Виды конденсаторов на схеме: Страница не найдена — Amperof.ru

Содержание

Какие виды конденсаторов существуют. Конденсаторы, свойства конденсатора, обозначение конденсаторов на схемах, основные параметры

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

Естественно, перед вторичным использованием необходимо проверить конденсаторы , особенно электролитические , которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

    Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады.

    Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

    Третье, что указывается в маркировке, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


Конденсаторы серии К73 и их маркировка

Правила маркировки.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n .

Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47H C. Данная запись соответствует 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте .

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка

224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов .

Буквенный код отклонения ёмкости (допуск).

Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском

H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK , 220nM , 470nJ .

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

Д опуск в % Б уквенное обозначение
лат. рус.
± 0,05p A
± 0,1p B Ж
± 0,25p C У
± 0,5p D Д
± 1,0 F Р
± 2,0 G Л
± 2,5 H
± 5,0 J И
± 10 K С
± 15 L
± 20 M В
± 30 N Ф
-0…+100
P
-10…+30 Q
± 22 S
-0…+50 T
-0…+75 U Э
-10…+100 W Ю
-20…+5 Y Б
-20…+80 Z А

Маркировка конденсаторов по рабочему напряжению.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Н оминальное рабочее напряжение , B Б уквенный код
1,0 I
1,6 R
2,5 M
3,2 A
4,0
C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 S
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315
X
350 T
400 Y
450 U
500 V

Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого
Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки
Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через


Электрический конденсатор — один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические

Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.


В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!


Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы

Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 — 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.


Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее «ходовых» ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы

Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 — 100 нФ.


Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.


Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы

Например К52-1 или smd А. Основным веществом служит — пентоксид тантала, а в качестве электролита — диоксид марганца.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.


Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы

Например K73-17 или CL21, на основе металлизированной пленки…
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.


Ёмкость таких конденсаторов идет порядка 1 нф — 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы

Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф — 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт!

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.

Конденсатор — это двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Изобрел первую конструкцию-прототип электрического конденсатора «лейденскую банку» в 1745 году, в Лейдене, немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук.

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

Резонансная частота конденсатора равна: f р = 1/ (2∏ ∙ √ L с ∙ C ) .

При f > fp конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Отечественные неполярные конденсаторы:

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·10 6 пФ = 1·10 −6 Ф) и пикофарадах, но нередко и в нанофарадах (1 нФ = 1·10 −9 Ф). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 — 180».

Основные параметры конденсаторов:

  1. Основной характеристикой конденсатора является его ёмкость , характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  2. Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  3. Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  4. Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  5. Полярность . Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Обозначение на схемах:

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  1. Конденсаторы вакуумные (между обкладками находится вакуум).
  2. Конденсаторы с газообразным диэлектриком.
  3. Конденсаторы с жидким диэлектриком.
  4. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  5. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  6. Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичнного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура — основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы — вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Вакуумный конденсатор:

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  1. Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  2. Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  3. Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

Два бумажных электролитических конденсатора 1930 года:

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Серебрянный конденсатор для аудио.

Также различают конденсаторы по форме обкладок:

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток , поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.

Обозначение конденсаторов на схеме: как это происходит

Если требуется устройство для накопления заряда в схеме, используются конденсаторы. При рассмотрении элементов учитывается их удельная емкость, а также плотность энергии. Предусмотрено множество типов устройств, отличающихся по сборке и предназначению.

Описание

Конденсатор является двухполюсным элементом, которой служит уплотнителем. Основная задача — удержание переменной емкости в цепи. В момент подачи напряжения происходит перезарядка элемента. Далее осуществляется процесс накопления заряда и энергии электрического поля.

Конденсатор на схеме

Обозначение на схемах

Конденсатор на схеме может по-разному обозначаться в зависимости от цепи. Для понимания маркировки стоит рассмотреть распространённые типы элементов:

  • с постоянной емкостью;
  • поляризованные;
  • танталовые;
  • переменные;
  • триммеры;
  • ионисторы.

Обозначение конденсаторов на схеме связано с ГОСТом 2.728-74. Речь идет о межгосударственном стандарте, в котором прописана маркировка.

Поляризованные

Обозначение электролитических конденсаторов на схемах можно описать, как две горизонтальные полоски со знаком плюс. При рассмотрении товаров есть разделение на полярные и неполярные типы. Те и другие включаются в схему и отличаются по параметрам. Весь секрет заключается в процессе изготовления.

Поляризованный тип

Интересно! На примере алюминиевых моделей видно, что они производятся с обкладкой в фольге. Она выступает в качестве катода и является отличным проводником.

На схеме конденсатор может подсоединяться параллельно либо последовательно. Если взглянуть на цепь, на ней отображается постоянная, а также переменная емкость. Надписи пишутся сокращённо, однако по маркировке можно узнать точное значение. Представленные варианты отличаются высокой степенью стабильности, поэтому применяются в бытовой технике.

Отечественные аналоги продаются в замкнутых корпусах и являются компактными. Поляризованные конденсаторы могут быть пленочными либо керамическими. Учитывается электрика, а также показатель напряжения. Накопитель может находиться в твердом, жидком или газообразном состоянии.

Полупроводниковые конденсаторы считаются наиболее распространёнными, и в цепи обозначаются с показателем предельной ёмкости. В промышленности востребованными остаются твердотельные компоненты, которые применяются в платах управления.

Танталовые

Элементы данного типа обозначаются двумя горизонтальными полосками. они производятся с покрытием диоксида марганца. Компоненты являются востребованными, поскольку обладают высокой мощностью, и по всем параметрам обходят алюминиевые элементы. Весь секрет кроется в использовании сухого электролита.

Танталовые модели

К основным особенностям стоит прописать такое:

  • термостабильность,
  • отсутствие утечек,
  • высокое напряжение,
  • значительный срок годности.

Вместе с тем в цепи конденсаторы страдают при повышенной температуре. У них низкий ток заряда, есть проблема с частотой. Электронная промышленность движется вперёд, поэтому танталовые типы всё чаще используются в платах управления.

Важно! Элементы востребованы по причинам компактных размеров и высокого напряжения.

Если рассматривать твердотельные модификации, они состоят из диэлектрика, защитного покрытия, а также катода с анодом. В цепи компоненты не бояться пониженных частот, поскольку учитывается высокое значение импеданса. Графический показатель рассчитывается, как отношение индуктивности к определенной емкости.

Дополнительно при рассмотрении схем конденсатора берется в расчет показатель фильтрации сигналов. Как правило, он не превышает 100 км. Чтобы элемент работал должным образом, определяется безопасный уровень тока и частоты.

Рассчитывается максимальная мощность компонента и уровень сопротивления, относительно рабочей частоты. В документации графической формы указывается параметр ESR, он демонстрирует мощность рассеивания. В цепи существует ряд факторов, влияющих на показатели:

  • сигнал;
  • максимальная температура;
  • корректирующий множитель.

Чтобы просчитать среднюю частоту по схеме, рассчитывается среднеквадратичный ток. Для этого берется в расчет минимальное значение емкости и номинальная мощность. Если рассматривать печатные платы, конденсаторы могут обозначать значениями FR4, FR5, G10. Рядом с элементами подписывается параметр емкости.

Важно! При осмотре схемы учитываются размеры контактных зон.

Правила установки танталовых изделий:

  • требуется паяльная паста;
  • выбор места;
  • доступные способы пайки.

Чтобы танталовый конденсатор эффективно работал на плате, подбирается паяльная паста и наносится толщиной в 0.02 мм. Некоторые используют материалы с флюсом, такое также допускается. Основная проблема — это подбор оптимального режима пайки. При установке танталового конденсатора обращается внимание на маркировку, стоит обращать внимание на обозначение ёмкости.

Также показана полярность, номинальное напряжение. Проще всего восстанавливать конденсаторы стандартных типоразмеров. Процесс производится вручную либо на фабрике. Там с этой целью используются конвекционные либо инфракрасные печи. Помимо ручной пайки известным считается волновой метод.

Ручная пайка

Основное требование — поддержание оптимальной температуры для подогрева контакта. После пайки следует заняться чисткой. С этой целью подойдут растворы Prelete, Chlorethane, Terpene. Важное требование — это отсутствие такого элемента, как дихлорметан.

Переменные

Конденсаторы переменного типа изображены с перечеркнутыми двумя горизонтальными полосками. Особенность данного типа заключается в изменении емкости посредством воздействия механической силы. Напряжение на обкладке может изменяться, учитываются показатели в колебательных контурах.

Устройства применимы в схеме приемника либо передатчика. Элементы используются на пару со стабилизаторами, тримерами. Переменные конденсаторы, наравне с подстрочными элементами применяются в колебательных контурах. Их основная задача — измерение резонансной частоты. Как вариант, компоненты встречаются в цепях радиоприемника, используются на пару с усилителями.

Переменный тип

Если говорить об антенных устройствах, конденсаторы незаменимые для генераторов частоты. В качестве основы применяются твердые резисторы и органическая плёнка. На рынке представлены керамические варианты компактных размеров. Есть товары с одной или двумя секциями, у которых отличаются показатели емкости.

Если рассматривать многосекционные модели, они обозначаются, как 6 горизонтальных полосок в цепи. Также существует построечный тип для радиоаппаратуры. За основу элемента взят воздушный диэлектрик, который используется в цепи переменного тока. Конденсаторы применимы в блоках питания и фильтрах.

Важно! Радиолюбители знают о проблеме с низкой частотой и необходимостью подгонки ёмкости.

Конденсаторы-триммеры

Данный тип конденсаторов на схеме обозначен в виде двух горизонтальных полосок со стрелкой. Речь идёт о компактных элементах, использующихся в печатных платах. У них крайне низкие показатели емкости, учитывается незначительная частота. По структуре модель отличается от переменных конденсаторов.

Триммеры

Ионистор

Ионистор на схеме показан, как стандартный электролитический конденсатор — две горизонтальные полоски со знаком плюс. Элемент производится без диэлектрика и не обладает потенциальным зарядом. Знак «+» показывает полярность конденсатора на схеме.

По структуре ионистор содержит сепаратор, уплотнительный изолятор, а также электроды. Если смотреть параметры, учитывается такое:

  • внутреннее сопротивление,
  • предельный ток,
  • номинальное напряжение,
  • уровень саморазряда,
  • предельная емкость,
  • срок годности.

В принципиальной сети элемент используется в блоках питания. Также он подходит для таймера, других цифровых устройств. Даже если заглянуть в смартфон либо планшет, на плате найдётся данный элемент.

Ионистор

Температурный коэффициент

Когда изменяется температура окружающей среды, емкость конденсатора также меняется. Чтобы отслеживать данный коэффициент, берется в расчет показатель ТКЕ. По формуле он представляет собой соотношение начальной емкости и изменения температуры. Первоначально отслеживаются нормальные условия работы компонента.

При значительном повышении температуры используются линейные уравнения, в которых задаются показатели рабочих условий функционирования конденсатора. Также указывается стартовая ёмкость в качестве ориентира. Показатель ТКЕ необходим для подготовки описания к элементам.

Показатель ТКЕ

Если взглянуть на спецификацию, прописываются все параметры. При подборе компонентов пользователи желают знать, как устройство реагирует на изменение температуры. Чаще всего речь идет о постоянном показателе, поэтому стоит рассматривать график с диапазоном рабочих температур.

Маркировка

Если взглянуть на схему, отечественные компоненты отмечаются с набором характеристик:

  • ёмкость,
  • номинальное напряжение,
  • дата выпуска,
  • расположение маркировки на корпусе,
  • цветовая маркировка отечественных радиоэлементов.

Важно разбираться в показателях, уметь расшифровывать аббревиатуры. Таким образом, получится точно определить тип конденсатора.

Маркировка отечественных радиоэлементов

Ёмкость

Емкость конденсатора измеряется в фарадах (Ф), микрофарадах (мкФ) или пикофарадах (пФ) и прописываться рядом со значком элемента. На схемах учитывается постоянный, переменный, саморегулирующийся параметр. Номинальная емкость дублируется на корпусе конденсатора. Так, на элементе могут указываться обозначения:

  • 5П1 — 5,1 пФ.
  • h2 — 100 пФ.
  • 1Н — 1000 пФ.
Номинальная емкость

Номинальное напряжение

Показатель номинального напряжения измеряется в вольтах, регулируется ГОСТом 9665 — 77. Если взглянуть на схему, встречается надпись С1 100В. В данном случае говорится о номинальном напряжении в 100 вольт. Таким образом, определяется электролитическая прочность компонента. Специалист способен рассчитать толщину диэлектрика, учитывая прочие факторы.

Номинальное напряжение

Зная показатель напряжения сети, открывается представление о сфере использования элемента. Если не учитывать данный параметр, конденсатор может не справится с возложенной на него нагрузкой. Весь секрет заключается в типе используемой обкладки. Также в расчет берутся рабочие температуры.

Дата выпуска

Если присмотреться к элементам, в конце маркировки оказывается 4 цифры. Они показывают год, а также месяц изготовления элемента. К примеру, на конденсаторе может быть указано «9608». Из этого следует, что элемент изготовлен в 1996 году, в августе месяце. Правила нанесения маркировки прописаны в ГОСТе 30668-2000.

Маркировки по ГОСТу 30668-2000

Расположение маркировки на корпусе

Чтобы быстро отыскать необходимую информацию на корпусе конденсатора, маркировка находится на передней стороне. Если рассмотреть плёночный компонент, либо другой тип, регламент четко прописан в ГОСТе и дублируется в технических инструкциях. Производитель обязательно использует цветовые индикаторы полосками. и цифровые обозначения.

Цветовая маркировка отечественных радиоэлементов

По цветовой маркировке можно узнать информацию о множителе, номинальной емкости и даже рабочей температуре.

  • Золотистый цвет (указывает на низкий параметр множителя — 0.01 допуск составляет не более 5%).
  • Серебристый (множитель 0.1, показатель допуска не больше 10%).
  • Чёрный (множитель 1, допуск 20%).
  • Коричневый (указывает на емкость 1 мкФ, множитель равняется 10, а допуск не более 1%).
  • Красный (говорит о номинальной емкости 2 пф, множитель составлять 10 в квадрате, допуск около 2%).
  • Оранжевый (это элемент с ёмкостью 3 пф, множитель 10 в третьей степени).
  • Жёлтый цвет (элементы с емкостью 4 пф, множитель у них 10 в четвёртой степени).
  • Зелёный цвет (элементы с множителем 10 в пятой степени, показатель 4 пф)
  • Голубой цвет (на 6 пф, множитель 10 в 6 степени, отклонения 0.25 процентов).
  • Фиолетовый (допуск от 0.1 процентов, параметр множителя 10 в седьмой степени, а емкость 7 пФ).
  • Серый (допуск 0.05 процентов, ёмкость 8 пф, множитель — 10 в восьмой степени).
  • Белый (элемент на 9 пф, множитель 10 в девятой степени).
Цвета конденсаторов

Маркировка конденсаторов импортного производства

Рассматривая маркировку импортных конденсаторов, необходимо понимать, что первые цифры показывают емкости. Далее следует количество нолей и потом показателя ЕТК. Ниже указывается допустимое рабочее напряжение, к примеру, взять электролитический конденсатор с ёмкостью 100 пф, на нём будет обозначение «100n». Также прописывается допустимое напряжение, например, 120 вольт.

Выше подробно расписаны типы конденсаторов. Каждый из элементов имеет определённое обозначение на схеме. Чтобы разбираться в них, стоит изучить таблицу со значениями и цветами.

Конденсаторы и их виды физика. Конденсаторы, свойства конденсатора, обозначение конденсаторов на схемах, основные параметры

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого
Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки
Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты .

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах , помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах , а от 0,1 мкФ и выше — в микрофарадах .

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования . Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах , определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью . Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы , у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы . Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы , в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы , представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические ). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны , т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие «конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы . Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.


Электрический конденсатор — один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические

Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.


В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!


Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы

Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 — 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.


Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее «ходовых» ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы

Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 — 100 нФ.


Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.


Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы

Например К52-1 или smd А. Основным веществом служит — пентоксид тантала, а в качестве электролита — диоксид марганца.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.


Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы

Например K73-17 или CL21, на основе металлизированной пленки…
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.


Ёмкость таких конденсаторов идет порядка 1 нф — 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы

Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф — 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт!

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Конденсаторы

Надо сказать, что конденсатор , как и резистор, можно увидеть во многих устройствах. Как правило, простейший конденсатор это две металлических пластинки и воздух между ними . Вместо воздуха может быть фарфор, слюда или другой материал, который не проводит ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где надо отделить постоянный ток от переменного .

Конденсаторы бывают постоянные, подстроечные, переменные и электролитические . Кроме этого, они отличаются материалом между пластинами и внешней конструкцией. Существуют конденсаторы воздушные , слюдяные , керамические, пленочные и т.п. Применение тех или иных видов конденсаторов обычно описано в сопровождающей документации к принципиальной схеме. Некоторые конденсаторы постоянной емкости и их обозначение на принципиальной схеме показаны на Рис.1.

Основной параметр конденсатора – емкость . Она измеряется в микро -, нано — и пикофарадах . На схемах Вы встретите все три единицы измерения. Обозначаются они следующим образом: микрофарады – мКф или мF , нанофарады – нф, Н или п , пикофарады – пф или pf . Чаще буквенное обозначение пикофарад не указывают ни на схемах, ни на самой радиодетали, т.е. обозначение 27, 510 подразумевают 27 пф, 510 пф. Чтобы проще разбираться в емкости, запомните следующее: 0,001 мкф = 1 нф, или 1000 пф.

В отечественной электронике применяется буквенно-цифровая маркировка конденсаторов. Если емкость выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пф) , 15Н (15 нф = 15 000 пф, или 0,015 мкф), ЮМ (10 мкф). Чтобы выразить номинальную емкость десятичной дробью, буквенное обозначение единицы емкости размещают перед числом: Н15 (0,15 нф = 150 пф) , М22 (0,22 мкф). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ее запятой, например: 1П2 (1,2 пф) , 4Н7 (4,7 нф = 4700 пф), 1М5 (1,5 мкф).
Буквенно-цифровая маркировка конденсаторов используется и в зарубежной электронике. Она нашла широкое применение на конденсаторах большой емкости. Например, надпись 0,47 |iF = 0,47 мкф. Не забыли разработчики и о цветовой маркировке , которая может содержать полосы, кольца или точки . Маркируемые параметры: номинальная емкость ; множитель ; допускаемое отклонение напряжения ; температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение. Определить емкость можно при помощи следующей таблицы.


Некоторые примеры цветовой маркировки постоянных конденсаторов показаны на Рис. 2.


Кроме буквенно-цифровой и цветовой маркировки применяется способ цифровой маркировки конденсаторов тремя или четырьмя цифрами (международный стандарт). В случае трехзначной маркировки первые две цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра – количество нулей (здесь обращаю ваше внимание на маркировку конденсаторов емкостью менее 10 пикофарад: последней цифрой в этом случае может быть девятка):


(в таблице ошибка, должно быть: 100 10 пикофарад 0,01 нанофарада 0,00001 мкф(!) )


При кодировании четырехзначным числом последняя цифра так же указывает количество нулей, а первые три — емкость в пикофарадах (pF):


Некоторые примеры цифровой маркировки конденсаторов представлены на Рис. 3.


Среди большого разнообразия конденсаторов постоянной емкости особое место занимают электролитические конденсаторы . Сегодня чаще всего можно услышать название оксидные конденсаторы, т.к. в них используется оксидный диэлектрик. Такие конденсаторы выпускают большой емкости – от 0,5 до 10000 мкф. Оксидные конденсаторы полярны , поэтому на принципиальных схемах для них указывают не только емкость, но и знак ” + ” (плюс), а на самом конденсаторе: в зарубежном варианте нанесен знак “-“, в отечественном устаревшем – ” + ” . Кроме этого, на принципиальных схемах указывают и максимальное напряжение, на котором их можно использовать. Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкф надо взять на напряжение не ниже 10 В.

Многие начинающие бояться применять конденсаторы на большее напряжение, чем указанное в схемах. А зря! Возьмем, к примеру, устройство с питанием 9В. Здесь необходимо использовать конденсатор на напряжение не ниже 10В, но лучше – 16В. Дело в том, что “питание” не застраховано от скачков. А для конденсаторов резкие перепады в сторону увеличения приравниваются к смерти. Поэтому, если Вы примените электролит на напряжение 50В, 160В или еще большее, хуже работать устройство не будет! Разве что размеры увеличатся: чем больше напряжение конденсатора, тем больше его размеры.

Оксидные конденсаторы обладают неприятным свойством терять емкость – “высыхать” , что является одной из основных причин отказов радиоаппаратуры, находящейся в длительной эксплуатации. Такой неприятной особенностью в частности обладают отечественные электролиты, особенно старые. Поэтому старайтесь ставить зарубежные новые конденсаторы.
Выпускают производители и неполярные оксидные конденсаторы , хотя применяются они довольно редко. Существую еще и танталовые конденсаторы , которые отличаются долговечностью, высокой стабильностью рабочих характеристик, устойчивостью к повышению температуры. При небольшом внешнем виде они могут обладать достаточно большой емкостью.
Линия, нанесенная на корпусе танталового конденсатора, означает плюсовой вывод, а не минус, как многие думают .
Некоторые разновидности оксидных конденсаторов показаны на Рис. 4.


Особенностью подстроечных и переменных конденсаторов есть изменение емкости при обращении оси, которая выступает наружу. Раньше они широко применялись радиоприемниках. Именно конденсатор переменной емкости крутили Ваши родители для настройки на нужную радиостанцию. Некоторые подстроечные и переменный конденсаторы показаны на Рис. 5.


Для подстроечных или переменных конденсаторов на схеме указывают крайние значения емкости, которые создаются, если вращать ось конденсатора от одного крайнего положения к другому или вертеть по кругу (как у подстроечных конденсаторов). Например, надпись 5-180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пф, а в другом – 180 пф. При плавном возвращении с одного положения в другое емкость конденсатора также плавно будет изменяться от 5 до 180 пф или от 180 до 5 пф. Сегодня не используют конденсаторы переменной емкости, так как их вытеснили варикапы – полупроводниковый элемент, емкость которого зависит от приложенного напряжения .

Конденсатор — это двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Изобрел первую конструкцию-прототип электрического конденсатора «лейденскую банку» в 1745 году, в Лейдене, немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук.

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

Резонансная частота конденсатора равна: f р = 1/ (2∏ ∙ √ L с ∙ C ) .

При f > fp конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Отечественные неполярные конденсаторы:

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·10 6 пФ = 1·10 −6 Ф) и пикофарадах, но нередко и в нанофарадах (1 нФ = 1·10 −9 Ф). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 — 180».

Основные параметры конденсаторов:

  1. Основной характеристикой конденсатора является его ёмкость , характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  2. Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  3. Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  4. Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  5. Полярность . Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Обозначение на схемах:

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  1. Конденсаторы вакуумные (между обкладками находится вакуум).
  2. Конденсаторы с газообразным диэлектриком.
  3. Конденсаторы с жидким диэлектриком.
  4. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  5. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  6. Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичнного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура — основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы — вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Вакуумный конденсатор:

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  1. Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  2. Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  3. Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

Два бумажных электролитических конденсатора 1930 года:

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Серебрянный конденсатор для аудио.

Также различают конденсаторы по форме обкладок:

Пассивные компоненты. Конденсаторы — презентация онлайн

1. Омский государственный технический университет каф. «Электроника»

Дисциплина
Радиоматериалы и радиокомпоненты
Пассивные компоненты
Конденсаторы
Ст. преп. Пономарёв Д.Б.

2. Содержание

1. Функции, классификация
2. Система обозначений и маркировка
3. Параметры конденсаторов
Конструкции конденсаторов
Эквивалентные схемы
Электрический
конденсатор
представляет собой систему из двух
электродов
(обкладок),
разделённых
диэлектриком, и обладает способностью
накапливать электрическую энергию.
Функции
На долю конденсаторов
примерно
25%
всех
принципиальной схемы.
приходится
элементов
C
e e0 S
d
,
C
e .
C0
Емкость плоского конденсатора, пФ
где e — относительная диэлектрическая
проницаемость диэлектрика ( e >1 ),
S — площадь обкладок конденсатора
(см2),
d — расстояние между обкладками (см).

5. Конденсаторы

Функции
• Конденсатор в цепи постоянного
тока может проводить ток в
момент включения его в цепь
(происходит заряд или перезаряд
конденсатора), по окончании
переходного процесса ток через
конденсатор не течёт, так как его
обкладки разделены
диэлектриком.
• В цепи же переменного тока он
проводит колебания
переменного тока посредством
циклической перезарядки
конденсатора, замыкаясь так
называемым током смещения.

6. Конденсаторы

Слева — конденсаторы
для поверхностного
монтажа;
Справа — конденсаторы
для объёмного монтажа;
Сверху — керамические;
Снизу —
электролитические.
Классификация
конденсаторов
Классификация
Конденсаторы общего
назначения
1. Низкочастотные
2. Высокочастотные
Конденсаторы специального
назначения
1. Высоковольтные
2. Помехоподавляющие
3. Импульсные
4. Дозиметрические
5. Конденсаторы с электрически
управляемой ёмкостью
(варикапы, вариконды) и др.
Классификация
конденсаторов
Классификация
По назначению
1. Контурные
2. Разделительные
3. Блокировочные
4. Фильтровые
По характеру изменения ёмкости
1. Постоянные
2. Переменные
3. Подстроечные

9. Обозначение конденсаторов на схемах

Обозначение
по ГОСТ 2.728-74
Описание
Конденсатор постоянной ёмкости
Поляризованный конденсатор
Подстроечный конденсатор
переменной ёмкости

10. Обозначение конденсаторов на схемах

11. Обозначение конденсаторов на схемах

Варикапы. Это конденсаторы, емкость которых изменяется за счет
изменения расстояния между его обкладками путем подведения
внешнего напряжения. Варикап — это одна из разновидностей
полупроводникового диода, к которому подводится обратное
напряжение, изменяющее емкость диода.
Вариконды. Это конденсаторы, емкость
которых зависит от напряженности
электрического поля.

12. Функции конденсаторов

Функции
Блокировочный
(развязывающий)
конденсатор
Разделительный
конденсатор
Фильтр верхних
частот
Функции
Фильтр верхних
частот
Слаживающий
конденсатор
Демпфер

14. Обозначение конденсаторов на схемах

• На электрических принципиальных схемах номинальная
ёмкость конденсаторов обычно указывается в
микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но
нередко и в нанофарадах.
• При ёмкости не более 0,01 мкФ, ёмкость конденсатора
указывают в пикофарадах, при этом допустимо не
указывать единицу измерения, то есть постфикс «пФ»
опускают.
• При обозначении номинала ёмкости в других единицах
указывают единицу измерения.

15. Обозначение конденсаторов на схемах

• Для электролитических конденсаторов, а также для
высоковольтных конденсаторов на схемах, после
обозначения номинала ёмкости, указывают их
максимальное рабочее напряжение в вольтах (В) или
киловольтах (кВ).
• Например так: «10 мк x 10 В».
• Для переменных конденсаторов указывают диапазон
изменения ёмкости, например так: «10 — 180».
• В настоящее время изготавливаются конденсаторы с
номинальными ёмкостями из десятичнологарифмических
рядов значений Е3, Е6, Е12, Е24, то есть на одну декаду
приходится 3, 6, 12, 24 значения, так, чтобы значения с
соответствующим допуском (разбросом) перекрывали всю
декаду.

16. Кодовая маркировка конденсаторов

• Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в
пигофарадах (пф)
Последняя — количество нулей.
Когда конденсатор имеет емкость менее 10 пФ, то
последняя цифра может быть «9».
При емкостях меньше 1.0 пФ первая цифра «0».
Буква R используется в качестве десятичной запятой.
Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
109
1
0,001
0,000001
159
1,5
0,0015
0,000001
229
2,2
0,0022
0,000001
339
3,3
0,0033
0,000001
479
4,7
0,0047
0,000001
689
6,8
0,0068
0,000001
100*
10
0,01
0,00001
150
15
0,015
0,000015
220
22
0,022
0,000022
330
33
0,033
0,000033
470
47
0,047
0,000047
680
68
0,068
0,000068
101
100
0,1
0,0001
151
150
0,15
0,00015
221
220
0,22
0,00022
331
330
0,33
0,00033
471
470
0,47
0,00047
681
680
0,68
0,00068
102
1000
1
0,001
* Иногда последний ноль не указывают
Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
152
1500
1,5
0,0015
222
2200
2,2
0,0022
332
3300
3,3
0,0033
472
4700
4,7
0,0047
682
6800
6,8
0,0068
103
10000
10
0,01
153
15000
15
0,015
223
22000
22
0,022
333
33000
33
0,033
473
47000
47
0,047
683
68000
68
0,068
104
100000
100
0,1
154
150000
150
0,15
224
220000
220
0,22
334
330000
330
0,33
474
470000
470
0,47
684
680000
680
0,68
105
1000000
1000
1

18. Кодовая маркировка конденсаторов

Код Емкость[пФ] Емкость[нФ] Емкость[мкФ]
1622
16200
16,2
0,0162
4753
475000
475
0,475
• Маркировка 4 цифрами
Возможны варианты
кодирования
4-значным числом.
Но и в этом случае
последняя цифра
указывает количество
нулей,
а первые три — емкость в
пикофарадах.
Кодовая маркировка конденсаторов
Код Емкость [мкФ]
R1
0,1
R47
0,47
1
1
4R7
4,7
10
10
100
100
• Маркировка емкости в
микрофарадах
Вместо десятичной точки
может ставиться буква R.

20. Кодовая маркировка конденсаторов

• Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ,
рабочего напряжения
В отличие от первых трех параметров, которые маркируются в
соответствии со стандартами, рабочее напряжение у разных фирм
имеет различную буквенно-цифровую маркировку.
Код
p10
Ip5
332p
1НО или 1nО
15Н или 15n
33h3 или 33n2
590H или 590n
m15
1m5
33m2
330m
1mO
10m
Емкость
0,1 пФ
1,5 пФ
332 пФ
1,0 нФ
15 нФ
33,2 нФ
590 нФ
0,15мкФ
1,5 мкФ
33,2 мкФ
330 мкФ
1 мФ или 1000 мкФ
10 мФ
Параметры конденсаторов
Параметры конденсаторов
Параметры
конденсаторов
Параметры конденсаторов
Основные
1. Номинальная ёмкость
2. Рабочее напряжение
Кроме того, конденсаторы
паразитных параметров.
характеризуются
рядом
Параметры конденсаторов
Q
C
U
Ёмкость
конденсатора

электрическая ёмкость между электродами
конденсатора
(ГОСТ
19880

74),
определяемая
отношением,
накапливаемого
в
нём
заряду
к
приложенному
напряжению.
Ёмкость
конденсатора
зависит
от
материала
диэлектрика,
формы
и
взаимного
расположения электродов.
Удельная ёмкость – отношение
ёмкости
к
массе
(или
объёму)
конденсатора.
Номинальная
ёмкость
конденсатора СНОМ — емкость, которую
должен иметь конденсатор в соответствие
с нормативной документацией (ГОСТ или
ТУ).
Параметры конденсаторов
Номинальные
значения
ёмкости
СНОМ
электролитических конденсаторов определяются рядом:
0,5;1; 2; 5; 10; 20; 30; 50; 100; 200; 300; 500; 1000; 2000;
5000 мкФ.
Номинальные значения
плёночных конденсаторов
ёмкости
СНОМ
бумажных
0,05; 0,25; 0,5; 1; 2; 4; 6; 8;.20; 40; 60; 80; 100; 400; 600; 800;
1000 мкФ.
Параметры конденсаторов
Международной электротехнической комиссией (МЭК) установлено
семь предпочтительных рядов для значений номинальной емкости
(Публикация № 63): ЕЗ; Е6; Е12; Е24; Е48; Е96; Е192. Цифры после
буквы Е указывают на число номинальных значений в каждом
десятичном интервале (декаде). Номинальные емкости соответствуют
числам декады и числам, полученным путем их умножения и деления
на 10n, где n — целое положительное или отрицателе число.
В производстве конденсаторов чаще всего используют
Параметры конденсаторов
Допустимое
отклонение
от
номинала
С
характеризует точность значения ёмкости и определяется
классом точности.
Класс
0,01
0.02
0,05
0
00
I
II
III
IV
V
VI
Допуск %
0,1
0,2
0,5
1
2
5
10
20
— 10
+20
-20
+30
-20
+50
Конденсаторы широкого применения имеют класс
точности I, II или III и соответствуют рядам Е6, Е12, Е24.
Блокировочные и разделительные конденсаторы
обычно соответствую классам II и III.
Контурные конденсаторы обычно соответствуют
классам 1, 0, или 00.
Фильтровые конденсаторы обычно соответствуют
классам IV, V, VI.
Параметры конденсаторов
Номинальное
рабочее
напряжение
конденсатора – максимальное напряжение, при
котором конденсатор может работать в течение
минимальной наработки, в условиях, указанных в
технической документации (ГОСТ 21415 – 75).
Значения номинальных напряжений установлены ГОСТ
9665 – 77. Все конденсаторы в процессе изготовления
подвергают воздействию испытательного напряжения в
течение 2…5 секунд.
U Н U ИСП U ПРОБ
Электрическое
сопротивление
изоляции
конденсатора – электрическое сопротивление
конденсатора постоянному току, определяемое
соотношением
Параметры конденсаторов
R ИЗ
U
I УТ
U — напряжение, приложенное к
конденсатору;
IУТ — ток утечки (проводимости).
Сопротивление изоляции всех видов конденсаторов, кроме
электролитических и полупроводниковых, очень велико и
составляет МОм, ГОм и даже ТОм. Это со противление измеряют в
нормальных климатических условиях (температура 25 10 С,
относительная влажность 45…75 %, атмосферное давление
86…106 кПа).
С
повышением
уменьшается.
температуры
сопротивление
изоляции
Эквивалентное
сопротивление ЭПС (ESR)
последовательное
Параметры конденсаторов
ESR Rc Ra
1
Rc
2 RC
Добротность конденсатора
Rc
Q
ESR
Rобкл = Rиз
Эквивалентная схема
конденсатора
Ia
1
tg
,
Ic C R
Параметры конденсаторов
Частотные свойства
При изменении частоты изменяется диэлектрическая
проницаемость диэлектрика. Увеличивается степень влияния
паразитных параметров (собственной индуктивности и
сопротивления потерь).
Собственная индуктивность конденсатора Lc – это
индуктивность выводов и обкладок.
На высоких частотах любой конденсатор можно
рассматривать как последовательный колебательный контур,
образуемый ёмкостью, собственной индуктивностью LC и
сопротивлением потерь RП. Резонанс наступает на частоте
fP
1
2 LC C
RC
При f > fP конденсатор ведёт себя как катушка
индуктивности. Обычно максимальная рабочая частота
конденсатора в 2…3 раза ниже резонансной.
Параметры конденсаторов
Характер частотной зависимости действующей ёмкости СД
в диапазоне частот от нуля до fР обусловливается
соотношением C, LC, RП. В большинстве случаев СД
уменьшается с ростом частоты во всём указанном диапазоне
частот. Вблизи резонансной частоты она всегда уменьшается
и стремится к нулю.
Параметры конденсаторов
Эквивалентная емкость конденсатора
Рабочие частоты конденсатора должны
быть существенно меньше f0.
Допустимая амплитуда переменного напряжения на
конденсаторе Um ДОП – амплитуда переменного напряжения, при
которой потери энергии в конденсаторе не превышают
допустимых. Значения Um ДОП приводятся в справочниках или
определяются по формуле
Параметры конденсаторов
U m ДОП
QР ДОП
2 f C
QР ДОП — допустимая реактивная мощность
конденсатора, В А
f
— частота напряжения на конденсаторе, Гц
C
— ёмкость конденсатора, Ф
Превышение Um
диэлектрика.
ДОП
может вызвать тепловой пробой
Ниже представлена зависимость напряжения Um ДОП от
частоты, построенная для фиксированных значений
температуры и допустимой мощности потерь РА = РА ДОП.
Граничная частота определяется допустимым снижением
действующей ёмкости.
Um ДОП
4
t = const
РА > РА ДОП
Параметры конденсаторов
UИСП
3
2
UНОМ
РА = РА ДОП
1
РА
5
fГР
6

f
Стабильность параметров
конденсаторов
Электрические свойства и срок службы
конденсатора
зависят
от
условий
эксплуатации.
Воздействия
1. тепла
2. влажности
3. радиации
4. вибраций
5. ударов
6. др.
Наибольшее влияние оказывает температура.
Влияние температуры проявляется в изменении
1. ёмкости конденсатора
2. добротности конденсатора
3. электрической прочности конденсатора
Влияние температуры оценивают ТКЕ
С
С
С 0 T
Изменение ёмкости обусловлено изменением
диэлектрической проницаемости (в основном), а также
линейных размеров обкладок и диэлектрика
конденсатора
TKC TK e
TK e
e 2 e1
e1 (T2 T1 )
С
повышением
температуры
уменьшается
электрическая прочность и срок службы конденсатора.
У высокочастотных конденсаторов величина ТКЕ не зависит
от температуры и указывается на корпусе путём окрашивания
корпуса в определённый цвет и нанесения цветной метки.
У низкочастотных конденсаторов температурная зависимость
ёмкости
носит
нелинейный
характер.
Температурную
стабильность этих конденсаторов оценивают величиной
предельного отклонения ёмкости при крайних значениях
температуры.
Низкочастотные конденсаторы разделены на три группы
по величине температурной нестабильности:
1. Н20
20 %
2. Н30
30 %
3. Н90
+ 50 — 90 %
Понижение атмосферного давления приводит к
уменьшению электрической прочности, изменениям
ёмкости вследствие деформации элементов конструкции
конденсатора. Возможны нарушения герметичности
конденсатора.
При поглощении влаги диэлектриком конденсатора
увеличивается ёмкость и резко уменьшается сопротивление
изоляции. В результате возрастают потери энергии,
особенно при повышенных температурах, и уменьшается
электрическая
прочность
(повышается
вероятность
пробоя).
При
длительном
хранении
конденсаторов изменяется их ёмкость.
Стабильность конденсаторов во времени
характеризуется
коэффициентом
старения
С
С 0 t
Потери энергии в конденсаторах обусловлены
электропроводностью и поляризацией диэлектрика.
Их характеризуют тангенсом угла диэлектрических
потерь tgδ.
1. Конденсаторы с керамическим диэлектриком
имеют tgδ 10-4
2. Конденсаторы со слюдяным диэлектриком
имеют tgδ 10-4
3. Конденсаторы с бумажным диэлектриком имеют tgδ
= 0,01…0,02
4. Конденсаторы с оксидным диэлектриком имеют tgδ
= 0,1…1,0
Конструкция конденсаторов
Конструкция
конденсаторов
1. Пакетная
2. Трубчатая
3. Дисковая
4. Литая секционная
5. Рулонная
6. Конденсаторы гибридных
ИМС
7. Подстроечные
8. КПЕ
Спасибо за внимание!
45

3. Конденсаторы. Маркировка. Обозначение конденсаторов.

Конденсатор это система из двух и более электродов (обычно в форме пластин, называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок конденсатора. Такая система обладает взаимной ёмкостью и способна сохранять электрический заряд.ТОесть из рисунка видно что это две параллельные металические пластины разделённые каким то материалом (диэлектриком- это вещество которое не проводит электрический ток).

Свойства конденсатора

Конденсатор в цепи постоянного тока не проводит ток, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора. В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

где j — мнимая единица, w – частота протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно:

Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь . Резонансная частота конденсатора равна:

При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах, на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной. Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где U — напряжение (разность потенциалов), до которого заряжен конденсатор.

Обозначение конденсаторов на схемах

условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74 либо международному стандарту IEEE 315-1975:

        На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах или пикофарадах (1 мкФ = 106 пФ). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс <пФ> опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах(В) или киловольтах(кВ). Например так: <10 мк x 10 В>. Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: <10 — 180>.

4. Разновидности конденсаторов. Свойства конденсаторов.

 Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).

 Конденсаторы с газообразным диэлектриком.

 Конденсаторы с жидким диэлектриком.

 Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.

 Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.

 Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металле, являющийся анодом. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги. Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

 Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).

 Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.

 Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

 Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

 зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространенные низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

Краткое обозначение!Типы конденсаторов: БМ — бумажный малогабаритный БМТ — бумажный малогабаритный теплостойкий КД — керамический дисковый КЛС — керамический литой секционный КМ — керамический монолитный КПК-М — подстроечный керамический малогабаритный КСО — слюдянной опресованный КТ — керамический трубчатый МБГ — металлобумажный герметизированный МБГО — металлобумажный герметизированный однослойный МБГТ — металлобумажный герметизированный теплостойкий МБГЧ — металлобумажный герметизированный однослойный МБМ — металлобумажный малогабаритный ПМ — полистироловый малогабаритный ПО — пленочный открытый ПСО — пленочный стирофлексный открытый .

Виды конденсаторов в радиотехнике и электронике

Среди множества радиоэлементов, большое значение имеют различные виды конденсаторов. Эти изделия широко используются, практически, во всех радио- и электронных схемах. Основным свойствам конденсаторов является электрическая емкость. Ее образование происходит с помощью обкладок, выполняющих роль электродов. Обкладки разделяются диэлектриками, выполненными из слюды, керамики или тонкой специальной бумаги. Величина электрической емкости зависит параметров электродов и свойств диэлектриков.

Свойства конденсаторов

При взаимодействии с переменным током, конденсатор, фактически, является сопротивлением. При увеличении частоты, происходит уменьшение величины сопротивления.

Возникающие потери в самом конденсаторе, напрямую связаны со свойствами диэлектриков. Когда возрастает частота, влажность и температура, происходит существенный рост потерь. Минимальные потери наблюдаются в конденсаторах, где в качестве диэлектриков используется пленка, слюда или высокочастотная керамика. Эти свойства должны непременно учитываться при использовании всех видов изделий в различных схемах радиоаппаратуры.

Емкость конденсаторов может изменяться и под действием внешних факторов. В результате, изменяются размеры обкладок, величина зазоров и общие свойства диэлектриков. Для определения относительного изменения емкости, применяется специальный температурный коэффициент, имеющий положительное и отрицательное значение. В зависимости от определенных свойств, происходит деление конденсаторов на группы и виды.

Группы конденсаторов

В зависимости от параметров, существуют основные виды конденсаторов, обладающие индивидуальными свойствами. Наибольшее распространение получили конденсаторы с постоянной емкостью, использующиеся в различных фильтрах, колебательных контурах и в качестве элементов блокировки цепей с различными видами токов.

Существуют конденсаторы с переменной емкостью. В состав каждого из них входят металлические пластины в количестве двух групп. Каждая из них плавно перемещается относительно друг друга. Во время этого движения площади пластин перекрываются, из-за чего и происходит изменение емкости. В качестве диэлектрика, чаще всего, используется воздух. Однако, для малогабаритной аппаратуры используются фторопластовые и полиэтиленовые пленки с высокой износоустойчивостью.

В колебательном контуре практикуется использование подстроечных конденсаторов, с помощью которых устанавливается начальная емкость. Они обеспечивают плавное изменение емкости и выполняют регулировочную функцию.

Основой саморегулируемых конденсаторов является специальная керамика, применяющаяся в качестве диэлектрика. Их емкость полностью зависит от величины напряжения, возникающего на обкладках. То есть, при изменении напряжения, изменяется и емкость конденсатора.

Емкость конденсатора обозначение в физике. Виды конденсаторов

Конструктивно любой конденсатор можно представить двумя токопроводящими областями (обычно это пластины), на которых скапливаются электрические заряды противоположных знаков и зоны диэлектрика между ними. Используемые для них материалы и размеры пластин с различными свойствами изолирующего слоя влияют на электрические характеристики конструкции и область ее применения. Также они определяют варианты классификации.

Принципы систематизации

Конденсаторы для общего назначения широко распространены, используются во многих сферах, особенно в радиоэлектронике. К ним не предъявляют особых требований по условиям эксплуатации. А вот модели специального назначения должны надежно работать при определенном значении напряжения, частоты, импульсах тока, больших электромагнитных помехах или увеличенных токах при запуске двигателей и других специальных факторах.

Принципы классификации по регулированию емкости

Основным критерием конденсатора является его емкость. Характер ее изменения определяет механическую конструкцию.

Модели постоянной емкости не могут изменять ее при работе, этим занимаются специально созданные изделия с переменной емкостью и различными способами управления:

    механическим регулированием взаимного расположения пластин;

    отклонением питающего напряжения;

    нагревом или охлаждением.

Конденсаторы подстроечные не созданы для длительной, постоянной работы в схеме с оперативной настройкой емкости. Их назначение — первоначальная наладка и периодическая корректировка параметров электрических цепей с малым диапазоном регулирования емкости.

Нелинейные конденсаторы изменяют емкость в зависимости от значения приложенного напряжения или температуры рабочей среды, но не по прямолинейной зависимости. Варикондами называют конструкции, у которых емкость зависит от разности потенциалов. приложенной к обкладкам, а термоконденсаторами — от нагрева или охлаждения.

Конденсаторы с конструкцией для навесного монтажа отличаются большим разнообразием выполненных выводов, которые могут быть созданы:

    из мягкого или жесткого сплава;

    с аксиальным либо радиальным расположением;

    круглого профиля;

    прямоугольного ленточного сечения;

    с опорным винтом;

    под проходную шпильку;

    с креплением посредством винта или болта.

Конденсаторы, созданные для печатного монтажа , выпускаются с неупругими круглыми выводами для удобного размещения на платах с электронными деталями.

Устройства, предназначенные для поверхностного монтажа , принято обозначать индексом «SDM». Их особенность заключается в том, что выводами обкладок служат части корпуса.

Конденсаторы серии Snap in (с защелкивающимися выводами) относятся к последним современным разработкам. Они снабжены выводами, которые при установке в отверстия на плате жестко соединяются с ней. Это сделано для удобства из пайки.

Модели, снабженные выводами под винт , имеют резьбу для подключения к схеме. их используют в силовых цепях и блоках питания, работающих с большими токами. Такие выводы легко закреплять на радиаторах для уменьшения тепловых нагрузок.

Незащищенные конденсаторы предназначены для работы в обычных условиях, а защищенные — при повышенной влажности.

Неизолированные конденсаторы от изолированных отличаются диэлектрическими свойствами корпуса и возможностями касания шасси прибора или токоведущих частей схемы.

У уплотненных моделей корпус заполнен органическими материалами.

Герметизированные конденсаторы снабжены корпусом, изолирующим внутреннее рабочее пространство от воздействия окружающей среды.

Принципы классификации по виду диэлектрика

Качественные свойства диэлектрика у конденсатора влияют на величину сопротивления изоляции между обкладками, а, следовательно, на стабильность сохранения емкости, допускаемые потери и другие электрические характеристики.

Изделия с органическим диэлектриком изготовлены на основе различных марок конденсаторной бумаги, пленок и их сочетаний.

Помехоподавляющие конструкции ослабляют помехи электромагнитного поля, обладают низкой индуктивностью.

Дозиметрические модели созданы для восприятия слабого уровня токовых нагрузок, обладают маленьким саморазрядом и значительным сопротивлением у изоляции.

Деление на высоковольтные и низковольтные конденсаторы немного условно. За критическую величину определения их границ принято напряжение порядка 1600 вольт.

У импульсных высоковольтных изделий диэлектриком служит бумага или комбинированные материалы, а для конструкций постоянного напряжения подбирается полистирол, бумага, политетрафторэтилен и их сочетания.

За определение границы работы низковольтных конденсаторов по частоте принято значение 104…105…107 Гц.

Низкочастотные конденсаторы диэлектриком используют полярные или слабополярные органические пленки с тангенсом угла диэлектрических потерь, зависимым от частоты пропускаемого сигнала, а высокочастотные на основе полистирольных и фторопластовых пленок имеют характеристики, не подверженные влиянию частоты проходящего сигнала.

Модели с неорганическим диэлектриком используют слюду, стекло, керамику, стеклоэмаль и стеклокерамику. У них на диэлектрик наносится тонкий слой металла в форме фольги либо проводится его напыление.

Оксидные конденсаторы еще имеют второе название — электролитические . Они имеют диэлектрик из оксидного слоя, созданный электрохимическим методом на аноде из металла: алюминия, тантала или ниобия. Их катод — жидкий электролит, наполняющий тканевую или бумажную прокладку у конструкций из алюминия или тантала. В оксидно-полупроводниковых моделях на основе двуокиси марганца электролит бывает гелеобразным или жидким.

Конденсаторы с диэлектриком на основе газа, воздуха или вакуума могут быть созданы с постоянной или регулируемой емкостью. Они обладают низкой величиной тангенса угла диэлектрических потерь и самыми стабильными электрическими параметрами. Поэтому их используют в высоковольтной и высокочастотной аппаратуре.

Вакуумные конденсаторы отличаются простотой устройства, меньшими потерями, лучшей температурной стабильностью, устойчивостью к вибрациям.

Также конденсаторы классифицируют по форме обкладок. Они создаются:

    плоскими;

    цилиндрическими;

    сферическими.

Конденсатор – устройство, способное накапливать электрический заряд. В зависимости от назначения и конструкции конденсаторы делятся на ряд видов.В статье рассмотрим основные электрические параметры конденсаторов.

Электрические параметры конденсаторов

Основные характеристики и единицы их измерения приведены в таблице

Фарада – физическая величина, названная в честь английского физика Майкла Фарадея. Она слишком велика для использования в электротехнике. На практике емкость измеряют в микрофарадах (1мкФ = 10 -6 Ф), нанофарадах (1нФ = 10 -9 Ф) или пикофарадах (1пФ=10 -12 Ф)

При нанесении величины емкости на корпус конденсатора для обозначения «нФ» дополнительно используют символы «nF», «пФ» — «рФ», а микрофараду обозначают сокращением «мкФ» или «μФ».


Емкость конденсаторов не может принимать произвольные значения. Они унифицированы и выбираются из стандартных рядов емкостей.

Допустимое отклонение емкости указывает, с какой точностью изготовлен конденсатор. Она указывает, в каком допустимом диапазоне может находиться величина емкости в процентах от номинала. Для измерительных устройств этот параметр выбирается как можно меньшим.

Номинальное напряжение – это напряжение, которое выдерживают обкладки конденсатора длительное время. При превышении этого параметра конденсатор выйдет из строя. Для переменного тока руководствуются не действующим, а амплитудным значением напряжения. Например, при выборе конденсатора для пуска электродвигателя на номинальное напряжение 380 В нужно использовать конденсатор на рабочее напряжение U>380∙√2=537, то есть, на 600 В.


Температурная стабильность характеризует диапазон, в котором изменяется емкость при изменении температуры окружающей среды. Для устройств, сохраняющих работоспособность в широком диапазоне температур, значение этого параметра выбирается более низким.

Конструктивные исполнения конденсаторов

Конденсаторы, емкость которых не может изменяться, называются конденсаторами постоянной емкости .

Но в некоторых цепях для обеспечения возможности регулировки работы схемы и установки точных параметров ее работы применяются подстроечные конденсаторы . Емкость их изменяется при помощи отвертки.

В отличие от них конденсаторы переменной емкости применяются для выполнения пользовательских регулировок, например, для настройки радиоприемника на нужную волну.


Существуют конденсаторы специального назначения. Например, конденсаторы для защиты от радиопомех и сглаживающих фильтров, располагающихся парами в одном корпусе.


Отдельно выделяются конденсаторы для поверхностного монтажа или . Они технологичны для монтажа на автоматических конвейерных линиях, а размеры позволяют минимизировать габаритные размеры устройств.

Классификация конденсаторов по виду диэлектрика

Воздух в качестве диэлектрика использовался только для конденсаторов переменной емкости старого образца. Чем меньше материал между обкладками конденсатора проводит электрический ток, тем меньших размеров может быть изготовлен этот элемент на то же рабочее напряжение. При использовании определенных материалов можно получить конденсаторы с необходимыми свойствами.

В зависимости от материала диэлектрика между обкладками выпускаются конденсаторы:

Из всего этого перечня самыми распространенными в электротехнике являются бумажные и металлобумажные конденсаторы, использующиеся для схем запуска однофазных двигателей и для компенсации реактивной мощности. Всем известны электролитические конденсаторы, используемые в выпрямителях для сглаживающих фильтров. Их главная особенность – невозможность работы на переменном токе.


При ошибках в полярности подключения электролитических конденсаторов они выходят из строя, иногда – со взрывом. То же произойдет при превышении номинального напряжения электролитического и металлобумажного конденсатора, так как они выпускаются в герметичных корпусах.

Металлобумажный оксидный конденсатор в герметичном корпусе

Один из самых распространенных электронных компонентов. Существует множество разных типов конденсаторов, которые классифицируют по различным свойствам.

В основном типы конденсаторов разделяют:

  • По характеру изменения емкости — постоянной емкости, переменной емкости и подстроечные.
  • По материалу диэлектрика — воздух, металлизированная бумага, слюда, тефлон, поликарбонат, оксидный диэлектрик (электролит).
  • По способу монтажа — для печатного или навесного монтажа.

Керамические конденсаторы

Керамические конденсаторы или керамические дисковые конденсаторы сделаны из маленького керамического диска, покрытого с двух сторон проводником (обычно серебром).

Карамические конденсаторы

Благодаря довольно высокой относительной диэлектрической проницаемости (от 6 до 12) керамические конденсаторы могут вместить достаточно большую емкость при относительно малом физическом размере. Диапазон емкости этого типа конденсаторов — от нескольких пикоФарад (пФ или pF) до нескольких микроФарад (мФ или uF). Однако их номинальное напряжение, как правило, невысокое.

Маркировка керамических конденсаторов обычно представляет собой трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить.

Например, маркировка 103 на керамическом конденсаторе означает 10 000 пикоФарад или 10 наноФарад. Соответственно, маркировка 104 будет означать 100 000 пикоФарад или 100 наноФарад и.т.д. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%.

Емкость конденсатора зависит от площади обкладок . Для того чтобы компактно вместить большую площадь, используют пленочные конденсаторы. Здесь применяют принцип «многослойности». Т.е. создают много слоев диэлектрика, чередующегося слоями обкладок. Однако с точки зрения электричества, это такие же два проводника разделенные диэлектриком, как и у плоского керамического конденсатора.

В качестве диэлектрика пленочных конденсаторов обычно используют тефлон, металлизированную бумагу, майлар, поликарбонат, полипропилен, полиэстер. Диапазон емкости этого типа конденсаторов составляет примерно от 5pF (пикофарад) до 100uF (микрофарад). Диапазон номинального напряжения пленочных конденсаторов достаточно широк. Некоторые высоковольтные конденсаторы этого типа достигают более 2000 вольт.

Различают два вида пленочных конденсаторов по способу размещения слоев диэлектрика и обкладок – радиальные и аксиальные .

Радиальный и аксиальный тип пленочных конденсаторов

Маркировка емкости пленочных конденсаторов происходит по тому же принципу что и керамических. Это трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%. Например 103J означает 10 000 пикоФарад +/- 5% или 10 наноФарад +/-5%.

Однако довольно часто разные производители кроме значения емкости и точности добавляют символы номинального напряжения, температуры, серии, класса, корпуса, и других особых характеристик. Данные символы могут отличатся и быть размещены в разном порядке, в зависимости от производителя. Поэтому для разшифровки маркировки пленочных конденсаторов желательно пользоваться документацией (Datasheets) .

Обычно используются когда требуется большая емкость. Конструкция этого типа конденсаторов похожа на конструкцию пленочных, только здесь вместо диэлектрика используется специальная бумага, пропитанная электролитом. Обкладки конденсатора создаются из алюминия или тантала.

Обратим внимание, что электролит хорошо проводит электрический ток! Это полностью противоречит принципу устройства конденсатора, где два проводника должны быть разделены диэлектриком.

Дело в том, что слой диэлектрика создается уже после изготовления конструкции компонента. Через конденсатор пропускают ток, и в результате электролитического окисления на одной из обкладок появляется тонкий слой оксида алюминия или оксида тантала (в зависимости из какого металла состоит обкладка). Этот слой представляет собой очень тонкий и эффективный диэлектрик, позволяющий электролитическим конденсаторам превосходить по емкости в сотни раз «обычные» пленочные конденсаторы.

Недостатком вышеописанного процесса окисления является полярность конденсатора. Оксидный слой обладает свойствами односторонней проводимости. При неправильном подключении напряжения оксидный слой разрушается, и через конденсатор может пойти большой ток. Это приведет к быстрому нагреву и разширению электролита, в результате чего может произойти взрыв конденсатора! Поэтому необходимо всегда соблюдать полярность при подключении электролитического конденсатора . В связи с этим на корпусе компонента производители указывают куда подключать минус.

По причине своей полярности электролитические конденсаторы не могут быть использованы в цепях с переменным током. Но иногда можно встретить компоненты состоящие из двух конденсаторов, соединенными минус-к-минусу и формирующие «не полярные» конденсаторы. Их можно использовать в цепях с переменным током малого напряжения.

Емкость алюминиевых электролитических конденсаторов в колеблется основном от 1 мкФ до 47000 мкФ. Номинальное напряжение — от 5В до 500В. Допуск обычно довольно большой — 20%.

Танталовые конденсаторы физически меньше алюминиевых аналогов. Вдобавок электролитические свойства оксида тантала лучше чем оксида алюминия — у танталовых конденсаторов значительно менше утечка тока и выше стабильность емкости. Диапазон типичных емкостей от 47нФ до 1500мкФ.

Танталовые электролитические конденсаторы также являются полярными, однако лучше переносят неправильное подключение полярности чем их алюминиевые аналоги. Вместе с тем, диапазон типичных напряжений танталовых компонентов значительно ниже – от 1В до 125В.

Широко используются в устройствах, где часто требуется настройка во время работы — приемниках, передатчиках, измерительных приборах, генераторах сигналов, аудио и видео аппаратуре. Изменение емкости конденсатора позволяет влиять на характеристики проходящего через него сигнала (форму, частоту, амплитуду и т.д.).

Емкость может менятся механическим способом, электрическим напряжением (вариконды), и с помощью температуры (термоконденсаторы). В последнее время во многих областях вариконды вытесняются варикапами (диодами с переменной емкостью).

Под названием «переменные конденсаторы» обычно имеют ввиду компоненты с механическим изменением емкости. Управление емкостю здесь достигается путем изменения площади обкладок. Обкладки в переменных конденсаторах состоят из множества пластин с воздушным пространством между ними в качестве диэлектрика.

Часть пластин фиксированная, часть подвижная. Положение подвижных пластин по отношению к фиксированным определяет общую емкость конденсатора. Чем больше общая площадь пластин тем больше емкость.

Подстроечные конденсаторы

Подстроечные конденсаторы используются при разовом или периодическом регулировании емкости, в отличии от «стандартных» переменных конденсаторов, где емкость меняется в «режиме реального времени». Такая настройка предназначена для самих производителей аппаратуры, а не для ее пользователей, и выполняется специальной настроечной отверткой. Обычная стальная отвертка не подходит, так как может повлиять на емкость конденсатора. Емкость подстроечных конденсаторов как правило невелика – до 500 пикоФарад.

Способ монтажа конденсаторов

Конденсаторы разделяют по способу монтажа на компоненты для навесного монтажа и для печатного монтажа (SMD или чип-конденсаторы). У компонентов для навесного монтажа есть выводы в виде «ножек». У конденсаторов для печатного монтажа выводами служит часть их поверхности.

Узнав, что же такое конденсатор, рассмотрим, какие бывают виды конденсаторов .

Итак, виды конденсаторов можно классифицировать по нескольким признакам:

  • по назначению;
  • по характеру изменения емкости;
  • по способу монтажа;
  • по характеру защиты от внешних воздействий.

Иногда в литературе термин «виды конденсаторов » меняют на «группы конденсаторов », что одинаково по своему смысловому значению.

Классификация видов конденсаторов показана на рисунке 1.

Рисунок 1. Виды конденсаторов.

Рассмотрим более подробно виды конденсаторов, а точнее характеристики видов конденсаторов.

Конденсаторы общего назначения – конденсаторы, применяемые в большинстве видов радиоэлектронной аппаратуры. К конденсаторам этого вида не применяются особые требования.

Конденсаторы специального назначения – конденсаторы, к которым предъявляются особые требования (по напряжению, частоте, виду действующих сигналов и т.д.) в зависимости от той цепи, где они установлены. Например к данному виду конденсаторов относятся: импульсные, высоковольтные, пусковые, помехоподавляющие, а так же и другие конденсаторы.

Конденсаторы постоянной емкости – это конденсаторы, чья емкость является фиксированной и в процессе эксплуатации аппаратуры не меняется.

Конденсаторы переменной емкости – применяются в цепях, где требуется изменение емкости в процессе эксплуатации. При этом изменение емкости может производится различными способами: механически, путем изменения управляющего напряжения, изменением температуры окружающей среды.

Подстроечные конденсаторы – не применяются в цепях с оперативным изменением емкости. В основном их используют для первоначальной настройки аппаратуры или периодической подстройки цепей, где требуется малый диапазон изменения емкости.

Конденсаторы, используемые для печатного монтажа – это конденсаторы которые применяются в аппаратуре с обычными печатными платами с отверстиями для выводов радиокомпонентов. У таких конденсатов выводы изготовлены из проволоки круглого сечения.

Конденсаторы, используемые для навесного монтажа . Этот вид конденсаторов очень многообразен по исполнению выводов. Здесь могут использоваться мягкие и жесткие выводы, радиальные или аксиальные выводы, выводы, изготовленные из ленты или проволоки круглого сечения, а так же с выводами в виде опорных винтов и проходных шпилек (проходные конденсаторы). К конденсаторам для навесного монтажа можно отнести более современные конденсаторы с выводами под винт.

Конденсаторы, используемые для поверхностного монтажа(SDM-конденсаторы) . Отдельно необходимо выделить SDM-конденсаторы, так как они находят все большее и большее применение в современной радиоэлектронной аппаратуре. Другое название таких конденсаторов – безвыводные. У этого вида конденсаторов в качестве выводов используются части его копруса.

Конденсаторы с защёлкивающимися выводами (Snap in) . Вид современных конденсаторов, в которых выводы изготовлены таким образом, что при установки в отверстия платы они жестко «защелкиваются», это позволяет качественно и с удобствами осуществить их пайку.

Конденсаторы с выводами под винт . Интересный вид конденсаторов для поверхностного монтажа. В выводах конденсаторов этого вида нарезана резьба. В основном эти конденсаторы применяются в блоках питания, где преобладает ток большой величины и необходимо надежно подключить выводы к силовым проводам. Использование выводов под винт так же делает возможным установку конденсатора на радиатор.

Незащищенные конденсаторы – вид конденсаторов, который не допускают к работе в условиях повышенной влажности. Возможно эксплуатация этих конденсаторов в составе герметизированной аппаратуры.

Защищенные конденсаторы – могут работать в условия повышенной влажности.

Неизолированные конденсаторы – при использовании этого вида конденсаторов не допускается касания их корпусом шасси аппаратуры.

Изолированные конденсаторы – имеют хорошо изолированный корпус, что делает возможным касания шасси аппаратуры или ее токоведущих поверхностей.

Уплотненные конденсаторы – в конденсаторах этого вида используется корпус, уплотненный органическими материалами.

Герметизированные конденсаторы – эти конденсаторы имеют герметизированный корпус, что исключает взаимодействие внутренней конструкции конденсатора с окружающей средой.

Обозначение и схема всех типов конденсаторов

Конденсатор — это устройство, которое накапливает электрическую энергию в виде электрического заряда в электрическом поле. Конденсатор хорошо известен как пассивный электрический или электронный компонент. Конденсатор — это устройство с двумя выводами, и свойство или эффект конденсатора называется емкостью. Конденсатор также известен как конденсатор.

Конденсатор — очень полезный компонент, который используется почти во всех электрических и электронных схемах.Основная функция конденсатора — накапливать электрическую энергию. Конденсатор используется для накопления энергии, повышения коэффициента мощности и схем фильтрации. Существуют различные типы конденсаторов в зависимости от их природы, полярности и конструкции. В этой статье мы увидим все типы обозначений и схем конденсаторов.

Различные типы конденсаторов:

  • Электролитический конденсатор
  • Керамический конденсатор
  • Поляризованный конденсатор
  • Неполяризованный конденсатор
  • Фиксированный конденсатор
  • Переменный конденсатор
  • Подстроечный конденсатор

    Электролитический

  • пластина из алюминия или тантала с оксидным диэлектрическим слоем.Другой электрод — жидкий электролит. Электролитические конденсаторы — это поляризованные конденсаторы. Электролитические конденсаторы обладают высокой емкостью, но имеют низкую стойкость и высокий риск взрыва. Здесь вы можете увидеть символ электролитического конденсатора.

    Керамические конденсаторы очень дешевы и компактны. Они наиболее подходят для высокочастотных приложений. Керамический конденсатор обеспечивает только низкое значение емкости. Керамические конденсаторы — это неполяризованные конденсаторы. Здесь вы можете увидеть символ керамического конденсатора.

    Поляризованные конденсаторы не могут работать с блоком питания различной полярности. У них есть определенные положительные и отрицательные клеммы. Когда положительный вывод конденсатора подключен к положительному выводу источника питания, а отрицательный вывод конденсатора подключен к отрицательному выводу источника питания, он будет работать правильно. Электролитический конденсатор, суперконденсатор являются примерами поляризованного конденсатора. Здесь вы можете увидеть символ поляризованного конденсатора.

    Неполяризованные конденсаторы — это конденсаторы, которые могут работать с источниками питания различной полярности. У них нет какой-либо конкретной положительной или отрицательной клеммы. Керамические конденсаторы являются примерами неполяризованных конденсаторов. Здесь вы можете увидеть символ неполяризованного конденсатора.

    Конденсатор постоянной емкости всегда обеспечивает постоянное значение емкости. Его емкость не может быть изменена или изменена. Здесь вы можете увидеть символ фиксированного конденсатора. Обычные компактные электролитические конденсаторы и керамические конденсаторы являются примерами конденсаторов постоянной емкости.

    Переменный конденсатор может обеспечивать различные значения емкости в соответствии с нашими требованиями. Мы можем изменить его значение емкости в любое время. Здесь вы можете увидеть символ переменного конденсатора.

    Подстроечный конденсатор также является одним из типов переменного конденсатора. Он использует подгонку диэлектрической среды конденсатора для изменения значения емкости. Здесь вы можете увидеть символ подстроечного конденсатора.


    Спасибо, что посетили сайт. продолжайте посещать для получения дополнительных обновлений.

    Конденсаторы различных типов и их применение

    В основном конденсатор состоит из двух проводящих пластин, разделенных тонким изолирующим слоем. Существуют различные типы конденсаторов , которые производятся во многих формах, стилях и материалах.

    Коллекция различных типов конденсаторов

    Понимание их основных принципов поможет вам выбрать конденсатор для вашего приложения. Прежде чем перейти к каждому из них, давайте разберемся с основными способами использования конденсатора в цепи.

    Конденсаторы широко используются в электрических и электронных схемах.

    В электронных схемах используются конденсаторы малой емкости,

    • для передачи сигналов между каскадами усилителей.
    • в составе электрофильтров и настраиваемых схем.
    • в составе систем электроснабжения для сглаживания выпрямленного тока.

    В электрических цепях используются конденсаторы большей емкости,

    • для накопления энергии в таких приложениях, как стробоскопы.
    • в составе некоторых типов электродвигателей (асинхронные двигатели).
    • для коррекции коэффициента мощности в системах распределения питания переменного тока

    Стандартные конденсаторы имеют фиксированное значение емкости, но регулируемые конденсаторы часто используются в настроенных схемах.

    Считайте, как сохраняется заряд в конденсаторе.

    Типы конденсаторов

    Теперь мы изучим различные типы конденсаторов и то, как они классифицируются.Также в этом разделе вы можете узнать, как эти конденсаторы получили свое название, которое мы называем сейчас.

    Как правило, конденсаторы делятся на две общие группы:

    1. Фиксированные конденсаторы
    2. Переменные конденсаторы

    Фиксированные конденсаторы — это конденсаторы с фиксированными значениями емкости.

    В то время как конденсаторы переменной емкости имеют переменные (подстроечные) или регулируемые (настраиваемые) значения емкости.

    Из них наиболее важной группой являются конденсаторы постоянной емкости.

    Основная классификация конденсаторов

    Важными типами конденсаторов постоянной емкости являются:

    • Керамические конденсаторы
    • Пленочные и бумажные конденсаторы
    • Алюминиевые, танталовые и ниобиевые электролитические конденсаторы
    • Полимерные конденсаторы
    • 900 Суперконденсатор
    • Серебряные слюдяные, стеклянные, кремниевые, воздушные и вакуумные конденсаторы

    Многие конденсаторы получили свое название от используемого в них диэлектрика.Но это верно не для всех конденсаторов, потому что некоторые старые электролитические конденсаторы названы по своей конструкции катода. Так что наиболее часто используемые имена просто исторические.

    Конденсаторы постоянной емкости бывают поляризованными и неполяризованными.

    Керамические и пленочные конденсаторы являются примерами неполяризованных конденсаторов . Электролитические конденсаторы и суперконденсаторы входят в группу поляризованных конденсаторов .

    Полная классификация конденсаторов постоянной емкости показана на рисунке ниже.

    Типы фиксированных конденсаторов

    В дополнение к показанным выше типам конденсаторов, которые получили свое название от исторического развития, существует много отдельных конденсаторов, названных в зависимости от их применения.

    Конденсаторы, получившие свое название в зависимости от их применения, включают следующие:

    • Силовые конденсаторы,
    • Конденсаторы двигателя,
    • Конденсаторы промежуточного контура,
    • Подавляющие конденсаторы,
    • Конденсаторы кроссовера аудио,
    • Балластные конденсаторы освещения. ,
    • Демпферные конденсаторы,
    • Разделительные, развязывающие или байпасные конденсаторы.

    Часто для этих приложений используется более одного семейства конденсаторов, например Для подавления помех можно использовать керамические конденсаторы или пленочные конденсаторы.

    Обзор различных типов конденсаторов

    Как мы объясняли выше, существует множество различных типов конденсаторов, которые можно использовать. Зная основные характеристики каждого из них, вы легко сможете подобрать конденсатор для своего проекта.

    Чтобы облегчить вашу работу, ниже перечислены основные типы конденсаторов:

    1.Керамический конденсатор

    Керамический конденсатор — это тип конденсатора, который используется во многих приложениях от аудио до ВЧ.

    Керамический конденсатор

    Значения керамического конденсатора колеблются от несколько пикофарад до примерно 0,1 мкФ . Керамические конденсаторы являются наиболее часто используемыми типами конденсаторов , которые дешевы и надежны, а их коэффициент потерь особенно низок, хотя это зависит от конкретного используемого диэлектрика.

    Благодаря своим конструктивным свойствам эти конденсаторы широко используются как в выводном, так и в поверхностном исполнении.

    2. Электролитический конденсатор

    Электролитические конденсаторы — это тип конденсатора, поляризованного .

    Электролитические конденсаторы

    Они способны на обеспечивать высокие значения емкости — обычно более 1 мкФ . Эти конденсаторы наиболее широко используются для низкочастотных приложений — источников питания, развязки и аудиосвязи, поскольку они имеют ограничение по частоте около 100 кГц.

    3. Танталовый конденсатор

    Подобно электролитическим конденсаторам, танталовые конденсаторы также имеют поляризацию и имеют очень высокий уровень емкости для своего объема.

    Танталовый конденсатор

    Однако этот тип конденсатора очень нетерпим к обратному смещению, часто взрываясь при воздействии нагрузки.

    Конденсаторы этого типа также не должны подвергаться воздействию высоких пульсаций тока или напряжений, превышающих их рабочее напряжение.

    Доступны как для выводов, так и для поверхностного монтажа.

    4. Серебряный слюдяной конденсатор

    Серебряные слюдяные конденсаторы не так широко используются в наши дни , но они по-прежнему обеспечивают очень высокий уровень стабильности, низкие потери и точность там, где пространство не является проблемой.

    Серебряные слюдяные конденсаторы

    Они в основном используются для приложений RF , и их максимальное значение ограничено 1000 пФ или около того.

    5. Конденсатор из полистирольной пленки

    Конденсаторы из полистирола — это относительно дешевый конденсатор , но при необходимости можно использовать конденсатор с жесткими допусками.

    Пленочный конденсатор из полистирола

    Они имеют трубчатую форму из-за того, что пластина / диэлектрический сэндвич скручены вместе, но это добавляет индуктивность, ограничивая их частотную характеристику до нескольких сотен кГц.

    Обычно они доступны только в виде компонентов электроники с выводами.

    6. Конденсатор из полиэфирной пленки

    Конденсаторы из полиэфирной пленки используются там, где цена является соображением , поскольку они не обеспечивают высоких допусков.

    Конденсатор с полиэфирной пленкой

    Многие конденсаторы с полиэфирной пленкой имеют допуск , равный 5% или 10% , что подходит для многих приложений. Как правило, они доступны только в виде свинцовых электронных компонентов.

    7. Металлизированный полиэфирный пленочный конденсатор

    Этот тип конденсатора по существу представляет собой разновидность полиэфирного пленочного конденсатора , в котором сами полиэфирные пленки металлизированы.

    Конденсатор из металлической полиэфирной пленки

    Преимущество использования этого процесса заключается в том, что из-за тонкости электродов весь конденсатор может быть помещен в относительно небольшой корпус.

    Металлизированные полиэфирные пленочные конденсаторы обычно доступны только в виде компонентов электроники с выводами.

    8. Конденсатор из поликарбоната

    Конденсаторы из поликарбоната используются в приложениях, где надежность и производительность имеют решающее значение .

    Конденсатор из поликарбоната

    Позволяет изготавливать конденсаторы с высокими допусками.Эти конденсаторы будут сохранять свою емкость с течением времени.

    Кроме того, они имеют низкий коэффициент рассеяния и остаются стабильными в широком диапазоне температур, многие из которых указаны от -55 ° C до + 125 ° C.

    Однако производство поликарбонатных диэлектриков прекратилось, и их производство в настоящее время очень ограничено.

    9. Полипропиленовый конденсатор

    Полипропиленовый конденсатор иногда используется, когда требуется конденсатор с более высоким допуском, чем у полиэфирных конденсаторов.

    Полипропиленовый конденсатор

    Как следует из названия, в этом конденсаторе используется полипропиленовая пленка в качестве диэлектрика. Одним из преимуществ конденсатора является то, что его емкость очень мало изменяется с течением времени и с приложенным напряжением.

    Этот тип конденсатора также используется для низких частот. Обычно верхний предел составляет 100 кГц или около того. Как правило, они доступны только в виде свинцовых электронных компонентов.

    10. Стеклянные конденсаторы

    Как следует из названия, в конденсаторах этого типа используется стекло в качестве диэлектрика .Стеклянные конденсаторы обычно стоят дороже .

    Стеклянный конденсатор по размеру по сравнению с монетой.

    Несмотря на свою дороговизну, эти конденсаторы предлагают очень высокие уровни производительности с точки зрения чрезвычайно низких потерь, высокой способности к высокочастотному току, отсутствия пьезоэлектрических шумов и других характеристик.

    Эти функции делают их идеальными для многих высокопроизводительных ВЧ-приложений.

    11. SuperCap

    SuperCap также известен как суперконденсатор или ультраконденсатор .

    SuperCap

    Как следует из названия, эти конденсаторы имеют очень больших значений емкости , до нескольких тысяч Фарад.

    SuperCap находит применение для обеспечения запаса памяти, а также в автомобильных приложениях .

    Основные принципы работы конденсаторов и различные типы конденсаторов с их применением в схемах

    Конденсаторы — это слово, кажется, предлагает идею емкости , что, согласно словарю, означает «способность что-то удерживать». Это ровно , что делает конденсатор — он держит электрический заряд.Но что делает его общим компонентом почти во всех электронных схемах? Давайте разберемся с конденсаторами, чтобы понять, что они делают и как их можно использовать в этой статье.

    Что такое конденсатор?

    Конденсатор в самом примитивном виде состоит из двух проводящих пластин, разделенных диэлектрической средой. Термин диэлектрик — это просто причудливое слово для изолятора, который может быть поляризован, то есть образовывать отрицательные и положительные заряды на противоположных сторонах.Когда напряжение подается на эти две пластины, ток течет через проводящие пластины. Одна сторона заряжается положительно (отсутствие электронов), а другая сторона заряжается отрицательно (избыточные электроны). Все мы знакомы с тем фактом, что в отличие от зарядов притягиваются, поэтому, поскольку пластины заряжены противоположно, заряды на пластинах притягиваются.

    Помните, что между пластинами находится изолятор , поэтому заряды не могут «течь», чтобы уравновесить друг друга, и (в идеале) застревают во взаимном притяжении и остаются на месте.Именно так конденсаторы выполняют свою основную функцию — удержание или накопление заряда.

    Обозначение конденсаторов

    Поскольку конденсаторы имеют две параллельные металлические пластины, как обсуждалось выше, их символ обозначает то же самое. По крайней мере,

    легко нарисовать

    На практике конденсаторы больше не представляют собой просто две пластины с зазором между ними. В случае алюминиевых электролитов две пластины имеют форму металлической фольги, свернутой с прокладкой между ними в трубке.

    Второй набор символов обозначает поляризованные конденсаторы, то есть те, которые имеют внутреннюю конструкцию, определяющую положительные и отрицательные клеммы. Случайное переключение этих клемм почти наверняка приведет к серьезному отказу (особенно для более крупных образцов), выбросу кусочков фольги и бумажных счетчиков из места отказа, и в большинстве случаев с очень неприятным запахом.

    Номинальная емкость и напряжение конденсатора

    Конденсаторы измеряются в Фарадах ; он назван в честь известного британского электрохимика Майкла Фарадея.Единица емкости, заменяющая кулон на вольт. Кулон (произносится как «кулон») — это единица S.I. для заряда, а вольт, как мы знаем, — это единица измерения напряжения или разности потенциалов. Это делает Фарад количеством заряда, хранящегося на вольт разности потенциалов. Этот простой способ математического взгляда на конденсатор поддается широкому диапазону интерпретаций, что проявляется во множестве смертельно сложных математических уравнений, таких как интегралы, показатели и векторы, которые мы, инженеры, будем использовать при работе с конденсаторами, что выходит за рамки простого Объем этой статьи.Тем не менее, мы рассмотрим небольшую интересную математику, которая поможет нам разработать схемы с конденсаторами позже, в статье

    .

    Конечно, Фарад (один кулон на вольт) — очень большая единица для большинства практических целей (поскольку кулон сам по себе представляет собой довольно большой заряд, как вы, возможно, уже знаете), поэтому большинство конденсаторов (за исключением очень больших) ) измеряются в микрофарадах, или одной миллионной (0,000001) фарада. Предположим, у вас есть конденсатор с показателем 25 В 10 мкФ (префикс «u» означает «микро», это искажение греческого символа «мю», означающего «микро») на пластиковой внешней крышке.Поскольку колпачок (короткий в мире электроники для конденсаторов) рассчитан на 10 мкФ, он может удерживать заряд в десять микрокулонов (то есть десять миллионных кулонов, 0,000010 C) на вольт напряжения на его выводах. Это означает, что при максимальном напряжении 25 В конденсатор может удерживать заряд 25 В x 10 мкФ, что составляет 0,000250 кулонов.

    Помните, я сказал «максимальное» напряжение. Максимальное напряжение, вероятно, является наиболее важным показателем для конденсатора. Он сообщает вам, какое напряжение конденсатор может выдержать на своих выводах, прежде чем он выйдет из строя ………!

    Работа конденсатора

    В основном то, что происходит внутри конденсатора, заключается в том, что изолятор между этими пластинами подвергается процессу, называемому «диэлектрическим пробоем», что означает, что изолятор больше не может изолировать, поскольку напряжение на изоляторе слишком велико, чтобы он мог оставаться изолятором. .Физика, лежащая в основе, несколько выходит за рамки, но все, что вам нужно знать, чтобы понять, почему это происходит, — это то, что ни один изолятор не является идеальным, то есть до определенного момента. Даже самый прочный мост разрушается при перегрузке. То, что здесь происходит, похоже. Чтобы уменьшить пробой, вы можете увеличить зазор между двумя пластинами, но это связано с компромиссом — уменьшенной емкостью, поскольку пластины расположены дальше друг от друга и заряды не притягиваются так сильно, как при сближении — во многом как как ведут себя магниты.

    Хорошее практическое правило — использовать конденсаторы, рассчитанные на напряжение на 50% выше, чем то, что вы можете ожидать от вашей схемы. Это оставляет большой запас прочности. Например, если вам нужен колпачок для развязки (не беспокойтесь, развязка будет объяснена позже в статье) шины питания 12 В, вы можете обойтись без конденсатора на 16 В, но рекомендуется использовать конденсатор на 25 В, так как он дает вам широкий запас прочности. Хорошо, вы узнали это !! Да, 25 В, конечно, не на 25% больше, чем 12 В, но 18 В не является стандартной емкостью конденсатора — вы не найдете конденсатора с таким номинальным напряжением.Ближайший — 25В.

    Конденсаторы различных типов

    Причина диапазонов напряжения пробоя связана с материалом, используемым в качестве диэлектрика, который также является основой классификации конденсаторов:

    Алюминиевые электролитические конденсаторы

    Это, наверное, самые узнаваемые конденсаторы типа . Они поставляются в характерных металлических банках с пластиковой оболочкой, с четко указанными значениями напряжения и емкости и белой полосой для обозначения катода.Название происходит от того факта, что, как упоминалось выше, «пластины» изготовлены из алюминиевой фольги, подвергнутой химическому травлению. Процесс травления делает алюминий пористым (очень похожим на губку) и значительно увеличивает площадь его поверхности, следовательно, увеличивается емкость. Диэлектрик представляет собой тонкий слой оксида алюминия. Эти конденсаторы заполнены маслом, которое действует как электролит, отсюда и название. Электролитические конденсаторы поляризованы из-за их внутренней конструкции. Они имеют большую емкость по сравнению с другими членами семейства конденсаторов, но при гораздо более низком напряжении.Вы можете ожидать увидеть электролиты от 0,1 мкФ до таких монстров, как 100 мФ, и с номинальным напряжением от нескольких вольт до примерно 500 В. Однако их внутреннее сопротивление обычно велико.

    БОКОВОЕ ПРИМЕЧАНИЕ: Внутреннее сопротивление в конденсаторах обусловлено материалами, из которых изготовлен колпачок, например, сопротивлением алюминиевой фольги или сопротивлением выводов.

    Конденсаторы керамические

    Это колпачки с керамическим диэлектриком.Поскольку предел пробоя для керамического диэлектрика довольно высок, вы можете ожидать увидеть керамические колпачки с сумасшедшими пробивными напряжениями, такими как 10 кВ. Однако емкость обычно бывает низкой, в диапазоне от пикофарад (0,000000000001F) до нескольких десятков микрофарад. Как правило, они намного меньше, чем конденсаторов других типов , как показано на рисунке. У них также очень маленькое внутреннее сопротивление.

    Идентификация керамических конденсаторов

    Значение керамической емкости на керамическом конденсаторе не указывается напрямую.0 равно 0.

    Номинальное напряжение конденсатора можно найти, используя строку под этим кодом. Если линия есть, то значение напряжения составляет 50/100 В, если линии нет, то это 500 В.

    Наиболее часто используемые значения конденсаторов вместе с их преобразованием в Пико Фарад, Нано Фарад и микрофарады приведены ниже.

    Код

    Пикофарад (пФ)

    нанофарад (нФ)

    Микрофарад (мкФ)

    100

    10

    0.01

    0,00001

    150

    15

    0,015

    0,000015

    220

    22

    0,022

    0,000022

    330

    33

    0.033

    0,000033

    470

    47

    0,047

    0,000047

    331

    330

    0,33

    0,00033

    821

    820

    0.82

    0,00082

    102

    1000

    1,0

    0,001

    152

    1500

    1,5

    0,0015

    202

    2000

    2.0

    0,002

    502

    5000

    5,0

    0,005

    103

    10000

    10

    0,01

    683

    68000

    68

    0.068

    104

    100000

    100

    0,1

    154

    150000

    150

    0,15

    334

    330000

    330

    0.33

    684

    680000

    680

    0,68

    105

    1000000

    1000

    1,0

    335

    3300000

    3300

    3.3

    Пленочные конденсаторы

    Как следует из названия, диэлектрик в этих конденсаторах представляет собой пластиковую пленку, часто знакомую пластику, такую ​​как майлар и полиэстер. Они имеют те же свойства, что и керамические колпачки, имеют высокое напряжение пробоя (из-за поведения пластиковых полимеров) и низкую емкость. Единственная разница в том, что они, как правило, немного больше, хотя внешне выглядят как керамические колпачки. Внутреннее сопротивление сопоставимо с керамическими колпачками.

    Танталовые и ниобиевые конденсаторы

    Эти колпачки технически подпадают под категорию электролитических конденсаторов. Здесь электролит представляет собой твердый материал из оксидов тантала или ниобия. У них очень низкое внутреннее сопротивление для данной емкости, однако они менее устойчивы к перенапряжению по сравнению с другими типами (керамика лучше) и, как правило, капут без особого предупреждения и с большим количеством неприятного черного дыма.

    Конденсаторы специального назначения

    Сюда входят серебристо-слюдяные колпачки, колпачки с рейтингом X и Y и т. Д.Конденсаторы с номиналами X и Y, например, созданы для фильтрации линии — более прочная конструкция и более высокие номиналы напряжения, а также низкие емкости, чтобы уменьшить ток, проходящий через них, если применяется переменное напряжение, и ограничить энергию, хранящуюся в конденсаторе, если постоянный ток. приложено напряжение.

    Суперконденсаторы и ультраконденсаторы

    Они выводят конденсаторы на совершенно новый уровень, значительно увеличивая их емкость, иногда до сотен Фарад! Это возможно благодаря какой-то умной химии.Суперконденсаторы и ультраконденсаторы ликвидируют разрыв между конденсаторами и химическими батареями. Однако они бывают с очень низким напряжением.

    И это почти все стандартные конденсаторов , которые вы обычно можете встретить в мире электроники.

    Принцип работы конденсаторов в цепях

    Первой полезной задачей было бы научиться рассчитывать запасы энергии в конденсаторе, который определяется формулой

    E = 1 / 2CV 2

    Где E — запасенная энергия в джоулях, C — емкость в фарадах, а V — напряжение в вольтах.Обратите внимание, что это уравнение принимает форму многих других уравнений Ньютона для энергии, аккуратное пасхальное яйцо!

    Предположим, у вас есть конденсатор, рассчитанный на напряжение 50 В и емкость 1000 мкФ, запасенная энергия при полных 50 В будет:

    1/2 * 0,001000F * 50 В * 50 В

    Что составляет жалкие 1,25Дж накопленной энергии.

    Это выявляет главный недостаток конденсаторов как устройств накопления энергии — накопленная энергия для данного размера очень мала, батарея того же размера будет иметь, по крайней мере, в тысячу раз больше накопленной энергии! Однако у крышек гораздо более низкое внутреннее сопротивление, чем у химических батарей, что позволяет им быстро сбрасывать всю накопленную энергию.Замыкание батареи приведет к ее нагреву только из-за мощности, рассеиваемой внутренним сопротивлением, но короткое замыкание конденсатора вызовет только несколько искр, поскольку весь заряд сбрасывается сразу без повреждения конденсатора.

    Во-вторых, есть еще одна аккуратная формула, которая связывает напряжение, ток и емкость:

    I / C = dV / dt

    Где I — ток, подаваемый на конденсатор в амперах, C — емкость в фарадах, а dV / dt — скорость изменения напряжения на выводах конденсатора.Подумайте об этом с точки зрения единицы измерения — вольт в секунду для заданного тока и емкости. Не беспокойтесь о маленькой букве «d», это просто математический способ сказать «до предельного нуля».

    Допустим, у вас есть источник питания, который выдает постоянное напряжение 5 В при постоянном токе 1 мА, а затем, изменив уравнение, мы можем найти время, необходимое для зарядки конденсатора 100 мкФ до 5 В:

    дт = CdV / I

    dt = (0,000100F * 5 В) / 0,001A

    dt = 0,5 секунды

    Значит, конденсатор будет заряжаться до 5 В в 0.5 секунд. (Помните, что конденсатор может заряжаться только до максимального напряжения, подаваемого на него, и никогда больше, они не могут волшебным образом «создать» напряжение.)

    Такое предсказуемое поведение конденсатора делает его очень полезным для генерации временных задержек, например, с помощью небольшой дополнительной схемы. Вы можете изменить уравнение, чтобы получить время.

    А теперь о хорошем — реальных конденсаторных схемах!

    Поведение конденсатора в цепях

    Начнем с простого — разные способы соединения конденсаторов.Это похоже на соединение двух резисторов — вы можете подключить их последовательно или параллельно.

    Параллельные конденсаторы

    На рисунке ниже показаны три конденсатора, подключенные параллельно, со всеми соответствующими положительными и отрицательными клеммами, соединенными вместе (при условии, что колпачки поляризованы). Общая емкость этого устройства — это просто сумма всех емкостей всех конденсаторов в цепи. Это имеет смысл, поскольку параллельное соединение пластин конденсатора увеличивает площадь поверхности, увеличивая емкость.

    Максимальное напряжение, которое может выдержать такая схема, — это напряжение наименьшего конденсатора, поскольку напряжение является общим для всех конденсаторов.

    Пример должен прояснить это. Предположим, у вас есть два конденсатора, один с номиналом 25 В 470 мкФ, а другой 35 В 1000 мкФ. Общая емкость будет 470 мкФ + 1000 мкФ = 1470 мкФ. Однако максимальное напряжение, которое вы можете подать на эту батарею (связку соединенных вместе конденсаторов, можно назвать «батареей» конденсаторов), будет всего 25 В.Если вы поместите что-то большее, чем это, на этом берегу, будут летать искры, так как вы превысите максимальное значение. напряжение конденсатора 25В.

    Конденсаторы последовательно

    Параллельное подключение конденсаторов особенно полезно, если вам нужна большая емкость, но у вас есть только небольшие значения. Параллельное соединение этих меньших значений значений в конечном итоге даст вам большее значение и выполнит свою работу, если вы помните о напряжении.

    Последовательное соединение конденсаторов несколько сложнее.Емкость рассчитывается по формуле:

    .

    1 / Cобщ. = 1 / C1 + 1 / C2 +… + 1 / Cn

    Где C1, C2… Cn — емкости каждого конденсатора, используемого в цепи.

    Напряжение, которое теперь может выдержать банк, представляет собой сумму всех номинальных напряжений.

    Если у вас есть конденсатор на 10 В 1 мкФ и конденсатор на 50 В 10 мкФ, то напряжение, которое банк может выдерживать последовательно, составит 10 В + 50 В = 60 В. Емкость составляет 0,9091 мкФ.

    Зависимость напряжения конденсатора от времени

    Что, если мы хотим зарядить конденсатор? Мы могли бы просто подключить его к источнику напряжения, как показано на рисунке ниже.Здесь может произойти следующее: в момент подключения источника напряжения, если предположить, что крышка полностью разряжена, заряды стремятся накапливаться на пластинах, что приводит к очень большому (теоретически бесконечному!) Всплеску тока, ограниченному только внутренним сопротивлением конденсатора. конденсатор. Это, конечно, нежелательно, если ваш источник питания представляет собой что-то вроде батареи. Разумной идеей было бы добавить резистор последовательно с конденсатором и источником напряжения для ограничения тока, как показано на рисунке, и вуаля! У вас есть что-то, что инженеры называют RC-цепью, «R» для резистора и «C» для конденсатора!

    Эта схема демонстрирует интересное поведение.Когда напряжение подается на сторону резистора, обозначенную «I», напряжение на конденсаторе медленно растет, поскольку ток ограничен. График выглядит примерно так:

    Более склонные к математике из моих зрителей узнают форму наклона — она ​​напоминает форму экспоненциальной функции!

    Помните, как я сказал, что заглавные буквы можно использовать для создания задержек по времени? Это один из способов сделать это без источника постоянного тока (который требует дополнительных схем).Поскольку время, необходимое для достижения определенного напряжения, предсказуемо, если мы знаем емкость, напряжение и сопротивление, мы можем создавать схемы с временной задержкой.

    Произведение сопротивления и емкости, RC, известно как постоянная времени цепи. Этот параметр становится полезным при фактическом определении времени для точного достижения заданного напряжения, как показано на графике ниже.

    Из графика видно, что конденсатор достигает 63% приложенного напряжения за одну постоянную времени и так далее.

    Это принцип, который использует всесезонный таймер 555, хотя расчетные уравнения немного отличаются.

    Еще одно интересное применение RC-цепей — фильтрация сигналов, то есть удаление из схемы электрического сигнала нежелательной частоты. RC-цепи требуется определенное время для зарядки и разрядки от источника. Если мы применим периодическую волну с периодом времени больше, чем RC, то такой же сигнал появится на выходе с очень небольшими искажениями.Однако при увеличении частоты сигнал продолжает менять полярность быстрее, чем цепь может заряжаться и разряжаться, и в конечном итоге после определенного момента сигнал исчезает, и все, что у вас остается, — это чистый постоянный ток! Это называется ослаблением сигнала. Как вы можете видеть, RC-схема действует как фильтр, который блокирует сигналы переменного тока (даже те, которые наложены на постоянный ток, т.е. имеющие смещение постоянного тока) за пределами определенной частоты. Этот вид фильтра называется фильтром нижних частот, то есть он пропускает низкие частоты, но не пропускает высокие частоты.

    Конденсаторы в цепях переменного тока Конденсаторы

    интересным образом ведут себя при подключении к цепям переменного тока. С точки зрения сигнала, их можно рассматривать как частотно-зависимые резисторы. Как видно выше, RC-схема блокирует весь переменный ток от сигнала, но что происходит, когда конденсатор соединен последовательно с источником переменного напряжения? С точностью до наоборот!

    Поскольку конденсатор представляет собой всего лишь две металлические пластины, разделенные изолятором, он не пропускает через себя постоянный ток.Однако сигнал переменного тока имеет постоянно меняющееся напряжение, поэтому одна пластина видит изменяющееся напряжение и индуцирует противоположный заряд на другой пластине, как показано на рисунке:

    В целом это позволяет току «проходить» через конденсатор на относительно высоких частотах. Добавление резистора параллельно выходу создает фильтр высоких частот, то есть фильтр, который пропускает только высокие частоты и блокирует все сигналы постоянного тока.

    «Сопротивление переменного тока» или импеданс конденсатора определяется по формуле:

    XC = 1 / (2 * π * f * C)

    Где XC — емкостное реактивное сопротивление или импеданс, f — частота, а C — емкость.Вы можете использовать эту формулу для расчета виртуального «сопротивления» конденсатора в цепи переменного тока.

    Где на природе встречаются конденсаторы

    Ладно, теории хватило. Давайте посмотрим на множество применений конденсаторов .

    Первое место, где вы могли бы ожидать увидеть конденсаторы, — это всевозможные источники питания в качестве фильтров и для развязки. Они действуют как зарядные резервуары, обеспечивая быстрый ток, когда он нужен нагрузке.

    Вот два снимка осциллографа, которые показывают эффект отсутствия конденсатора на выводах источника питания.Как видите, наличие конденсаторов значительно снижает «шум» на шинах питания, тем самым защищая хрупкие детали от внезапных скачков напряжения.

    Их также называют «развязывающими» конденсаторами , поскольку они «развязывают» участки цепи, в которой они установлены, от источника питания. Иногда провода питания на печатной плате могут быть довольно длинными и иметь высокую индуктивность и сопротивление. Это может привести к тому, что они будут обеспечивать меньший ток, чем обычно.Наличие конденсатора на конце линии питания похоже на временную «батарею» меньшего размера на устройстве, обеспечивающую всплески тока, когда это необходимо, и зарядку, когда устройство потребляет малую мощность.

    Вы можете использовать формулу I / C = dV / dt для расчета емкости, необходимой для устранения «пульсаций» напряжения с клемм источника питания.

    Предположим, у вас есть источник питания , напряжение которого изменяется от 11,5 В до 12 В (пульсации) каждые 10 мс, что является обычным для устройств с питанием от сети из-за частоты 50 Гц, и вам необходимо установить крышку на клеммы, чтобы сгладить Напряжение.Если ток нагрузки в этом случае равен 1А, то мы можем переписать формулу таким образом, чтобы узнать емкость:

    (I * dt) / dV

    Где I — ток нагрузки, dt — период шума, а dV — напряжение пульсации. Подставляя значения, мы обнаруживаем, что нам нужна емкость 20000 мкФ. Может показаться, что это много, но вам может сойти с рук гораздо меньше. Полученное значение служит только ориентировочным.

    В реальной жизни вы можете встретить несколько типов и значений конденсаторов на трассах питания, это необходимо для уменьшения содержания шума на многих частотах и ​​получения максимально плавного напряжения.

    Еще одно применение конденсаторов — в сложных фильтрах, таких как этот:

    Но более простым фильтром был бы RC-фильтр , здесь описан один интересный фильтр.

    Плата микроконтроллера Arduino известна всем. Универсальный инструмент, но вы никогда не задумывались, почему аналоговые выходы выдают цифровой сигнал ШИМ? Это потому, что они были разработаны для использования с внешней сетью фильтрации для сглаживания напряжения ШИМ до истинно аналогового напряжения.Это можно сделать с помощью таких простых деталей, как резистор 1 кОм и конденсатор 10 мкФ. Попытайся!

    Другое использование, как упомянуто выше, — это время. Простой генератор может быть построен с использованием логического элемента И-НЕ (попробуйте выяснить, почему логический элемент И не работает), резистора и конденсатора.

    Предполагая, что изначально на конденсаторе нет напряжения, входы И-НЕ (которые связаны вместе) видят на них напряжение, близкое к 0 В, и включают выход. Теперь крышка заряжается через резистор.Когда он достигает «высокого» порога затвора, выходной сигнал переключается на низкий уровень, и теперь колпачок разряжается. Этот цикл продолжает формировать выходной сигнал прямоугольной формы с частотой, зависящей от значений R и C.

    Наконец, еще одним интересным применением конденсаторов является накопление энергии. Конечно, конденсаторы не подходят для аккумуляторов, но для некоторых приложений, которые быстро нуждаются в энергии, лучше всего подходят конденсаторы.

    Устройства, такие как койлганы (больше можно найти в Интернете), нуждаются в большом импульсе тока для ускорения снаряда, поэтому для таких целей используются высоковольтные конденсаторы, часто с такими номиналами, как 450 В, 1500 мкФ, которые могут хранить значительные количества энергии.

    Заключение

    Вот и все! Теперь вы знаете о конденсаторах значительно больше, чем то, с чего начинали. Теперь вы можете проектировать простые конденсаторные цепи. Помните, что есть еще много чего узнать, и не переключайте клеммы источника питания!

    Конденсатор: определение, схема, характеристика, типы, рабочие

    В электрической электронике компонент, используемый для хранения электрической энергии в электрическом поле, известен как «конденсатор».Это пассивное устройство, которое может накапливать электрический заряд на своих пластинах при подключении к источнику напряжения. Конденсаторы состоят из двух выводов, и их действие известно как емкость. Их можно найти во всех электроприборах, что делает их применение таким широким.

    Сегодня вы познакомитесь с определением, характеристиками, схемой, типами и работой конденсатора. Вы также узнаете следующее:

    • Диэлектрик конденсатора
    • Емкость и заряд
    • Емкости стандартные
    • Конденсатор параллельно и последовательно
    • Энергия в конденсаторе и
    • Цветовой код конденсатора.

    Что такое конденсатор?

    Конденсатор — это компонент, который обладает способностью или способностью накапливать энергию в виде электрического заряда, создающего разность потенциалов (статическое напряжение) на своих пластинах. Электрический компонент очень похож на небольшую перезаряжаемую батарею. Проще говоря, конденсатор — это устройство, которое накапливает электрическую энергию в электрическом поле.

    Результат конденсатора называется емкостью, которая может существовать между любыми двумя электрическими проводниками в непосредственной близости от цепи.Устройство предназначено для добавления емкости в цепь. Конденсаторы изначально назывались конденсаторными . Сегодня доступны различные типы конденсаторов, от очень маленьких конденсаторных бусинок, используемых в резонансных цепях, до конденсаторов для коррекции коэффициента мощности большого размера. Однако все они выполняют одну и ту же задачу — накапливать заряд.

    Кроме того, конденсатор состоит из двух или более параллельных проводящих (металлических) пластин, которые не соединены или не контактируют друг с другом. Однако они электрически разделены либо воздухом, либо каким-либо хорошим изолирующим материалом, например керамикой, вощеной бумагой, слюдой, пластиком или жидким гелем в какой-либо форме.Изолирующий слой между пластинами конденсатора известен как диэлектрик .

    Характеристики конденсатора

    Характеристики конденсатора можно определить по его температуре, номинальному напряжению, диапазону емкости и его использованию в конкретном приложении. Конденсаторы бывают разных типов и имеют свой уникальный набор характеристик и систем идентификации. Хотя некоторые из них легко распознать, некоторые по-прежнему могут вводить в заблуждение буквами, цветами или символами.

    Лучший способ узнать характеристики конденсатора — это выяснить, к какому семейству принадлежит конденсатор: керамический, пленочный, пластиковый или электролитический. Большинство конденсаторов имеют одинаковое значение емкости, они могут иметь разное номинальное напряжение. Таким образом, если конденсатор с меньшим номинальным напряжением заменяется конденсатором с более высоким номинальным напряжением, повышенное напряжение может повредить меньший конденсатор.

    Конденсатор с любым другим электронным компонентом может быть разработан с учетом ряда его характеристик.Эти характеристики можно найти в технических паспортах, которые предоставляет производитель конденсаторов. Ниже приведены важные из них.

    Подробнее: Заряд конденсатора

    Номинальная емкость, (в)

    Номинальное значение емкости измеряется в пикофарадах (пФ), нанофарадах (нФ) или микрофарадах (мкФ). Он нанесен на корпус конденсатора цифрами, буквами или цветными полосами. Емкость конденсатора может изменяться в зависимости от частоты цепи (Гц) y в зависимости от температуры окружающей среды.Керамические конденсаторы меньшего размера могут иметь номинальное значение всего один пикофарад (1 пФ), в то время как более крупные электролитические конденсаторы могут иметь номинальное значение емкости до одного фарада (1 Ф).

    Рабочее напряжение, (WV)

    Рабочее напряжение — еще одна важная характеристика конденсатора. Он определяет максимальное постоянное напряжение постоянного или переменного тока, которое может без сбоев подаваться на конденсатор в течение его срока службы. Обычно рабочее напряжение печатается на корпусе конденсатора с указанием его рабочего напряжения постоянного тока (WVDC).

    Допуск, (±%)

    Как и резисторы, конденсаторы также имеют допуски, выраженные как положительное или отрицательное значение в пикофарадах (± пФ) для конденсаторов малой емкости. Как правило, оно меньше 100 пФ или в процентах (±%) для конденсаторов более высокого номинала, как правило, выше 100 пФ. Значение допуска — это степень, в которой фактическая емкость может отклоняться от номинального значения и может находиться в диапазоне от -20% до + 80%. Таким образом, конденсатор 100 мкФ с допуском ± 20% будет законно изменяться от 80 мкФ до 120 мкФ и оставаться в пределах допуска.

    Ток утечки

    Диэлектрик, содержащийся в конденсаторе для разделения проводящих пластин, не является идеальным изолятором. Это приводит к очень слабому току, протекающему или «протекающему» через диэлектрик из-за влияния мощных электрических полей, создаваемых зарядом на пластинах при приложении постоянного напряжения питания. Небольшой поток постоянного тока в области наноампер (нА) известен как конденсаторы, ток утечки. Этот ток утечки возникает из-за того, что электроны физически проходят через диэлектрическую среду, вокруг ее краев или через ее выводы и со временем полностью разряжают конденсатор.

    Температура рабочая, (Т)

    Изменения рабочей температуры вокруг конденсатора могут повлиять на значение емкости из-за изменений диэлектрических свойств. Слишком горячий или слишком холодный воздух или окружающая температура повлияют на значение емкости конденсатора, что может изменить правильную работу схемы. Нормальный рабочий диапазон для большинства конденсаторов составляет от 30 o C до +125 o C с номинальным напряжением. Рабочая температура не должна превышать +70 o C, особенно для пластиковых конденсаторов.

    Температурный коэффициент, (TC)

    Это максимальное изменение емкости конденсатора в заданном диапазоне температур. Температурный коэффициент конденсатора обычно можно выразить линейно в миллионных долях на градус Цельсия (PPM / C) или как процентное изменение в определенном диапазоне температур. Хотя некоторые конденсаторы являются нелинейными (конденсаторы класса 2), их значение увеличивается с повышением температуры, что дает им температурный коэффициент, который выражается как положительное «P».Некоторые конденсаторы уменьшают свое значение при повышении температуры, чтобы получить температурный коэффициент, который выражается как отрицательный «N».

    Поляризация

    Поляризация конденсатора обычно относится к электролитическому типу, но в основном к алюминиевому электролитическому, что касается их электрического соединения. Большинство электролитических конденсаторов являются поляризованными, то есть напряжение, подключенное к клеммам конденсатора, должно иметь правильную полярность, т. Е. Положительную полярность и отрицательную отрицательную.Неправильная поляризация может привести к разрушению оксидного слоя внутри конденсатора, что приведет к протеканию через устройство очень больших токов. Таким образом, в результате разрушения.

    Эквивалентное последовательное сопротивление, (ESR)

    Эквивалентное последовательное сопротивление конденсатора — это импеданс конденсатора по переменному току, когда он используется на высоких частотах, и включает в себя сопротивление диэлектрического материала. Кроме того, сопротивление постоянному току выводных выводов, сопротивление постоянному току соединений с диэлектриком и сопротивление пластины конденсатора измеряются при определенной частоте и температуре.

    В некотором смысле ESR противоположен сопротивлению изоляции, которое представляется как чистое сопротивление (без емкостного или индуктивного реактивного сопротивления) параллельно конденсатору. Идеальный конденсатор будет иметь только емкость, но ESR представлено как чистое сопротивление (менее 0,1 Ом), последовательно включенное с конденсатором (отсюда и название — эквивалентное последовательное сопротивление), которое зависит от частоты, что делает его ДИНАМИЧНОЙ величиной.

    Схема конденсатора:

    Типы конденсаторов

    Существуют различные типы конденсаторов, от очень маленьких с деликатной подстройкой, используемых в генераторах или радиосхемах, до конденсаторов с металлическими банками большой мощности, используемых в схемах коррекции и сглаживания высокого напряжения.Ниже приведены различные типы конденсаторов, используемых в различных приложениях.

    Конденсатор диэлектрический

    Эти типы конденсаторов обычно являются переменными, когда для настройки передатчиков, приемников и транзисторных радиоприемников требуется непрерывное изменение емкости. Конденсаторы с переменной диэлектрической проницаемостью представляют собой многопластинчатые конденсаторы с воздушным зазором, имеющие набор неподвижных пластин (лопатки статора) и набор подвижных пластин (лопатки ротора). Эти лопатки перемещаются между неподвижными пластинами.

    Положение подвижных пластин относительно неподвижных пластин определяет общее значение емкости.Емкость обычно максимальна, когда два набора пластин полностью сцеплены вместе.

    Обозначение переменного конденсатора

    Кроме бесступенчатых конденсаторов, регулируемые конденсаторы предварительно заданного типа также называют подстроечными. Как правило, это небольшие устройства, которые можно отрегулировать или «предварительно установить» на определенное значение емкости с помощью небольшой отвертки, они доступны с очень малой емкостью 500 пФ или меньше и не имеют поляризации.

    Конденсатор пленочный типа

    Пленочные конденсаторы являются наиболее распространенными типами.Они состоят из относительно большого семейства конденсаторов с различиями в диэлектрических свойствах, таких как полиэстер (майлар), полистирол, полипропилен, поликарбонат, металлизированная бумага, тефлон и т. Д. Эти типы конденсаторов доступны в диапазоне емкости от 5 пФ. до 100 мкФ в зависимости от типа конденсатора и его номинального напряжения. Они также представлены в ассортименте форм и стилей корпусов, включая обертку и заливку (овальные и круглые), эпоксидные (прямоугольные и круглые), металлические герметичные (прямоугольные и круглые).

    Пленочные конденсаторы, в которых в качестве диэлектрика используется полистирол, поликарбонат или тефлон, иногда называют «пластиковыми конденсаторами».

    Конденсаторы керамические

    Керамические конденсаторы обычно называют конденсаторами DISC. Они сделаны путем покрытия двух сторон небольшого фарфорового или керамического диска серебром и сложены вместе, образуя конденсатор. Когда требуется очень низкое значение емкости, следует использовать один керамический диск размером около 3-6 мм. Керамические конденсаторы имеют высокую диэлектрическую проницаемость (High-K) и доступны, так что относительно высокая емкость может быть получена при небольшом физическом размере.

    Эти типы конденсаторов могут демонстрировать большие нелинейные изменения емкости в зависимости от температуры и в результате используются в качестве развязывающих или обходных конденсаторов, поскольку они также являются неполяризованными устройствами.

    Конденсаторы электролитические

    Электролитические конденсаторы обычно используются, когда требуются очень большие значения емкости. Вместо очень тонкого слоя металлической пленки для одного из электродов используется полужидкий раствор электролита в виде желе или пасты.Полужидкий раствор электролита служит вторым электродом (обычно катодом).

    Диэлектрик представляет собой очень тонкий слой оксида, который выращивается электрохимическим способом при производстве, при этом толщина пленки составляет менее десяти микрон. Изолирующий слой настолько тонкий, что можно изготавливать конденсаторы с большим значением емкости при небольшом физическом размере, поскольку расстояние между пластинами d очень мало.

    Большинство электролитических конденсаторов поляризованы, то есть напряжение постоянного тока, подаваемое на клеммы конденсатора, должно иметь правильную полярность, т.е.е., положительный к положительной клемме и отрицательный к отрицательной клемме.

    Принцип работы конденсатора

    Работа конденсатора менее сложна и понятна. Физическая форма и конструкция практических конденсаторов сильно различаются, и существует множество доступных типов. Большинство конденсаторов имеют по крайней мере два электрических проводника, часто в виде металлических пластин или поверхностей, разделенных диэлектрической средой. Проводник может быть фольгой, тонкой пленкой, металлическим валиком или электролитом.Непроводящий диэлектрик увеличивает зарядную емкость конденсатора.

    Конденсаторы

    широко используются в составе электрических цепей многих распространенных электрических устройств. Идеальный конденсатор не рассеивает энергию, как резистор. Хотя в реальных условиях конденсаторы рассеивают небольшое количество, когда на клеммы конденсатора подается разность электрических потенциалов (напряжение). Например, когда конденсатор подключен к батарее, на диэлектрике возникает электрическое поле, в результате чего чистый положительный заряд собирается на одной пластине, а чистый отрицательный заряд — на другой пластине.

    Посмотрите видео ниже, чтобы узнать больше о работе конденсатора:

    Диэлектрик конденсатора

    Помимо общего размера проводящих пластин и их расстояния или разнесения друг от друга, тип диэлектрического материала, используемого в конденсаторе, является еще одним фактором, который может повлиять на общую емкость. Это также известно как диэлектрическая проницаемость (ε) диэлектрика. Электропроводящие пластины конденсатора обычно изготавливаются из металлической фольги или металлической пленки, обеспечивающей поток электронов и заряд, но в качестве диэлектрика всегда используется изолятор.В качестве диэлектрика в конденсаторе могут использоваться различные типы изоляционных материалов. Они различаются своей способностью блокировать или пропускать электрический заряд.

    Как упоминалось ранее, диэлектрический материал может быть изготовлен из нескольких изоляционных материалов или комбинации этих материалов. Чаще всего используются воздух, бумага, полиэстер, полипропилен, майлар, керамика, стекло, масло или множество других материалов.

    Процесс, при котором диэлектрический материал или изолятор увеличивает емкость конденсатора по сравнению с воздухом, известен как диэлектрическая постоянная K.Диэлектрик с высокой диэлектрической проницаемостью — лучший изолятор, чем диэлектрический материал с более низкой диэлектрической проницаемостью. Диэлектрическая проницаемость является безразмерной величиной, поскольку она относится к свободному пространству.

    Заключение

    Вот и все для этой статьи, где обсуждались определение, характеристики, схема, типы и работа конденсатора. Я надеюсь, что вы многому научитесь, если так, поделитесь с другими студентами. Спасибо за чтение, до встречи!

    Конденсатор постоянной емкости

    Конденсатор электронное устройство, хранящее электрический заряд.Когда на конденсатор подается напряжение, в нем накапливается электрическая плата. Это хранение заряда может быть фиксированным или переменным в зависимости от от типа конденсатора.

    Конденсаторы находятся в основном подразделяется на два типа:

    • Фиксированный конденсаторы
    • переменная конденсаторы

    В В этом руководстве объясняются конденсаторы постоянной емкости.

    Фиксированный конденсатор

    Фиксированный конденсатор это тип конденсатора, который обеспечивает фиксированное количество емкость (емкость означает способность хранить электрическую плата). Другими словами, конденсатор постоянной емкости — это разновидность конденсатора. конденсатор, который хранит фиксированное количество электрического заряда, который не регулируется.

    Фиксированный конденсаторы делятся на разные типы в зависимости от диэлектрической проницаемости. материал, из которого они построены.Различные типы фиксированных конденсаторы бывают:

    Конденсатор бумажный это тип конденсатора, который использует бумагу в качестве диэлектрика для хранить электрический заряд. Он состоит из бумажных листов и алюминиевые листы. Лист бумаги покрыт воском или маслом, чтобы защитить его от вредного воздействия окружающей среды. Бумажные конденсаторы являются конденсаторами фиксированного типа, что означает, что они предлагают смешанные емкость.

    бумажный конденсатор делается помещением бумажного листа между двумя алюминиевые листы. Бумажный лист, помещенный между алюминиевыми листы действуют как диэлектрик, а алюминиевые листы действуют как электроды. Бумага плохо проводит электричество. Следовательно, бумага не пропускает электрический ток между двумя электроды (алюминиевые листы).Однако бумажный лист позволяет электрический поле между двумя электродами.

    Бумага листы и алюминиевые листы скручиваются вместе в виде цилиндр и провода прикреплены к обоим концам алюминиевые листы. Затем весь цилиндр покрывается воском. для защиты от влаги. Бумажные конденсаторы используются в высоких напряжения и сильноточные приложения.Читать полная статья ……

    • Пластик конденсатор или конденсатор с пластиковой пленкой

    Пластик Конденсатор — это тип конденсатора, в котором используется пластиковая пленка. как диэлектрик для хранения электрического заряда. В пластике конденсаторы, полипропилен, полиэстер, сульфид полифенилена и полиэтилентерефталат обычно используются в качестве диэлектрики.В пластиковых конденсаторах пластиковые листы используются для конструкция из диэлектрика и алюминиевых или цинковых листов построить электроды конденсатора. Пластиковые конденсаторы широко используются в схемах, где низкие потери и высокие требуется сопротивление изоляции.

    Типы конденсаторы пластиковые

    Пластик конденсаторы делятся на два типа:

    • Пленка фольга конденсаторы
    • Металлизированный пленочные конденсаторы

    Пленка фольга конденсаторы

    Пленочный конденсатор из фольги изготавливается путем помещения пластикового листа между два алюминиевых листа.Пластиковый лист, помещенный между алюминиевые листы действуют как диэлектрик, а алюминиевые листы действует как электроды. Пластиковые листы и алюминиевые листы затем прокатываются в форме цилиндра, а проволочные выводы прикреплены к обоим концам алюминиевых листов.

    Пластик плохой проводник электричества. Следовательно, это не позволяет протекание электрического тока между электродами (алюминиевые листы).Однако пластиковый лист допускает электрическое поле между двумя электроды.

    Металлизированный пленочные конденсаторы

    В металлизированные пленочные конденсаторы, пластиковый лист непосредственно покрытый алюминием. Алюминиевое покрытие на пластике действует как электроды и пластиковый лист действуют как диэлектрик.

    главное преимущество использования пластиковых конденсаторов перед натуральными конденсаторы в том, что пластиковый лист искусственный или синтетический.Таким образом, мы можем увеличить толщину и термостойкость пластичного диэлектрика.

    различные применения пластиковых конденсаторов включают фильтры, детекторы пикового напряжения и аналого-цифровые преобразователи. Читать статью полностью ……..

    Конденсаторы керамические являются наиболее широко используемыми конденсаторами в электронной схемы. Эти конденсаторы используются при большом накоплении заряда. и требуется небольшой физический размер.

    В керамический конденсатор, керамический материал используется в качестве диэлектрика и проводящие металлы используются в качестве электродов. Керамический материал выбран в качестве диэлектрика из-за его большой способности допускать электростатическое отталкивание и притяжение.

    Керамика диэлектрик плохой проводник электричества. Следовательно, это не позволяет электрический ток между двумя электродами.Однако керамические диэлектрик допускает электрическое поле между двумя электродами. Читать статью полностью ……….

    Слюдяные конденсаторы стабильные, надежные и высокоточные конденсаторы. Эти конденсаторы доступны от низкого до высокого напряжения. Слюдяные конденсаторы используются в приложениях, где желательны точность и низкое изменение емкости во времени.Эти конденсаторы могут эффективно работать на высоких частотах.

    Виды слюды конденсаторы

    Слюда конденсаторы делятся на два типа:

    • С накоплением конденсаторы слюдяные
    • посеребренный конденсаторы слюдяные

    Наборная слюда конденсаторы

    уложенные друг на друга слюдяные конденсаторы изготовлены из тонких листов слюды, размещенных один над другим, и каждый лист слюды будет разделен тонкие металлические листы из алюминия или меди.

    Затем вся установка заключен в пластиковый корпус для защиты от влаги и механическое повреждение. Листы слюды, помещенные между металлическими листами действует как диэлектрик, а металлические листы действуют как электроды.

    Посеребренная слюда конденсатор

    В посеребренный слюдяной конденсатор, лист слюды покрыт прямым покрытием с серебром.Это можно сделать с помощью техники скрининга. Читать полностью артикул ……….

    An электролитический конденсатор — это тип конденсатора, в котором используется электролит. в качестве одного из электродов для достижения большой емкости. Электролитические конденсаторы в основном используются при высоком заряде требуется хранение в небольшом объеме.

    Электролитический конденсатор состоит из двух алюминиевых фольг (анода и катода), алюминия оксидный слой, электролитическая бумага и жидкий электролит.В жидкий электролит содержит атомы или молекулы, которые приобрели или потеряли электроны.

    В электролитический конденсатор, анод и катод часто изготавливаются используя чистую алюминиевую фольгу. Анодная алюминиевая фольга с покрытием с тонким слоем изолирующего слоя оксида алюминия. Этот изолирующий слой оксида алюминия действует как диэлектрик электролитический конденсатор.Катод и анод с оксидным покрытием разделены электролитической бумагой. Электролитическая бумага пропитанный жидким электролитом.

    катод покрыт очень тонким изолирующим оксидным слоем, который образуется естественным образом. Однако этот оксидный слой очень тонкий. по сравнению с оксидным слоем анода. Читать полная статья ………

    Суперконденсаторы могут хранить большое количество электрического заряда по сравнению с электролитические и все другие типы обычных конденсаторов.Суперконденсаторы также известны как ультраконденсаторы или электрические. конденсаторы с двойным слоем.

    Суперконденсатор состоит двух электродов, сепаратора и электролита. Электролит представляет собой смесь отрицательных и положительных ионов, растворенных в воды. Два электрода суперконденсатора разделены. разделителем.

    левый боковой электрод контактирует с левой боковой жидкостью электролит аналогично; правый боковой электрод контактирует с жидким электролитом с правой стороны.Два противоположных обвинения строятся в области, где поверхность электрода и жидкость электролит контактирует. Эти противоположные обвинения представлен в виде двух слоев электрического заряда.

    Один зарядовый слой формируется на поверхности электрода одним полярность и еще один слой заряда образуется в жидкости электролит у поверхности электрода с противоположной полярностью.Эти два зарядовых слоя разделены монослоем воды. молекулы. Молекулы растворителя или воды, которые разделяют противоположные заряды действуют как диэлектрик. Читать статью полностью …………

    Конденсаторы

    • • Определите распространенные типы конденсаторов и способы их использования.
    • • Основные символы схем для конденсаторов

    Рис. 2.1.1 Базовые обозначения схем конденсаторов

    Конденсаторы (и катушки индуктивности) обладают способностью накапливать электрическую энергию, катушки индуктивности накапливают энергию в виде магнитного поля вокруг компонента, но конденсатор хранит электрическую энергию в виде ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ, которое создается между двумя тонкими листами металла, называемыми «пластинами», которые у каждого свой электрический потенциал (или напряжение).

    На рис. 2.1.1 показаны символы схем в Великобритании и США для различных типов конденсаторов. Основной тип конденсатора с фиксированным номиналом состоит из двух пластин из металлической фольги, разделенных изолятором. Это может быть сделано из различных изоляционных материалов с хорошими ДИЭЛЕКТРИЧЕСКИМИ свойствами. Некоторые основные типы конструкции конденсатора показаны на рис. 2.1.2a.

    Рис. 2.1.2 Общие типы конденсаторов

    Конденсаторы

    имеют много применений.

    Конденсаторы

    находят множество применений в электронных схемах.Каждая цель использует одну или несколько функций, описанных в этом модуле. На рис. 2.1.2 показаны различные конденсаторы. Типичное использование:

    • Высоковольтный электролитик, используемый в источниках питания.
    • Аксиальный электролитический; меньшее напряжение меньшего размера для общего назначения, где требуются большие значения емкости.
    • Диск керамический высоковольтный; малый размер и значение емкости, отличные характеристики допуска.
    • Металлизированный полипропилен; небольшой размер для значений до 2 мкФ, хорошая надежность.
    • Субминиатюрный конденсатор с многослойным керамическим чипом (поверхностный монтаж). относительно высокая емкость для размера, достигаемая за счет нескольких слоев. Фактически несколько конденсаторов параллельно.

    Рис. 2.1.3 Конструкция — Конденсаторы постоянной величины

    Конструкция конденсатора

    Конструкция неполяризованных конденсаторов во многих типах аналогична. Различия заключаются в площади пластин и типе диэлектрического материала, используемого для данной емкости; В идеале диэлектрик, выбранный для любого конденсатора, должен соответствовать трем основным критериям.

    1. Он будет максимально тонким, потому что емкость обратно пропорциональна расстоянию между пластинами.

    2. Диэлектрическая проницаемость материала должна быть максимально высокой, поскольку диэлектрическая проницаемость напрямую влияет на эффективность диэлектрика.

    3. Диэлектрическая прочность должна быть достаточной, чтобы выдерживать требуемое номинальное напряжение конденсатора.

    Каждый из основных типов конденсаторов, показанных на рис. 2.1.3 (кроме типов миниатюрных керамических чипов), будет покрыт изолирующим слоем (часто эпоксидной смолой).

    Рис. 2.1.4 Конструкция электролитического конденсатора

    Конденсаторы электролитические

    Конструкция электролитических конденсаторов в некоторой степени похожа на конденсатор из фольги. За исключением того, что, как показано на рис. 2.1.4, слои между фольгой теперь представляют собой два очень тонких слоя бумаги, один из которых образует изолятор (3), разделяющий свернутые пары слоев, а другой — слой ткани (4). между положительной (1) и отрицательной (2) пластиной из фольги, пропитанной электролитом, который делает ткань проводящей!

    Из предыдущего абзаца может показаться, что намокшая ткань вызывает короткое замыкание между пластинами.Но настоящий диэлектрический слой создается после завершения строительства в процессе, называемом «Формование». Через конденсатор пропускается ток, и под действием электролита на положительной пластине накапливается очень тонкий слой оксида алюминия (5). Именно этот чрезвычайно тонкий слой используется в качестве изолирующего диэлектрика. Это обеспечивает конденсатор очень эффективным диэлектриком, что дает значения емкости во много сотен раз больше, чем это возможно с обычным пластиковым пленочным конденсатором аналогичного физического размера.

    Обратной стороной этого процесса является то, что конденсатор поляризован и не должен иметь напряжения обратной полярности. Если это происходит, изолирующий оксидный слой очень быстро отделяется от положительной пластины, позволяя конденсатору пропускать большой ток. Когда это происходит в запечатанном контейнере, «жидкий» электролит быстро закипает и быстро расширяется. Это может привести к сильному взрыву в считанные секунды! НИКОГДА не подключайте электролитический конденсатор неправильно! Из-за этой опасности на электролитических конденсаторах есть маркировка, показывающая полярность их соединительных проводов.Общая маркировка полярности (6) показана на рис. 2.1.4 и состоит из полосы минус (-) символов, обозначающих отрицательный вывод конденсатора.

    Также обратите внимание, что на конце конденсатора есть три канавки для обеспечения слабого места в герметичном корпусе, так что в случае взрыва верхняя часть корпуса выйдет из строя, что, как мы надеемся, сводит к минимуму повреждение окружающих компонентов.

    Все конденсаторы, независимо от их типа, также имеют максимально безопасное рабочее напряжение (Vwkg). Если напряжение, указанное на конденсаторе (7), превышено, существует высокий риск того, что изоляция диэлектрического слоя, разделяющего две пластины, выйдет из строя и вызовет короткое замыкание между пластинами, это также может вызвать быстрый и сильный перегрев, что приведет к возможный взрыв.

    Рис. 2.1.5 Переменные конденсаторы

    Конденсаторы переменные

    Переменные конденсаторы, показанные на рис. 2.1.5 используются в качестве настроечных конденсаторов в радиоприемниках AM, хотя они в значительной степени были заменены диодами «варикап» (переменной емкости), имеющими небольшую емкость, которую можно изменять, прикладывая переменное напряжение. но конденсаторы с механической регулировкой по-прежнему можно найти на принципиальных схемах и в каталогах поставщиков для замены.

    Настроечные конденсаторы, независимо от их типа, обычно имеют очень малые значения емкости, обычно от нескольких пФ до нескольких десятков пФ. Большие типы воздушных диэлектриков, подобные анимированному на рис. 2.1.5, были заменены миниатюрными типами диэлектриков из ПВХ, как показано в правом верхнем углу на рис. 2.1.5. Виды спереди и сзади показывают крошечные предустановленные или подстроечные конденсаторы, доступ к которым осуществляется через отверстия в задней части корпуса).

    Обозначения переменных конденсаторов

    Рис. 2.1.6 Обозначения переменных и предварительно установленных конденсаторов

    Обозначения для переменных конденсаторов приведены на рис. 2.1.6. Переменные конденсаторы часто доступны как компоненты GANGED. Обычно два переменных конденсатора регулируются с помощью одного управляющего винта. Символ стрелки указывает на переменный конденсатор (настраивается пользователем оборудования, а диагональ Т-образной формы указывает на предварительно установленный конденсатор, только для технической настройки. Пунктирная линия, соединяющая пару переменных конденсаторов, указывает на то, что они объединены в группу.

    Эти небольшие предустановленные конденсаторы доступны во множестве очень маленьких конструкций и работают аналогично более крупным переменным, с крошечными вращающимися пластинами и, как правило, диэлектрическими слоями из ПВХ-пленки между ними.Их емкость составляет всего несколько пикофарад, и они часто используются в сочетании с более крупными переменными конденсаторами (и даже устанавливаются внутри корпуса настроечных конденсаторов) для повышения точности.

    Basic Electronics — Типы конденсаторов

    В предыдущем уроке мы узнали о практической конструкции конденсатора и различных технических аспектах, связанных со стандартным конденсатором. Давайте теперь обсудим различные типы коммерческих конденсаторов и связанные с ними практические технические характеристики.Это очень поможет в выборе подходящего конденсатора для конкретного применения. Конденсаторы классифицируются в зависимости от используемого диэлектрического материала следующим образом:

    1) Бумага
    2) Слюда
    3) Пластиковая пленка
    4) Стекло
    5) Керамика
    6) Электролитическая
    7) Полупроводниковая
    8) Переменная

    Бумажные конденсаторы
    Бумажные конденсаторы — один из самых ранних типов конденсаторов. Их делают, помещая пропитанную минеральным маслом бумагу между двумя алюминиевыми фольгами.Вся сборка скручивается, провода прикрепляются к алюминиевой фольге, и сборка помещается в цилиндрический картонный футляр и запечатывается воском.

    Бумажные конденсаторы довольно громоздки и почти заменены пластиковыми пленочными конденсаторами. Их все еще можно найти в некоторых электрических устройствах — в большинстве потолочных вентиляторов и воздухоохладителей по-прежнему используются бумажные конденсаторы. Эти конденсаторы имеют следующие технические характеристики:

    Слюдяные и металлизированные слюдяные конденсаторы
    Слюдяные конденсаторы используют листы слюды в качестве диэлектрика и обычно конструируются как многопластинчатые конденсаторы.В одном из вариантов слюдяных конденсаторов в качестве диэлектрика используются листы слюды, покрытые серебряной краской, для большей устойчивости к влаге и ионизации. Слюдяные конденсаторы известны низким допуском (всего 1%), низкими эксплуатационными потерями (коэффициент рассеяния 0,001%), высоким коэффициентом качества и стабильностью на высоких частотах. Однако эти конденсаторы довольно громоздки, пропорционально их емкости. Слюдяные конденсаторы имеют следующие технические характеристики:

    Пластиковые пленочные конденсаторы
    Пленочные конденсаторы включают множество семейств конденсаторов, в которых в качестве диэлектрического материала используются различные пластмассы.Они почти заменили бумажные конденсаторы в аудио-, радиосхемах и схемах, работающих при низком и среднем напряжении. Некоторые из обычно используемых пластиков в пленочных конденсаторах включают поликарбонат, полиэстер (ПЭТ), полипропилен (ПП), полистирол, полисульфон, парилен, каптон-полиимид, тефлон (ПТФЭ, фторуглерод) и металлизированный полиэстер (металлизированный пластик). Эти конденсаторы бывают различной геометрии, например, овальной или круглой формы с оберткой и заполнением, прямоугольным эпоксидным корпусом, круглым эпоксидным корпусом, металлическим герметичным прямоугольным или круглым корпусом, а также с радиальными или осевыми выводами.Некоторые из популярных семейств пластиковых пленочных конденсаторов описаны ниже.

    1) Пленка из поликарбоната (ПК) — эти конденсаторы известны своим долгим сроком службы и низкими эксплуатационными потерями в широком диапазоне частот и почти заменили поликарбонатные конденсаторы. Эти конденсаторы имеют следующие технические характеристики:

    2) Полиэфирная (ПЭТ) пленка. Эти конденсаторы популярны благодаря своей невысокой стоимости и небольшому размеру. Они в основном заменили металлизированные пластмассовые и полистирольные конденсаторы в устройствах постоянного и низкочастотного переменного тока.Эти конденсаторы могут использоваться с напряжением до 60 000 В, но не рекомендуются для приложений с высокой мощностью из-за значительных рабочих потерь при высоких температурах и частотах. Эти конденсаторы имеют следующие технические характеристики:

    3) Полипропиленовая (ПП) пленка — это самые популярные конденсаторы с пластиковой пленкой, известные своим низкотемпературным коэффициентом, низкими эксплуатационными потерями, низким влагопоглощением и стабильностью при высоких температурах и высокой мощности.Однако эти конденсаторы склонны к повреждению и выходу из строя из-за переходных перенапряжений и перепадов напряжения. Они имеют следующие технические характеристики:

    4) Пленка из полистирола (PS). Эти конденсаторы известны своей узкой емкостью и высокой стабильностью и быстро заменяются конденсаторами из полиэтилентерефталата. Эти конденсаторы имеют следующие технические характеристики:

    5) Полисульфоновая пленка — полисульфоновые конденсаторы аналогичны поликарбонатным конденсаторам и известны своей термической стабильностью.Есть ограниченное количество производителей этих конденсаторов, и они не всегда доступны. Эти конденсаторы имеют следующие технические характеристики:

    6) Каптоновая полиимидная пленка — известно, что эти конденсаторы обладают самой высокой диэлектрической прочностью и могут иметь рабочую температуру до 250 ° C. Однако эти дорогостоящие конденсаторы не подходят для ВЧ приложений. Эти конденсаторы имеют следующие технические характеристики:

    7) Тефлоновая (ПТФЭ) пленка — эти громоздкие и дорогие конденсаторы известны своими низкими рабочими потерями, широким диапазоном температур и превосходной стабильностью в критических приложениях.Эти конденсаторы имеют следующие технические характеристики:

    8) Металлизированный пластик — эти конденсаторы представляют собой улучшенную разновидность конденсаторов из ПЭТ, ПП, ПЭН, ППС и тефлона. Они меньше по размеру по сравнению с их неметаллизированными пластиковыми версиями. Единственным ограничением этих конденсаторов является их низкий номинальный ток пульсации.

    9) Фольга — это пленочные версии конденсаторов из полипропилена, ПЭТ и тефлона. Они известны стабильностью импульсов и лучшими номинальными токами пульсаций.

    Существует множество других типов и вариантов пластиковых и пластиковых пленочных конденсаторов, в том числе пленочные силовые конденсаторы.Популярные пленочные силовые конденсаторы включают металлизированные бумажные конденсаторы, бумажные пленочные / фольговые (крафт-бумага) конденсаторы, металлизированные полипропиленовые (односторонние или двухсторонние металлизированные полипропиленовые) конденсаторы, полипропиленовые пленочные / фольговые конденсаторы и MKV Power (полипропилен в качестве диэлектрика между металлизированной бумагой. в качестве проводников) Конденсаторы.

    Стеклянные конденсаторы
    Эти очень дорогие конденсаторы известны своей прочностью, стабильностью, точностью и надежностью в экстремальных условиях окружающей среды.Они даже устойчивы к ядерному излучению и наиболее подходят для использования в военных целях. Эти конденсаторы имеют следующие технические характеристики:

    Керамические конденсаторы
    Керамические конденсаторы относятся к широкому спектру конденсаторов, доступных как дисковые конденсаторы, конденсаторы MLC (многослойные керамические) и конденсаторы SMD. Состав этих конденсаторов зависит от производителя. Некоторые из обычно используемых материалов в конструкции керамических конденсаторов включают титанат стронция, оксид титана, титанат бария и т. Д.Альянс электронной промышленности (EIA) разделил керамические конденсаторы на следующие три класса:

    Керамические конденсаторы класса 1 — Это лучшие керамические конденсаторы, обеспечивающие минимальные допуски, термическую стабильность, низкие рабочие потери и наиболее подходящие для высокочастотных приложений. Эти конденсаторы состоят из оксида титана с другими добавками, такими как магний, кобальт, кальций, цинк, ниобий и т. Д. Эти конденсаторы имеют свои собственные коды EIA для указания их номинальной емкости и допусков.Эти конденсаторы имеют высокую диэлектрическую проницаемость от 5 до 150. Все преимущества керамических конденсаторов класса 1 связаны с их размером. Эти конденсаторы имеют следующие технические характеристики:


    Керамические конденсаторы класса 2
    — Керамические конденсаторы класса 2 менее стабильны и точны по сравнению с конденсаторами класса 1. Однако эти конденсаторы меньше по размеру по сравнению с ними. Они также имеют свои собственные коды EIA для определения их емкости и допусков. Эти конденсаторы имеют следующие технические характеристики:


    Керамический класс 3
    — Эти конденсаторы наименее стабильны и точны среди керамических конденсаторов с другими недостатками, такими как нелинейная температурная зависимость, зависимость от напряжения и высокие рабочие потери.Они имеют короткий срок службы и не выдерживают высоких напряжений. Однако они обладают высокой диэлектрической проницаемостью (до 50 000) и компактны (имеют размеры несколько миллиметров). Другие типы конденсаторов уже заменили класс 3, и EIA больше не стандартизирует их.

    Электролитические конденсаторы
    Электролитические конденсаторы — это поляризованные конденсаторы с высокой емкостью на единицу объема. Поскольку эти конденсаторы поляризованы, их необходимо подключать в цепи с правильной полярностью.У них есть один вывод в качестве анода, который представляет собой металлическую пластину, покрытую оксидом металла; жидкий или твердый электролит служит катодом. Когда через электролитический конденсатор протекает постоянный ток, металлическая пластина начинает окисляться из-за электролита, и на нее осаждается тонкий изолирующий слой оксида металла, который служит диэлектриком. Поскольку слой оксида металла очень тонкий, он обеспечивает очень высокую емкость на единицу объема. Как правило, эти конденсаторы предназначены для увеличения площади поверхности анода.

    При подключении этих конденсаторов с обратной полярностью электролит начинает выделять газ, который расширяется в герметичном корпусе конденсатора и может привести к взрыву. Эти конденсаторы имеют значительный ток утечки, что делает их непригодными для многих приложений. Электролитические конденсаторы выпускаются трех семейств:

    1) Алюминиевый электролитический — в этих конденсаторах используется алюминиевая фольга в качестве анода и оксид алюминия в качестве диэлектрической среды. Они могут содержать этиленгликоль, диметилацетамид, гамма-бутиролактон или диметилформамид в качестве жидкого электролита или диоксид марганца или проводящий полимер в качестве твердого электролита.Эти конденсаторы имеют следующие технические характеристики:


    2) Танталовый электролитический — в этих конденсаторах используется тантал в качестве анода и оксид тантала в качестве диэлектрической среды. Они могут содержать серную кислоту, диоксид марганца или проводящий полимер в качестве электролита и обладают высокой надежностью, эффективностью и меньшими размерами по сравнению с электролитическими алюминиевыми типами. Они часто используются в военных приложениях из-за их стабильности и надежности. Эти конденсаторы имеют следующие технические характеристики:

    3) Ниобиевые электролитические конденсаторы — эти конденсаторы используют ниобий в качестве анода, пятиокись ниобия в качестве диэлектрической среды и диоксид марганца или проводящий полимер в качестве электролита.Они доступны в виде конденсаторов SMD и имеют следующие технические характеристики:


    Полупроводниковые конденсаторы
    Полупроводниковые конденсаторы — это наноразмерные конденсаторы, изготовленные на интегральных схемах путем формирования рисунка оксидного слоя, зажатого между полупроводниковыми материалами. Эти конденсаторы упакованы в виде массивов конденсаторов и в основном используются в ИС памяти и процессора. Их крошечные емкости могут выдерживать низкие и пульсирующие напряжения постоянного тока.

    Переменные конденсаторы
    Емкость переменных конденсаторов можно изменять, изменяя расстояние между проводящими пластинами или изменяя площадь взаимной поверхности между перекрывающимися пластинами.Общие типы переменных конденсаторов следующие:

    1) Регулируемый воздушный зазор (триммер воздушного зазора). Эти конденсаторы переменного тока имеют набор вращающихся пластин, называемых ротором, и фиксированный набор пластин, называемых статором. Емкость изменяется путем вращения вала управления, который изменяет расстояние или площадь поверхности между пластинами. Эти конденсаторы могут иметь емкость от нескольких пикофарад до 000 пикофарад и номинальное напряжение до тысяч вольт. Эти неполяризованные конденсаторы обычно использовались в ВЧ и аудиосхемах.Эти конденсаторы практически заменили варакторные диоды.

    2) Керамический триммер — это керамические конденсаторы класса 1, предназначенные для обеспечения переменной емкости. Они предназначены для установки емкости, которую не нужно менять слишком часто. Их емкость может варьироваться от нескольких пикофарад до 200 пикофарад. Из-за своей неполяризации они могут работать с напряжением от низкого до среднего и обычно используются вместе с конденсаторами переменной емкости.

    3) Коаксиальные — это конденсаторы линии передачи, обеспечивающие емкость между внутренней и внешней трубкой коаксиальной линии передачи.Их емкость можно изменять, сдвигая внутреннюю трубку внутрь или наружу. Эти конденсаторы используются в радиочастотных цепях и могут иметь емкость от нескольких пикофарад до 100 пикофарад.

    4) Настройка воздушного зазора — это круглые или логарифмические переменные конденсаторы, в которых ротор и статор используются в качестве проводников, а воздух — в качестве диэлектрической среды. Эти громоздкие и дорогие переменные конденсаторы используются в коммерческих электрических устройствах.

    5) Настройка вакуума — они похожи на конденсаторы настройки с воздушным зазором и используют вакуум в качестве диэлектрической среды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *