что это такое, принцип работы, схемы включения
Усилители на полевых транзисторах
Усилители на полевых транзисторах обладают существенно больших входным сопротивлением по сравнению с усилителями на полярных транзисторах. Наиболее часто используют схемы, показанные на рисунках:
Схемы (а) и (б) – с общим истоком, (в) и (г) – с общим стоком
Ток во входной цепи составляет величину 10-9…10-12А для схем (а) и (в). Для схем (б) и (г) этот ток в 103 раз меньше. Назначение С1, С2 и Си такое же, как С1, С2, Сэ в усилителях на биполярных транзисторах. Величина Rз назначается большой величины до нескольких МОм, оно определяет входное сопротивление усилителя.
Усилители с общим истоком имеют коэффициент усиления по напряжению порядка нескольких единиц. Имеют наибольшее распространение.
Усилители с общим стоком (стоковые повторители) имеют коэффициент усиления по напряжению меньше единицы, высокое входное сопротивление, низкое выходное сопротивление.
Основные характеристики
ОУ, как и другие радиодетали, имеют ТХ, которые можно разделить на типы:
- Усилительные.
- Входные.
- Выходные.
- Энергетические.
- Дрейфовые.
- Частотные.
- Быстродействие.
Коэффициент усиления является основной характеристикой ОУ. Он характеризуется отношением выходного сигнала ко входному. Его еще называют амплитудной, или передаточной ТХ, которая представлена в виде графиков зависимости. К входным относятся все величины для входа ОУ: Rвх, токи смещения (Iсм) и сдвига (Iвх), дрейф и максимальное входное дифференциальное U (Uдифмакс). Iсм служит для работы ОУ на входах. Iвх нужен для функционирования входного каскада ОУ. Iвх сдвига — разность Iсм для 2 входных полупроводников ОУ.
Во время построения схем нужно учитывать эти I при подключении резисторов. Если Iвх не учитывать, то это может привести к созданию дифференциального U, которое приведет к некорректной работе ОУ. Uдифмакс — U, которое подается между входами ОУ. Его величина характеризует исключение повреждения полупроводников каскада дифференциального исполнения.
Для надежной защиты между входами ОУ подключаются встречно-параллельно 2 диода и стабилитрона. Дифференциальное входное R характеризуется R между двумя входами, а синфазное входное R — величина между 2 входами ОУ, которые объединены, и массой (земля). К выходным параметрам ОУ относятся выходное R (Rвых), максимальное выходное U и I. Параметр Rвых должен быть меньшим по значению для обеспечения лучших характеристик усиления.
Для достижения маленького Rвых нужно применять эмиттерный повторитель. Iвых изменяется при помощи коллекторного I. Энергетические ТХ оцениваются максимальной мощностью, которую потребляет ОУ. Причина некорректной работы ОУ — разброс ТХ полупроводников дифференциального усилительного каскада, зависящего от температурных показателей (температурный дрейф). Частотные параметры ОУ являются основными. Они способствуют усилению гармонических и импульсных сигналов (быстродействие).
В ИМС ОУ общего и специального вида включается конденсатор, предотвращающий генерацию высокочастотных сигналов. На частотах с низким значением схемы обладают большим коэффициентом Kу без обратной связи (ОС). При ОС используется неинвертирующее включение. Кроме того, в некоторых случаях, например при изготовлении инвертирующего усилителя, ОС не используется. Кроме того, у ОУ есть динамические характеристики:
- Скорость нарастания Uвых (СН Uвых).
- Время установления Uвых (реакция ОУ при скачке U).
Виды и обозначения на схеме
С развитием электросхемотехники операционные усилители постоянно совершенствуются и появляются новые модели.
Классификация по сферам применения:
- Индустриальные — дешевый вариант.
- Презиционные (точная измерительная аппаратура).
- Электрометрические (малое значение Iвх).
- Микромощные (потребление малого I питания).
- Программируемые (токи задаются при помощи I внешнего).
- Мощные или сильноточные (отдача большего значения I потребителю).
- Низковольтные (работают при U<3 В).
- Высоковольтные (рассчитаны на высокие значения U).
- Быстродействующие (высокая скорость нарастания и частота усиления).
- С низким уровнем шума.
- Звуковой тип (низкий коэффициент гармоник).
- Для двухполярного и однополярного типа электрического питания.
- Разностные (способны измерять низкие U при высоких помехах). Применяются в шунтах.
- Усилительные каскады готового типа.
- Специализированные.
По входным сигналам ОУ делятся на 2 типа:
- С 2 входами.
- С 3 входами. 3 вход применяется для расширения функциональных возможностей. Обладает внутренней ООС.
Схема операционного усилителя достаточно сложная, и не имеет смысла его изготавливать, а радиолюбителю нужно только знать правильную схему включения операционного усилителя, но для этого следует понимать расшифровку его выводов.
Основные обозначения выводов ИМС:
- V+ — неинвертирующий вход.
- V- — инвертирующий вход.
- Vout — выход.Vs+ (Vdd, Vcc, Vcc+) — плюсовая клемма ИП.
- Vs- (Vss, Vee, Vcc-) — минус ИП.
Практически в любом ОУ присутствуют 5 выводов. Однако в некоторых разновидностях может отсутствовать V-. Существуют модели, которые обладают дополнительными выводами, которые расширяют возможности ОУ.
Выводы для питания необязательно обозначать, т.к. это увеличивает читабельность схемы. Вывод питания от положительной клеммы или полюса ИП располагают вверху схемы.
Как работает неинвертирующий усилитель на ОУ на примере
Это также можно легко проверить с помощью программы Proteus. Схема будет выглядеть вот так:
Давайте рассчитаем коэффициент усиления KU. KU = 1+R2/R1=1+90к/10к=10. Значит, наш усилитель должен ровно в 10 раз увеличивать входной сигнал. Давайте проверим, так ли это. Подаем на неинвертирующий вход синусоиду с частотой в 1кГц и смотрим, что имеем на выходе. Для этого нам потребуется виртуальный осциллограф:
Входной сигнал — это желтая осциллограмма, а выходной сигнал — это розовая осциллограмма:
Как вы видите, входной сигнал усилился ровно в 10 раз. Фаза выходного сигнала осталась такой же. Поэтому такой усилитель называют НЕинвертирующим.
Но, как говорится, есть одно «НО». На самом же деле в реальном ОУ имеются конструктивные недостатки. Так как Proteus старается эмулировать компоненты, приближенные к реальным, давайте рассмотрим амплитудно-частотную характеристику (АЧХ), а также фазо-частотную характеристику (ФЧХ) нашего операционника LM358.
Как это работает? — Однополярное питание ОУ и отрицательное напряжение
Обратились недавно ко мне с вопросом. Есть схема с операционным усилителем. ОУ питается однополярным положительным напряжением. Но в схеме присутствует отрицательное напряжение, которое через резисторы подается на на вход ОУ. Вопрос: как и почему оно работает? Разве для работы с отрицательными напряжениями не надо ли питать операционник от двуполярного источника напряжения?
Давайте разбираться вместе.
Вот те самые схемы:
Рис. 1. Схема №1
Рис. 2. Схема №2
Судя по всему, схемы с РадиоКота, но сами статьи не нашел.
Первая — источник высокого отрицательного напряжения для питания ФЭУ, вторая — предварительный усилитель того самого ФЭУ.
Рассмотрим первую. Интересующий нас участок выглядит так:
Рис. 3. Упрощенная обвязка ОУ из рис. 1
Здесь ОУ работает как инвертирующий усилитель с коэффициентом усиления меньше единицы. На вход -HV подается высокое отрицательное напряжение. На выходе OUT получаем положительный потенциал, по величине пропорциональный входному напряжению.
Работает схема следующим образом. На вход -HV подается высокое отрицательное напряжение. Через резистор R2 оно поступает на отрицательный вход ОУ. Так как положительный вход операционника подключен к земле, ОУ через резистор обратной связи R1 будет компенсировать отрицательное напряжение положительным, тем самым сохранять на отрицательном входе нулевой потенциал. То есть, как только на отрицательном входе напряжение провалится ниже нуля, ОУ его снова вернет в ноль через резистор R1. Таким образом, на обоих входах операционного усилителя напряжение всегда будет находиться в окрестности нуля вольт.
Вопрос только вызывает то, что для срабатывания обратной связи операционник должен зафиксировать небольшой провал в отрицательную область, а как он это сделает, если он питается только положительным напряжением?
На это можно ответить коротко: Да ни как! Схема в данном виде является нерабочей, уж не знаю как оно заработало у автора, но у человека, который ее собирал, ни чего не получилось. Выйти из положения можно внеся небольшое изменение в конструкцию:
Рис. 4. Модернизированная схема №1
Положительный вход ОУ с помощью делителя R3-R4 мы немного «приподнимаем» над потенциалом земли. В этом случае операционник следит за провалом напряжения на отрицательным входе уже не ниже уровня земли, а ниже небольшого смещения, которое всегда больше нуля. В таком виде схема уже является жизнеспособной.
Данный прием как раз и реализован во второй схеме (рис. 2). Вот ее часть:
Рис. 5. Зарядочувствительный усилитель ФЭУ
Это так называемый зарядочувствительный усилитель, или инверсный интегратор тока. Вход Anode подключается к аноду ФЭУ, который является источником отрицательного тока (не напряжения!!!). При регистрации кванта света, на выходе OUT получаем импульс напряжения положительной полярности.
Вот и все. Как видите, даже если схема работает с отрицательными напряжениями, в некоторых случаях совсем не обязательно операционные усилители в ней питать двуполярным напряжением.
Основные характеристики
ОУ, как и другие радиодетали, имеют ТХ, которые можно разделить на типы:
- Усилительные.
- Входные.
- Выходные.
- Энергетические.
- Дрейфовые.
- Частотные.
- Быстродействие.
Коэффициент усиления является основной характеристикой ОУ. Он характеризуется отношением выходного сигнала ко входному. Его еще называют амплитудной, или передаточной ТХ, которая представлена в виде графиков зависимости. К входным относятся все величины для входа ОУ: Rвх, токи смещения (Iсм) и сдвига (Iвх), дрейф и максимальное входное дифференциальное U (Uдифмакс). Iсм служит для работы ОУ на входах. Iвх нужен для функционирования входного каскада ОУ. Iвх сдвига — разность Iсм для 2 входных полупроводников ОУ.
Во время построения схем нужно учитывать эти I при подключении резисторов. Если Iвх не учитывать, то это может привести к созданию дифференциального U, которое приведет к некорректной работе ОУ. Uдифмакс — U, которое подается между входами ОУ. Его величина характеризует исключение повреждения полупроводников каскада дифференциального исполнения.
Для надежной защиты между входами ОУ подключаются встречно-параллельно 2 диода и стабилитрона. Дифференциальное входное R характеризуется R между двумя входами, а синфазное входное R — величина между 2 входами ОУ, которые объединены, и массой (земля). К выходным параметрам ОУ относятся выходное R (Rвых), максимальное выходное U и I. Параметр Rвых должен быть меньшим по значению для обеспечения лучших характеристик усиления.
Для достижения маленького Rвых нужно применять эмиттерный повторитель. Iвых изменяется при помощи коллекторного I. Энергетические ТХ оцениваются максимальной мощностью, которую потребляет ОУ. Причина некорректной работы ОУ — разброс ТХ полупроводников дифференциального усилительного каскада, зависящего от температурных показателей (температурный дрейф). Частотные параметры ОУ являются основными. Они способствуют усилению гармонических и импульсных сигналов (быстродействие).
В ИМС ОУ общего и специального вида включается конденсатор, предотвращающий генерацию высокочастотных сигналов. На частотах с низким значением схемы обладают большим коэффициентом Kу без обратной связи (ОС). При ОС используется неинвертирующее включение. Кроме того, в некоторых случаях, например при изготовлении инвертирующего усилителя, ОС не используется. Кроме того, у ОУ есть динамические характеристики:
- Скорость нарастания Uвых (СН Uвых).
- Время установления Uвых (реакция ОУ при скачке U).
Коэффициент усиления
Рассматривают коэффициент усиления по напряжению, ku = Uвых/Uвх, коэффициент усиления по току ki = Iвых/Iвх, коэффициент усиления по мощности кр = Рвых/Рвх = Кu·Кi. Здесь U и I – действующие значения синусоидального напряжения и тока. Коэффициент усиления по мощности кр > 1. В зависимости от усиливаемого параметра, усилители подразделяются на усилители напряжения, тока, мощности. В ряде случаев усилитель делают многокаскадным, что позволяет увеличить коэффициент усиления. Структурная схема многокаскадного усилителя показана на рисунке:
При выполнении условий Uвых1= Uвх2, Uвых2= Uвх3, …, Uвыхn-1= Uвхn коэффициент усиления равен произведению коэффициентов усиления этих каскадов: Ku = Uвыхn/Uвх1= K1K2…Kn.
Что такое операционный усилитель ?
Операционные усилители представляют собой микросхемы которые могут выглядеть по-разному.
Например на этой картинке изображены два операционных усилителя российского производства. Слева операционный усилитель К544УД2АР в пластмассовом DIP корпусе а справа изображен операционник в металлическом корпусе.
По началу, до знакомства с операционниками, микросхемы в таких металлических корпусах я постоянно путал с транзисторами. Думал что это такие хитромудрые многоэмиттерные транзисторы
Условное графическое обозначение (УГО)
Условное обозначение операционного усилителя выглядит следующим образом.
Итак операционный усилитель (ОУ) имеет два входа и один выход. Также имеются выводы для подключения питания но на условных графических обозначениях их обычно не указывают.
Для такого усилителя есть два правила которые помогут понять принцип работы:
- Выход операционника стремится к тому, чтобы разность напряжений на его входах была равна нулю
- Входы операционного усилителя ток не потребляют
Вход 1 обозначается знаком «+» и называется неинвертирующим а вход 2 обозначается как «-» и является инвертирующим.
Входы операционника обладают высоким входным сопротивлением или иначе говорят высоким импедансом.
Это говорит о том, что входы операционного усилителя ток почти не потребляют (буквально какие-то наноамперы). Усилитель просто оценивает величину напряжений на входах и в зависимости от этого выдает сигнал на выходе усиливая его.
Коэффициент усиления операционного усилителя имеет просто огромное значение, может достигать миллиона, а это очень большое значение! Значит это то, что если мы ко входу приложим небольшое напряжение, хотябы 1 мВ, то на выходе получим сразу максимум, напряжение почти равное напряжению источника питания ОУ. Из-за этого свойства операционники практически никогда не используют без обратной связи (ОС). Действительно какой смысл во входном сигнале если на выходе мы всегда получим максимальное напряжение, но об этом поговорим чуть позже.
Входы ОУ работают так, что если величина на неинвертирующем входе окажется больше чем на инвертирующем, то на выходе будет максимальное положительное значение +15В. Если на инвертирующем входе величина напряжения окажется более положительной то на выходе будем наблюдать максимум отрицательной величины, где-то -15В.
Действительно операционный усилитель может выдавать значения напряжений как положительной так и отрицательной полярности. У новичка может возникнуть вопрос о том как же такое возможно? Но такое действительно возможно и это связано с применением источника питания с расщепленным напряжением, так называемым двуполярным питанием. Давайте рассмотрим питание операционника чуток подробнее.
Базовые сведения об операционном усилителе ОУ
Фундаментально, операционный усилитель представляет собой преобразователь напряжения с высоким коэффициентом умножения, разработанный для применения в системах с обратной связью. Существует много различных архитектур, как построить усилитель на базе транзисторов, однако в большинстве случаев схемотехники рассматривают его как некий черный ящик или треугольник, в котором есть 3 основных вывода: Inp — неинвертирующий вход, Inn инвертирущий вход, Out- выход для полностью дифференциальных усилителей доступны два выхода: инвертирующий и неинвертирующий. Идеальный усилитель можно представить следующим образом:
Основные параметры ОУ:
Ku – коэффициент усиления.
Vos – напряжение смещения нуля.
Диапазон входных и выходных напряжений.
GBW – частота единичного усиления.
CMRR – коэффициент ослабления синфазного напряжения.
Noise – собственный уровень шума усилителя
Iin – входной ток.
+PSRR – устойчивость к помехе по питанию.
-PSRR – устойчивость к помехе по земле.
V-, V+ – напряжения земли и питания соответственно.
P – потребляемая мощность.
Итак, основные параметры усилителя описали, приступим к анализу схем для их измерения.
Что такое операционный усилитель
ОУ – интегральная микросхема (ИМС), основным предназначением которой является усиление значения постоянного тока. Она имеет только один выход, который называется дифференциальным. Этот выход обладает высоким коэффициентом, усиливающим сигнал (Kу). ОУ в основном применяются при построении схем с отрицательной обратной связью (ООС), которая при основной ТХ по усилению и определяет Kу исходной схемы. ОУ применяются не только в виде отдельных ИМС, но и в разных блоках сложных устройств.
У ОУ 2 входа и 1 выход, а также есть выводы для подключения источника питания (ИП). Принцип действия операционного усилителя прост. Существует 2 правила, взятых за основу. Правила описывают простые процессы работы ИМС, происходящие в ОУ, и как работает ИМС, понятно даже чайникам. На выходе разность напряжений (U) равна 0, а входы ОУ почти не потребляют ток (I). Один вход называется неинвертирующим (V+), а другой является инвертирующим (V-). Кроме того, входы ОУ обладают высоким сопротивлением (R) и практически не потребляют I.
Чип сравнивает значения U на входах и выдает сигнал, предварительно усиливая его. Kу ОУ имеет высокое значение, достигающее 1000000. Если произойдет подача низкого U на вход, то на выходе возможно получить величину, равную U источника питания (Uип). Если U на входе V+ больше, чем на V-, то на выходе получится максимальное положительное значение. При запитывании положительным U инвертирующего входа на выходе будет максимальная величина отрицательного напряжения.
Основным требованием для работы ОУ является применение двухполярного ИП. Возможно применение однополярного ИП, но при этом возможности ОУ сильно ограничиваются. Если использовать батарейку и принять за 0 ее плюсовую сторону, то при измерении значений получится 1,5 В. Если взять 2 батарейки и соединить их последовательно, то произойдет сложение U, т.е. прибор покажет 3 В.
Если принять за ноль минусовой вывод батарейки, то прибор покажет 3 В. В другом случае, если принять за 0 плюсовой вывод, то получается -3 В. При использовании в качестве нуля точки между двумя батарейками получится примитивный двухполярный ИП. Проверить исправность ОУ можно только при подключении его в схему.
Компоновка схемы: отрицательная и положительная обратная связь
Отрицательная обратная связь вызывает противодействие изменению выходной переменной. В операционном усилителе с этой целью выход усилителя соединяется с инвертирующим входом (см. рис. «Отрицательная и положительная обратная связь» ). Это соединение может быть реализовано при помощи канала обратной связи. Причина изменения выходного напряжения UА всегда заключается в изменении дифференциального входного напряжения UD следовательно, отрицательная обратная связь всегда действует таким образом, что напряжение UD уменьшается и в идеальном случае становится равным нулю.
В отличие от отрицательной обратной связи положительная обратная связь способствует изменению выходного напряжения. Таким образом, выходное напряжение UA усиливается положительной обратной связью, т.е. напряжение UD при изменении напряжения UA возрастает и, следовательно, отлично от нуля. Таким образом, выходное напряжение UA может принимать только два стационарных значения, т.е. максимальное или минимальное значение.
С точки зрения техники автоматического регулирования система регулирования с отрицательной обратной связью состоит из операционного усилителя и контура обратной связи, как показано на рис. «Отрицательная обратная связь» . С учетом большого значения коэффициента усиления АD
UA = AD·UD = AD(UE-k·UA)
и общий коэффициент усиления
A=UA /UE = AD /(1+k·AD )≈1/k
Таким образом, становится ясно, что, несмотря на очень высокий коэффициент усиления при разомкнутой цепи обратной связи АD, при помощи отрицательной обратной связи может быть получен конечный коэффициент усиления А. Это более детально поясняется на приведенных ниже примерах.
Экспоненциальный преобразователь
Схема экспоненциального преобразователь получается из логарифмического преобразователя путём перемены места диода и резистора в схеме. А работа такой схемы так же как и логарифмического преобразователя основана на логарифмической зависимости между падение напряжения на диоде и током протекающим через диод. Схема экспоненциального преобразователя показана ниже
Работа схемы описывается известными выражениями
Таким образом, выходное напряжение составит
Также как и логарифмический преобразователь, простейший экспоненциальный преобразователь с диодом на входе применяют редко, вследствие вышеописанных причин, поэтому вместо диодов на входе используют биполярные транзисторы в диодном включении или с общей базой.
Схемы включения операционных усилителей, описанные выше, не являются исчерпывающими, а лишь только призваны дать основные понятия. Более подробно схемы включения операционных усилителей я рассмотрю в следующих статьях. Всем удачи.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
АЧХ усилителя, охваченного ООС
ООС уменьшает частотные искажения, т.е. расширяет полосу пропускания Δf как в сторону низких (fH), так и в сторону высоких (fB) частот.
Рассмотрим пример, где цепь прямой передачи образует ОУ типа К140УД8, а цепь обратной связи резисторы R1 = 9 кОм, R2 = 1 кОм:
R1 и R2 — делитель напряжения, причем .
,
АЧХ ОУ К140УД8 и ОУ охваченного ООС с Β = 0,1 показаны на рисунке:
Частота среза fср ОУ без ООС равна 10 Гц.
Для определения частоты среза fср.ос усилителя, охваченного отрицательной обратной связью, в первом приближении достаточно провести горизонтальную линию на уровне || = 10 до пересечения с амплитудно-частотной характеристикой используемого операционного усилителя К140УД8. fср.ос = 5·105 Гц.
Ссылки[править | править код]
- Хоровиц П., Хилл У. Искусство схемотехники: В 3-х томах: Т. 1. Пер. с англ.— 4-е изд., перераб. и доп.— М.: Мир, 1993.—413 с., ил. ISBN 5-03-002337-2.
- Курс лекций
- Викиучебник по операционным усилителям(англ.)
- Описание некоторых стандартных применений ОУ(англ.)
- Большая коллекция схем на ОУ с однополярным питанием(англ.)
- Коллекция типовых схем с использованием ОУ фирмы National Instruments(англ.)
- Operational Amplifier Basics by Harry Lythall.(англ. ) Основы приенения ОУ.
- Op-Amp Handbook.(англ.) Большая книга по применению ОУ.
- Логарифмические и другие преобразователи на ОУ(англ.)
- Operational amplifiers(англ.) Познавательная статья об ОУ.
Литература
- Sergio Franco, “Design with Operational Amplifiers and Analog Integrated Circuits”, McGrawHill, 2001
- Thomas Frederiksen, “Intuitive Operational Amplifiers: From Electron to Op Amp”, McGraw Hill, 1988
- Jim Williams, “Analog Circuit Design”, Butterworth-Heinemann, 1991
- Bonnie Baker, “AN699 – Anti-aliasing Analog Filters for Data Acquisition Systems”, Microchip Technology Inc., DS00699, 1999
- Bonnie Baker, “AN722 – Operational Amplifier Topologies and DC Specifications”, Microchip Technology Inc., DS00722, 1999
- Bonnie Baker, “AN723 – Operational Amplifier AC Specifications and Applications”, Microchip Technology Inc., DS00723, 2000
Оригинал статьи
Перевел Андрей Евстифеев по заказу АО КОМПЭЛ
•••
Обозначение на схеме операционного усилителя
На схемах операционный усилитель обозначается вот так:
или так
Чаще всего ОУ на схемах обозначаются без выводов питания
Итак, далее по классике, слева два входа, а справа – выход.
Вход со знаком «плюс» называют НЕинвертирующий, а вход со знаком «минус» инвертирующий. Не путайте эти два знака с полярностью питания! Они НЕ говорят о том, что надо в обязательном порядке подавать на инвертирующий вход сигнал с отрицательной полярностью, а на НЕинвертирующий сигнал с положительной полярностью, и далее вы поймете почему.
» src=»https://www.youtube.com/embed/o_GLM28xh2U?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>Примечания[править | править код]
- Единственным исключением является простейший аналоговый компаратор
- Казалось бы, это бессмысленное допущение, поскольку при этом на выходе было бы бесконечное напряжение всегда, за исключением редкого случая, когда напряжения на входах V— и V+ равны. В действительности выходное напряжение даже в теоретичесокой модели всегда ограничено из-за использования отрицательной обратной связи.
- Путём изменения выходного напряжения
- Если система (ОУ с ОС) устойчива
- Это очень упрощённый подход, в действительности необходимо учитывать другие возможные состояния равновесия, а также ряд других факторов.
Обозначения[править | править код]
Обозначение операционного усилителя на схемах
На рисунке показано схематичное изображение ОУ
здесь:
- V+: неинвертирующий вход
- V−: инвертирующий вход
- Vout: выход
- VS+: плюс источника питания (также может обозначаться как VDDV_\mathrm{DD}
, VCCV_\mathrm{CC}
, или VCC+V_\mathrm{CC+}
) - VS−: минус источника питания (также может обозначаться как VSSV_\mathrm{SS}
, VEEV_\mathrm{EE}
, или VCC−V_\mathrm{CC-}
)
Указанные пять выводов присутствуют в любом ОУ, они абсолютно необходимы для его функционирования. Помимо этого, некоторые ОУ могут иметь дополнительные выводы, предназначенные для:
- установки тока покоя
- частотной коррекции
- балансировки (коррекции смещения)
и ряда других функций.
Выводы питания (VS+ и VS−) могут быть обозначены по-разному (см. выводы питания интегральных схем). Вне зависимости от обозначений смысл остается одним и тем же. Часто выводы питания не рисуют на схеме, чтобы не загромождать ее несущественными деталями, при этом способ подключения этих выводов явно не указывается или даже считается очевидным (особенно часто это происходит при изображении одного усилителя из микросхемы с четырьмя усилителями с общими выводами питания). При обозначении ОУ на схемах можно менять местами инвертирующий и неинвертирующий входы, если это удобно; выводы питания, как правило, всегда располагают единственным способом (положительный вверху).
Идеальный операционный усилитель и его свойства
Так как наш мир не является идеальным, так и идеальных операционных усилителей не существует. Однако параметры современных ОУ находятся на достаточно высоком уровне, поэтому анализ схем с идеальными ОУ даёт результаты, очень близкие к реальным усилителям.
Для понимания работы схем с операционными усилителями вводится ряд допущений, которые приводят реальные операционные усилители к идеальным усилителям. Таких допущений всего пять:
- Ток, протекающий через входы ОУ, принимается равным нулю.
- Коэффициент усиления ОУ принимается бесконечно большим, то есть выходное напряжение усилителя может достичь любых значений, однако в реальность ограничено напряжением питания.
- Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Отсюда также следует, что входное сопротивление идеального усилителя бесконечно.
- Выходное сопротивление идеального ОУ равно нулю.
- Амплитудно-частотная характеристика идеального ОУ является плоской, то есть коэффициент усиления не зависит от частоты входного сигнала.
Близость параметров реального операционного усилителя к идеальным определяет точность, с которой может работать данный ОУ, а также выяснить ценность конкретного операционного усилителя, быстро и правильно сделать выбор подходящего ОУ.
Исходя из вышеописанных допущений, появляется возможность проанализировать и вывести соотношения для основных схем включения операционного усилителя.
Корпусы операционных усилителей
Операционные усилители размещаются в контейнерах, называемых корпусами. Четыре наиболее распространенных типов корпусов это: ТО-5 (корпус транзисторного типа), DIP (плоский корпус с двухрядным расположением выводов), мини — DIP и плоский корпус с планарными выводами.
Штырьки корпуса операционного усилителя используются в качестве выводов, с их помощью операционный усилитель соединяется с остальной схемой. Операционные усилители либо непосредственно припаиваются к монтажной плате, либо вставляются в колодку, которая припаяна к плате. Если операционный усилитель вставлен в колодку, его легко можно извлечь при помощи специального пинцета, предназначенного для этих целей.
Принцип работы операционного усилителя
Давайте рассмотрим, как работает ОУ
Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).
Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы
Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению
Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.
Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. “от рельса до рельса”, а на языке электроники “от одной шины питания и до другой”.
Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:
Как вы видите, в данный момент выход “лег” на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.
Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:
На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.
Операционный усилитель
Операционный усилитель — это усилитель постоянного тока с высоким коэффициентом усиления, который может быть очень большим, вплоть до миллионов. Часто встречается коэффициент усиления в 200 000. Операционные усилители способны усиливать сигналы переменного тока, также как сигналы постоянного тока, они чаще используются в измерительном оборудовании для усиления сигналов постоянного тока.
Название «операционный» усилитель происходит от того, что выполняемые операционным усилителем функции представляют собой математические операции. Например, устройство для извлечение квадратного корня является контрольно-измерительным устройством, в котором используется операционный усилитель для определения квадратного корня сигналов для обеспечения контроля изменения величины потока жидкой или газообразной среды.
Операционные усилители не обладают бесконечными входными сопротивлениями и нулевыми выходными сопротивлениями. Хотя возможно входное сопротивление в несколько триллионов Ом, и выходные сопротивления близкие к нулю. В результате выходные сигналы от таких операционных усилителей могут очень точно регулироваться. По этой причине операционные усилители считаются точными усилителями.
Высокая степень точности, обеспечиваемая операционными усилителями, возможна благодаря применению технологии интегральных схем. Хотя в принципе возможно изготовить операционный усилитель из дискретных компонентов, соединенных вместе на монтажной плате, однако практически все операционные усилители в настоящее время выполнены в виде интегральных схем.
Кристалл интегральной схемы операционного усилителя содержит все транзисторы и другие элементы, необходимые для усиления сигнала. Стандартный кристалл выполнен из, на нем может располагаться порядка 30 транзисторов и других элементов.
При использовании операционных усилителей в различных типах схем они могут выполнять различные операции, необходимые в контрольно-измерительном оборудовании. Например, они могут суммировать сигналы, вычитать сигналы, находить среднюю величину сигнала и выполнять даже более сложные функции.
Схемы операционного усилителя
Все операционные усилители имеют два входа. Минус на схеме обозначает один вход, плюс — другой. Условное обозначение операционного усилителя можно узнать на схеме по знакам плюс и минус на вертикальной стороне треугольника. Это отличительные черты условного обозначения операционного усилителя. Если вы встретите на схеме подобный символ, но без знаков плюс и минус, то элемент, обозначенный таким образом, может представлять собой усилитель, но это не операционный усилитель.
Выход операционного усилителя представлен на вершине треугольника, противолежащей стороне, где находятся входные зажимы. Соединения с источником питания обычно обозначаются линиями на противоположных сторонах треугольника. Большинство операционных усилителей рассчитаны на работу от биполярного источника напряжения, имеющего положительное и отрицательное напряжения. В целом, операционные усилители могут работать в пределах напряжения от +-1 В до +-40 В. Наиболее распространенное напряжение питания для них 15 В.
Выход биполярного источника напряжения измеряется относительно нуля вольт, не всегда относительно земли шасси. Для указания точки отсчета используется стрелка с не закрашенной треугольной головкой. Такая стрелка показывает общую точку в схеме, называемую «общей точкой сигналов». Входной и выходной сигналы операционного усилителя также измеряются относительно общей точки сигналов. Соединения общих точек сигналов не всегда отображаются на принципиальных схемах с операционными усилителями.
Принцип работы операционного усилителя простыми словами: описание, характеристики
Содержание
На следующем рисунке показана распиновка микросхем одиночных операционных усилителей (включая 741), когда они помещаются в 8-выводный DIP корпус.
- iC – мгновенный ток через конденсатор;
- C – емкость в фарадах;
- dv/dt – скорость изменения напряжения во времени.
- F – сила, прикладываемая к объекту;
- m – масса объекта;
- dv/dt – скорость изменения скорости во времени.
Это аналоговое электронное вычисление производной математического анализа известно как дифференцирование, и это естественная функция тока конденсатора по отношению к приложенному напряжению. Обратите внимание, что данная схема для выполнения этой относительно сложной математической функции не требует «программирования», как это делал бы цифровой компьютер.
Электронные схемы очень просты и недороги для создания по сравнению со сложными физическими системами, поэтому подобный аналоговый электронный симулятор широко использовался в исследованиях и разработках механических систем. Однако для реалистичного моделирования в этих ранних компьютерах были нужны схемы усилителей высокой точности и простой настройки.
На следующем рисунке показана распиновка микросхем одиночных операционных усилителей (включая 741), когда они помещаются в 8-выводный DIP корпус.
Типовая 8-выводная DIP микросхема одиночного операционного усилителя
Некоторые модели операционных усилителей поставляются двумя в одном корпусе; например, популярные модели TL082 и 1458. Они называются «двойными» и обычно размещаются в 8-выводном DIP корпусе со следующей распиновкой:
8-выводная DIP микросхема двойного операционного усилителя
Операционные усилители также доступны в корпусах с четырьмя усилителями, как правило, это 14-выводные DIP корпуса. К сожалению, назначение выводов у этих «четверных» операционных усилителей не является стандартным, как у одиночных и «двойных». Поэтому подробности необходимо искать в технических описаниях от производителя.Схема компаратора на операционном усилителе
Еще одно приложение для показанной схемы компаратора представляет собой преобразователь прямоугольного сигнала. Предположим, что входное напряжение, подаваемое на инвертирующий (-) вход, представляет собой переменный синусоидальный сигнал, а не неизменное постоянное напряжение. В этом случае выходное напряжение будет переходить между противоположными состояниями насыщения, когда входное напряжение было равно опорному напряжению, выдаваемому потенциометром. Результатом будет прямоугольный сигнал:
Преобразователь синусоидального сигнала в прямоугольный
Подстройка потенциометра приведет к изменению опорного напряжения, подаваемого на неинвертирующий (+) вход, что может изменить точку, в которой синусоида будет пересекать опорное напряжение, изменяя соотношение включен/выключен, или коэффициент заполнения, или скважность прямоугольного сигнала:
Изменение скважности выходного сигнала преобразователя синусоидального сигнала в прямоугольный
Драйвер столбчатого индикатора (барграфа) на базе операционных усилителей
В схеме, показанной выше, светодиод LED1 будет загораться первым, когда входное напряжение будет увеличиваться в положительном направлении. По мере того, как входное напряжение продолжает увеличиваться, другие светодиоды будут загораться последовательно, пока не зажгутся все.
Эта же технология используется в некоторых аналого-цифровых преобразователях, а именно в АЦП прямого преобразования, чтобы преобразовать уровень аналогового сигнала в последовательность напряжений «вкл/выкл», представляющую цифровое число.
Сразу же становится понятно, почему усилитель называется инвертирующим Сигналы на входе и на выходе разных знаков.
Продолжаем изучать основы электроники на нашем сайте, и героем сегодняшней статьи будет еще одно замечательное устройство – а именно операционный усилитель. Сегодня разберемся, что это вообще такое, как он работает, ну и парочку основных схем по традиции разберем
Итак, по определению ОУ – это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления и несимметричным выходом. Теперь разберемся, что это значит…
ОУ имеет два входа и один выход. Один из этих входов называют неинвертирующим и обозначают на схемах плюсом, второй, соответственно, является инвертирующим.
K – это коэффициент усиления операционника, обычно он имеет значения порядка 100000 – 1000000. Из формулы видим, что в случае, когда сигналы на обоих входах ОУ равны, на выходе ноль. Если, например, потенциал инвертирующего входа (-) стал более положительным, чем потенциал неинвертирующего входа (+), то выходной сигнал изменится в отрицательном направлении. В этом и заключается работа операционного усилителя.
Помимо уже упомянутых входов и выхода ОУ имеет также выводы для подачи питания, и вот как выглядит его обозначение на принципиальных схемах:
Чаще всего в схемах на операционниках используется обратная связь, поскольку коэффициент усиления ОУ без обратной связи слишком уж велик В замечательной книге Хоровица и Хилла приведены несколько, а точнее два правила, которые определяют как работает операционник в схемах с обратной связью.
Для того, чтобы разобраться в работе операционного усилителя, давайте рассмотрим пару-тройку схем. И начнем со схемы неинвертирующего усилителя (кстати на схемах порой опускают обозначение выводов для подачи питания на ОУ, мы, пожалуй, тоже так поступим ):
Для начала определим, какое же значение напряжения мы получим на выходе, подав на вход U_ . Как следует из второго правила – операционник с обратной связью “добьется” того, чтобы потенциалы входов выровнялись, а это значит, что:
Но в то же время R_1 и R_2 образуют делитель напряжения и тогда:
Приравниваем эти два значения и получаем, что:
Получили такой вот коэффициент усиления для неинвертирующего усилителя на операционном усилителе с обратной связью.
Давайте рассмотрим конкретный пример, чтобы еще лучше понять работу данной схемы. Пусть будут такие номиналы: R_2 = 10medspace КОм , R_1 = 1medspace КОм . На вход подадим 1 В. В этом случае напряжение на выходе ОУ начнет расти, поскольку ( U_+medspace-medspace U_- > 0 ).
И расти оно будет до тех пор, пока потенциал на инвертирующем (-) выходе не станет равен 1 В (так как на неинвертирующем входе (+) у нас как раз-таки 1 В). Остается определить, при каком выходном значении напряжения, U_- будет равно 1 В. Входы ОУ ток не потребляют, значит ток протекает по цепи выход – R_2 – R_1 – земля:
Из этого равенства без проблем определим U_ , при значении U_- равном 1 В:
Подставив наши значения, получим U_ = 11medspace В . Это подтверждает верность выведенной нами ранее формулы U_ = U_medspace(1 + frac)
С неинвертирующим усилителем разобрались, давайте рассмотрим еще одну схему – инвертирующий усилитель.
В принципе работает эта схема практически так же, как предыдущая. На неинвертирующем (+) входе потенциал земли, значит на инвертирующем тоже будет такой же потенциал. То есть:
Не забываем, что ток входы ОУ не потребляют, а значит ток протекает по цепи выход – R_2 – R_1 – вход и равен он:
Отсюда нам остается только выразить U_ и определить коэффициент усиления цепи:
Сразу же становится понятно, почему усилитель называется инвертирующим Сигналы на входе и на выходе разных знаков.
В завершение рассмотрим, пожалуй, еще одну небольшую схемку, а именно схему повторителя на операционном усилителе с обратной связью:
Если внимательно посмотреть на эту схему, то становится понятно, что это всего лишь неинвертирующий усилитель, у которого R_1 равно бесконечности, а R_2 равно нулю. Подставив эти значения в формулу для U_ получим:
Таким образом, напряжение на выходе повторяет сигнал на входе! Огромный плюс такого повторителя заключается в том, что его входной импеданс огромен, а выходной, напротив, мал.
Наверно, на этом сегодня закончим, а в следующей статье рассмотрим и проанализируем какие-нибудь схемки посложнее До скорых встреч!
Операционные усилители – очень мощный инструмент современного радиолюбителя. Одной из самых простых схем его использования является подключение по схеме компаратора.
Разберём несколько из примеров использования компараторов (рекомендованных для домашней сборки), для того чтобы лучше разобраться в том, как работает данная схема.
1. Датчик перегрева радиатора
Данная схема работает по следующему принципу: В зависимости от температуры терморезистор R5 будет иметь разное значение сопротивления. С ростом температуры его сопротивление увеличивается.
Если температура не достигла заданной, то напряжение на выходе компаратора равно 0, и светодиод не горит.
При достижении температуры, установленной потенциометром R3, компаратор переключается, светодиод загорается, информируя нас о том, что терморезистор R5 перегрелся. В этот момент нужно как-то охладить работу вашей схемы, например, включив вентилятор или насос для прокачки воды. Это легко реализовать подключением в качестве нагрузки к выходу компаратора обычное электромагнитное реле.
Рис.3. Схема подключения датчика температуры.
2. Индикатор зарядки/разрядки батареи с двумя фиксированными уровнями.
Задача данного датчика крайне проста: проинформировать держателя батарейки о полном её заряде и скором прекращении работы. Данная схема отличается от предыдущей тем, что строиться на базе не одного, а двух компараторах, но это не беда для современной техники. Дело в том, что большинство современных операционных усилителей выпускаются в корпусе DIP8/SO8 и в своём составе содержат два операционных усилителя. К примеру, вот фрагмент даташита (технического описания микросхемы) используемого мною ОУ:
Рис. 4. Расположение выводов у микросхемы ОУ NE5532.
Решается она следующим образом: входное напряжение поступает на сложный делитель R3-R5-R7. В результате получаются два аналоговых уровня соответствующих не инвертирующим входам ОУ.
Тот, что получается между резисторами R3-R5 будет говорить нам о глубоком разряде аккумулятора, так как он будет срабатывать при достаточно низком напряжении.
Тот, что получается между резисторами R5-R7 будет говорить нам о полном заряде аккумулятора, так как он будет срабатывать при высоком напряжении на клеммах аккумулятора.
Рис.5. Схема индикатора зарядки/разрядки батареи.
ну еще конечно надо прикинуть что обратная связь работает в правильном направлении. а то допустим замкнем выход на неинвертирующий вход и подадим сигнал на инвертирующий мы исходя из всего вышеизложенного решим что это повторитель, выход=вход. тогда как связь положительная и это выйдет типа триггер.
JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!
Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/quote
Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
З.Ы.
Благодарен всем кто писал и пишет обучающие статьи и ни к кому не в претензии.
В ассортименте компании Wolfspeed имеются дискретные карбид-кремниевые диоды, изготовленные по технологиям JBS и MPS, с максимально допустимыми напряжениями 600 В, 650 В, 1200 В и 1700 В и максимальным током от 1 до 50 А. Отличительной особенностью всех моделей является низкое значение заряда затвора и высокая перегрузочная способность.
да все просто же, это куда проще всех транзисторов, проще только цифровые схемы. схема c оу считается исходя из того, что напряжения на двух входах равны, если схема вообще способна их сделать равными они будут равны, если не способна значит схема неправильная. второе — токи на входах считаем нулевыми, это почти правда
считаем от обратного, что напряжения на входах равны. зная напряжение сигнала на входе схемы и то что напряжения на входах оу равны мы легко получаем напряжение на выходе схемы, чистая математика. либо у нас получаются абсурдные результаты и это значит схема нерабочая.
ну еще конечно надо прикинуть что обратная связь работает в правильном направлении. а то допустим замкнем выход на неинвертирующий вход и подадим сигнал на инвертирующий мы исходя из всего вышеизложенного решим что это повторитель, выход=вход. тогда как связь положительная и это выйдет типа триггер.
BlueNRG-LP — новый программируемый чип SoC STMicroelectronics. Он соответствует спецификации BLE версии 5. 2, поддерживает работу в сетях Bluetooth Mesh, подходит для беспроводной связи на частоте 2,4 ГГц. Новый чип отличается высокими характеристиками.
Кто помнит в самом начале обучалки были примеры с сосудами и турбиной — вот что-то наподобие было бы неплохо. В книге о которой я писал выше тоже подобные картинки были, в т.ч. с бегающими атомами и атомными решетками, что и дало представление о проистекающих процессах.
А откуда надо (к примеру с микрофона). Так же 12В батарейки простыми делителями на резисторах можно получить бесконечное множество разных напряжений меньше 12В.
_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение
ПРИСТ расширяет ассортимент
внутри схемка на куче обычных транзисторов, цель которой минимально реагировать на абсолютный уровень напряжения на входах относительно нуля и максимально реагировать на разницу напряжений на входах. то есть на входах +/- 1в/1в на выходе середина между питающими напряжениями, на входах 3. 123в/3.123в на выходе середина между питающими напряжениями. на входах 1.1234/1.1233 — на выходе плюсовое питание, на входах 1.1234/1.1235 — на выходе минусовое питание.
взяли транзистор, повысили ему коэффициент усиления в тысячи раз, сделали ему два входа вместо одного чтобы избавиться от необходимости задавать рабочую точку, сделали вход гигаомный чтобы не заботиться о согласовании входа, сделали выход низкоомный как у двухтактника чтобы избавиться от необходимости согласовывать выход, в итоге получили устройство свойства которого задаются только обратной связью.
запитать вы его может и не от +15/-15 а от +5/0. какие крайние значения на выходе хотите получить от того и питаете
в общем то вернулись обратно к пружинным весам. но разница в том что транзистор вещь в себе, со всеми его нелинейностями, а внешнюю обвязку к ОУ можно сделать какую хочешь, на более линейных и точных элементах чем транзистор
Дополню rustot:
Если обратную связь завести не сразу с выхода ОУ, а через кучу нелинейных элементов (тех же транзисторов) — система в итоге устранит все нелинейности и уравновесится.
Взять, к примеру, схемы лабораторных БП (как саме наглядные). На один вход ОУ подаём сигнал с выхода устройства, на другой — эталонное напряжение. Между выходом ОУ и выходом устройства каскады на транзисторах, которые греются, плывут и по сути нелинейны, но в целом система будет иметь погрешность равную погрешности ОУ, т.е. очень неплохие характеристики.
Принцип работы входного каскада(дифференциальный усилитель) мне понятен. Официальная трактовка принципа работы ОП не нравится, да и не очень понятна.
Есть у кого объяснение, которое объясняющий сам осознаёт? Компаратор, Триггер Шмитта, Гистерезис это я собирал в симуляторе, вот только полностью осознать что происходит не получается. Не надо в деталях описывать Триггер Шмитта. Мне достаточно было бы описание принципа работы ОП, не такое описание которое распространено в инете, а намного понятнее.
Спасибо.
Прошу написать тех кто знает в деталях работу операционного усилителя. Не формулы и цифры, а по простому народному.
Принцип работы входного каскада(дифференциальный усилитель) мне понятен. Официальная трактовка принципа работы ОП не нравится, да и не очень понятна.
Есть у кого объяснение, которое объясняющий сам осознаёт? Компаратор, Триггер Шмитта, Гистерезис это я собирал в симуляторе, вот только полностью осознать что происходит не получается. Не надо в деталях описывать Триггер Шмитта. Мне достаточно было бы описание принципа работы ОП, не такое описание которое распространено в инете, а намного понятнее.
Спасибо.
Прошу написать тех кто знает в деталях работу операционного усилителя. Не формулы и цифры, а по простому народному.
Принцип работы входного каскада(дифференциальный усилитель) мне понятен. Официальная трактовка принципа работы ОП не нравится, да и не очень понятна.
Есть у кого объяснение, которое объясняющий сам осознаёт? Компаратор, Триггер Шмитта, Гистерезис это я собирал в симуляторе, вот только полностью осознать что происходит не получается. Не надо в деталях описывать Триггер Шмитта. Мне достаточно было бы описание принципа работы ОП, не такое описание которое распространено в инете, а намного понятнее.
Спасибо.
Да, я эту книгу читать начинал. Мысли интересные в ней. Может стоит её дочитать. Перестал её читать потому что понял к чему они ведут и такое объяснение мне бы не подошло, хотя может я не прав. И кто то может сможет привести выжимку из всей книги.
Иначе как всегда самому до всего доходить надо будет.
Этот типа анекдот во первых не в тему, во вторых очень печальный.
Для корректной работы внутренних генераторов вольтдобавки выводы питания ОУ 2 и 6 необходимо зашунтировать параллельно соединенными керамическим и высококачественным электролитическим или танталовым конденсаторами емкостью 0,1 мкФ и
Патентованная схема автоматической коррекции нуля применяется также в микромощном операционном усилителе с Rail to Rail входом и выходом (RRIO) OPA333 Texas Instruments. Данный ОУ отличается очень малым током покоя (типовое значение 17 мкА) и позиционируется для применения в прецизионных устройствах с автономным питанием. Коррекция нуля осуществляется каждые 8 мкс, при этом долговременное изменение напряжения смещения (300 ч) при максимальной рабочей температуре не превышает 1 мкВ.
Значительный прогресс в улучшении параметров прецизионных операционных усилителей NSC был достигнут за счет реализации патентованного технологического процесса VIP50, позволяющего создавать на одном кристалле высококачественные комплементарные биполярные и полевые транзисторы [3]. Характерные представители семейства прецизионных RRIO ОУ серии LMP771x, выполненные по данному технологическому процессу, имеют типовое значение напряжения смещения 10 мкВ с температурным дрейфом
1 мкВ/°С, уровень шума не более 5,8 нВ/√Гц и очень низкое значение коэффициента нелинейных искажений 0,001% в звуковом диапазоне. Благодаря использованию во входном каскаде высокотехнологичных МОП-транзисторов излом зависимости шума 1/f удалось сдвинуть до частоты менее 1 кГц и тем самым значительно расширить частотный диапазон усилителя по минимуму шумов.
Последние модели прецизионных операционных усилителей, разработанные NSC в 2007 году, имеют еще лучшие параметры, например, у ОУ LMP7731 с биполярным входом типовое значение и температурный дрейф напряжения смещения не превышают ±9 мкВ и ±0,2 мкВ (максимальное значение ±40 мкВ и ±0,8 мкВ) соответственно, а уровень шумов со спектральной плотностью
3 нВ/√Гц достигается уже на частоте 3 Гц, как показано на рис. 1. Достоинством LMP7731 является также широкая полоса усиливаемых частот, большие коэффициенты усиления и подавления синфазных сигналов и низкий коэффициент нелинейных искажений. Усилитель рекомендуется фирмой для применения в научной аппаратуре и медицинской технике. Параметры LMP7731 и других рассматриваемых ОУ при напряжении питания 5 В приведены в таблице.
Для более дешевых устройств с высокоомным входом подойдут одно/четырехканальные скорректированные операционные усилители LMV841/4. Близкие по параметрам к вышеописанным прецизионным LMP7707/9, эти ОУ могут найти применение в схемах активных фильтров, усилителей сигналов датчиков и другой аппаратуре с автономным питанием.
Для корректной работы внутренних генераторов вольтдобавки выводы питания ОУ 2 и 6 необходимо зашунтировать параллельно соединенными керамическим и высококачественным электролитическим или танталовым конденсаторами емкостью 0,1 мкФ и
10 мкФ, расположенными как можно ближе к выводам ИМС. Подача на вывод 5 Shutdown напряжения более 0,6 В (при Еп = 1 В) переводит ОУ в «спящий» режим с токопотреблением менее 50 нА, время восстановления рабочего режима не превышает 3 мкс.
Полученный результат демонстрирует рис. 5, на котором можно сравнить зависимости отношения (шум + искажения)/сигнал — THD + Noise Ratio в децибелах от величины входного напряжения с частотой 10 кГц для ОУ OPA365, представляющего фирменную серию “Zero Crossover”, и обычного операционного усилителя с двойным дифференциальным входным каскадом. Значение коэффициента нелинейных искажений для OPA365 не превышает 0,0006% во всем диапазоне звуковых частот.
Для регулировки усиления от 1 до 16 с шагом 1 используется 4 бита управляющего слова, еще 2 бита необходимы для включения режимов проверки нуля (неинвертирующий вход усилителя соединяется с инвертирующим GRT) и перевода усилителя в «спящий» режим с токопотреблением 20 мкА, последние два бита определяют один из четырех уровней частотной коррекции, которые следует устанавливать в зависимости от коэффициента усиления и полосы усиливаемых частот.
Усилитель LMP8100 очень удобен для применения в различных системах сбора данных, испытательном оборудовании, измерительных приборах и т. п. Выпускается в двух разновидностях: обычный LMP8100 и улучшенный LMP8100A с точностью установки коэффициента усиления 0,075% и 0,03% соответственно.
Обучающие статьи по электронике
Дифференциатор
Дифференциатор, выполняет функцию противоположную интегратору, то есть на выходе дифференциатора напряжение пропорционально скорости изменения входного напряжения. Так же как и интегратор, дифференциатор находит широкое применение в активных фильтрах и схемах автоматического регулирования. Дифференциатор получается из интегратора путем перемены местами резистора и конденсатора.
Схемы дифференциаторов: простого RC-дифференциатора и дифференциатора на основе ОУ.
Простой дифференциатор имеет два существенных недостатка: большое выходное сопротивление и ослабление входного сигнала, поэтому в современных схемах он почти не применяется. Для дифференцирования сигналов применяют дифференциатор на ОУ, состоящий из ОУ DA1, входного конденсатора С1 и резистора R1, через который осуществляется положительная обратная связь с выхода ОУ на его вход.
При поступлении сигнала на вход дифференциатора конденсатор С1 начинает заряжаться током IBX, за счёт принципа виртуального замыкания ток такой же величины будет протекать и через резистор R1. В результате на выходе ОУ будет формироваться напряжение пропорционально скорости изменения входного напряжения.
Параметры дифференциатора определяются следующими выражениями
Основной недостаток дифференциатора на ОУ состоит в том, что на высоких частотах коэффициент усиления больше, чем на низких частотах. Поэтому на высоких частотах происходит значительное усиление собственных шумов резисторов и активных элементов, кроме того возможно возбуждение дифференциатора на высоких частотах.
Решение данной проблемы является включение дополнительного резистора на вход дифференциатора. Сопротивление резистора должно составлять несколько десятков Ом (в среднем порядка 50 Ом).
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
То есть пока входной сигнал меньше опорного — на выходе операционного усилителя будет положительное напряжение насыщения. Как только входной сигнал превысит опорный – выходное напряжение операционного усилителя станет равно нулю.
Электрическая схема инвертирующего триггера Шмитта представлена ниже.
Благодаря такому поведению схемы, зашумленный сигнал не будет вызывать колебаний на выходе усилителя.
Как и простейшая схема компаратора, триггер Шмитта имеет «неинвертирующую версию», но здесь мы на ней останавливаться уже не будем.
О расчете такой схемы и примерах ее использования в следующей статье….
Обычные три OpAmp-InAmps используют немного другую конфигурацию по сравнению с вашей картинкой, чтобы установить усиление только с одним резистором ( внешний резистор усиления в случае полностью интегрированных InAmps). Пожалуйста, обратитесь к ссылкам, которые я предоставил для более подробной информации.
Я видел несколько различных конфигураций для инструментальных усилителей, включая 2 версии операционных усилителей. Эта
тоже один. Но это просто дифференциальный усилитель, которому предшествуют входные буферы. Когда вы называете его инструментальным усилителем, другими словами, что такого особенного в этом, что оно заслуживает отдельного названия?
«Инструментальный усилитель — это прецизионное устройство дифференциального усиления напряжения [. ]». Одним из важных слов здесь является «выигрыш». Операционный усилитель имеет бесконечное усиление (теоретически) и получает определенное усиление только путем добавления схемы вокруг него. Обычно, при использовании только одного операционного усилителя, по крайней мере один из входов теряет свой чрезвычайно высокий входной импеданс, потому что необходимы внешние резисторы.
Если вам нужны два (дифференциальные) входы с обеими очень высоким входным сопротивлением и определенной выгодой, вы можете использовать два-операционник-InAmp вы говорите или три-OpAmp-InAmp-конфигурация вашего изображение показывает. Есть также готовые IC InAmps таких компаний, как Linear Technology или Analog Devices.
Обычные три OpAmp-InAmps используют немного другую конфигурацию по сравнению с вашей картинкой, чтобы установить усиление только с одним резистором ( внешний резистор усиления в случае полностью интегрированных InAmps). Пожалуйста, обратитесь к ссылкам, которые я предоставил для более подробной информации.
С тремя OpAmp-InAmp вы получаете очень высокий входной импеданс на двух дифференциальных входах (в то время как вы получите только один вход с таким высоким входным импедансом с обычным буфером OpAmp), и вы получаете очень хороший отказ от общего сигналы режима (это также возможно с помощью одного операционного усилителя, но за счет снижения входного сопротивления с помощью резисторов, которые вы должны использовать, чтобы превратить операционный усилитель в разностный усилитель).
Схема с двумя OpAmp-InAmp требует меньше деталей, но за счет не очень хорошего коэффициента подавления синфазного сигнала (CMRR).
Простейший неинвертирующий усилитель на ОУ
Рассмотрим работу ОУ как отдельного дифференциального усилителя, то есть без включения в рассмотрение каких-либо внешних компонентов. В этом случае ОУ ведёт себя как обычный усилитель с дифференциальным входом, то есть поведение ОУ описывается следующим образом:
((1))
(2)
Простейший неинвертирующий усилитель на ОУ
Параметры ОУ, характеризующие его неидеальность, можно разбить на группы:
Параметры по постоянному току
Параметры по переменному току
Искажение входного П-образного сигнала при ограниченной скорости нарастания выходного сигнала ОУ.
Ограниченная скорость нарастания. Выходное напряжение ОУ не может измениться мгновенно. Скорость изменения выходного напряжения измеряется в вольтах за микросекунду, типичные значения 1÷100 В/мкс. Параметр обусловлен временем, необходимым для перезаряда внутренних ёмкостей.
Ограничения тока и напряжения
Источники
Источник — http://radioprog.ru/post/517
Источник — http://microtechnics.ru/operacionnyj-usilitel/
Источник — http://meanders.ru.com/practicum2.shtml
Источник — http://radiokot.ru/forum/viewtopic.php?t=21209
Источник — http://www.tehnari.ru/f114/t266690/
Источник — http://kit-e.ru/usil/operaczionnye-usiliteli-stremlenie-k-sovershenstvu/
Источник — http://www.electronicsblog.ru/usilitelnaya-sxemotexnika/integrator-i-differenciator-na-ou.html
Источник — http://chipenable.ru/index.php/how-connection/99-analogovyy-komparator-trigger-shmitta.html
Источник — http://qastack.ru/electronics/15999/when-is-it-an-instrumentation-amplifier-in-amp-and-not-an-operational-amplifie
Источник — http://ilab.xmedtest.net/?q=node/3777
Инвертирующий усилитель на оу
Инвертирующий усилитель
Наибольшее распространение среди схем на ОУ, получила схема инвертирующего усилителя и производные от данной схемы: различные типы инвертирующих сумматоров. Схема инвертирующего усилителя показана ниже
Инвертирующий усилитель.
Данная схема состоит из операционного усилителя DA1 и резисторов R1 и R2. В данной схеме операционный усилитель DA1 охвачен параллельной отрицательной обратной связью (ООС) по напряжению.
Для рассмотрения работы данной схемы вспомним одно из основных соотношений в идеальном ОУ: напряжение между входами равно нулю. Исходя из этого, неинвертирующий и инвертирующий входы ОУ имеют одинаковый потенциал относительно общего вывода, в данном случае этот потенциал равен нулю (часто точку соединения резисторов R1 и R2 называют виртуальной землёй). Вследствие этого токи протекающие через резисторы R1 и R2 должны уравновешивать друг друга, то есть быть одинаковыми по значению но разными по знаку
где IR1, IR2 – токи, протекающие через резисторы R1 и R2 соответственно.
Исходя из этого, коэффициент усиления данной схемы составит
Знак «-» показывает, что выходной сигнал инвертирован по отношению к входному .
Входное сопротивление данной схемы получается из последовательно соединённых сопротивлений R1 и параллельно соединённых входного сопротивления ОУ R
где КОУ – коэффициент усиления ОУ.
В общем случае, когда коэффициент усиления операционного усилителя КОУ имеет достаточно большую величину можно считать, что входное сопротивления инвертирующего ОУ будет равно сопротивлению R1.
Выходное сопротивление инвертирующего усилителя, состоящего из ОУ охваченного параллельной ООС по напряжению, вычисляется по той же формуле, что и неинвертирующий усилитель.
Как рассчитать величину тока, который должен обеспечивать ОУ ?
Очень просто! Допустим, что в роли нагрузки выступает резистор сопротивлением в 10 Ом. На повторитель приходит напряжение в 5 вольт, которое он должен передать нагрузке. В таком случае, применяя закон ома (I=U/R), выясняем, что для поддержания 5 вольт на резисторе операционнику требуется обеспечивать ток в 0. 5 ампера. (Это грубая прикидка, но вполне применимая на практике)
Обычные ОУ не смогут справиться с такой задачей. Конечно выход можно умощнить транзистором, но тогда применение повторителя на ОУ становится менее оправданным.
Для таких целей предлагается использовать TDA2030, TDA2040 или TDA2050 включенных по схеме повторителя. Микросхемы представляют собой уже готовые, умощненые транзисторами, операционные усилители, которые между собой отличаются максимальной выходной мощность.
Корректная подача опорного напряжения в ИУ
Часто полагают, что вход для подачи опорного напряжения высокоомный (поскольку это вход). Так, разработчики могут соблазниться подключить высокоомный источник, например резистивный делитель, к выводу ИУ для опорного напряжения. С некоторыми типами инструментальных усилителей это может привести к значительным погрешностям (рис. 8).
Рис. 8. Неправильное использование простого делителя напряжения для непосредственной подачи опорного напряжения в инструментальный усилитель из трех ОУ
Например, в конструкции популярного ИУ применено три ОУ, соединенных, как показано выше. Общий коэффициент усиления равен:
где R2/R1 = R4/R3.
Коэффициент передачи для входа опорного напряжения равен единице (при подаче напряжения от источника с низким импедансом). Однако в рассматриваемом случае вывод опорного напряжения ИУ подключен к простому делителю напряжения на резисторах. Это приводит к разбалансу схемы вычитания и нарушает коэффициент деления делителя напряжения. В свою очередь, это снижает коэффициент подавления синфазного сигнала в ИУ и точность его коэффициента усиления. Однако если бы внутренний резистор R4 был нам доступен, то при снижении его сопротивления на величину, равную параллельному соединению двух резисторов делителя напряжения (здесь 50 кОм), схема вела бы себя так, будто к изначальному сопротивлению резистора R4 подключен низкоомный источник, равный (в данном примере) половине напряжения питания, и точность схемы вычитания была бы сохранена.
Этот подход невозможен, если ИУ — интегральная схема в закрытом корпусе. Еще одна проблема заключается в том, что температурные коэффициенты сопротивления (ТКС) внешних резисторов делителя отличаются от ТКС резистора R4 и других резисторов схемы вычитания. И, наконец, такой подход не позволяет регулировать значение опорного напряжения. Если, с другой стороны, попытаться использовать в делителе напряжения низкоомные резисторы, чтобы влияние их добавленного сопротивления было бы пренебрежимо малым, то ток потребления от источника питания и рассеиваемая мощность схемы увеличатся. В любом случае, такой метод «грубой силы» не приносит успеха.
На рис. 9 показано лучшее решение — применение буфера на ОУ с малым потреблением энергии между делителем напряжения и входом опорного напряжения ИУ. Это ликвидирует необходимость подбора сопротивления и проблему резисторов с разными ТКС, а также дает возможность легко регулировать опорное напряжение.
Рис. 9. Подача опорного напряжения на ИУ с низкоимпедансного выхода ОУ
Применение аналогового сумматора
В настоящее время аналоговый сумматор используется в схемах, где надо суммировать два и более аналоговых сигналов. Это могут быть микшеры звукового диапазона, где надо объединить выходные сигналы от микрофонов, а также от устройств, которые создают различные спецэффекты и которые потом можно добавить к основной звуковой дорожке. Вся прелесть микшеров на ОУ заключается в том, что входные сигналы никак не влияют друг на друга. А также это могут быть схемы операционной обработки сигналов для выполнения арифметической обработки сигналов (сложение/вычитание).
при участии JEER
Рекомендую посмотреть классное видео про сумматор:
Активные фильтры
Для оценки требуемого значения GBW обычно используется формула:
где:GBW – частота единичного усиления скомпенсированного операционного усилителя;G – усиление в полосе пропускания;F3 – частота среза фильтра по уровню −3 dB;Q – добротность фильтра;100 – запас усиления.
Здесь появляется дополнительный множитель, Q. Дело в том, что ФНЧ с Q > 0.707 имеет пик на АЧХ и необходимо учесть его величину. Величина этого пика:
Что будет, если забыть про требование к GBW?
Для примера возьмём ФНЧ Баттерворта на 250 кГц для которого ожидается плоская АЧХ в полосе пропускания. ОУ с GBW 1 МГц.
ФНЧ 250 кГц на идеальном ОУ и с GBW 1 МГц
Появился пик около 0.5 дБ в полосе пропускания, а сама она сузилась.
Для ФНЧ дополнительное уменьшение усиления с ростом частоты может быть даже полезным, позволяя получить большее ослабление нежелательных частот. Пик тоже может быть полезным, им можно скомпенсировать спад АЧХ других каскадов
Однако, если поведение вблизи частоты излома важно, влияние GBW можно попробовать скомпенсировать. Прочитать об этом можно там, тут и здесь
Зачем использовать инструментальные усилители?
Когда я учился в колледже, один из моих преподавателей сравнил работу инженера-электронщика с разнорабочим с поясом с инструментами, набитым оборудованием. Успешный разнорабочий будет стремиться иметь широкий набор инструментов и знать, как и когда использовать каждый из них. Точно так же инженер-электронщик имеет свой «пояс с инструментами» из знаний и применений компонентов, схемотехники и способов решения задач. Столкнувшись с задачей, успешный инженер будет знать, какие инструменты использовать для достижения цели проектирования.
Один из таких инструментов, который должен иметь каждый инженер, – это инструментальные (или измерительные) усилители. Инструментальные усилители играют жизненно важную роль во многих областях электротехники; все, от промышленной автоматики для тяжелых условий эксплуатации до прецизионных медицинских устройств, используют инструментальные усилители в своих интересах. Прежде чем мы перейдем ко всем применениям, мы должны кратко рассмотреть конструкцию инструментальных усилителей, и почему их нужно использовать вместо обычных операционных усилителей, которые обычно дешевле.
Давайте сначала взглянем на классическую схему дифференциального усилителя:
Рисунок 1 – Дифференциальный усилитель
Такой конфигурации может быть достаточно для некоторых дифференциальных применений; он может усиливать сигнал с измерительного моста и иметь хороший CMRR (КОСС, коэффициент ослабления синфазного сигнала), но у него есть несколько проблем. Во-первых, мы можем ясно видеть, что входные импедансы не приближаются к бесконечности; фактически входное сопротивление на инвертирующем входе относительно низкое. Входные сопротивления в этой схеме не совпадают, и иногда входные сопротивления инвертирующего и неинвертирующего входов могут сильно различаться. Эта схема также требует очень тщательного согласования резисторов и согласования с импедансом источника. Мы, конечно, могли бы увеличить входной импеданс, сделав резисторы обратной связи очень большими, но при номинале 1 МОм для резисторов R1 и R2 потребуется, чтобы R3 и R4 были равны 100 МОм для достижения коэффициента усиления хотя бы 100; а для очень слабых сигналов обычно требуется больший коэффициент усиления. Использование резисторов большого номинала также создает новые проблемы. Резисторы с большим сопротивлением создают шум, и их очень сложно подобрать с высокой точностью; кроме того, резисторы большого номинала могут вызвать появление паразитной емкости, которая отрицательно скажется на CMRR на высоких частотах.
Решением было бы использовать перед каждым входом неинвертирующие буферы, но мы всё равно хотели бы добиться более высокого коэффициента усиления. Взгляните на инструментальный усилитель, показанный ниже.
Рисунок 2 – Инструментальный усилитель
Два буферных усилителя обеспечивают практически бесконечное входное сопротивление и усиление, а дифференциальный усилитель обеспечивает дополнительное усиление и несимметричный выход. В результате получается схема с очень высоким CMRR, высоким коэффициентом усиления и входным сопротивлением порядка 1010 Ом.
Корпусы операционных усилителей
Операционные усилители размещаются в контейнерах, называемых корпусами. Четыре наиболее распространенных типов корпусов это: ТО-5 (корпус транзисторного типа), DIP (плоский корпус с двухрядным расположением выводов), мини — DIP и плоский корпус с планарными выводами.
Штырьки корпуса операционного усилителя используются в качестве выводов, с их помощью операционный усилитель соединяется с остальной схемой. Операционные усилители либо непосредственно припаиваются к монтажной плате, либо вставляются в колодку, которая припаяна к плате. Если операционный усилитель вставлен в колодку, его легко можно извлечь при помощи специального пинцета, предназначенного для этих целей.
Виртуальное короткое замыкание
Одно из этих предположений называется виртуальным коротким замыканием. На самом деле, это не является одной из фундаментальных характеристик идеального операционного усилителя. Скорее, виртуальное короткое замыкание является теоретической ситуацией, которая возникает из-за одной из основных характеристик идеального операционного усилителя, а именно, бесконечного коэффициента усиления без обратной связи.
Давайте представим, что у нас есть операционный усилитель, включенный как инвертирующий усилитель. Как почти всегда в случае схем на ОУ, работа схемы основана на использовании отрицательной обратной связи.
Рисунок 1 – Инвертирующий усилитель на операционном усилителе
Стандартный метод получения формулы коэффициента усиления по напряжению этой схемы состоит в предположении, что напряжение на неинвертирующем входном выводе (Vвх+) равно напряжению на инвертирующем входном выводе (Vвх–). Поскольку неинвертирующий вход соединен с землей, Vвх+ = 0 В, и, следовательно, Vвх– = 0 В. Но почему? Почему мы можем предположить, что эти два разных напряжения равны?
Бесконечный коэффициент усиления
Предположить, что эти два разных напряжения равны, можно потому, что на самом деле разница между этими напряжениями очень мала, а разница между напряжениями очень мала, потому что коэффициент усиления очень велик. Рассмотрим следующую диаграмму и формулу:
Рисунок 2 – Определение выходного напряжения
\
Операционный усилитель – это дифференциальный усилитель. Он создает выходное напряжение, применяя коэффициент усиления без обратной связи (обозначенный A) к разности напряжений на неинвертирующем и инвертирующем входах. Если мы перестроим эту формулу так, чтобы разностное напряжение было отделено от коэффициента усиления, то получим следующее:
\
Обратите внимание, что происходит при увеличении коэффициента усиления без обратной связи (для заданного Vвых): разность напряжений уменьшается. Когда коэффициент усиления приближается к бесконечности, разность напряжений приближается к нулю
Другими словами, если коэффициент усиления бесконечен, Vвх+ должно быть равно Vвх–, а это и есть виртуальное короткое замыкание.
Конечный коэффициент усиления
Невозможность создания усилителя с бесконечным коэффициентом усиления не отменяет практическую ценность виртуального короткого предположения. Почему? Потому что «виртуальное короткое замыкание» – это просто еще один способ сказать, что между двумя входными напряжениями операционного усилителя существует нулевая разница, а в реальных схемах эта разница «достаточно близка» к нулю. Коэффициент усиления без обратной связи реальных операционных усилителей может превышать 100 дБ. Это отношение выходного напряжения к входному не менее 100 000. Допустим, у нас есть операционный усилитель с A = 100 дБ, который выдает выходное напряжение 2,5 В.
\
Это 25 мкВ. Когда коэффициент усиления без обратной связи достаточно высок, чтобы создавать (очень) маленькое разностное напряжение, виртуальное короткое замыкание является надежным инструментом для практического проектирования, несмотря на то, что оно нереально. И на самом деле, оно не только нереально. Оно совершенно парадоксально.
Идеальный операционный усилитель и его свойства
Так как наш мир не является идеальным, так и идеальных операционных усилителей не существует. Однако параметры современных ОУ находятся на достаточно высоком уровне, поэтому анализ схем с идеальными ОУ даёт результаты, очень близкие к реальным усилителям.
Для понимания работы схем с операционными усилителями вводится ряд допущений, которые приводят реальные операционные усилители к идеальным усилителям. Таких допущений всего пять:
- Ток, протекающий через входы ОУ, принимается равным нулю.
- Коэффициент усиления ОУ принимается бесконечно большим, то есть выходное напряжение усилителя может достичь любых значений, однако в реальность ограничено напряжением питания.
- Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Отсюда также следует, что входное сопротивление идеального усилителя бесконечно.
- Выходное сопротивление идеального ОУ равно нулю.
- Амплитудно-частотная характеристика идеального ОУ является плоской, то есть коэффициент усиления не зависит от частоты входного сигнала.
Близость параметров реального операционного усилителя к идеальным определяет точность, с которой может работать данный ОУ, а также выяснить ценность конкретного операционного усилителя, быстро и правильно сделать выбор подходящего ОУ.
Исходя из вышеописанных допущений, появляется возможность проанализировать и вывести соотношения для основных схем включения операционного усилителя.
Дифференциатор
Дифференциатор по своему действию противоположен работе интегратора, то есть выходной сигнал пропорционален скорости изменения входного сигнала. Схема простейшего дифференциатора показана ниже
Дифференциатор на операционном усилителе.
Дифференциатор реализует операцию дифференцирование над входным сигналом и аналогичен действию дифференцирующих RC и RL цепочек, кроме того имеет лучшие параметры по сравнению с RC и RL цепочками: практически не ослабляет входной сигнал и обладает значительно меньшим выходным сопротивлением. Основные расчётные соотношения и реакция на различные импульсы аналогична дифференцирующим цепочкам.
Выходное напряжение составит
LM358 DataSheet на русском, описание и схема включения
Микросхема LM358 как написано в его DataSheet является универсальным решением, так как схема включения большинства популярных устройств весьма проста, в случаях отсутствия жестких требований к высокому быстродействию, рассеиваемой мощности и нестандартному питающему напряжению. Небольшая стоимость, отсутствие необходимости подключения дополнительных элементов частотной коррекции, возможность использования во всем диапазоне стандартных питающих напряжений (до +32В) и низкий потребляемый ток, делают его кандидатом номер один для электронных проектов с ОУ.
LM358 цоколевка
LM358 состоит из двух ОУ, каждый имеет по 4 вывода, имеющих свое назначение. Всего получается 8 контактов. Производятся в нескольких видах корпусного исполнения, для объемного DIP и поверхностного монтажа на плату SO. Так же могут встречается в усовершенствованных корпусах SOIC, VSSOP, TSSOP.
Назначение контактов для всех видов корпусов совпадает: 2,3, 5,6, — входы, 1,7 – выходы, 4 – минус источника питания, 8 – плюс источника питания.
Технические характеристики
Ниже указаны предельные допустимые значения условий эксплуатации для диапазона рабочих температур окружающей среды TA от 0 до +70 °C, если не указано иное.
Основные электрические характеристики, при температуре окружающей среды TA = 25 °C.
Рекомендуемые условия эксплуатации в диапазоне рабочих температур окружающей среды, если не указано иное:
Подверженность устройства повреждению от электростатического разряда (ESD):
Также у данного устройства есть тепловые характеристики:
Схемы подключения
Ниже приведем несколько простых схем включения lm358 которые могут вам пригодится. Все они являются ознакомительными, так что обязательно проверяйте все перед внедрением в производственной сфере.
Схема в мощном неинвертирующим усилителе.
Преобразователь напряжения — ток.
Схема с дифференциальным усилителем.
Неинвертирующий усилитель средней мощности.
Аналоги
Аналогами LM358 можно считать микросхемы в которых указываются идентичные характеристики. К таким относятся: LM158, LM258, LM2904, LM2409. Эти микросхемы незначительно отличаются от описываемой своими тепловыми параметрами и подойдут в качестве замены для большинства проектов.
Для ее замены можно использовать: GL 358, NE 532, OP 04, OP 221, OP 290, OP 295, OPA 2237, TA7 5358-P, UPC 358C, AN 6561, CA 358E, HA 17904. Отечественные аналоги lm358: КР 1401УД5, КР 1053УД2, КР 1040УД1.
Для замены также может подойти аналог по электрическим параметрам, но уже c четырьмя ОУ в одной микросхеме — LM324.
Маркировка
Префикс LM сначала использовался при маркировке общего назначения компанией National Semiconductor. Цифры “358” это ее серийный номер. В 2011 году эта компания была приобретена другим производителем электроники Texas Instruments. С этого года префикс “LM” является кодом производителя Texas Instruments, но несмотря на это, этот код используют и другие производители при маркировке своей продукции. Микросхемы LM358, LM358-N и LM358-P имеют одинаковые технические параметры. У большинства компаний-производителей символами “-N” , “-P” обозначаются пластиковые корпуса PDIP.
В технических описания встречается такие виды: LM358A, LM358B, LM358BA. Так указывается версии следующего поколения промышленного стандарта LM358. Устройства «B» могут быть доступны в более современных микрокорпусах TSOT и WSON.
Применение
Lm358 широко используется в:
- устройствах типа «мигающий маяк»;
- блоках питания и зарядных устройствах;
- схемах управления двигателем;
- материнских платах;
- сплит системах внутреннего и наружного применения;
- бытовой технике: посудомоечные, стиральные машины, холодильные установки;
- различных видах инверторов;
- источниках бесперебойного питания;
- контроллерах и др.
Возможности применения микросхемы производители обычно указывают в технических описаниях на свои устройства.
Виды и обозначения на схеме
С развитием электросхемотехники операционные усилители постоянно совершенствуются и появляются новые модели.
Классификация по сферам применения:
- Индустриальные – дешевый вариант.
- Презиционные (точная измерительная аппаратура).
- Электрометрические (малое значение Iвх).
- Микромощные (потребление малого I питания).
- Программируемые (токи задаются при помощи I внешнего).
- Мощные или сильноточные (отдача большего значения I потребителю).
- Низковольтные (работают при U<3 В).
- Высоковольтные (рассчитаны на высокие значения U).
- Быстродействующие (высокая скорость нарастания и частота усиления).
- С низким уровнем шума.
- Звуковой тип (низкий коэффициент гармоник).
- Для двухполярного и однополярного типа электрического питания.
- Разностные (способны измерять низкие U при высоких помехах). Применяются в шунтах.
- Усилительные каскады готового типа.
- Специализированные.
По входным сигналам ОУ делятся на 2 типа:
- С 2 входами.
- С 3 входами. 3 вход применяется для расширения функциональных возможностей. Обладает внутренней ООС.
Схема операционного усилителя достаточно сложная, и не имеет смысла его изготавливать, а радиолюбителю нужно только знать правильную схему включения операционного усилителя, но для этого следует понимать расшифровку его выводов.
Основные обозначения выводов ИМС:
- V+ – неинвертирующий вход.
- V- – инвертирующий вход.
- Vout – выход.Vs+ (Vdd, Vcc, Vcc+) – плюсовая клемма ИП.
- Vs- (Vss, Vee, Vcc-) – минус ИП.
Практически в любом ОУ присутствуют 5 выводов. Однако в некоторых разновидностях может отсутствовать V-. Существуют модели, которые обладают дополнительными выводами, которые расширяют возможности ОУ.
Выводы для питания необязательно обозначать, т.к. это увеличивает читабельность схемы. Вывод питания от положительной клеммы или полюса ИП располагают вверху схемы.
Где применяются
Существует 2 вида схем ОУ, которые различаются способом подключения. Главный недостаток ОУ — непостоянство Kу, зависящего от режима функционирования. Основные сферы применения — усилители: инвертирующий (ИУ) и неинвертирующий (НИУ). В схеме НИУ Kу по U задается резисторами (сигнал нужно подавать на вход). ОУ содержит ООС последовательного типа. Эта связь выполнена на одном из резисторов. Она подается только на V-.
В ИУ происходит сдвиг сигналов по фазе. Для изменения знака выходного отрицательного напряжения необходима параллельная ОС по U. Вход, который является неинвертирующим, нужно заземлить. Входной сигнал через резистор подается на инвертирующий вход. Если неинвертирующий вход уходит на землю, то разность U между входами ОУ равна 0.
Можно выделить устройства, в которых применяются ОУ:
- Предусилители.
- Усилители звуковых и видеочастотных сигналов.
- Компараторы U.
- Дифусилители.
- Диференциаторы.
- Интеграторы.
- Фильтрующие элементы.
- Выпрямители (повышенная точность выходных параметров).
- Стабилизаторы U и I.
- Вычислители аналогового типа.
- АЦП (аналого-цифровые преобразователи).
- ЦАП (цифро-аналоговые преобразователи).
- Устройства для генерации различных сигналов.
- Компьютерная техника.
Операционные усилители и их применение получили широкое распространение в различной аппаратуре.
Что такое биполярный транзистор и какие схемы включения существуют
Что такое триггер, для чего он нужен, их классификация и принцип работы
Что такое аттенюатор, принцип его работы и где применяется
Что такое компаратор напряжения и для чего он нужен
Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность
Что такое делитель напряжения и как его рассчитать?
Обозначение на схеме операционного усилителя
На схемах операционный усилитель обозначается вот так:
или так
Чаще всего ОУ на схемах обозначаются без выводов питания
Итак, далее по классике, слева два входа, а справа – выход.
Вход со знаком «плюс» называют НЕинвертирующий, а вход со знаком «минус» инвертирующий. Не путайте эти два знака с полярностью питания! Они НЕ говорят о том, что надо в обязательном порядке подавать на инвертирующий вход сигнал с отрицательной полярностью, а на НЕинвертирующий сигнал с положительной полярностью, и далее вы поймете почему.
» src=»https://www.youtube.com/embed/o_GLM28xh2U?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>Пример работы инвертирующего усилителя
Давайте посмотрим, как работает наш усилитель в программе-симуляторе электронных схем Proteus. Здесь мы собираем базовую схему с двухполярным питанием
В Proteus она будет выглядеть вот так:
Здесь мы взяли значение резисторов R2=10 кОм и R1=1 кОм, следовательно, коэффициент усиления такой схемы будет равен -10. Знак “минус” в данном случае просто инвертирует усиленный сигнал, что мы и видим на осциллограмме ниже. Входной сигнал – это розовая осциллограмма, а выходной – это желтая осциллограмма. Выходной сигнал находится в противофазе относительно входного, то есть инвертирует его. Отсюда и название “инвертирующий усилитель”.
Применение в биомедицине
Если к вам в больнице когда-либо подключали какое-либо электронное оборудование для снятия с вас показаний, то вы были подключены к датчикам, управляемым инструментальным усилителем. Схемы инструментальных усилителей находят широкое применение почти в каждом медицинском устройстве, как из-за вышеупомянутых преимуществ, так и из-за того, что инструментальные усилители также являются прецизионными усилительными устройствами.
Для инструментальных усилителей не требуются внешние резисторы обратной связи; вместо этого они содержат резисторы, изготовленные в самой микросхеме с использованием лазерной подгонки, и используют только один внешний настроечный резистор для настройки коэффициента усиления, что избавляет от несовпадения номиналов резисторов. Это позволяет устройству устанавливать точное значение коэффициента усиления в зависимости от требований схемы. Большинство биомедицинских датчиков, такие как датчики артериального давления, ультразвуковые преобразователи, поляризованные и неполяризованные электроды и датчики радиационной термометрии, имеют очень высокий импеданс и генерируют очень слабые сигналы.
Эти датчики требуют очень высокого импеданса, обеспечиваемого инструментальным усилителем, поскольку характеристики биопотенциальных электродов могут подвергаться воздействию нагрузки, что может вызвать искажение сигнала. Кроме того, усилители должны иметь высокий уровень подавления шума; больницы – одна из самых шумных сред, в которых датчик должен будет работать, с сотнями беспроводных устройств, работающих поблизости, и постоянно присутствующим фоном 50 Гц от света и электросети. Эти неустойчивые шумовые сигналы часто на несколько порядков больше, чем сигнал от биопотенциального электрода, который сам по себе составляет всего несколько милливольт. Легко узнаваемое медицинское применение таких усилителей – это электрокардиографы или аппараты ЭКГ, которые отслеживают изменения в дипольном электрическом поле сердца. Ниже приведен пример применения инструментального усилителя Analog Device серии AD82X в ЭКГ из руководства по применению.
Рисунок 4 – Применение инструментального усилителя Analog Device серии AD82X в ЭКГ
Все три инструментальных усилителя снимают разность сигналов с электродов датчиков, а последний электрод «F» действует как земля. Для этого устройства используются измерительные усилители, поскольку биопотенциальные электроды улавливают огромное количество шума от линий электросети, который необходимо ослаблять, чтобы устройство могло давать точные показания.
Дифференцирующий усилитель на оу.
Дифференцирующий
усилитель (дифференциатор) предназначен
для получения выходного сигнала
пропорционального скорости изменения
входного. При дифференцировании сигнала
ОУ должен пропускать только переменную
составляющую входного напряжения, а
коэффициент усиления дифференцирующего
звена должен возрастать при увеличении
скорости изменения входного напряжения.
Схема дифференциатора, на входе которого
включен конденсатор С, а в цепи ОС –
резистор, представлена на рис. 11.13.
Полагая, что ОУ идеальный, ток через
резистор обратной связи можно считать
равным току через конденсатор Iс+Ir=0,
,
тогда
Рассмотренный
дифференциатор используется редко
из-за следующих недостатков:
1.
Низкого входного сопротивления на
высоких частотах, определяемого емкостью
С;
2.
Относительно высокого уровня шумов
на выходе обусловленного большим
усилением на высоких частотах;
3.
Склонности к самовозбуждению. (данная
схема может быть неустойчивой в области
частот, где частотная характеристика
дифференциатора (кривая 1 на рис.11.14),
имеющая подъем 20 дБ/дек, пересекается
с АЧХ скорректированного ОУ, имеющего
спад −20дБ/ дек (кривая 2 на рис. 11.14).
Амплитудно-частотная характеристика
разомкнутой системы в некоторой части
частотного диапазона имеет
спад
–40 дБ/дек, который определяется
разностью наклона кривых 1 и 2, а фазовый
сдвиг ϕ = –180°, что и указывает на
возможность самовозбуждения.)
Чтобы
избежать проявления этих недостатков
дифференциатора принимаются следующие
схемотехнические решения:
1.
Резистор обратной связи шунтируется
конденсатором, ёмкость которого
выбирается такой, чтобы участок АЧХ ОУ
со спадом -20 дБ/дек начинался на частоте
более высокой, чем максимальная частота
полезного дифференциального сигнала.
Это приводит к уменьшению высокочастотных
составляющих шума в выходном сигнале.
Такой участок начинается на частоте
f=1/(2πRocCoc).
2.
Последовательно со входным конденсатором
С включается резистор, который ограничивает
коэффициент усиления на высоких частотах
дифференциатора. Это обеспечивает
динамическую устойчивость и снижает
входной ёмкостной ток от источника
сигнала.
3.
Использование ОУ с низким напряжением
смещения и малыми входными токами, а
также конденсаторов с малыми токами
утечек и малошумящих резисторов.
Практическая
схема дифференциатора и его АЧХ
приведены на
рис.
11.15. Введение резистора R приводит к
появлению на частотной характеристике
(кривая 1 на рис. 11.15,б) горизонтального
участка, где не происходит дифференцирования
на частотах, превышающих частоту
Логарифмирующий преобразователь
Одной из схем на операционном усилителе, которые нашли применение, является логарифмирующий преобразователь. В данном схеме используется свойство диода или биполярного транзистора. Схема простейшего логарифмического преобразователя представлена ниже
Данная схема находит применение, прежде всего в качестве компрессора сигналов для увеличения динамического диапазона, а так же для выполнения математических функций.
Рассмотрим принцип работы логарифмического преобразователя. Как известно ток, протекающий через диод, описывается следующим выражением
где IO – обратный ток диода,е – число е, основание натурального логарифма, e ≈ 2,72,q – заряд электрона,U – напряжение на диоде,k – постоянная Больцмана,T – температура в градусах Кельвина.
При расчётах можно принимать IO ≈ 10-9 А, kT/q = 25 мВ. Таким образом, входной ток данной схемы составит
тогда выходное напряжение
Простейший логарифмический преобразователь практически не используется, так как имеет ряд серьёзных недостатков:
- Высокая чувствительность к температуре.
- Диод не обеспечивает достаточной точности преобразования, так как зависимость между падением напряжения и током диода не совсем логарифмическая.
Вследствие этого вместо диодов применяют транзисторы в диодном включении или с заземлённой базой.
Операционный усилитель
Принцип работы дифференциального усилителя
Как говорилось выше, правильная работа дифференциального усилителя возможна при точной симметрии схемы. В этом случае ток покоя в обоих транзисторах и их изменение имеют одинаковое значение, так же как и напряжения на коллекторах транзисторов VT1 и VT2. Таким образом, при воздействии внешних факторов на транзисторы баланс моста не нарушается, а выходное напряжение не изменяется. В случае воздействия входного напряжения на один или оба входа схемы происходит изменение внутреннего сопротивления одного или обоих транзисторов и происходит разбалансировка моста и изменение выходного напряжения.
В реальных схемах достаточно трудно обеспечить абсолютную симметрию схемы, поэтому для регулировки токов покоя транзисторов используются резисторы R4’ и R4’’, которые иногда объединяют в общий переменный или подстроечный резистор, сопротивление которого составляет
Дифференциальные каскады усиления могут работать как с симметричными, так и с несимметричными входами и выходами. Несимметричным вход называется, в случае если входной сигнал поступает на один из входов (Вх.1 или Вх.2) и общим выводом, а симметричный вход – сигнал поступает между входными выводами. В случае с выходом происходит аналогичное именование: несимметричный выход – один из выходов (Вых.1 или Вых.2) и общий вывод, симметричный выход – между выходными выводами Вых.1 и Вых.2.
Несимметричные дифференциальные каскады обычно используются для перехода от несимметричных каскадов к симметричным каскадам и наоборот.
Основные схемы включения операционных усилителей
Характеристики операционного усилителя определяются схемой подключения внешних элементов. Здесь основную роль играет отрицательная обратная связь, поскольку она позволяет точно задать коэффициент усиления за счет выбора значений внешних сопротивлений. Работа различных схем будет пояснена на следующих примерах.
Инвертирующий операционный усилитель
Основная схема инвертирующего операционного усилителя показана на рис. «Инвертирующий усилитель«.
A1D DDN
IR1=U1/R1, IR2=-U2/R2
где IR1=IR2 , отсюда следует:
UA=(-R2/R1)·U1
Таким образом, выходное напряжение UА прямо зависит от входного напряжения U1 и выбора сопротивлений R2 и R1.
Неинвертирующий операционный усилитель
Неинвертирующий усилитель можно рассмотреть аналогично инвертирующему усилителю (см. рис. «Неинвертирующий усилитель» ).
DR1R212
UA= (R1/(R1+ R2))·UA
Отсюда следует, что :
U1= ((R1+ R2)/R1 )·U1 =(1+R2/R1 )·U1
Здесь выходное напряжение UA также прямо зависит от входного напряжения U1, и значений сопротивлений R2 и R1 однако здесь коэффициент усиления UA/U1 имеет значение не менее единицы; UА и U1 синфазны.
1 2Преобразователь импеданса или развязывающий усилительА1
Преимущество этой схемы заключается в том, что источник входного напряжения U1 не нагружен внутренним сопротивлением RЕ, поскольку входной ток IР приблизительно равен нулю. Это приводит к пренебрежимо малому падению напряжения на RЕ, а поскольку UD = 0, входное напряжение U1 передается на выход операционного усилителя как UА. Это является важным свойством этой схемы, в особенности для усиления сигналов датчиков, поскольку во многих случаях допустимый ток нагрузки датчика очень мал, т.е. любое увеличение нагрузки датчика вызывает значительное снижение величины его полезного сигнала.
Вычитающий усилительА12
UА=R1/R2(U2-U1)
Измерительный усилитель
В измерительных системах с датчиками и измерительными мостами часто требуется усиление дифференциального напряжения без неприемлемо высокой нагрузки датчика или моста.
21А
Измерительный усилитель можно разделить на две части: предварительный усилитель и вычитающий усилитель (см. рис. «Вычитающий усилитель» ) с дальнейшим усилением. На рис. «Схема подсистемы предварительного усиления измерительного усилителя» представлена схема контура предварительного усиления измерительного усилителя.
В соответствии с правилом отрицательной обратной связи разность напряжений на инвертирующем и неинвертирующем входах равна нулю. В каждом случае ток I может протекать через резисторы R и R’, поскольку входные токи IN1 и IN2 могут быть проигнорированы. Имеет место следующее:
I=(U1-U2)/R’ =(UA1-UA2)/(2R+R’),
таким образом
UA1-UA2 = (U1-U2)·(2R/R’+1)
Таким образом, усиленная разность двух напряжений U1 и U2 получается, как разность напряжений UD на двух выходах двух операционных усилителей. Для вывода этого напряжения UD, как выходного напряжения относительно массы UА может быть последовательно подключен вычитающий усилитель (см. рис. «Вычитающий усилитель» ), где UA1 подается вместо U1 и UА2 подается вместо U2.
Схема цепей смещения в усилителях типа UBbIX = – kUBX – b
Последний, четвёртый случай ОУ с однополярным питанием и переходной характеристикой вида UBbIX = – kUBX – b имеет схему представленную на рисунке ниже
Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX — b
Данная схема представляет собой инвертирующий сумматор и состоит из ОУ DA1, развязывающего конденсатора С1, резисторов R1, R2 и R3. С учётом элементов схемы передаточная характеристика будет иметь вид
Тогда коэффициенты k и b можно представить в следующем виде
Расчёт усилителя с переходной характеристикой вида UBbIX = – kUBX – b
Для примера рассчитаем усилитель реализующий переходную характеристику вида UBbIX = – kUBX — b. В качестве начальных условий примем следующие параметры схемы: диапазон входного напряжения UBX = -0,2 … -0,8 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.
- Рассчитаем коэффициенты k и b, для этого решим систему линейных уравнений
Решив данную систему, получим k = – 6,67 и b = — 0,334. Тогда переходная характеристика будет иметь вид
- Определим величину сопротивления R1 и R3
Примем R1 = 10 кОм, тогда R3 = 6,67 * 10 = 66,7 кОм. Примем R3 = 68 кОм.
- Определим величину сопротивления R2
Примем R2 = 200 кОм.
Эффект виртуальной земли
Правая сторона конденсатора удерживается на напряжении 0 вольт из-за эффекта «виртуальной земли». Поэтому ток «через» конденсатор протекает исключительно из-за изменения входного напряжения. Неизменное входное напряжение не будет вызывать ток через C, но изменение входного напряжения будет.
Ток конденсатора проходит через резистор обратной связи, создавая на нем падение напряжения. Линейная положительная скорость изменения входного напряжения приведет к устойчивому отрицательному напряжению на выходе операционного усилителя. И наоборот, линейная отрицательная скорость изменения входного напряжения приведет к устойчивому положительному напряжению на выходе операционного усилителя. Эта инверсия полярности от входа к выходу обусловлена тем, что входной сигнал подается (по сути) на инвертирующий вход операционного усилителя, поэтому он действует как инвертирующий усилитель, рассмотренный ранее. Чем быстрее изменяется напряжение на входе (положительно или отрицательно), тем выше напряжение на выходе.
Формула для определения выходного напряжения дифференциатора следующая:
\
Пара Дарлингтона
Рисунок 1 – Схема для буферизации выходного тока операционного усилителя на паре Дарлингтона
Условное обозначение на схеме рассказывает большую часть истории. Пара Дарлингтона – это два биполярных транзистора с общим коллектором, объединенных в один корпус. В результате получается устройство, которое работает очень похоже на обычный биполярный транзистор, но с чрезвычайно высоким hFE – общий коэффициент усиления по току приблизительно равен hFE первого транзистора, умноженному на hFE второго транзистора. В этот момент вы можете подумать: «У меня много транзисторов 2N2222, я просто подключу их в стиле Дарлингтона и скажу, что это круто». Ну, это не так просто. Взгляните на эквивалентную схему для транзистора Дарлингтона TIP142T от Fairchild:
Рисунок 2 – Эквивалентная схема транзистора Дарлингтона TIP142T от Fairchild
В дополнение к биполярным транзисторам у нас тут защитный диод и два резистора. Резисторы уменьшают время выключения, обеспечивая путь разряда для емкости перехода база-эмиттер правого транзистора, и они обеспечивают определенное состояние для базы правого транзистора, которая в противном случае висела бы в воздухе, когда пара Дарлингтона находится в режиме отсечки. Они также приводят к снижению hFE, потому что часть тока базы идет в обход переходов база-эмиттер. Это уменьшение усиления на самом деле во многих ситуациях выгодно, потому что оно уменьшает влияние тока утечки – и дело в том, что вам на самом деле не нужен весь коэффициент усиления по току, который был бы примерно равен 10 000, если предположим, что каждый биполярный транзистор имеет hFE = 100. Суть в том, что, вероятно, лучше купить устройство Дарлингтона, а не делать свое собственное из двух отдельных биполярных транзисторов.
Вот схема LTspice с парой Дарлингтона вместо одного биполярного транзистора.
Рисунок 3 – Схема для буферизации выходного тока операционного усилителя на паре Дарлингтона в LTspice
В LTspice по умолчанию нет устройств Дарлингтона, но вы можете зайти , чтобы скачать файлы подсхем и условных обозначений для TIP142.
Вот график входного напряжения VIN, выходного напряжения VOUT и напряжения, приложенного к базе транзистора Дарлингтона (выходного напряжения ОУ), VBASE.
Рисунок 4 – График входного напряжения схемы, выходного напряжения схемы и напряжения, приложенного к базе транзистора Дарлингтона (выходного напряжения ОУ)
Как и в схеме с одним биполярным транзистором, выходное напряжение повторяет входное напряжение (график входного напряжения VIN скрыт под графиком выходного напряжения VOUT)
Обратите внимание, что напряжение на базе транзистора Дарлингтона VBASE приблизительно на 1,3–1,4 В выше напряжения на нагрузке; это потому, что теперь у нас есть два падения напряжения база-эмиттер вместо одного. Таким образом, вы должны быть особенно осторожны, чтобы убедиться, что ваши напряжения питания транзистора Дарлингтона и операционного усилителя достаточно высоки, чтобы обеспечить весь диапазон напряжений нагрузки (более подробно об этом см
раздел «Просто, но без «защиты от дурака»» в конце предыдущей статьи).
Следующий график показывает ток нагрузки и ток, протекающий через базу транзистора Дарлингтона.
Рисунок 5 – График ток нагрузки и тока базы первого транзистора пары Дарлингтона
Таким образом, при токе нагрузки 360 мА ток базы составляет 169 мкА, что соответствует hFE ≈ 2130. Техническое описание указывает, что коэффициент усиления по току должен быть около 1000; возможно, эта конкретная модель SPICE не так точна, как могла бы быть. В любом случае нам удалось значительно снизить выходной ток, требующийся от операционного усилителя.
Другой способ справиться с операционным усилителем, который не может обеспечить достаточный выходной ток, – это использовать MOSFET-транзистор вместо биполярного транзистора. Мы рассмотрим реализацию с MOSFET в следующей статье.
Идеальный и реальный операционные усилители
Идеальный операционный усилитель
- Синфазное входное сопротивление между входом и землей, где: rGL_P = UP/IP; rGL_N = UN/IN. В общем случае значение rGL можно проигнорировать.
- Дифференциальное входное сопротивление между двумя входами; здесь: rD = (UP -UN)/IP. rD увеличивается за счет отрицательной обратной связи.
- Дифференциальное выходное сопротивление rA = dUA/dIA. rA — за счет отрицательной обратной связи снижается.
- Напряжение смещения Uos — количественная характеристика того факта, что даже в случае короткого замыкания между двумя входами (т.е. UD = 0) выходное напряжение UA не равно нулю.
- Коэффициент ослабления синфазного сигнала (CMRR): количественная характеристика, описывающая изменение выходного напряжения UA при одновременном синхронном изменении входных напряжений UP и UN (в случае синфазных периодических входных сигналов), т. е., когда UD остается постоянным.
- Коэффициент подавления пульсаций питания (PSRR): количественная характеристика, описывающая изменение выходного напряжения UA при изменении напряжений питания.
Поэтому основные идеализации заключаются в следующем:
- Коэффициент усиления при разомкнутой цепи обратной связи АD приближается к бесконечности; в случае отрицательной обратной связи имеет место следующее: UD = 0.
- Входные токи IN и IР приближаются к нулю.
- Если IN и IР близки к нулю, это означает, что синфазное и дифференциальное входные сопротивления приближаются к бесконечности.
- Напряжение смещения Uos приближается к нулю.
- Выходное сопротивление RA приближается к нулю.
- Коэффициент ослабления синфазного сигнала (CMRR) приближается к бесконечности, т.е. в случае равного и синфазного изменения напряжений UP и UN, UА остается неизменным.
- Коэффициент ослабления пульсаций питания (PSRR) приближается к бесконечности, т.е. в случае изменения напряжения питания, UА остается неизменным.
- Поведение усилителя не зависит от частоты.
На практике, разумеется, значения вышеуказанных параметров отличны от идеальных:
- Коэффициент усиления при разомкнутой цепи обратной связи АD лежит в диапазоне от 104 до 107.
- Входные токи IN и IР лежат в диапазоне от 10 пА до 2 мкА.
- Синфазное входное сопротивление лежит в диапазоне от 106 до 1012 Ом, а дифференциальное входное сопротивление достигает 1012 Ом.
- Выходное сопротивление RA лежит в диапазоне от 2 до 50 Ом.
- Коэффициент ослабления синфазного сигнала (CMRR) лежит в диапазоне от 60 до 140 дБ.
- Коэффициент ослабления пульсаций питания (PSRR) лежит в диапазоне от 60 до 100 дБ.
- Поведение усилителя зависит от частоты (пропускание низких частот).
Логарифмические усилители
В основе логарифмического усилителя лежит зависимость тока, протекающего через p-n-переход полупроводникового прибора, от напряжения на этом p-n-переходе. Простейшим прибором, который имеет p-n-переход, является полупроводниковый диод, у которого отношение тока протекающего через p-n-переход и напряжения имеет следующий вид
где I – ток, протекающий через диод,
IОБР – обратный ток насыщения диода,
q – заряд электрона, q ≈ 1,6 * 10-19 Кл.
U – напряжение на диоде,
k – постоянная Больцмана, k ≈ 1,38 * 10-23 Дж/К.
T – абсолютная температура в градусах Кельвина.
Для того, чтобы на выходе ОУ напряжение изменялось по логарифмическому закону, необходимо диод включить в цепь обратной связи так, как показано на рисунке ниже
Схема простейшего логарифмического усилителя.
В данной схеме ток, протекающий через диод VD1, равен входному току схемы, но противоположен по значению, а напряжение на диоде UVD1 будет равно выходному напряжению UBbIX
Следовательно, выходное напряжение будет определяться следующим выражением
Для того, чтобы соблюдалась логарифмическая зависимость выходного напряжения от входного тока ОУ, необходимо чтобы входной ток значительно превышал обратный ток насыщения диода, в этом случае выходное напряжение составит
Основная характеристика логарифмического усилителя – коэффициент передачи определяется как отношение выходного напряжения к декаде изменения входного напряжения. Таким образом, четырёхдекадный логарифмический усилитель работает при изменении входного напряжения от 1 мВ до 10 В.
Аналоги LM358
Инвертирующее включение рис 1. При более низком синфазном входном напряжении поведение входного каскада становится непредсказуемым.
Инвертирующие операционные усилители имеют простую схему: Такие операционные усилители стали популярными из-за своей простой конструкции.
Это означает сохранение фазы сигнала. Вследствие этого вместо диодов применяют транзисторы в диодном включении или с заземлённой базой.
Усилители, имеющие вход с полным размахом, схемотехнически заметно сложнее, чем обычные. Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Здесь используется инверсное включение резистивной матрицы R-2R. Это приводит также что коэффициент усиления для каждого входа будет равен 1.
Читайте дополнительно: Сп по прокладке кабельных линий
Аналоги LM358
Из схемы ясно, что оба дифференциальных усилителя входного каскада управляются одновременно. Таким образом, основные параметры данной схемы описываются следующим соотношением Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов. Для получения синусоидальной формы выходного сигнала используют несколько способов построения схем.
Других преимуществ, кроме возможности работы с широким диапазоном входного синфазного сигнала, они не имеют. Аналогичное ограничение накладывается на выходной диапазон устойчивости источника тока на основе операционного усилителя. Такого высокого результата вряд ли удастся достигнуть с обычным эмиттерным повторителем. На вторичной обмотке сделано ответвление, причем количество витков до этого ответвления равно числу витков после ответвления. Это позволяет усилителю выдерживать при однополярном питании входное синфазное напряжение до —15 В.
Но в этом есть смысл, ведь вспомним свойство операционника, он обладает высоким входным сопротивлением и низким выходным. Сигнал на выходе не изменится пока сигнал на входе не опустится менее -1,36В. Повторитель выдает на выходе то напряжение, которое было подано на его вход.
В реальных же ОУ изменение синфазного входного напряжения вызывает изменение правда, весьма незначительное выходного напряжения. Обычно Uсдв имеет значение 10 — мВ. Лекция 54. Усилитель неинвертирующего типа на операционном усилителе.
Включение 4
Измеряемое напряжение подается на инвертирующий вход, опорное — на прямой.
Пока напряжение на инвертирующем входе меньше, чем на прямом, компаратор выдает «ноль», и светодиод не горит. Иначе — «единица».
Вообще, лучше, конечно, пользоваться первыми двумя общепринятыми схемами, чтобы не было путаницы.
Еще один важный момент — подключение нагрузки (светодиода) к другому напряжению (как мог, изобразил 24 вольта). Справедливо для любого из ранее изображенных включений.
О нагрузке. В даташите о максимальном токе коллектора сказано, что больше 6-20 мА микросхема не выдаст. То есть включить один светодиод — не проблема, а вот что побольше…
Кусок светодиодной ленты, подключенный прямо к выходу компаратора (по третьей или четвертой схеме, без резистора R3) светил слабо (1 мА). Пришлось поддать напряжения до 12 вольт, и тогда ток коллектора вырос до 14 мА. При подключении ленты напрямую к блоку питания — 32 мА. Таким образом, как ни крути, а максимум, что можно получить конкретно от этой LM-ки — 14 мА.
Вывод — что-то прожорливое есть смысл пускать через транзистор, загнанный в ключевой режим. При этом каскаду с общим эмиттером, инвертирующему сигнал, как нельзя лучше подойдет третья или четвертая схемы включения. Ведь если сигнал инвертировать дважды — получится опять исходный сигнал.Например, на прямом входе компаратора «единица» (по привычной логике — на прямом входе напряжение больше, чем на инвертирующем). Третья схема сделает из нее «ноль» на выходе. А каскад с общим эмиттером, «перевернув» этот «ноль», опять даст «единицу».
Стрелка цепляется к выходу компаратора (R1 — это R3 из предыдущей схемы). R2, возможно, придется подобрать: если он будет слишком маленьким, то транзистор может сгореть, а если слишком большим — не откроется (можно попробовать 4,7 кОм). При подаче «единицы» в базе транзистора должно быть примерно 0,7 В (для кремния). К R3 тоже есть вопросы, но слишком малым и он не должен быть.
Моделирование. Когда на входе «ноль» (а «ноль» третьей и четвертой схемы — это в нормальном включении «единица»), то на выходе — «единица», светодиод работает. С чего начали, к тому и пришли — «единица» опять стала сама собой.
Теперь, когда на входе «единица», то на выходе «ноль». Вот она, знаменитая инверсия каскада с общим эмиттером!
А если включать нагрузку в коллектор транзистора, то «единицы» и «нули» по входу и выходу будут совпадать.В общем, простор для творчества — колоссальный.
Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.
В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.
Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)
Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.
Схема цепей смещения в усилителях типа UBbIX = kUBX + b
Схема, реализующая передаточную характеристику вида UBbIX = kUBX + b, представлена на рисунке ниже
Схема усилителя с передаточной характеристикой типа UBbIX = kUBX + b.
Данная схема представляет собой неинвертирующий сумматор и состоит из развязывающих конденсаторов С1 и С2 имеющих ёмкость порядка 0,001 – 0,1 мкФ, резисторов R1, R2, R3 и R4 и самого ОУ DA1 в неинвертирующей схеме. Передаточная характеристика данной схемы описывается следующим выражением
тогда коэффициенты k и b будут определяться следующими выражениями
Расчёт усилителя с характеристикой типа UBbIX = kUBX + b
Для примера рассчитаем элементы усилителя со следующими параметрами: входное напряжение UBX = 0,1…1 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.
- Определим тип передаточной характеристики. Определяем коэффициенты k и b
Решив данную систему, получим k = 4,44 и b = 0,556, тогда передаточная характеристика будет иметь следующий вид
- Рассчитаем номиналы резисторов R1 и R2, решив следующую систему уравнений относительно (R3 + R4) / R3
Подставив значения коэффициентов k, b и UCM получим следующее уравнение
Величина резистора R1 обычно выбирается в пределах от 1 до 10 кОм, так как резистор R1 определяет входное сопротивление усилителя и его следует увеличивать, чтобы исключить перегрузку источника сигнала.
Выберем R1 = 10 кОм, тогда R2 = 47,91 * 10 = 479,1 кОм. Примем R2 = 470 кОм.
- Рассчитаем величины сопротивлений R3 и R4
Величина резистора, также как и R1 выбирается в пределах 1 … 10 кОм, поэтому примем R3 = 10 кОм, R4 = 10 * 3,53 = 35,3 кОм. Примем R4 = 36 кОм.
Вместо заключения
Закончить статью о дифференциальных усилителях невозможно без рассказа о тех сферах, где они применяются. Как уже понятно из названия, прежде всего это применение в качестве усилителя с большим коэффициентом усиления. Также широко применяются в тех сферах, где обычные усилители неэффективны из-за большого уровня помех. Кроме этого на основе дифференциальных усилителей построены операционные усилители различного назначения, которые имеют коэффициент усиления от 100 тыс. нескольких миллионов, а входное сопротивление составляет порядка нескольких ГИГАОМ. Также дифференциальные усилители применяют прежде всего в схемах усилителей постоянного тока, для которых они и были разработаны в первую очередь, а также в схемах сравнения и так далее.
Ограничение уровня выходного напряжения компаратора и триггера Шмитта
Применение положительной обратной связи (ПОС) в компараторах и триггерах Шмитта ускоряет переключение схем, но в связи с тем, что выходное напряжение UВЫХ изменяется от UНАС+ до UНАС-, то время переключения составляет довольно значительную величину (от долей до единиц микросекунд).
Кроме того существует проблема несовместимостей уровней выходного напряжения, к примеру, при напряжении питания ОУ UПИТ = ±15 В, выходное напряжение составит UВЫХ ≈ ±14 В (UНАС+ ≈ +14 В, а UНАС- ≈ -14 В), в то время как уровни ТТЛ микросхем составляют около +5 В или 0 В.
Для устранения вышеописанных проблем применяют так называемую привязку или ограничение уровня выходного напряжения, для этого в компаратор или триггер Шмитта вводят ООС в виде различных схем ограничения. Простейшими ограничительными схемами являются диоды или стабилитроны. Схема триггера Шмитта с ограничение выходного напряжения показана ниже
Ограничение выходного напряжения в триггере Шмитта работает следующим образом. При поступлении на инвертирующий вход напряжения меньше, чем напряжение опорного уровня (UВХ ОП), то выходное напряжение UВЫХ начинает изменяться в положительном направлении и при достижении напряжения стабилизации стабилитрона UСТ напряжение на выходе перестанет расти, а будет изменяться только ток. При этом выходное напряжение будет равняться напряжению стабилизации стабилитрона (UВЫХ = UСТ).
В случае если входное напряжение начнёт увеличиваться, выше опорного напряжения, то на выходе напряжение начнёт уменьшаться и в этом случае направление тока через стабилитрон начнёт изменяться на противоположный, а стабилитрон начнёт вести себя как диод. В результате падение напряжения на нём составит примерно 0,7 В независимо от величины протекающего через него тока, а на выходе напряжение составит -0,7 В.
Таким образом, при использовании стабилитрона выходное напряжение триггера Шмитта составит: UВЫХ1 = UСТ (при отсутствии ограничения UНАС+) или UВЫХ2 ≈ 0,7 (при отсутствии ограничения UНАС-).
Для симметричного ограничения выходного напряжения могут применяться последовательно включенные диоды или стабилитроны, что показано на рисунке ниже
В данной схеме реализуется симметричное ограничение выходного напряжения относительно опорного напряжения, причем выходное напряжение выше опорного напряжения ограничивается стабилитроном VD1, а напряжение при этом составит на 0,7 В больше напряжения стабилизации. В случае же выходного напряжения ниже опорного, то выходное напряжение будет на 0,7 В ниже напряжения стабилизации стабилитрона VD2.
При расчёте компараторов и триггеров Шмитта с ограничением выходного напряжения в качестве UНАС+ необходимо использовать UСТ (когда используется один стабилитрон) или UСТVD1 (при двухстороннем ограничении). А вместо UНАС- необходимо использовать значение падения напряжения на диоде примерно 0,7 В (при одном стабилитроне) или UСТVD2 (при двухстороннем ограничении).
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Прошло почти два года с тех пор, как я пытался приручить операционный усилитель УД708 для сравнения двух сигналов. Знаний тогда было мало, поэтому времени уходило много, а главное — еще и безрезультатно. Но в итоге для своей задачи я смог «договориться» с компаратором LM393N. А на днях перебирал поделку, в которой впервые использовал эту микросхему, и решил вспомнить, как работает компаратор. Заодно и другим рассказать.Компаратор — это устройство, сравнивающее два аналоговых сигнала. В самом простом случае — операционный усилитель без обратных связей. На входы ему подаются два напряжения — эталонное, оно же опорное (известно заранее) и измеряемое. На выходе возможны два состояния:
«1» — когда напряжение на прямом входе больше, чем на инвертирующем;«0» — когда напряжение на прямом входе меньше, чем на инвертирующем.
Некоторые компараторы самостоятельно формируют уровни логических нуля и единицы (например, «ноль» — это ноль, «единица» — плюс пять вольт), но LM393 — с открытым коллектором. Ей для создания выходного напряжения нужен внешний резистор, подключающийся либо к «плюсу» питания, либо к другому «плюсу» (в разумных пределах, конечно).
Первые две схемы — каноничное включение нагрузки под открытый коллектор. Я подключал внешний резистор к питающему «плюсу».
Логарифмического усилителя с транзистором в цепи ОС
Простейший логарифмический усилитель имеет несколько существенных недостатков, поэтому применяется крайне редко. Более широкое распространение получил логарифмический усилитель в цепи обратной связи, которого стоит биполярный транзистор.
Главный недостаток диодных усилителей заключается в том, что его проводимость определяется электронами и дырками одновременно. В тоже время транзисторная проводимость определяется или дырками или электронами, в зависимости от типа транзистора (n-p-n или p-n-p). Поэтому температурная зависимость транзистора меньше, чем диода. Зависимость коллекторного тока от напряжения между базой и эмиттером транзистора, определяется, как и для диода
где IC – коллекторный ток транзистора,
UBE – напряжение между базой и эмиттером транзистора.
Транзистор, для получения логарифмической выходной характеристики, включают двумя основными способами: с заземлённой базой и в диодном включении, объединяя базовый и коллекторный выводы транзистора. Данные схемы включения транзисторных логарифмических усилителей приведены ниже
Схемы логарифмических усилителей с транзистором в цепи обратной связи.
Напряжение на выходе логарифмического усилителя в таких схемах определяется по следующему выражению
Применение логарифмического усилителя с транзистором в цепи обратной связи позволяет значительно расширить динамический диапазон работы усилителя, так усилитель с диодом в цепи ОС имеет динамический диапазон примерно 3 декады, а усилитель с транзистором в цепи ОС – 7 декад.
Идем ниже земли
Операционные усилители часто используются с отрицательными выходными напряжениями. Очевидным примером являются синусоидальные сигналы, которые можно найти в аудио, видео и радиочастотных приложениях. Когда операционный усилитель генерирует положительное выходное напряжение, выходной ток течет «из» операционного усилителя и через нагрузку «в» узел земли. Следовательно, когда выходной сигнал положительный, операционный усилитель «отдает» ток. При отрицательном выходном напряжении ток протекает «из» узла земли через нагрузку и «в» операционный усилитель, поэтому теперь операционный усилитель «принимает» ток. Таким образом, для поддержки сигналов, которые по напряжению находятся выше и ниже уровня земли, нам необходим буфер выходного тока, который может «принимать» и «отдавать» ток. Вуаля:
Рисунок 6 – Схема для буферизации выходного тока операционного усилителя на двухтактном усилителе на биполярных транзисторах
Общая идея та же: биполярные транзисторы обеспечивают способность пропускать более высокий ток, а схема обратной связи заставляет ОУ изменять свой выходной сигнал любым необходимым способом, чтобы гарантировать, что напряжение нагрузки Vвых равно Vвх. Разница заключается в добавлении PNP транзистора, который выполняет для отрицательных напряжений нагрузки то же самое, что NPN транзистор для положительных напряжений нагрузки. Другими словами, когда входное напряжение положительное, выходной сигнал операционного усилителя становится положительным, чтобы открыть NPN транзистор, и ток подается от NPN транзистора к нагрузке. Когда входное напряжение отрицательное, выходной сигнал операционного усилителя становится отрицательным, чтобы открыть PNP транзистор, и PNP транзистор принимает ток нагрузки. Вот схема LTspice:
Рисунок 7 – Схема для буферизации выходного тока операционного усилителя на двухтактном усилителе на биполярных транзисторах в LTspice
Обратите внимание, что я выбрал модель PNP транзистора, рекомендованную в качестве комплементарного транзистора в техническом описании для 2SCR293P:
Рисунок 8 – Рекомендация по выбору комплементарного транзистора для 2SCR293P
Вот график для входного напряжения VIN и выходного напряжения VOUT. Как обычно, график входного напряжения скрыт под графиком выходного напряжения.
Рисунок 9 – Графики входного и выходного напряжений для схемы буферизации выходного тока операционного усилителя на двухтактном усилителе на биполярных транзисторах
Следующая увеличенная диаграмма включает в себя график выходного напряжения операционного усилителя (VBASE)
Обратите внимание, что действие отрицательной обратной связи заставляет операционный усилитель автоматически обходить «мертвую зону», т. е
диапазон напряжений (примерно от –0,7 В до +0,7 В), в котором оба транзистора находятся в закрытом состоянии.
Рисунок 10 – Графики входного и выходного напряжений схемы и выходного напряжения операционного усилителя
Интегратор
Различные разновидности интеграторов применяются во многих схемах, например, в активных фильтрах или в системах автоматического регулирования для интегрирования сигнала ошибки.
Схемы интеграторов: простой RC-интегратор и интегратор на основе ОУ.
Простой RC-интегратор имеет два серьёзных недостатка:
- При прохождении сигнала через простой RC-интегратор происходит ослабление входного сигнала.
- RC-интегратор имеет высокое выходное сопротивление.
Интегратор на основе ОУ лишён данных недостатков, поэтому на практике применяется чаще. Он состоит из ОУ DA1, входного резистора R1 и конденсатора С1, который обеспечивает обратную связь.
Работа интегратора основана на том, что инвертирующий вход заземлён, согласно принципу виртуального замыкания. Через резистор R1 протекает входной ток IBX, в тоже время для уравновешивания точки нулевого потенциала, конденсатор будет заряжаться током одинаковым по величине IBX, но с противоположным знаком. В результате на выходе интегратора будет формироваться напряжение, до которого конденсатор заряжается этим током. Входное сопротивление интегратора будет равно сопротивлению резистора R1, а выходное сопротивление будет определяться параметрами ОУ.
Основные соотношения интегратора
Основным недостатком интегратора на ОУ является явление дрейфа выходного напряжения. В основе данного явления лежит то, что конденсатор С1, кроме заряда входным током заряжается различными токами утечки и смещения ОУ. Последствием данного недостатка является появление напряжения смещения на выходе схемы, которое может привести к насыщению ОУ.
Для устранения данного недостатка может быть применено три способа:
- Использование ОУ с малым напряжение смещения.
- Периодически разряжать конденсатор.
- Шунтировать конденсатор С1 сопротивление RP.
Реализация данных способов показана на рисунке ниже
Устранение дрейфа выходного напряжения интегратора.
Включение резистора RСД между землёй и неинвертирующим входом позволяет снизить входное напряжение смещения, за счёт уравновешивания падения напряжения на входах ОУ, величина RСД = R1||RP, либо RСД = R1 (при отсутствии RP).
Величина резистора RP выбирается из того, что постоянная времени RPС1 должна быть значительно больше, чем период интегрирования, то есть R1С1
Конденсаторы, применяемые в интеграторах, должны иметь очень малый ток утечки, особенно если частота интегрирования составляет единицы Гц.
Операционный усилитель это интегральная микросхема
Операционный усилитель это один из главных составных частей нынешней электроники. Обладая прекрасными характеристиками и легкости расчетных функций, ОУ довольно просты в использовании. У операционных усилителей есть еще другое, параллельное название — дифференциальный усилитель, из-за того, что у него имеется возможность усиления разности входных напряжений.
В основном операционные усилители производятся в виде интегральных микросхем. В зависимости от назначения, могут размещаться по одному чипу в корпусе, а в некоторых случаях по два и более. Также производители выпускают ОУ различных модификаций, которые имеют существенные различия в технических характеристиках относительно друг друга.
По теоретическим расчетам ОУ обладает совершенными параметрами, в практическом же применении его характеристики только на пути к безупречным. Тем не менее в определенных моментах они достигаются. Применение понятия «совершенного» операционного усилителя способствует сделать расчеты более простыми.
Ламповый операционный усилитель K2-W
Такими безупречными характеристиками являются:
- бесконечно большое усиление при открытой петли обратной связи;
- бесконечно широкая полоса передаваемых частот;
- бесконечно большое входное сопротивление;
- импеданс равный нулю;
- выходное напряжение равно нулю при равенстве входных напряжений.
Из этого можно понять, что такие параметрические данные не могут быть гарантированы в полном объеме, хотя производители ежегодно улучшают характеристики операционников, тем самым делая их почти идеальными.
Существует некоторое количество ключевых схем, по которым работает ОУ:
- инвертирующий
- не инвертирующий
- вычитание
- сложение
- дифференцирование
- интегрирование
- повторитель напряжения
- аналоговый компаратор
Принцип действия инвертирующего усилителя
Данная аналоговая схема считается наиболее простой и часто используемая в электронике. Рабочие действия ОУ заключаются в усилении либо снижении сигнала на входе устройства, при этом он способен выполнять фазовую модуляцию. Функция усиливающая сигнал определяется буквенным обозначением k. Представленное графическое изображение демонстрирует определенное воздействие операционного усилителя в данной схеме:
Амплитуда отображенная синим цветом является сигналом во входном тракте устройства, а амплитуда красного цвета — выходная цепь. Как можно заметить на графике, идет двойное усиление сигнала, при этом амплитуда имеет перевернутый вид.
Принципиальная схема данного усилителя показана на снимке ниже:
Принцип действие данной схемы, как бы обосновывает популярность этого электронного прибора. Для того, чтобы определить коэффициент усиления сигнала на выходе нужно воспользоваться формулой приведенной ниже:
Включенный в схему постоянное сопротивление R3 выполняет функцию защиты микросхемы.
Принцип действия не инвертирующего усилителя
Схема не инвертирующего усилителя выполнена по аналогии инвертирующего усилителя, но с одним лишь отличием, в этом варианте не выполняется изменение полярности сигнала, то-есть фаза остается без изменений. Показанное ниже графическое изображение показывает прохождение выходного сигнала:
В данной схеме, при подаче во входную цепь синусоидального сигнала, усиленный выходной импульс, так же как и в предыдущей схеме составляет k=2, то есть двойной коэффициент усиления. График показывает, что при этом изменился только размах амплитуды.
На изображении ниже, показана схема ОУ работающего как не инвертирующий усилитель:
Показанная здесь схема, с включенными в нее парой резисторов, так же отличается своей простотой в исполнении. Сигнальный импульс по входу поступает на плюсовой вход микросхемы. Для расчета коэффициента усиления сигнала служит следующая формула:
Формула определяет: у усиливающего сигнала не должно быть условное значение, которое меньше «1», тем самым микросхема не даст возможности уменьшить сигнал.
Принцип работы операционного усилителя в схеме вычисления — дифференциальный усилитель
Следующим вариантом применения ОУ будет дифференциальный усилитель, и возможностью получения по входу разность двух сигнальных импульсов с последующим усилением. Представленный ниже график показывает работу микросхемы.
Очередная схема, способна выполнить следующую работу ОУ:
Данный вариант принципиальной схемы не такой простой как представленные выше, а немного посложнее. Для вычисления выходного напряжения, нужно воспользоваться формулой:
Одна часть формулы определяет усиление либо уменьшение, другая часть высчитывает разницу 2-х напряжений.
Операционный усилитель работающий по схеме сложения
Этот характер работы микросхемы кардинально отличается от варианта вычитания. В данном случае имеется значительное преимущество прибора, а именно: его способность обрабатывать одновременно несколько сигнальных импульсов. Такой принцип функционирования используют все звуковые микшеры.
Представленная схема показывает ее возможность сложения большого количества сигналов, она не очень сложная и разобраться с ней не составит никакого труда. Для вычисления данных применяется формула:
Начинающим. Операционные усилители
Инвертирующий Операционный Усилитель | Основы электроакустики
Инвертирующий Операционный Усилитель
Усилители на ОУ используют отрицательную обратную связь (ООС), поэтому есть несколько простых правил, которые определяют поведение такого усилителя. Следует воспользоваться тремя упрощающими предположениями о свойствах ОУ: коэффициент усиления ОУ без обратной связи и входное сопротивления бесконечно велики, выходное сопротивление равно нулю.
При анализе следует помнить, что большой коэффициент усиления по напряжению ОУ приводит к тому, что изменение напряжения между входами на несколько долей милливольта вызывает изменение выходного напряжения в пределах его полного диапазона. Из этого следует первое правило: ОУ усиливает разность напряжения между входами и за счет внешней схемы ООС передает напряжение с выхода на вход таким образом, что разность напряжений между входами практически равна нулю.
Входное сопротивление различных типов ОУ находится в пределах от мегаом до тысяч мегаом, входные токи – от долей наноампер до пикоампер. Это дает основание сформулировать второе правило: входы операционного усилителя токов не потребляют. Эти правила дают достаточную основу для анализа схем на ОУ. Схема инвертирующего усилителя на ОУ приведена на рис.
Рис. Инвертирующий усилитель на ОУ
Анализируя эту схему с учетом сформулированных выше правил, можно показать, что при заземленном неинвертирующем входе ОУ напряжение на инвертирующем входе также равно нулю. Это означает, что падение напряжения на резисторе RОС равно UВЫХ, а падение напряжения на резисторе R1 равно UВХ. Если входные токи ОУ равны нулю, то UВЫХ / RОС = –UВХ / R1, коэффициент усиления по напряжению КU = UВЫХ / UВХ = –RОС / R1. Знак «минус» показывает, что выходной сигнал инвертирован относительно входного (сдвинут на 180º).
Данная схема является усилителем постоянного тока В этой схеме реализована параллельная ООС по напряжению, поскольку сигнал ООС оказывается включенным не последовательно с входным сигналом, а подается параллельно с ним на один и тот же вход.
Как известно, параллельная ООС уменьшает входное сопротивление усилителя. В схеме потенциал точки соединения R1 и RОС всегда равен нулю, а эта точка называется «виртуальный ноль» (мнимая земля). Следовательно, входное сопротивление схемы RВХ = R1. Выходное сопротивление схемы мало и равно долям ома. Таким образом, недостатком схемы является малое входное сопротивление, особенно для усилителей с большим коэффициентом усиления по напряжению, в которых резистор R1, как правило, бывает небольшим.Достоинством схемы является малое значение синфазного напряжения, практически равного нулю. Тот факт, что коэффициент усиления определяется всего лишь соотношением двух сопротивлений, делает применение инвертирующего усилителя очень гибким.
Практическое использование усилителей на ОУ имеет ряд особенностей. ОУ должен находиться в активном режиме, его входы и выходы не должны быть перегружены. Например, если подать на вход усилителя чересчур большой сигнал, то это приведет к тому, что выходной сигнал станет равным напряжению насыщения (обычно его величина меньше напряжения питания на 2 В).
В схеме ОУ обязательно должны быть предусмотрена цепь обратной связи по постоянному току, в противном случае ОУ обязательно попадет в режим насыщения. Многие ОУ имеют довольно малое предельно допустимое дифференциальное входное напряжение. Максимальная разность напряжений между инвертирующим и неинвертирующим входами может быть ограничена величиной 5 В для любой полярности напряжения. Если пренебречь этим условием, то возникнут большие входные токи.
Из-за наличия входного напряжения смещения, при нулевом напряжении на входе напряжение на выходе равно UВЫХ=KUUСМ. Для усилителя, имеющего коэффициент усиления, равный 100 и входное напряжение смещения 2 мВ, выходное напряжение смещения может достигать значения ±0,2 В. Для решения этой проблемы нужно использовать цепи внешней коррекции нуля (используя ОУ с такими возможностями), выбирать ОУ с малым значением смещения. Если усиление постоянного тока не нужно, то можно использовать разделительные емкости в последовательной цепи передачи входного и выходного сигнала.
Если в инвертирующем усилителе один из входов заземлен, то даже при условии идеальной настройки (UСМ = 0), на выходе усилителя будет присутствовать отличное от нуля выходное напряжение. Это связано с тем, что входной ток смещения IВХсоздает падение напряжения на резисторах, которое затем усиливается схемой усилителя. В этой схеме сопротивление со стороны инвертирующего входа определяется резисторами R1║RОС, но ток смещения воспринимается как входной сигнал, подобный току, текущему через R1, а поэтому он порождает смещение выхода UСМ = IСМRОС.Для уменьшения ошибок, вызванных входным током смещения, используют включение дополнительного резистора между неинвертирующим входом и общим проводом. Величина этого резистора должна быть равна R2 = R1║RОС. Для приведенного примера R1 = 10кОм, RОС= 100кОм, R2 = 9,1 кОм.
Рис. Усилитель на ОУ с компенсационным резистором
С целью уменьшения токов смещения и их температурных дрейфов в практических схемах входные сопротивления имеют типичное значение от 1 до 100 кОм.
К резисторам обратной связи предъявляется два противоположных требования. Резисторы обратной связи должны быть достаточно большими, тогда они не будут существенно нагружать выход, вместе с тем, если они будут слишком большими, то входной ток смещения будет порождать ощутимые сдвиги. Кроме того, высокое сопротивление в цепи обратной связи повышает восприимчивость схемы к влиянию внешних наводок и увеличивает влияние паразитной емкости. Для ОУ общего назначения обычно выбирают резисторы цепей ООС с сопротивлением от 2 до 100 кОм. Из этого следует, что практическое значение максимального коэффициента усиления инвертирующего усилителя равно 100.
Операционный усилитель или Операционный усилитель | Принцип работы операционного усилителя или операционного усилителя
by Electrical4U
Операционный усилитель или операционный усилитель представляет собой усилитель постоянного напряжения с очень высоким коэффициентом усиления по напряжению.
Операционный усилитель — это, по сути, многокаскадный усилитель, в котором несколько усилительных каскадов очень сложным образом соединены друг с другом. Его внутренняя схема состоит из множества транзисторов, полевых транзисторов и резисторов. Все это занимает очень мало места.
Итак, он упакован в небольшую упаковку и доступен в виде интегральной схемы (ИС). Термин Операционный усилитель используется для обозначения усилителя, который может быть сконфигурирован для выполнения различных операций, таких как усиление, вычитание, дифференцирование, сложение, интегрирование и т. д. Примером может служить очень популярный IC 741.
Символ и его фактическое появление в форма IC показана ниже. Символ отображается в виде стрелки, что означает, что сигнал идет от выхода к входу.
Входные и выходные клеммы операционного усилителя
Операционный усилитель имеет две входные клеммы и одну выходную клемму. Операционный усилитель также имеет две клеммы подачи напряжения, как показано выше. Две входные клеммы образуют дифференциальный вход. Клемму, отмеченную знаком минус (-), мы называем инвертирующей клеммой, а клемму, отмеченную знаком плюс (+), неинвертирующей клеммой операционного усилителя . Если мы подаем входной сигнал на инвертирующую клемму (-), то усиленный выходной сигнал равен 180 или вне фазы поданного входного сигнала. Если мы подадим входной сигнал на неинвертирующую клемму (+), то полученный выходной сигнал будет синфазным, то есть у него не будет фазового сдвига относительно входного сигнала.
Блок питания для операционного усилителя
Как видно из приведенного выше символа схемы, он имеет две входные клеммы питания +V CC и –V CC . Для работы операционного усилителя необходим источник постоянного тока с двойной полярностью. При двухполярном питании подключаем +V CC к положительному источнику постоянного тока, а клемма –V CC к отрицательному источнику постоянного тока. Однако лишь немногие операционные усилители могут работать от питания с одной полярностью. Обратите внимание, что в операционных усилителях нет общей клеммы заземления, поэтому заземление должно быть установлено снаружи.
Принцип работы операционного усилителя
Работа операционного усилителя без обратной связи
Как сказано выше, операционный усилитель имеет дифференциальный вход и несимметричный выход. Итак, если мы подадим два сигнала, один на инвертирующий, а другой на неинвертирующий вывод, идеальный операционный усилитель усилит разницу между двумя поданными входными сигналами. Мы называем эту разницу между двумя входными сигналами дифференциальным входным напряжением. Уравнение ниже дает выходной сигнал операционного усилителя. Где V OUT — это напряжение на выходе операционного усилителя. OL — это коэффициент усиления без обратной связи для данного операционного усилителя, который является постоянным (в идеале). Для IC 741 A OL составляет 2 x 10 5 .
В 1 — напряжение на неинвертирующем выводе.
В 2 — напряжение на инвертирующем выводе.
(V 1 – V 2 ) – дифференциальное входное напряжение.
Из приведенного выше уравнения ясно, что выход будет ненулевым тогда и только тогда, когда дифференциальное входное напряжение отлично от нуля (V 1 и V 2 не равны), и будет равен нулю, если оба V 1 и V 2 равны. Учтите, что это идеальное состояние, практически в ОУ есть небольшие дисбалансы. Коэффициент усиления операционного усилителя без обратной связи очень высок. Следовательно, операционный усилитель с разомкнутым контуром усиливает небольшое приложенное дифференциальное входное напряжение до огромной величины.
Также верно, что если мы прикладываем небольшое дифференциальное входное напряжение, операционный усилитель усиливает его до значительного значения, но это значительное значение на выходе не может выйти за пределы напряжения питания операционного усилителя. Следовательно, это не нарушает закон сохранения энергии.
Работа с замкнутым контуром
Вышеописанная работа операционного усилителя была для разомкнутого контура, т.е. без обратной связи. Мы вводим обратную связь в конфигурации с замкнутым контуром. Этот путь обратной связи подает выходной сигнал на вход. Следовательно, на входах одновременно присутствуют два сигнала. Один из них является исходным приложенным сигналом, а другой — сигналом обратной связи. Уравнение ниже показывает выход операционного усилителя с замкнутым контуром. Где V OUT — это напряжение на выходной клемме операционного усилителя. А CL — коэффициент усиления замкнутого контура. Цепь обратной связи, подключенная к операционному усилителю, определяет усиление обратной связи A CL . V D = (V 1 – V 2 ) дифференциальное входное напряжение. Мы говорим, что обратная связь положительная, если путь обратной связи подает сигнал от выходной клеммы обратно к неинвертирующей (+) клемме. Положительная обратная связь используется в осцилляторах. Обратная связь является отрицательной, если цепь обратной связи подает часть сигнала с выходной клеммы обратно на инвертирующую (-) клемму. Мы используем отрицательную обратную связь для операционных усилителей, используемых в качестве усилителей. Каждый тип обратной связи, отрицательный или положительный, имеет свои преимущества и недостатки.
Положительная обратная связь ⇒ Генератор
Отрицательная обратная связь ⇒ Усилитель
Приведенное выше объяснение является самым основным принципом работы операционных усилителей .
Характеристики идеального операционного усилителя
Идеальный операционный усилитель должен иметь следующие характеристики:
- Бесконечный коэффициент усиления по напряжению (чтобы получить максимальный выходной сигнал)
- Бесконечное входное сопротивление (благодаря этому практически любой источник может управлять им )
- Нулевое выходное сопротивление (Чтобы выходное сопротивление не менялось из-за изменения тока нагрузки)
- Бесконечная полоса пропускания
- Нулевой шум
- Коэффициент подавления нулевого источника питания (PSSR = 0)
- Бесконечный коэффициент подавления синфазного сигнала (CMMR = ∞)
Практический операционный усилитель
Ни один из приведенных выше параметров практически не может быть задан осуществленный. Практический или реальный операционный усилитель имеет некоторые неизбежные недостатки и, следовательно, его характеристики отличаются от идеальных. Настоящий операционный усилитель будет иметь ненулевые и небесконечные параметры.
Применение операционного усилителя
Интегрированные операционные усилители обладают всеми преимуществами интегральных схем, такими как высокая надежность, малые размеры, дешевизна, меньшее энергопотребление. Они используются в различных приложениях, таких как инвертирующий усилитель и неинвертирующий усилитель, буфер с единичным коэффициентом усиления, суммирующий усилитель, дифференциатор, интегратор, сумматор, инструментальный усилитель, осциллятор с мостом Вина, фильтры и т. д.
Хотите учиться быстрее? 🎓
Каждую неделю получайте электротехнические товары на свой почтовый ящик.
Кредитная карта не требуется — это абсолютно бесплатно.
О Electrical4U
Electrical4U посвящен обучению и распространению всего, что связано с электротехникой и электроникой.
…
Принцип и схема операционного усилителя
Теплые подсказки: Эта статья содержит около 6000 слов, а время ее прочтения составляет около 22 минут.
Введение
Операционный усилитель называется операционным усилителем. Он был назван «Операционный усилитель», потому что в первые дни он использовался в аналоговых компьютерах для выполнения математических операций. В основном используется в аналоговых схемах, таких как усилители, компараторы, аналоговые операторы, это устройство, которое часто используют инженеры-электронщики. Операционный усилитель — это схемотехника с очень высоким коэффициентом усиления. В реальной схеме функция обратной связи обычно объединяется с сетью обратной связи для формирования определенного функционального модуля. Это усилитель со специальной цепью связи и обратной связью. Выходной сигнал может быть результатом математических операций, таких как сложение, вычитание или дифференцирование входного сигнала, интегрирование и т. п. Операционный усилитель — это функциональный блок, названный с функциональной точки зрения, и он может быть реализован в дискретных устройствах или в полупроводниковых микросхемах. Чтобы узнать, как работает операционный усилитель? Лучше знать его принцип работы и схему.
Работа операционного усилителя: как он работает?
Каталог