пределов напряжения прикосновения.

Проводник защитного заземления должен выдерживать предполагаемый ток короткого замыкания в течение времени, равного или превышающего время работы соответствующего защитного устройства.

Функциональное заземление

При функциональном заземлении любая из токоведущих частей оборудования (либо «+», либо «-») может быть подключена к системе заземления с целью обеспечения контрольной точки для обеспечения правильной работы. Проводники не рассчитаны на токи короткого замыкания. В соответствии со стандартом AS/NZS5033:2014 функциональное заземление разрешено только при наличии простого разделения между сторонами постоянного и переменного тока (т. е. трансформатора) внутри инвертора.

Типы конфигураций заземления

Конфигурации заземления могут быть выполнены по-разному на стороне питания и нагрузки, при этом общий результат будет одинаковым. Международный стандарт IEC 60364 (Электрические установки для зданий) определяет три семейства заземлений, определяемых с использованием двухбуквенного идентификатора в форме «XY». В контексте систем переменного тока «X» определяет конфигурацию нулевого и заземляющего проводников на стороне питания системы (т. е. генератор/трансформатор), а «Y» определяет конфигурацию нейтрали/земли на стороне нагрузки системы (т. е. главный распределительный щит и подключенные нагрузки). «X» и «Y» могут принимать следующие значения:

  • T – Земля (от французского «Земля»)
  • N – Нейтраль
  • I – Изолированный

Подмножества этих конфигураций могут быть определены с использованием значений:

  • S – Отдельный

Используя их, три семейства заземления, определенные в IEC 60364, представляют собой TN, где электропитание заземлено, а нагрузки потребителя заземлены через нейтраль, TT, где электропитание и нагрузки потребителя заземлены отдельно, и IT, где только нагрузки потребителей заземлены.

Система заземления TN

Единственная точка на стороне источника (обычно эталонная точка нейтрали в трехфазной системе, соединенной звездой) напрямую соединена с землей. Любое электрическое оборудование, подключенное к системе, заземляется через ту же точку подключения на стороне источника. Для систем заземления этого типа требуются заземляющие электроды через равные промежутки времени по всей установке.

Семейство TN включает три подгруппы, различающиеся методом разделения/комбинации заземляющих и нейтральных проводников.

  • TN-S: TN-S описывает схему, в которой отдельные проводники для защитного заземления (PE) и нейтрали проложены к потребительским нагрузкам от источника питания объекта (например, генератора или трансформатора). Проводники PE и N разделены почти во всех частях системы и соединены вместе только в самом источнике питания. Этот тип заземления обычно используется для крупных потребителей, у которых есть один или несколько высоковольтных/низковольтных трансформаторов, предназначенных для их установки, которые установлены рядом с помещением потребителя или внутри него.

Рисунок 1 – Система TN-S

  • TN-C: TN-C описывает схему, в которой комбинированный защитный провод заземления-нейтраль (PEN) подключен к земле источника. Этот тип заземления обычно не используется в Австралии из-за рисков, связанных с пожаром в опасных средах, а также из-за наличия гармонических токов, что делает его непригодным для электронного оборудования. Кроме того, в соответствии со стандартом IEC 60364-4-41 (Защита для безопасности — Защита от поражения электрическим током) УЗО нельзя использовать в системе TN-C.

Рисунок 2 – Система TN-C

  • TN-C-S: TN-C-S обозначает установку, в которой сторона питания системы использует комбинированный PEN-проводник для заземления, а сторона нагрузки В системе используется отдельный проводник для PE и N. Этот тип заземления используется в распределительных системах как в Австралии, так и в Новой Зеландии, и его часто называют множественной нейтралью на землю (MEN). Для потребителя низкого напряжения система TN-C устанавливается между трансформатором площадки и помещением (нейтраль заземляется несколько раз на этом участке), а система TN-S используется внутри самого объекта (от ГРЩ ниже по потоку). ). При рассмотрении системы в целом она трактуется как TN-C-S.

Рисунок 3. Система TN-C-S

В системе C-S PEN-проводник нельзя использовать на стороне нагрузки. Подключение защитного провода к проводнику PEN должно быть выполнено на стороне источника УЗО.

Система заземления TT ​​

В конфигурации TT потребители используют собственное заземление внутри помещения, которое не зависит от какого-либо заземления на стороне источника. Этот тип заземления обычно используется в ситуациях, когда поставщик услуг распределительной сети (DNSP) не может гарантировать обратное низковольтное соединение с источником питания. Заземление ТТ было обычным явлением в Австралии до 19 века.80 и до сих пор используется в некоторых частях страны.

При использовании систем заземления TT ​​во всех силовых цепях переменного тока для надлежащей защиты требуется УЗО.

В соответствии с IEC 60364-4-41 все открытые проводящие части, которые в совокупности защищены одним и тем же защитным устройством, должны быть соединены защитными проводниками с заземляющим электродом, общим для всех этих частей.

Рисунок 4 – Система TT

Система заземления IT

В схеме заземления IT либо отсутствует заземление на входе, либо оно выполняется через высокоимпедансное соединение. Этот тип заземления не используется в распределительных сетях, но часто используется на подстанциях и в системах с независимым питанием от генераторов. Эти системы способны обеспечить хорошую непрерывность подачи во время работы.

Рисунок 5–I T-система

Последствия для заземления фотоэлектрической системы

Тип системы заземления, используемой в любой стране, определяет тип конструкции системы заземления, необходимой для подключенных к сети фотоэлектрических систем; Фотоэлектрические системы рассматриваются как генератор (или цепь источника) и должны быть заземлены как таковые.

Например, в странах, использующих схему заземления типа ТТ, потребуется отдельный заземляющий колодец для сторон постоянного и переменного тока из-за схемы заземления. Для сравнения, в стране, где используется схема заземления типа TN-C-S, простого подключения фотоэлектрической системы к главной заземляющей шине в распределительном щите достаточно для удовлетворения требований к системе заземления.

Во всем мире существуют различные системы заземления, и хорошее понимание различных конфигураций заземления обеспечивает надлежащее заземление фотоэлектрических систем.

Дополнительные ресурсы:

Посетите следующие источники, чтобы узнать больше о различных типах конфигурации заземления:

Kamel, RM, 2011. Сравнение характеристик трех систем заземления для защиты микросети в режиме подключения к сети. Умные сети и возобновляемые источники энергии, [онлайн]. 2011, 2, 206-215, 206-215. Доступно по адресу: https://file.scirp.org/pdf/SGRE20110300009_91158972. pdf [Проверено 26 марта 2018 г.].

Руководство по устройству электроустановок, 2016. Характеристики систем TT, TN и IT. [Онлайн] Доступно по адресу: https://www.electrical-installation.org/enwiki/Characteristics_of_TT,_TN_and_IT_systems. [По состоянию на 26 марта 2018 г.].

Программа развития ООН, 2016. Заземление и защита от грозового перенапряжения для фотоэлектрических установок. [Онлайн] Доступно по адресу: https://www.lb.undp.org/content/dam/lebanon/docs/Energy%20and%20Environment/DREG/Earthing%20and%20Lightning%20Protection%20for%20PV%20Plants%20Guideline% 20Report.pdf [По состоянию на 26 марта 2018 г.].

Испытание на защитное заземление | ШЛЕЙХ

Сопротивление ПЭ/ГБ секрет производства

16 июля 2020 г.

Чувствую ли я себя в безопасности?

Все ли я делаю правильно?

Вы узнаете наверняка через несколько минут.

Испытания на безопасность являются обязательными и являются частью каждой окончательной проверки вашего электротехнического изделия.
Узнайте самые важные факты об испытаниях защитного заземления.
Мы объясняем ПОЧЕМУ?, ГДЕ?, КАК? а также КОГДА НЕТ!
А если вы хотите узнать больше, вы можете бесплатно скачать еще более подробную информацию в конце этой страницы!

 

ПОЧЕМУ?

Защитный проводник является центральным защитным средством для обеспечения электробезопасности. Это гарантирует, что в случае неисправности на корпусе оборудования не будет опасного напряжения. Потому что, если бы это произошло, опасный для жизни ток мог бы протекать через пользователя при прикосновении к корпусу!
Поэтому защитный проводник должен, по крайней мере, снижать, а в лучшем случае даже полностью устранять опасность для людей.

Но, конечно же, для этого он должен работать идеально! И вы должны доказать и задокументировать это в ходе испытаний перед поставкой вашего электротехнического изделия.

Проверка сопротивления защитного проводника является плановой проверкой. Это означает, что для каждой детали, т. е. для каждого электротехнического изделия, которое вы выпускаете на рынок, должно проводиться испытание на сопротивление защитного заземления.

 

ГДЕ?

Наиболее критичным дефектом является тотальное короткое замыкание между фазой и токопроводящей частью корпуса оборудования. Если пользователь прикоснется к корпусу, это может привести к опасному для жизни поражению электрическим током. Этого следует избегать! Для этого необходимо безопасно подключить все токопроводящие части корпуса к центральному защитному проводнику .

В наихудшем случае защитный проводник должен быть способен отвести полное короткое замыкание между фазой и токопроводящей частью корпуса на землю. Протекает очень большой ток короткого замыкания, который продолжается до тех пор, пока не сработает предохранитель и оборудование не обесточится.
В течение этого времени на любой части корпуса не должно возникать избыточного контактного напряжения. Однако это может произойти, если сопротивление защитного проводника слишком велико. Результатом будет чрезмерное опасное падение напряжения на защитном проводнике.

Поэтому все внутренние и внешние соединения защитного провода должны быть проверены на безупречную работу. Это делается либо путем ручного сканирования частей корпуса с помощью тестового щупа . Или, если все отдельные части корпуса подключены к испытательному устройству с помощью измерительных проводов, полностью автоматизированный .

 

КАК?

Для максимально реалистичного моделирования сильноточной нагрузки на защитный провод испытание защитного провода выполняется с помощью высокого испытательного тока .

 

 

Критерием оценки испытания является омическое сопротивление . Оно не должно быть слишком высоким, так как в противном случае контактное напряжение на оборудовании в случае повреждения будет слишком высоким.
Верхний предел сопротивления защитного проводника может определяться по-разному для разных продуктов и в разных регионах/континентах. Поэтому параметры теста необходимо брать из стандарта, применимого к продукту и региону.

 

Параметры испытаний типичные нормативные значения ШЛЕЙХ | от стандартного до индивидуального
максимально допустимое сопротивление защитного заземления 100 – 200 – 500 мОм от 0,0001 до > 10 Ом
Минимальный требуемый испытательный ток 10–30 А (перем. или пост. ток)
200 мА (например, VDE 0113, 701, 702)
от 0,1 до > 100 А (переменный или постоянный ток)
максимально допустимое испытательное напряжение 6/12 В
6–24 В (например, VDE 0113)
от 6 до > 24 В
минимальное время тестирования 1 с от 1 с до 24 ч

При таком диапазоне требований, конечно, идеально использовать тестовое устройство, которое соответствует как можно большему количеству мировых стандартов.
В этом сила SCHLEICH.

 

КОГДА НЕТ?

Электротехнические изделия II класса защиты имеют усиленную или двойную изоляцию корпуса. В корпусе есть электропроводящие компоненты, но они не могут находиться под напряжением из-за конструкции. Таким образом, такие продукты являются электрически безопасными для прикосновения в силу их конструкции. Поэтому они не требуют защитного проводника. Таким образом, испытание сопротивления защитного заземления невозможно или необходимо.

 

Все готово? Хотите узнать больше?

Наша миссия – ноу-хау, ноу-хау, еще раз ноу-хау… Те, кто понимает методы испытаний с технической и нормативной уверенностью, получат максимальную отдачу от своего испытательного устройства.
– дипл. Инж. Мартин Ларманн

Да, расскажите подробнее. Я хочу максимальной безопасности для наших клиентов, нашей компании и себя.

Пришлите мне более подробную информацию из справочника по методам испытаний SCHLEICH.

  • Можем ли мы отправить вам дополнительную информацию? Или мы можем быть полезны как-то иначе?
    Мы с нетерпением ждем вашего сообщения.
    Свяжитесь с нами!
  • Поля со звездочкой обязательны для заполнения.
  • Компания*
  • Имя и фамилия*
  • Адрес
  • Почтовый индекс и город
  • Страна
  • Телефон*
  • Эл. Отправляя эту форму, вы принимаете нашу политику конфиденциальности.

  • Портативный

    Тестер сопротивления PE и сопротивления изоляции

    • Испытание на сопротивление защитного проводника до 10 А переменного тока
    • Испытание сопротивления изоляции до 1000 В
    • мобильный – легкий – для использования внутри/вне помещений
    • транспортировочный кейс – ремень для переноски
    • ПО для ПК
    • привлекательные затраты на приобретение …
    • больничная служба
    • Испытание молниезащиты лопастей ротора на ветряных турбинах …

    читать далее

    GLP1-г

    PE-проводник, изоляция, устройство для проверки высокого напряжения и функционирования

    Самый маленький тестер безопасности в мире!

    • Тестер сопротивления PE/GB
    • Тестер сопротивления изоляции
    • – IR
    • Высоковольтные тестеры переменного/постоянного тока
    • тестеры безопасности и функционирования
    • 50+ конфигураций устройств – объединение до 9методы испытаний в одном устройстве
    • Цепь безопасности PLe, SIL3, Kat4 (в зависимости от варианта устройства и степени риска)
    • настольный блок или установка в 19-дюймовую стойку
    • Формат ½ 19″ или 19″

    читать далее

    GLP2-БАЗОВЫЙ

    Защитный проводник, изоляция, высокое напряжение, ток утечки и функциональный тестер

    • Измерители сопротивления изоляции – IR
    • Высоковольтные тестеры переменного/постоянного тока
    • Тестеры «все в одном»
    • тестеры безопасности и функционирования
    • Приложение
    • . 40 вариантов устройств – до 21 метода испытаний
    • Цепь безопасности PLe, SIL3, Kat4 (в зависимости от варианта устройства и степени риска)
    • сеть
    • протокол и печать этикеток
    • сканер …
    • Технологический пакет для еще большей эргономики
    • настольный блок или установка в 19-дюймовую стойку

    читать далее

    GLP2-МОДУЛЬНЫЙ

    Комбинированный тестер с поддержкой до 25 методов испытаний

    • «Все в одном»
    • тестеры безопасности
    • тестеры безопасности и функционирования
    • возможна модульная комбинация более 25 методов испытаний
    • до 250 тестовых соединений
    • большие матричные модули переключателей для всех методов испытаний
    • PLe, SIL3, Kat4 Цепь безопасности (в зависимости от варианта устройства и степени риска)
    • сеть
    • протокол и печать этикеток
    • сканер …
    • Технологический пакет для еще большей эргономики

    читать далее

    GLP3

    Неограниченная лидирующая в своем классе технология тестирования.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *