Предусилитель на транзисторе – Схема предварительного усилителя на транзисторе

Схема предварительного усилителя на транзисторе

Не менее важной частью УНЧ чем усилитель мощности является так же и предварительный усилитель в котором осуществляется не только предварительное усиление сигнала, но и его частотная коррекция с помощью регулятора тембра.

На сайте Радиочипи показана простая электрическая схема предварительного УНЧ с регулятором тембра по низким и высоким частотам и регулятором громкости. На транзисторе VT1 выполнен не столько предварительный усилитель, сколько активный регулятор тембра.

Тембр по низким частотам регулируется переменным резистором R2. Тембр по высоким частотам регулируется переменным резистором R4. Частото-зависимый мост включен между входом и выходом каскада на VT1, превращая его в регулируемый активный фильтр.

Входной сигнал поступает сразу на схему регулировки тембра без каких-то предварительных каскадов. Если выходное сопротивление источника сигнала небольшое это вполне допустимо. Но при высокоомном выходе, например, если источником сигнала должен служить старый проигрыватель виниловых дисков с пьезоэлектрическим звукоснимателем, нужно сделать

предварительный каскад для повышения входного сопротивления, например, по схеме эмиттерного повторителя, как показано на рисунке 2. В этом случае входной сигнал поступает на базу VT2, а сигнал на вход активного регулятора тембра снимается с его эмиттера. Режим работы каскада устанавливается подбором сопротивления резистора R10.

Режим работы по постоянному току каскада на транзисторе VT1 задает делитель напряжения R5-R6. Переменный резистор R9 служит для регулировки громкости. С него сигнал подается на усилитель мощности звуковой частоты. Все конденсаторы должны быть на напряжение не ниже напряжения питания.

Автор

www.radiochipi.ru

Предварительный усилитель на полевом транзисторе


Данное устройство позволяет подключить динамический микрофон, электрогитару и прочие источники сигнала с высоким выходным сопротивлением к звуковой карте компьютера. Устройство не вносит частотных искажений в звуковом диапазоне частот, а также искажений, связанных с нелинейностью усилительного прибора, поскольку построена по схеме истокового повторителя.

Иными словами, если вас хоть немного заботит качество записываемого звука, у вас неплохая звуковая карта и дорогой микрофон, то это устройство – то, что вам необходимо.

Немного о схеме. Устройство начинает работать, если в разъем J1 вставляется моно-джэк, или, если по-научному, штекер диаметром 6,35 мм (1/4 дюйма). При этом через джек минусовой контакт батареи питания замыкается на минус питания и устройство начинает работу. Также вторым контактом этого штекера входной сигнал подается на резистор R1, обеспечивающий высокое входное сопротивление устройства. Конденсатор C2 производит частотную корректировку, обрезая частоты выше звукового диапазона. Резисторы R2-R4 обеспечивают необходимое смещение на затворе полевого транзистора.


В данной конструкции применен полевой транзистор КП303 с индексом Е. При использовании транзистора с другим индексом возможно придется уменьшить номиналы резисторов R3 и R4. Резистор R5 является нагрузкой усилительного каскада, с него звуковой сигнал снимается конденсатором C5 и через резистор R7 подается на вход звуковой карты компьютера.

Диод VD1 в схеме выполняет функцию защиты от дурака от случайной переполюсовки, поскольку конструктивные особенности разъема батареи «Крона» не исключают такой возможности. Диод лучше применить германиевый, поскольку падение напряжения на нем будет меньше. Но это совершенно не критично, его можно заменить любым маломощным кремниевым диодом, например КД521, КД522, 1N4148 и т.п.

Устройство собирается на плате из однослойнофольгированного текстолита размерами 47х26мм. Трассировка платы в программе Dip Trace будет приведена ниже. Но можно обойтись и без изготовления платы, а собрать все на универсальной монтажной плате (это та, которая с кучей дырочек) такого же размера.



Корпус устройства изготавливается из однослойного текстолита для полного экранирования усилителя.

Размеры его деталей следующие:
— боковые стенки 60х50 мм – 2 штуки
— передняя стенка 50х30 мм – 1 штука
— задняя стенка 46х30 мм – 1 штука. Размер 46 миллиметров не критичен, может варьироваться от 50 мм до 35 мм. Все зависит от того, как вы хотите устанавливать батарею питания.
— нижняя и промежуточная стенки 55х30 мм

Стенки корпуса спаиваются между собой припоем. Фольга на всех стенках должна оказаться внутри корпуса. Старайтесь не перегревать текстолит, поскольку фольга может легко отслоиться.

Первым делом спаиваются между собой все стенки, кроме задней. Затем просверливаются отверстия для разъема джэка диаметром 10 мм, отверстие для проводов питания, где-то 3 мм в диаметре и такое же в задней стенке для экранированного провода с миниджэком.

Также в месте крепления задней стенки припаивается скоба из толстой медной проволоки, в которую будет вставляться низ задней стенки.

После этого нужно будет приклеить разъем для «Кроны». Кстати, его можно взять из уже отработавшей кроны, как я всегда и делаю. Клеится этот разъем термоклеем к задней стороне передней стенки. Важно чтобы ни один из контактов разъема не касался фольги корпуса.



После этого к схеме подпаиваются провода питания и третий провод, связывающий фольгу корпуса и «землю» схемы. Также припаивается экранированный выходной провод, схема устанавливается в корпус и задняя стенка запаивается вверху по бокам.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

HotFET Pre: схемотехника предусилителя на полевых транзисторах

[Read in English]

Казалось бы, ничего нового и сложного тут нет: бери полевик, включай по схеме с общим стоком, известной под названием «истоковый повторитель» и вот вам предусилитель. Увы, как-то не так всё просто получилось. Идеологию, или «почему HotFET» — можно почитать здесь.

Простейший предусилитель: истоковый повторитель

Хотя конечный дизайн и вполне аскетичен, потребовалось-таки помучить калькулятор, да помакетировать/померить всласть. Увы, весь путь в деталях пересказать уже не справлюсь. Означу лишь основные моменты.

Классический истоковый повторитель, на входе имеем разделительный конденсатор и регулятор громкости. Увы, довольно-таки проблемная схемка: смещение на выходе гарантировано, следовательно большой разделительный конденсатор просто необходим. Относительно заметные искажения. Немалое выходное сопротивление, если только не использовать мощный J-FET транзистор (где такие берут нынче?).

Вместо резистора ставим идентичный каскад в нагрузку — и получаем то, что уважаемый Нельсон Пасс выпустил в массы под названием «The First Watt B1 Buffer Preamp». При условии, что применена согласованная пара транзисторов, останется пренебрежимо малое смещение на выходе и весьма приемлимый уровень искажений. Несущественное отличие от варианта B1 здесь — двухполярный источник питания и отсутствие проходного конденсатора на выходе. Ну да это уже дело вкуса разработчика: HotFET preamp можно использовать в различных конфигурациях.

Повторитель с источником тока в нагрузке

Прикидки по рассеиваемой мощности обсуждались уже в статье по идеологии «тёплого» усилителя. Итак, добавляем МДП-транзисторы в каскодном включении. Для простоты источники смещения для каскодов пока изображены схематически.

HotFET Pre: схема-идея

Полная схема «тёплого» предварительного усилителя.

HotFET Pre (c) — схема
  • R1 — 50 KOhm
  • C1 — 3 uF
  • C2, C3 — 0.1 uF
  • C4, C5 — 220 uF 10 V
  • R2, R3 — 91 KOhm
  • R4 — 1 MOhm
  • R5…R8 — 604 Ohm
  • R9, R10 — 22 Ohm 0.1%
  • VD1…VD6 — green LEDs 1.7 V 20 mA
  • VT1, VT3 — IRF610 (matched by Vgs(th) @ 30 mA)
  • VT2, VT4 — J310 (closely matched by Idss)

Хотелось частоту среза по НЧ получить пониже. 1/(R1*C1) ~= 7 Герц — уже неплохо. Есть мнение, что имеет смысл понижать частоту среза вплоть до 0.5 Герца. Как-нибудь попробуем, но не сейчас, хорошо?

Там, где точность номиналов важна — это указано. Остальные компоненты выбирались из того, что было или что больше нравилось 🙂

По сравнению со схемой-скелетиком, в окончательном варианте добавились резисторы в истоках J-FET’ов. Это важно. Это увеличивает глубину местной, так называемой «дегенеративной» обратной связи. Да, я не оговорился — именно увеличивает, ибо она там есть всегда, хотя бы благодаря сопротивлению и индуктивности выводов. А ещё добавление этого резистора позволяет нам выбрать рабочую точку так, как мы того пожелаем. Сильно улучшается термостабильность всей конструкции. Увеличение выходного сопротивления незначительно. Зато, повторитель теперь отвязан от ёмкости нагрузки, что предотвращает паразитную генерацию в случае ну очень больших нагрузочных емкостей — кто знает, какой эзотерический межблочный кабель придётся «прокачивать» этому предусилителю…

В качестве источников опорного напряжения для подобных решений я предпочитаю добрые старые зелёные светодиоды. Три штуки в аккурат позволяют получить чуть больше пяти вольт. Можно было бы и парой синих обойтись. Но слишком уж много мне попадалось современных трёх-вольтовых светодиодов, которые вели себя нестабильно на малых токах. Чаще всего это выражалось в резком уменьшении падения напряжения, как будто что-то там пробивается. Если кто знает объяснение данному эффекту — буду очень признателен, если поделитесь информацией!

Резисторы в затворах транзисторов необходимы для исключения паразитной генерации. Если их, резисторы эти, опустить, возможно всё будет работать как должно, а можно и очень удивиться замерив токи/напряжения в схеме. Причём скорее всего, на осциллографе ничего подозрительного разглядеть не удастся — слишком высока частота, слишком паразиты те зависят от паразитных/случайных/привнесённых емкостей.

Источник питания подойдёт практически любой двухполярный, вырабатывающий напряжение от 15 до 20 Вольт и выдающий не слишком много пульсаций в нагрузку при токе в районе 30мА на канал. «Не слишком много» здесь весьма условно, так как схема сама по себе является «примерной нагрузкой» — качественным источником тока и нечувствительна к помехам по питанию.

Я не стал использовать гигантские электролитические конденсаторы в 15К микрофарад, как это нынче модно. Как следствие этой моей «скаредности», пики тока заряда накопительных конденсаторов менее «ударные», создают меньше помех как в питающую сеть, так и в сторону схемы. Резисторы последовательно с диодами также способствуют растягиванию пиков зарядного тока и, следовательно, снижению помех. Все номиналы рассчитывались под конкретный дизайн, и применять данный источник с другими или дополнительными нагрузками следует только произведя соответствующие несложные прикидки токов, падений и пульсаций напряжений.

HotFET Pre (c) — источник питания

Трансформатор самый обыкновенный, маленький, с двумя вторичными обмотками на 12 Вольт, можно со средней точкой, главное — чтобы выходной ток по паспорту был не менее 120мА. В моём «сетевом» конструктиве трансформатор, даже самый маленький, не поместился в корпус и был вынесен в отдельную коробочку с сетевым фильтром в придачу.
Диоды в выпрямителе — желательно Шоттки. Я использовал 10BQ060 от IR и результатом доволен.
Дроссель намотан на ферритовом колечке в полтора сантиметра диаметром — от фильтра компьютерного блока питания. Провод где-то 0.21mm, 3 проводка враз с одного челнока. У меня получилось 15 витков виток-к-витку.

Возможные вариации. Серьёзно подумывал о применении схемы повторителя Уайта. Скорее всего, схема Уайта позволила бы ещё больше повысить линейность повторителя, снизить выходное сопротивление и увеличить диапазон выходных токов. Но такое решение будет чувствительно к помехам по питанию и, возможно, потребует стабилизированного источника. Предлагаемое же простое решение обеспечивает очень хорошие показатели как есть, и отличное подавление помех от источника питания (PSRR).

Измерения — HotFET Pre в вопросах и ответах.

Как оно звучит — я не мастер перечислять специальные хвалебные слова из глянцевых журналов. Хорошо звучит, очень хорошо. Инструменты все расселись по своим местам; на знакомых дисках, даже отслушанных уже не раз в наушниках, вдруг проявляются ранее незамеченные детали…

Вместо заключения: правильный повторитель необходим в тракте. Никакой пассивный «предусилитель» не обеспечит должного согласования с нагрузкой. Даже если нагрузка исключительно высокоомная вроде лампового усилителя, всё равно остаются ещё соеденительные кабели. И если мы хотим слушать музыку, а не «отслушивать» искажения на соединителях от производителя XYZ — источник сигнала должен иметь весьма низкий импеданс, чтобы справиться со всем этим.

Где купить? Если заинтересовало — напишите мне, пожалуйста, оставьте комментарий. Есть мысль подготовить к продаже набор для самостоятельной сборки.

Добавлено 2012.02.13 — Скоро!
HotFET Pre+  элитная версия данной схемотехники с использованием МДП транзисторов, работающих в режиме обеднения.

  • Вдвое меньшее количество компонентов.
  • Такие же бескомпромиссные характеристики, или даже чуточку лучше.
  • Наилучший твердотельный аудио предусилитель-буфер, который только можно купить или собрать за деньги! (Покуда не доказано обратное) 😉

— Следите за обновлениями 😉

моё, выстраданое. без согласия автора перепечатывать любыми способами — нельзя. ссылаться — можно 🙂
=== (с) MyElectrons.com === 

Вам было интересно? Напишите мне!

Друзья мои, собратья по интересам! Пишу и буду развивать этот блог — идей море и опыта уже накоплено предостаточно — есть чем поделиться. Времени как всегда мало. Что было бы интересно лично Вам?

Спрашивайте, предлагайте: в комментариях, или в личку. Спасибо!

Всего Вам доброго!
— Сергей Патрушин.

myelectrons.ru

Гринев В.А. Несколько схем для аудиотехники. Начинающему радиолюбителю

Фильтр НЧ для сабвуфера

Низкочастотная акустическая система обычно громоздка и дорога, а принимая во внимание то, что слух человека не может распознать стерео на низких частотах, понятно что и нет никакого смысла в двух низкочастотных АС — по одной для каждого стереоканала. Особенно если помещение где будет работать стереосистема не очень большого размера.

В таком случае, нужно просуммировать сигналы стереоканалов, а потом из полученного сигнала выделить низкочастотный. На рисунке 1 показана схема активного фильтра, выполненного на двух операционных усилителях микросхемы TL062.


Сигналы стереоканалов поступают на разъем Х1. Резисторы R1 и R2 совместно с инверсным входом ОУ А1.1 создают микшер, формирующий из стереосигнала общий моносигнал, ОУ А1.1 обеспечивает необходимое усиление (или ослабление) входного сигнала. Уровень сигнала регулируется переменным резистором R3, входящим в состав цепи ООС А1.1. С выхода А1.1 сигнал поступает на ФНЧ на А1.2. Частоту можно регулировать сдвоенным переменным резистором, состоящим из R7 и R8.

Сигнал НЧ на низкочастотный УНЧ или активную низкочастотную АС поступает через разъем Х2.
Питание — двуполярное, поступает через разъем Х3, возможно от ±5V до ±15V, Схему можно собрать на любых двух операционных усилителях общего назначения.

Микшер для работы с тремя микрофонами.
Если нужно сигналы от трех отдельных источников, например, от микрофонов подать на один вход записывающего или воспроизводящего аудиоустройства, нужен микшер, с помощью которого можно объединить аудиосигналы от трех источников в один, и отрегулировать их соотношение по уровням так, как это требуется.


На рисунке 2 показан микшер, сделанный на микросхеме типа LM348, в которой есть четыре операционных усилителя.
Сигналы от микрофонов подаются, соответственно, на разъемы Х1, Х2 и Х3. Далее, на микрофонные предварительные усилители на операционных усилителях А1.1, А 1.2 и А1.3. Коэффициент усиления каждого ОУ зависит от параметров его цепи ООС. Это позволяет в широких пределах регулировать коэффициент усиления изменением сопротивлений резисторов R4, R10 и R17, соответственно. Поэтому, если в качестве одного или нескольких из источников сигнала будет использоваться не микрофон, а устройство с более высоким уровнем выходного напряжения ЗЧ, можно будет коэффициент усиления соответствующего ОУ установить подбором сопротивления соответствующего резистора. Причем, диапазон установки коэффициента усиления очень большой, — от сотен и тысяч до единицы.

Усиленные сигналы от трех источников поступают на переменные резисторы R5, R11, R19, с помощью которых можно оперативно регулировать соотношение сигналов в общем сигнале, вплоть до полного подавления сигнала от одного или нескольких источников.
Собственно микшер выполнен на ОУ А1.4. Сигналы на его инверсный вход поступают от переменных резисторов через резисторы R6, R12, R19.
Сигнал НЧ на внешнее записывающее или усилительное устройство поступает через разъем Х5.
Питание — двуполярное, поступает через разъем Х4, возможно от +5V до +15V.

Схему можно собрать на любых четырех операционных усилителях общего назначения.

Предварительный усилитель с темброблоком.
Многие радиолюбители сроят УМЗЧ на основе микросхем-интегральных УМЗЧ, обычно предназначенных для автомобильной аудиотехники. Главное достоинство их в том, что вполне качественный УМЗЧ получается в кратчайший срок и с минимальными трудовыми затратами. Недостаток только в том, что УНЧ получается не полный, без предусилителя с регулировками громкости и тембра.

На рисунке 3 приведена схема простого предусилителя с регулятором громкости и тембра, построенного на самой распространенной элементной базе — транзисторах типа КТ3102Е, У усилителя достаточно большое входное сопротивление, чтобы он мог работать практически с любым источником сигнала, от звуковой карты ПК и цифрового плеера, до архаичного проигрывателя виниловых дисков с пьезоэлектрической головкой звукоснимателя.

Каскад на транзисторе VT1 построен по схеме эмиттерного повторителя и служит, в основном, для повышения входного сопротивления, и снижения влияния параметров выхода источника сигнала на регулировку тембра.

Регулятор громкости — переменный резистор R3, одновременно является и нагрузкой эмиттерного повторителя на транзисторе VT1.
Далее — пассивный мостовой регулятор тембра по низким и высоким частотам, выполненный на переменных резисторах
R6 (низкие частоты) и R10 (высокие частоты). Диапазон регулировки 12dB.

Каскад на транзисторе VT2 служит для компенсации потерь уровня сигнала в пассивном регуляторе тембра. Коэффициент усиления каскада на VT2 во многом зависит от величины ООС, конкретно сопротивления резистора R13 (чем меньше, тем больше коэффициент усиления). Режим по постоянному току выставляется резистором R11 для каскада на VT2 и R1 для каскада на VT1.

Стереофонический вариант должен состоять из двух таких усилителей. Резисторы R6 и R10 должны быть сдвоенными, что бы регулировать тембр одновременно в обоих каналах. Регуляторы громкости можно сделать раздельными для каждого канала.

Напряжение питания 12V, однополярное, соответствует номинальному напряжению питания большинства микросхем -интегральным УМЗЧ, рассчитанных на работу в автомобильной технике.

Радиоадаптер
Вся стационарная аудиоаппаратура обязательно имеет разъемы линейного выхода и линейного входа. На линейный вход можно подать сигнал от внешнего источника, что бы использовать основной аппарат как усилитель с акустическими системами или для записи, В большинстве же портативной аппаратуры линейного входа просто нет. Единственными «средствами связи с внешним миром» являются микрофон и встроенный радиоприемник. Один мой знакомый пытался переписать сигнал с МП-3-флэш плеера на магнитную кассету одевая наушники на микрофонную «дырочку» старой портативной CD-магнитолы. Получилось ужасно. Хотя, можно было и воспользоваться встроенным FM-приемником, но для этого необходим хотя бы простейший адаптер.

Для качественной передачи стереосигнала можно использовать покупной FM-модулятор, предназначенной для беспроводного подключения к автомагнитоле внешнего источника аудиосигнала. В нем есть стереомодулятор, хороший передатчик с синтезатором частоты и, часто, встроенный МП-3 плеер с внешней флешкой или картой памяти. Ну а в простейшем случае можно сделать примитивный однотранзисторный маломощный передатчик, сигнал которого приемник сможет принять при близком к его антенне расположении передатчика.
Схема адаптера показана на рисунке 4.


Схема представляет собой каскад генератора ВЧ на транзисторе VT1, работающего по ВЧ по схеме с общей базой, в базовую цепь которого подается модулирующий НЧ-сигнал.

Сигнал звуковой частоты от внешнего источника поступает на базу VT1 через конденсатор С4 и два резистора R1 и R2, служащими микшером стереоканалов. Так как схема очень простая и в ней нет никаких узлов, формирующих комплексный стереосигнал, на вход приемника поступит сигнал в монофоническом виде.

НЧ напряжение, поступая на базу транзистора VT1, изменяет не только его рабочую точку, но и емкость перехода. В результате получается смешанная амплитудно-частотная модуляция. Амплитудная модуляция эффективно подавляется в приемном тракте радиоприемника, а частотная детектируется его частотным детектором.

Частота ВЧ, на которой происходит трансляция, устанавливается контуром L1-C2. Фактически, антенны нет, — адаптер располагается в непосредственной близости от антенны приемника, и сигнал на неё поступает непосредственно с контурной катушки.
Контурная катушка L1 — бескаркасная, её внутренний диаметр 10-12 мм, намотана проводом ПЭВ 1,06, всего 10 витков. Настраивать контур можно как подстроечным конденсатором, так и сжатием -растягиванием витков катушки.
Питание — два элемента по 1.5V (3V).

Индикатор уровня.
Для правильного установления стереобаланса и недопущения перегрузки УНЧ и акустических систем желательно чтобы в составе УНЧ был индикатор уровня сигнала, поступающего на вход УНЧ.

С практической точки зрения, для самостоятельного изготовления, лучше всего индикатор на основе светодиодной шкалы, он и механически значительно прочнее стрелочного и проще и дешевле шкального мнемометрического.

На рисунке 5 показана схема индикатора на оба стереоканала. Он выполнен на основе микросхемы ТА7666Р.
Внутри ИМС ТА7666Р два усилителя с детекторами на выходах и по две линейки компараторов, по пять компараторов для каждого канала.


Коэффициент усиления каждого из усилителей можно устанавливать индивидуально подбором сопротивления резисторов R1 и R2. При указанной на схеме величине первая ступень светодиодов (НL1 и HL6) загорается при уровнях на входах 48 mV, вторая ступень (HL2, HL7) при 86 mV, третья ступень (HL3, HL8) при 152 mV, четвертая ступень (HL4, HL9) при 215 mV, пятая (HL5, HL10) при 304 mV. Способ отображения индикации -«Ьаг», то есть «столбик термометра», иначе говоря, чем больше сигнал, тем длиннее линейка из светящихся светодиодов.
Изменить чувствительность всегда можно подбором сопротивпений резисторов R1 и R2.

На основе этой микросхемы можно сделать своеобразное свето-динамическое устройство, например, составленное из концентрических кругов ламп накаливания или светодиодных лам, например применяемых в автомобильной оптике. В этом случае потребуется дополнительные мощные выходные каскады.

На рисунке 6 показана схема выходного каскада для работы на автомобильные светодиодные лампы. Используется оптопара с фототранзистором U1, её светодиод подключается вместо индикаторного светодиода.
HF1 — это автомобильная светодиодная лампа. Она мощная и для её коммутации используется мощный ключевой полевой транзистор VT1.

Гринев В.А.
Журнал Радиоконструктор 06-2015