Тепловое реле своими руками: Температурное реле: схема, принцип действия, назначение

Содержание

Виды и конструкции тепловых реле, расчет и выбор теплового реле для защиты двигателя » сайт для электриков

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения.

Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А.

Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

{SOURCE}

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением

Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль

Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы.

В процессе описания работы схемы управления будет понятно, в чем отличие.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1.

Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель.

Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1. 1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Особенности монтажа

Но при этом тепловое реле срабатывает в отличие от магнитного пускателя не по воле человека, а от перегрузки по току асинхронного двигателя. Его также можно без особых проблем задействовать своими руками в схеме управления асинхронным движком. В связи с этим не будет лишним напомнить умельцам о том, что любые работы по присоединению электрических цепей к сети должны начинаться с гарантированного отключения напряжения в месте подключения с последующим контролем этого индикаторной отвёрткой или тестером.

  • Чтобы правильно подключить магнитный пускатель и тепловое реле надо вначале определить величину напряжения, на которое они рассчитаны. Его значение указывается как в техническом паспорте, так и на шильдике, расположенном на корпусе устройства.
  • Если указано напряжение 220 В устройство необходимо подключать к фазному напряжению, то есть к фазному и нулевому проводам. Если указано напряжение 380 В для подключения используется линейное напряжение, то есть к фазным проводам двух любых фаз.
  • Если напряжение не будет соответствовать паспортным данным устройства, возможна, либо его порча от перегрева, либо неправильная работа по причине недостаточно сильного магнитного поля в катушке управления.

Особенностью работы магнитного пускателя является его контакт, который, замыкаясь, шунтирует кнопку включения его управляющей катушки. Это позволяет выполнять коммутацию электрических цепей кратковременным нажатием кнопки «пуск», что удобно и легко для пользователя. При подключении пускателя надо будет присоединять нормально разомкнутый контакт и нормально замкнутый контакт. Их вид в самом устройстве и на электрической схеме показан на изображении. Они используются для управления катушкой пускателя и располагаются в управляющем блоке пускателя. Он называется «кнопочный пост». В нём установлены две кнопки. Каждая из них приводит в действие: одна нормально замкнутый контакт и одна нормально разомкнутый контакт. Кнопки окрашены обычно в чёрный цвет (используется для пуска или реверса), и в красный цвет (используется для остановки двигателя отключением катушки пускателя).

Преимущества реализации такой схемы подключения

  1. Коммутатор и манипулятор управления (кнопка) могут быть разнесены. То есть, управляющий элемент располагается в непосредственной близости от оператора, а массивный коммутатор можно разместить в любом удобном месте.
  2. Возможно управление с помощью ножного привода (руки остаются свободными). Это позволяет лучше контролировать электроустановку и удерживать обрабатываемую деталь.
  3. Схема подключения выносного пускателя позволяет разместить устройства безопасности. Например, защиту от короткого замыкания или тепловые реле, срабатывающие при температурных перегрузках. Кроме того, такая схема позволяет реализовать механическую защиту: при перемещении подвижных частей электроустановки до критической отметки, срабатывает концевой выключатель, и магнитный пускатель размыкается.
  4. Дистанционное расположение управляющих элементов позволяет расположить аварийную кнопку в удобном месте, что повышает безопасность эксплуатации.
  5. Есть возможность установить единый кнопочный пост для управления большим количеством магнитных пускателей при расположении электроустановок в разных местах и на большом удалении. Схема подключения через такой пост предполагает использование слаботочной управляющей проводки, что экономит средства на приобретение дорогостоящих силовых кабелей.
  6. Для управления одним пускателем можно установить несколько кнопочных постов. В таком случае управление электроустановкой с каждого поста будет равнозначным. То есть, можно запустить электродвигатель с одной точки, а выключить с другой. Схема подключения нескольких кнопочных постов на иллюстрации:
  7. Магнитные контакторы можно интегрировать в электронную систему управления. В этом случае команды на пуск и отключение электроустановок подаются автоматически, по заданному алгоритму. Организовать такую систему с помощью механических (ручных) включателей невозможно.

Фактически, такая коммутация представляет собой релейную схему.

Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Смена направления вращения реализуется общеизвестным способом — меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:

9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед

» и «Пуск назад

«, выключение — одной, общей кнопкой «Стоп

» , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает «защиту от дурака»

Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, «Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!» А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения
двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это — электрическая защита от того же дурака
. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки «Пуск» сразу, ничего не получится — двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую — моветон среди электриков
.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

здесь .

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:

Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314:

Устройство и принцип работы

Термореле (ТР) предназначено для обеспечения защиты электродвигателей от перегрева и преждевременного выхода из строя. При долговременном запуске электродвигатель подвержен токовым перегрузкам, т.к. во время пуска происходит потребление семикратного значения тока, приводящего к нагреву обмоток. Номинальный ток (Iн) — сила тока, потребляемая двигателем при работе. Кроме того, ТР увеличивают срок эксплуатации электрооборудования.

Тепловое реле, устройство которого составляют простейшие элементы:

  1. Термочувствительный элемент.
  2. Контакт с самовозвратом.
  3. Контакты.
  4. Пружина.
  5. Биметаллический проводник в виде пластины.
  6. Кнопка.
  7. Регулятор тока уставки.

Термочувствительный элемент является датчиком температуры, служащий для передачи тепла на биметаллическую пластину или другой элемент тепловой защиты. Контакт с самовозвратом позволяет при нагреве мгновенно разомкнуть цепь питания электрического потребителя для избежания его перегрева.

Пластина состоит из двух видов металла (биметалл), причем один из них обладает высоким температурным коэффициентом расширения (Kр). Они скреплены между собой при помощи сварки или проката при высоких значениях температуры. При нагреве изгибается пластина тепловой защиты в сторону материала с меньшим Kр, а после остывания пластина принимает исходное положение. В основном пластины изготавливаются из инвара (меньшее значение Kр) и немагнитной или хромоникелевой стали (больший Kр).

Кнопка включает ТР, регулятор тока уставки необходим для установки оптимального значения I для потребителя, причем его превышение приведет к срабатыванию ТР.

Принцип действия ТР основан на законе Джоуля-Ленца. Ток представляет собой направленное движение заряженных частиц, которые сталкиваются с атомами кристаллической решетки проводника (эта величина является сопротивление и обозначается R). Это взаимодействие вызывает появление тепловой энергии, получаемой из электрической. Зависимость длительности протекания от температуры проводника определяется по закону Джоуля-Ленца.

Формулировка этого закона следующая: при прохождении I по проводнику количество теплоты Q, выделяемой током, при взаимодействии с атомами кристаллической решетки проводника прямо пропорционально квадрату I, величине R проводника и времени воздействия тока на проводник. Математически можно записать следующим образом: Q = a * I * I * R * t, где a — коэффициент преобразования, I — ток, протекающий через искомый проводник, R — величина сопротивления и t — время протекания I.

При коэффициенте a = 1 результат расчета измеряется в джоулях, а при условии, что a = 0. 24, результат измеряется в калориях.

Нагрев биметаллического материала происходит двумя способами. При первом случае I проходит через биметалл, а во втором — через обмотку. Изоляция обмотки замедляет поток тепловой энергии. Термореле нагревается сильнее при высоких значениях I, чем при контакте с термочувствительным элементом. Происходит задержка сигнала срабатывания контактов. В современных моделях ТР используются оба принципа.

Нагрев биметаллической пластины теплового устройства защиты производится при подключенной нагрузке. Комбинированный нагрев позволяет получить устройство с оптимальными характеристиками. Пластина нагревается при помощи тепла, выделяемого I при прохождении через нее, и специальным нагревателем при I нагрузки. Во время нагрева биметаллическая пластина деформируется и воздействует на контакт с самовозвратом.

Watch this video on YouTube

1.Принцип действия тепловых реле.

Тепловые
реле

это электрические аппараты, предназначенные
для защиты электродвигателей от токовой
перегрузки. Наиболее распространенные
типы тепловых реле — ТРП, ТРН, РТЛ и РТТ.
Принцип действия тепловых реле основан
на свойствах биметаллической пластины
изменять свою форму при нагревании. В
общем случае тепловое реле представляет
собой расцепитель, в основе которого
лежит биметаллическая пластина, по
которой протекает ток. Под воздействием
теплового эффекта протекающего тока,
биметаллическая пластина изгибается,
разрывая цепи. При этом происходит
изменение состояния дополнительных
контактов. Первая и основная функция
тепловых реле — защита электрооборудования
от перегрузки.

Рис.1.Тепловое
реле
.

Долговечность
энергетического оборудования в
значительной степени зависит от
перегрузок, которым оно подвергается
во время работы. Для любого объекта
можно найти зависимость длительности
протекания тока от его величины, при
которых обеспечивается надежная и
длительная эксплуатация оборудования.
Эта зависимость представлена на рисунке
2 (кривая 1).

Рис.2.
Зависимость длительности протекания
тока от его величины.

При
номинальном токе допустимая длительность
его протекания равна бесконечности.
Протекание тока, большего, чем номинальный,
приводит к дополнительному повышению
температуры и дополнительному старению
изоляции. Поэтому чем больше перегрузка,
тем кратковременнее она допустима.
Кривая 1 на рисунке устанавливается
исходя из требуемой продолжительности
жизни оборудования. Чем короче его
жизнь, тем большие перегрузки допустимы.
При идеальной защите объекта зависимость
t
ср
(I) для реле должна идти немного ниже
кривой для объекта. Для защиты от
перегрузок, наиболее широкое распространение
получили тепловые реле с биметаллической
пластиной. Биметаллическая пластина
теплового реле состоит из двух пластин,
одна из которых имеет больший температурный
коэффициент расширения, другая —
меньший. В месте прилегания друг к другу
пластины жестко скреплены либо за счет
проката в горячем состоянии, либо за
счет сварки. Если закрепить неподвижно
такую пластину и нагреть, то произойдет
изгиб пластины в сторону материала с
меньшим. Именно это явление используется
в тепловых реле. Широкое распространение
в тепловых реле получили материалы
инвар (малое значение a) и немагнитная
или хромоникелевая сталь (большое
значение a). Нагрев биметаллического
элемента теплового реле может производиться
за счет тепла, выделяемого в пластине
током нагрузки. Очень часто нагрев
биметалла производится от специального
нагревателя, по которому протекает ток
нагрузки. Лучшие характеристики
получаются при комбинированном нагреве,
когда пластина нагревается и за счет
тепла, выделяемого током, проходящим
через биметалл, и за счет тепла, выделяемого
специальным нагревателем, также
обтекаемым током нагрузки. Прогибаясь,
биметаллическая пластина своим свободным
концом воздействует на контактную
систему теплового реле.

Как выбрать тепловое реле

Двигателю необходимо реле для защиты, когда по технологическим причинам существует потенциальная угроза его перегруженности. Второй случай — необходимость ограничения времени запуска в условиях пониженного напряжения.

Эти требования содержатся в соответствующей инструкции. В которой изложено пожелание об оснащении защитного изделия выдержкой по времени. Реализуют все это при помощи тепловых реле.

Базовые характеристики приспособлений

Базовыми данными устройства, защищающего двигатель, являются:

  1. Быстродействие контактов в зависимости от параметров тока — время-токовый показатель.
  2. Рабочий ток, при котором ТП срабатывает.
  3. Предельные токовые регулировки уставки. Во всех приборах, выпускаемых разными производителями, этот параметр отличается незначительно. Превышение номинала на 20% влечет за собой срабатывание прибора минут через 25.
  4. Номинальная величина тока рабочей биметаллической пластины. Имеется в виду значение, при превышении которого реле не отключается немедленно.
  5. Токовый диапазон, в котором срабатывает реле.

Сведения о тепловом реле можно получить, расшифровав его маркировку. Символ, обозначающий тип исполнения, может отличаться.

Места размещения отечественных ТП регламентированы ГОСТом 15150. На их работу оказывают влияние такие моменты, как высота подъема над уровнем моря, вибрация, удары, ускорения.

Все эти нюансы производители отражают в маркировке своих изделий. Некоторые из них дополнительно включают сведения о возможности работы при наличии вредных веществ и взрывоопасных газов.

Выбор устройства по правилам

Требования к термореле изложены в инструкции. Здесь же оговорено, что защита должна обладать выдержкой по времени. Реализуют все запросы при помощи специальных приборов.

Анализируя времятоковые характеристики ТР, нужно принимать во внимание, что срабатывание может происходить из перегретого или холодного состояния. Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные

Первая должна находиться ниже, чем вторая

Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные. Первая должна находиться ниже, чем вторая.

Правильный подбор защитного изделия осуществляется на основе такого параметра, как рабочий номинальный ток. Его значение связано с номинальным током нагрузки электродвигателя.

Как международными, так и отечественными стандартами предусмотрено, что номинальный ток двигателя аналогичен уставке тока срабатывания термореле.

Это значит, что включение в работу прибора происходит при перегрузке от 20 до 30% или при Iср.х1,2 или 1,3 не позже 20 минут.

Исходя из этого, выбор нужно осуществлять так, чтобы ток несрабатывания ТР превышал номинальный ток прикрываемого объекта в среднем на 12%. Величина In отображена в паспорте прибора и на табличке, закрепленной на корпусе.

Основываясь на ней, подбирают как ТР, так и пускатель, соответствующий ему. Шкала реле калибрована в амперах и, как правило, отвечает значению тока уставки.

В качестве примера можно привести подбор теплового реле для асинхронного двигателя, подключенного к сети 380 В, мощностью 1,5 кВт.

Рабочий номинальный ток для него — 2,8 А, значит, для теплового реле пороговый ток будет равен: 1,2*2,8 = 3,36 А. По таблице выбор нужно остановить на РТЛ-1008, у которого диапазон регулировки находится в пределах от 2,4 до 4 А.

Когда паспортные данные двигателя неизвестны, ток определяют путем использования специальных приборов — токоизмерительных клещей или мультиметра с соответствующей опцией. Измерения проводят на каждой из фаз.

Важно при выборе уделить внимание напряжению, указанному на приборе. Если запланировано использовать тандем ТР-пускатель, нужно учесть число контактов

При включении устройства в трехфазную сеть необходим модуль, имеющий функцию защиты для случаев перегорания проводников или перекоса фаз.

Заключение

Все электромонтажные работы по подключению реле и прочего высоковольтного оборудования должен выполнять квалифицированный специалист, имеющий допуск и профильное образование. Самостоятельное проведение подобных работ сопряжено с опасностью для жизни и работоспособности электрических устройств. Если же все-таки необходимо разобраться с тем, как подключить реле, при его покупке нужно требовать распечатку схемы, которая обычно идет в комплекте с изделием.

Долговечность и надежность в эксплуатации любой установки с электрическим двигателем зависит от различных факторов. Однако в значительной мере на срок службы мотора влияют токовые перегрузки. Чтобы их предупредить подключают тепловое реле, защищающее основной рабочий орган электромашины.

Мы расскажем, как подобрать устройство, предсказывающее назревание аварийных ситуаций с превышением максимально допустимых показателей тока. В представленной нами статье описан принцип действия, приведены разновидности и их характеристики. Даны советы по подключению и грамотной настройке.

Как самостоятельно подключить тепловое реле — обзор схем — Ремонт и Строительство

У каждого мастера на все руки имеется пара задумок соорудить какой-либо станок, точильный, токарный или подъемник. Сегодня поговорим о важном элементе электропривода — тепловом реле, которое еще называют токовым или теплушкой. Данное устройство реагирует на величину тока через него проходящее и в случае превышения установленного значения производит переключение контактов, отключая привод или сигнализируя о внештатной ситуации. В одной из наших статей мы уже рассматривали типы теплушек и принцип их работы, а также по каким параметрам происходит выбор теплового реле. В этой статье мы рассмотрим, как производится установка и подключение теплового реле своими руками. Инструкция будет предоставлена со схемами, фото и видео примерами, чтобы вам были понятны все нюансы монтажа.

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл.  Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:


Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314:

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ, зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98.  На картинке ниже структурная схема обозначения по ГОСТу:Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы. Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным.  Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления.  Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос воды полива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов.  Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

C уважением, Источник: http://samelectrik.ru

Простая и надёжная схема терморегулятора для инкубатора

 ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать  R3 можно по таблице ниже.

Терморезистор

R3

1 kОм

2,7 кОм

2 кОм

4,3 кОм

3,6 кОм

7,5 кОм

10 кОм

10 кОм

15 кОм

15 кОм

Следует учитывать: чем больше сопротивление терморезистора или больше сопротивление R1 — R5, тем меньше диапазон регулирования переменными резисторами.

Можно использовать терморезисторы как с отрицательным, так и с положительным ТКС. С отрицательным ТКС, как сейчас на схеме, а с положительным терморезистор следует установить в низ делителя (например, в разрыв между R3 и R4).

Схема терморегулятора построена на логической микросхеме, а между уровнями логической 0 и 1 есть неопределенное состояние (см. рис), поэтому в данной схеме есть определенный гистерезис (запаздывание между включением и отключением).

Гистерезис очень сильно зависит от типа применяемого терморезистора.

Если Вам ненужно быстрое реагирование схемы на температуру, используйте терморезистор в металлическом корпусе. Типа MMT-4. Гистерезис в данном случае 2,5 — 3 гр.

Если нужна быстрая реакция схемы на температуру, то используйте терморезисторы в неметаллическом корпусе. Гистерезис 0,1 — 0,5 гр. Лампочки включаются и отключаются в несколько раз чаще.

Таблица напряжений по постоянному току микросхемы К561ЛА7

(измеряется цифровым мультиметром в рабочей схеме)

№ вывода

Нагреватель выкл / включен

1, 2

4,3 / 5,5

3

0,2 / 8,9

4

3,8 / 8,9

5, 6

4,1 / 0

7

0

8

7 / 8,9

9

0,2 / 8,9

10

~

12, 13

0

14

9 / 7,5

Фото собранной платы

Примечание: маркировка некоторых деталей согласно схемы изменилась.

Фото печатной платы

Благодаря использованию резистора (R13, а не конденсатора) для понижения напряжения, стабилизации и фильтрации питающего микросхему напряжения, а также других «фишек» данная схема терморегулятора используется в инкубаторе более 10 лет и не разу не подвела!

А. Зотов. Волгоградская обл.

P.S. Если Вы решили сделать вышеизложенный терморегулятор, но у вас нет платы или некоторых эл. компонентов, то Вы можете приобрести у нас НАБОР ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ ТЕРМОРЕГУЛЯТОРА ДЛЯ ИНКУБАТОРА.

Фото готовой платы, собранной из набора

Вы можете купить готовый цифровой модуль терморегулятора со встроенным цифровым термометром в нашем магазине.

 Наш «Магазин Мастера«

Метки: [ инкубаторы, устройства ]


ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ:

П О П У Л Я Р Н О Е:
  • Простой глушитель частоты.
  •  

    Данный глушитель можно собрать без микросхемы. Понадобится только один транзистор n-p-n структуры и ещё несколько недорогих деталей. Подробнее…

  • Электронный «Утёнок».
  • Маленьким утятам свойственен инстинкт преследования. Появившись на свет, они стремятся преследовать свою мать и друг друга. Этот инстинкт им не дает потеряться, но, иногда он приводит к появлению «мячикиных деток».

    Описываемая здесь игрушка ведет себя так же, — «увидев» какой-то объект, она стремится его преследовать по мере своих сил. Подробнее…

  • Электронный барометр своими руками
  • Барометр — это прибор, предназначенный для измерения атмосферного давления. Особенно полезны барометры метеочувствительным людям и рыбакам. Барометры бывают жидкостные, механические и электронные. О последнем сегодня и пойдёт речь. С помощью чувствительного датчика давления, схемы затем через светодиоды электронный барометр способен отображать изменение атмосферного давления в сторону его понижения или повышения.

    Подробнее…

Популярность: 172 829 просм.

Цифровой регулятор температуры своими руками

Инструкции для изготовления терморегулятора своими руками основаны на строгом следовании выбранной схеме, в соответствии с которой необходимо соединить все составляющие в единое целое. Например, электронная схема для инкубатора собирается по следующему алгоритму:. К слову, добавив датчик температуры, собранное устройство можно смело использовать не только для инкубаторов, сушек, но и поддержания теплового режима в аквариуме или террариуме. Заводской или самодельный термостат можно и починить, чтобы не покупать новый и не тратить время на поиск и сборку необходимых деталей.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Цифровой терморегулятор для инкубатора
  • Как сделать термореле своими руками
  • РЕГУЛЯТОР ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ
  • Терморегулятор своими руками: пошаговая инструкция изготовления самодельного устройства
  • Терморегулятор для инкубатора
  • Как собрать терморегулятор в домашних условиях
  • Терморегуляторы своими руками
  • Терморегулятор своими руками

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Терморегулятор с Китая XH-W3001

Цифровой терморегулятор для инкубатора


Работу газового или электрического котла можно оптимизировать, если задействовать внешнее управление агрегатом. Для этой цели предназначены выносные терморегуляторы, имеющиеся в продаже. Понять, что это за приборы и разобраться в их разновидностях поможет данная статья. Также в ней будет рассмотрен вопрос, как собрать термореле своими руками.

Любой электрический или газовый котел оборудован комплектом автоматики, отслеживающей нагрев теплоносителя на выходе из агрегата и отключающей основную горелку при достижении заданной температуры. Снабжены подобными средствами и твердотопливные котлы.

Они позволяют поддерживать температуру воды в определенных пределах, но не более того. При этом климатические условия в помещениях или на улице не учитываются.

Это не слишком удобно, домовладельцу приходится постоянно подбирать подходящий режим работы котла самостоятельно. Погода может изменяться в течении дня, тогда в комнатах становится жарко либо прохладно. Было бы гораздо удобнее, если автоматика котла ориентировалась на температуру воздуха в помещениях.

Чтобы управлять работой котлав зависимости от фактической температуры, используются различные термореле для отопления. Будучи подключенным к электронике котла, такое реле отключает и запускает нагрев, поддерживая необходимую температуру воздуха, а не теплоносителя.

Обычный терморегулятор представляют собой небольшой электронный блок, устанавливаемый на стене в подходящем месте и присоединенный к источнику тепла проводами. На передней панели есть только регулятор температуры, это самая дешевая разновидность прибора.

Модель, где датчик расположен снаружи здания, обеспечивает погодозависимое регулирование работой котельной установки. Способ считается наиболее эффективным, так как источник тепла реагирует на изменение погодных условий еще до того, как они повлияют на температуру внутри здания. Многофункциональные термореле, которые можно программировать, существенно экономят энергоносители.

В те часы суток, когда дома никого нет, поддерживать высокую температуру в комнатах нет смысла. Зная рабочее расписание своей семьи, домовладелец всегда может запрограммировать реле температуры так, чтобы в определенные часы температура воздуха снижалась, а за час до прихода людей включался нагрев.

Бытовые терморегуляторы, укомплектованные GSM — модулем, способны обеспечить дистанционное управление котельной установкой посредством сотовой связи. Бюджетный вариант — отправка уведомлений и команд в виде SMS — сообщений с мобильного телефона.

Продвинутые версии приборов имеют собственные приложения, устанавливаемые на смартфон. Приборы для регулирования отопления, имеющиеся в продаже, достаточно надежны и нареканий не вызывают. Но при этом они стоят денег, а это не устраивает тех домовладельцев, кто хоть немного разбирается в электротехнике или электронике.

Ведь понимая, как должно функционировать такое термореле, можно собрать и подключить его к теплогенератору своими руками.

Конечно, сделать сложный программируемый прибор под силу далеко не каждому. Кроме того, для сборки подобной модели необходимо закупить комплектующие, тот же микроконтроллер, цифровой дисплей и прочие детали. Если вы в этом деле человек новый и разбираетесь в вопросе поверхностно, то стоит начать с какой-нибудь простой схемы, собрать и запустить ее в работу. Достигнув положительного результата, можно замахнуться на что-то более серьезное.

Для начала надо иметь представление, из каких элементов должно состоять термореле с регулировкой температуры. Ответ на вопрос дает принципиальная схема, представленная выше и отражающая алгоритм действия прибора. Согласно схеме, любой терморегулятор должен иметь элемент, измеряющий температуру и отправляющий электрический импульс в блок обработки. Задача последнего — усилить либо преобразовать этот сигнал таким образом, чтобы он послужил командой исполнительному элементу — реле.

Дальше мы представим 2 простые схемы и поясним их работу в соответствии с этим алгоритмом, не прибегая к специфическим терминам. Стабилитрон — это тот же полупроводниковый диод, пропускающий ток лишь в одну сторону. Отличие от диода заключается в том, что у стабилитрона имеется управляющий контакт. Пока к нему подводится установленное напряжение, элемент открыт и ток идет по цепи.

Когда его величина становится ниже предельной, цепь разрывается. Первый вариант — это схема термореле, где стабилитрон играет роль логического управляющего блока:. Как видите, схема разделена на две части. С левой стороны изображена часть, предшествующая управляющим контактам реле обозначение К1.

Здесь измерительным блоком является термический резистор R4 , его сопротивление уменьшается с ростом температуры окружающей среды. Ручной регулятор температуры — это переменный резистор R1, питание схемы — напряжение 12 В. В обычном режиме на управляющем контакте стабилитрона присутствует напряжение более 2. Блоком питания 12 В может служить любой прибор из недорогих, имеющихся в продаже. Как только температура возрастет выше установленного предела, сопротивление R4 упадет, напряжение станет меньше, чем 2.

Следом то же самое сделает и реле, отключив силовую часть, чья схема показана справа. Тут простое термореле для котла снабжено симистором D2, что вместе с замыкающими контактами реле служит исполнительным блоком. Через него проходит напряжение питания котла В.

Эта схема отличается от предыдущей тем, что вместо стабилитрона в ней задействована логическая микросхема КЛА7.

Датчиком температуры по-прежнему служит терморезистор обозначение — VDR1 , только теперь решение о замыкании цепи принимает логический блок микросхемы. Кстати, марка КЛА7 производится еще с советских времен и стоит сущие копейки.

Для промежуточного усиления импульсов задействован транзистор КТ, с той же целью в конечном каскаде установлен второй транзистор — КТ Данная схема соответствует левой части предыдущей, силовой блок здесь не показан. Как нетрудно догадаться, он может быть аналогичным — с симистором КУГ.

Самостоятельно подключить термореле к котлу — дело несложное, на эту тему в интернете имеется масса материалов. А вот изготовить его своими руками с нуля не так и просто, кроме того, нужен измеритель напряжения и тока, чтобы произвести настройку. Покупать готовое изделие или браться за его изготовление самому — решение принимать вам. Назначение терморегуляторов Любой электрический или газовый котел оборудован комплектом автоматики, отслеживающей нагрев теплоносителя на выходе из агрегата и отключающей основную горелку при достижении заданной температуры.

Виды термореле Обычный терморегулятор представляют собой небольшой электронный блок, устанавливаемый на стене в подходящем месте и присоединенный к источнику тепла проводами. Кроме нее, существуют и другие виды термореле: программируемые: ммеют жидкокристаллический дисплей, подключаются с помощью проводов либо используют беспроводную связь с котлом.

Программа позволяет задать изменение температуры в определенные часы суток и по дням в течение недели; такой же прибор, только снабженный модулем GSM; автономный регулятор с питанием от собственной батареи; беспроводное термореле с выносным датчиком для управления процессом нагрева в зависимости от температуры окружающей среды.

Как собрать термореле самостоятельно? Схема со стабилитроном Стабилитрон — это тот же полупроводниковый диод, пропускающий ток лишь в одну сторону. Первый вариант — это схема термореле, где стабилитрон играет роль логического управляющего блока: Как видите, схема разделена на две части. Схема с логической микросхемой Эта схема отличается от предыдущей тем, что вместо стабилитрона в ней задействована логическая микросхема КЛА7.

Заключение Самостоятельно подключить термореле к котлу — дело несложное, на эту тему в интернете имеется масса материалов. Рекомендуем: Как сделать отопление в частном доме — подробное руководство Термопара для газовых котлов Монтаж твердотопливного котла в частном доме.

Как установить счетчик тепла в квартире Как залить антифриз в систему отопления дома Современные системы отопления Как поменять батареи в квартире.


Как сделать термореле своими руками

Для многих фермеров первостепенная задача — это провести успешную инкубацию яиц. Чтобы решить эту задачу необходима конкретная температура, которую можно задать лишь в течение определённого времени. Такая задача непростая и её непросто самостоятельно решить. Терморегулятор для инкубатора — это оптимальное решение в сложившейся ситуации. Именно он включает и отключает нагревательные элементы и позволяет создать оптимальную температуру для будущей птицы. Внутри замкнутого пространства терморегулятор для инкубатора обязан задавать температурный режим не более 39 градусов. Без вмешательства человека термореле может работать в автоматическом режиме.

Изготовление терморегулятора для инкубатора своими руками фирмы Dallas Semiconductor, имеющий однопроводной цифровой интерфейс.

РЕГУЛЯТОР ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ

Работу газового или электрического котла можно оптимизировать, если задействовать внешнее управление агрегатом. Для этой цели предназначены выносные терморегуляторы, имеющиеся в продаже. Понять, что это за приборы и разобраться в их разновидностях поможет данная статья. Также в ней будет рассмотрен вопрос, как собрать термореле своими руками. Любой электрический или газовый котел оборудован комплектом автоматики, отслеживающей нагрев теплоносителя на выходе из агрегата и отключающей основную горелку при достижении заданной температуры. Снабжены подобными средствами и твердотопливные котлы. Они позволяют поддерживать температуру воды в определенных пределах, но не более того. При этом климатические условия в помещениях или на улице не учитываются. Это не слишком удобно, домовладельцу приходится постоянно подбирать подходящий режим работы котла самостоятельно. Погода может изменяться в течении дня, тогда в комнатах становится жарко либо прохладно.

Терморегулятор своими руками: пошаговая инструкция изготовления самодельного устройства

Для автоматического поддержания температурного режима можно создать терморегулятор своими руками. Качественная самоделка будет выполнять свои функции не хуже, чем фабричный аналог. После тщательного изучения процесса сборки модернизация и ремонт не вызовут затруднений. Изделия этой категории применяют для решения разных задач.

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок.

Терморегулятор для инкубатора

Терморегуляторы широко используются в современных бытовых приборах, автомобилях, системах отопления и кондиционирования, на производстве, в холодильном оборудовании и при работе печей. Принцип действия любого терморегулятора основан на включении или выключении различных приборов после достижения определенных значений температуры. Современные цифровые терморегуляторы управляются при помощи кнопок: сенсорных или обычных. Многие модели также оснащены цифровой панелью, на которой отображается заданная температура. Группа программируемых терморегуляторов является самой дорогостоящей.

Как собрать терморегулятор в домашних условиях

При хранении ульев с пчелами зимой нужно поддерживать определённую постоянную температуру и влажность. Об одном из вариантов самодельного цифрового терморегулятора и пойдет речь в статье ниже. Для ввода настроек применен энкодер с кнопкой. Введенные настройки сохраняются в энергонезависимой памяти микроконтроллера, поэтому пропадание питания не грозит пропаданием настроек. В качестве исполнительного устройства выбраны и вольтовые реле, поэтому устройству необходимо это напряжение.

светодиодная матрица показывает актуальное значение температуры или контрольный уровень.

Терморегуляторы своими руками

Продолжаем нашу рубрику электронные самоделки, в этой статье будем рассматривать устройство поддерживающие определенный тепловой режим, или же сигнализирующие о достижении какого то значения. Для Вас мы предоставили инструкцию о том, как сделать терморегулятор своими руками. Простейшие измерительные датчики, в том числе и реагирующие на температуру, состоят из измерительного полуплеча из двух сопротивлений, опорного и элемента, меняющего свое сопротивление в зависимости от прилаживаемой к нему температуры.

Терморегулятор своими руками

ВИДЕО ПО ТЕМЕ: Подключение цифрового терморегулятора Mh2210W 10A 220В (Для брудера)

Эти измерения можно провести относительно транзисторного коллектора, соединённым источником питания с общим приводом. На рисунке выше видно, что допустимая коммутация тока реле 16A, значит, допускает управление нагрузкой до 3кВт. Используйте прибор для мощности ,5кВт, чтобы облегчить нагрузку. Работу газового или электрического котла можно оптимизировать, если задействовать внешнее управление агрегатом. Для этой цели предназначены выносные терморегуляторы, имеющиеся в продаже.

Все процессы в яйце идут в очень узком диапазоне температур и влажности.

Многие из полезных вещей, которые помогут увеличить комфорт в нашей жизни, можно без особого труда собрать своими руками. Это же касается и термостата его еще называют терморегулятором. Данный прибор позволяет включать или выключать нужное оборудование по охлаждению или нагреванию, осуществляя регулировку, когда происходит определенные изменения температуры там, где он установлен. К примеру, он может в случае сильных холодов самостоятельно включить расположенный в подвале обогреватель. Поэтому стоит рассмотреть, как можно самостоятельно сделать подобное устройство. Схема работы терморегулятора на примере теплого пола. Для увеличения нажмите.

Терморегуляторы широко используются в современных бытовых приборах, автомобилях, системах отопления и кондиционирования, на производстве, в холодильном оборудовании и при работе печей. Принцип действия любого терморегулятора основан на включении или выключении различных приборов после достижения определенных значений температуры. Современные цифровые терморегуляторы управляются при помощи кнопок: сенсорных или обычных.


Как подключить тепловое реле к пускателю трехфазного двигателя

Содержание

  1. Схема подключения теплового реле – принцип работы, регулировки и маркировка
  2. Содержание статьи
  3. Основные характеристики тепловых реле
  4. Устройство и принцип работы тепловых реле
  5. Виды тепловых реле
  6. Схема подключения теплового реле
  7. Регулировка теплового реле
  8. Маркировка тепловых реле
  9. Тепловое реле для электродвигателя схема подключения
  10. Принцип работы теплового реле
  11. Характеристики реле
  12. Процесс подключения
  13. Резюме
  14. Магнитный пускатель с тепловым реле и кнопками управления, схема, принцип действия
  15. Кнопки управления пускателей
  16. Магнитный пускатель
  17. Схема управления пускателем на 220 В
  18. Схема управления пускателем на 380 В
  19. Подключение теплового реле в схему пускателя
  20. Проверка работоспособности схемы
  21. Тепловое реле — принцип работы, виды, схема подключения регулировка и маркировка
  22. Опубликовано Артём в 01. 03.2019 01.03.2019
  23. Конструктивные особенности
  24. Особенности теплового реле
  25. Характеристики теплового реле
  26. Схема подключения
  27. Элементы подключения, управления и настройки ТР
  28. Основные характеристики
  29. Подключение и установка ТР
  30. Механика теплового реле
  31. Назначение
  32. Процесс подключения
  33. Резюме
  34. Рекомендации по выбору
  35. Видео

Схема подключения теплового реле – принцип работы, регулировки и маркировка

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключениев схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Основные характеристики тепловых реле

Основные характеристики теплового реле, учитываемые при выборе подходящего варианта:

Устройство и принцип работы тепловых реле

Для защиты электродвигателей и другого электрооборудования чаще всего применяют ТР с биметаллическими пластинами.

В конструкцию биметаллического теплового реле входят:

Нагрев биметаллической пластины происходит по одной из двух схем: непосредственно из-за тока перегруза или косвенно, через отдельный термочувствительный элемент. В одном устройстве могут соединяться оба этих принципа, что значительно повышает его эффективность. При превышении критических величин тока потребителя реле разомкнет цепь и обесточит МП, а следовательно, защищаемое электрооборудование.

На срабатывание релейного элемента может повлиять повышенная температура окружающей среды. Для компенсации этого явления и предотвращения ложных срабатываний в конструкции ТР предусматривают дополнительные биметаллические пластины, которые прогибаются в сторону, противоположную пространственному положению основного элемента.

Виды тепловых реле

Производители предлагают несколько типов ТР, которые отличаются между собой конструктивными особенностями и видом применяемых МП.

Перечисленные ТР не защищают электроцепи от короткого замыкания.

Схема подключения теплового реле

Подсоединение ТР к силовым установкам осуществляется в соответствии с инструкцией производителя. В большинстве случаев ТР к защищаемому устройству подключают через нормально замкнутый контакт, который последовательно соединяют с клавишей «стоп». Разомкнутый контакт включает теплозащиту при выходе тока за допустимые значения. Схемы подключения теплового реле в цепь двигателя или другого электрооборудованиямогут быть и другими, в зависимости от присутствия дополнительных устройств.

Стандартная схема подключения теплового реле

Тепловое реле устанавливают и подключают вместе с магнитным пускателем, выполняющим функции включения электрического привода. Возможны варианты, когда тепловое реле устанавливают на DIN-рейку или отдельную панель.

При подключении потребителя в сеть 220 В или 380 В все фазы после магнитного пускателя пропускают через тепловое реле, а затем уже подсоединяют к электродвигателю. При включении пусковой кнопки напряжение электропитания попадает на обмотку МП, который включает электродвигатель. Если ток нагрузки увеличивается до значения, превышающего критическую величину, тепловое реле срабатывает и отключает электродвигатель.

Тепловое реле ТРН имеет всего два входящих подключения. Неподключенный провод фазы в этом случае пускают непосредственно от пускателя к двигателю. Поскольку ток в электродвигателе изменяется пропорционально, допускается контроль только двух из них (любых).

Регулировка теплового реле

Для эффективного выполнения функции отключения электродвигателя или другого обслуживаемого аппарата необходимо правильно отрегулировать настройки ТР таким образом, чтобы вероятность ложных срабатываний была исключена. Настройку рекомендуется осуществлять на специализированном стенде способом фиктивных нагрузок:

Маркировка тепловых реле

В маркировке указывается большинство важных характеристик ТР. Пример обозначения: РТЛ-Х1Х2Х3-Х4-Х5А-Х6А-Х7Х8, где

Тепловое реле – эффективный элемент защиты электродвигателей и другого электрооборудования, который выгодно отличается от входного автоматического выключателя тем, что не подвержен ложным срабатываниям при кратковременных скачках тока.

Источник

Тепловое реле для электродвигателя схема подключения

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле


В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Характеристики реле


При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения


Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме


Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Источник

Магнитный пускатель с тепловым реле и кнопками управления, схема, принцип действия

Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки.

У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже).

Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать.

Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Источник

Тепловое реле — принцип работы, виды, схема подключения регулировка и маркировка

Опубликовано Артём в 01.03.2019 01.03.2019

Одним из защитных аппаратов, применяемых в электроустановках, является тепловое реле, которое используется для защиты электродвигателя от перегрузки. На сегодняшний день существуют различные виды и типы данных изделий, однако все они имеют схожую область применения.

Конструктивные особенности

В основе устройства и принципа действия теплового реле (ТР) лежит закон Джоуля-Ленца — выделяемое на участке электроцепи количество тепла пропорционально сопротивлению этого участка и квадрату силы тока. Это физическое явление сегодня активно применяется в тепловых разъединителях. Небольшой участок электрической цепи, выступающий в роли излучателя, наматывается на изолятор спиралью.

Проходящий через электрооборудование ток протекает и в этом участке. Рядом со спиралью расположена пластина, изготовленная из биметаллического сплава. При достижении определенной температуры она изгибается и воздействует на группу контактов.

Особенность пластины заключается в том, что она изготовлена из двух металлов, обладающих разными показателями коэффициента теплового расширения, которые составляют один элемент.

Конструкция прибора показана на рисунке.

К проводникам подсоединены три фазы питания электромотора. Обмотка нагрева находится над биметаллической пластиной, что позволяет уменьшить число ложных срабатываний прибора. Пластины упираются в подвижный элемент конструкции, который воздействует на механизм разъединителя. В верхней части прибора расположены две группы контактов (закрытые NC и открытые NO), а также регулятор токовой нагрузки пружинного типа.

Особенности теплового реле

Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.

Тандем контактора и теплового реле

Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.

Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.

Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.

Нормально разомкнутые и нормально замкнутые контакты

Характеристики теплового реле

Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:

Схема подключения

В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).

Схема подключения ТР к контактору в магнитном пускателе

Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.

Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.

В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».

Тепловое реле в схеме реверсивного подключения контакторов

Элементы подключения, управления и настройки ТР

По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).

На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.

Кнопка «Стоп» служит для ручного выключения устройства защиты.

Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.

Управление повторным взводом

Уставка тока срабатывания позволяет сделать выбор значения перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.

Регулировка уставки срабатывания относительно метки

При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.

Графики времятоковой характеристики

Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.

Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.

Также у некоторых тепловых реле имеется флажок срабатывания защиты.

Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,

Защита настроек и маркировка

Основные характеристики

Каждое ТР имеет индивидуальные технические характеристики (ТХ). Реле нужно выбирать согласно характеристикам по нагрузке и условиям применения при работе электродвигателя или другого потребителя электроэнергии:

Номинальное значение тока – значение I, на которое рассчитано ТР. Выбирается по значению Iн потребителя, к которому непосредственно подключается. Кроме того, нужно выбирать с запасом по Iн и руководствоваться следующей формулой: Iнр = 1.5 * Iнд, где Iнр – Iн ТР, который должен быть больше номинального тока двигателя (Iнд) в 1.5 раза.

Граница регулировки I срабатывания является одним из важных параметров устройства термозащиты. Обозначение этого параметра является диапазоном регулировки значения Iн. Напряжение – значение силового напряжения, на которое рассчитаны контакты реле; при превышении допустимой величины произойдет выход из строя устройства.

Некоторые виды реле снабжены отдельными контактами для управления работой устройства и потребителя. Мощность – это один из основных параметров ТР, которое определяет выходную мощность подключенного потребителя или группы потребителей.

Граница срабатывания или порог срабатывания является коэффициентом, зависящим от номинального тока. В основном его значение находится в диапазоне от 1,1 до 1,5.

Чувствительность к фазному перекосу (асимметрии фаз) показывает процентное соотношение фазы с перекосом к фазе, по которой протекает номинальный ток необходимой величины.

Класс отключения – параметр, представляющий среднее время срабатывания ТР в зависимости от кратности тока уставки.

Основной характеристикой, по которой нужно выбирать ТР, является зависимость времени срабатывания от тока нагрузки.

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.

Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:

Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.

Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.

Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.

Элемент крепежа на корпусе теплового релеСпециальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».

ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.

Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.

Система рычагов

Если убрать рычаги, то будут видны контактные группы теплового реле.

Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.

Назначение

Сразу же хотелось бы сказать о том, что существуют различные виды и типы тепловых реле и соответственно область применения каждой классификации своя собственная. Вкратце поговорим о назначении основных разновидностей устройств.

РТЛ — трехфазное, предназначено для защиты электродвигателя от перегрузок, перекоса фаз, затянутого пуска или заклинивания ротора. Крепятся на контакты пускатели ПМЛ или как самостоятельное устройство с клеммами КРЛ.

РТТ — на три фазы, предназначены для защиты короткозамкнутых двигателей от токов перегрузки, перекоса фаз, заклинивания ротора двигателя, затянутого запуска механизма. Может крепиться на ПМА и ПМЕ пускатели, а также самостоятельно устанавливаться на панели.

РТИ — защищают электромотор от перегрузки, асимметрии фаз, длинного пуска и заклинивания машины. Трехфазное тепловое реле, крепится на пускатели серии КМТ и КМИ.

ТРН — двухфазное реле, контролирует режим работы и пуска, имеет только ручной возврат контактов, работа устройства мало зависит от температуры окружающей среды.

Твердотельные трехфазное реле, не имеют подвижных деталей, не зависят от состояния окружающей среды, применяют во взрывоопасных местах. Следит за током нагрузки, разгоном, обрывом фаз, заклиниванием механизма.

РТК — контроль температуры происходит щупом, расположенным в корпусе электроустановки. Представляет собой термо реле, и контролирует только один параметр.

РТЭ — реле плавления сплава, электропроводящий проводник выполнен из сплава металла, при определенной температуре плавится и механически разрывает цепь. Данное тепловое реле встраивается непосредственно в контролируемое устройство.

Как видно из нашей статьи, существует большое разнообразие контроля за состоянием электроустановок, отличающихся типом и внешним видом, но одинаково выполняющих защиту электрооборудования.

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1. 1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель.

Резюме

Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Рекомендации по выбору

При выборе прибора необходимо ориентироваться на область его использования, а также имеющийся функционал. Проблем с поиском нужного защитного устройства практически никогда не возникает. Особое внимание в это время нужно уделить следующим моментам:

Стоимость реле находится в широком ценовом диапазоне. Во время выбора прибора нужно внимательно изучить его технические характеристики. В паспорте можно также найти и рекомендации по подключению ТР. Впрочем, этот процесс не является сложным, и проблемы возникают крайне редко.

Кол-во блоков: 10 | Общее кол-во символов: 17696
Количество использованных доноров: 5
Информация по каждому донору:

Источник

Видео

Схема пуска электродвигателя 380 В через магнитный пускатель с тепловым реле. Пошагово и со схемой.

Тепловая защита электродвигателя. Подключение теплового реле Схема и принцип действия теплового реле

Тепловая защита электродвигателя. Электротепловое реле

Контакторы серии КМИ в сборе с электротепловым реле в оболочке IEK

Магнитный пускатель. Или как подключить трех фазный двигатель

Подключение электромагнитного пускателя часть№3

Как подключаю 3-х фазный двигатель через магнитный пускатель с тепловым реле.

Как подключить тепловое реле к магнитному пускателю, контактору? Принцип работы. Настройка. Выбор.

Защита электродвигателя. Настройка теплового реле на электродвигателе!

Реверсивная схема пуска эл.двигателя через магнитный пускатель с тепловым реле. Пошагово и со схемой

Тепловое реле: устройство, принцип действия, назначение

Содержание

  • Устройство и работа электротеплового реле.
  • Особенности монтажа
  • Подключение теплового реле в схему пускателя
  • Основные типы реле
  • Что делать, если щелчки не удается устранить самостоятельно
  • Технические характеристики
  • Что делать, если паспортные данные не известны?
  • Типы схем работы термоэлемента
  • Особенности выбора теплового реле
  • Что такое электромагнитное реле
  • Принцип работы теплового реле
  • Необходимые материалы
  • Схема подключения

Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

{SOURCE}

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать. Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Основные типы реле

Совместимость релейного устройства с конкретным мотором зависит от его типа. Производители выпускают:

  • ТРП. Аппарат с одним полюсом и комби-системой нагрева, который защищает асинхронные моторы. Подходит для сети с постоянным током не более 440 В, нечувствителен к ударам.
  • РТЛ. Предотвращает неисправность двигателя в условиях выпадения фазы, токовой асимметрии и перегрузки, затяжного пуска, заклинивания. Монтируется на дин-рейке отдельно или совместно с пускателем.
  • РТТ. Основное назначение приборов – предотвращение затяжного старта, перегрузки, перекоса фазы асинхронных моторов с роторами короткозамкнутого типа.
  • ТРН. Двухфазный коммутатор для контроля пуска и функционала двигателя. Подходит под сеть переменного тока, контакты в исходное положение возвращаются вручную.
  • РТИ. Тепловое РТИ-реле отличается минимальным энергопотреблением, совместимы с автовыключателями или предохранители. Установка производится на специальный контактор.
  • Твердотельные. Компактные приборы без активных узлов. Принцип их функционала заключается в проверке тока работы и пуска, определении средних показателей температуры двигателя. Устанавливаются на аварийно опасных участках.
  • РТК. Пусковой аппарат, контролирующий температуру внутри корпуса оборудования. Задействуется в схемах с реле-частью комплектации автоматики.

Что делать, если щелчки не удается устранить самостоятельно

В ряде случаев пользователь не может не только избавиться от щелчков, но и диагностировать их причину. Вариантов, как поступить, здесь всего два:

  1. Покупка нового HDD. Если проблемный винчестер еще работает, то можно попытаться сделать клонирование системы со всеми пользовательскими файлами. По сути, вы замените только сам носитель, а все ваши файлы и ОС будут работать, как и прежде.

    Подробнее: Как клонировать жесткий диск

    Если такой возможности пока нет, можно хотя бы сохранить самые важные данные на другие источники хранения информации: USB-flash, облачные хранилища, внешний HDD и др.

  2. Обращение к специалисту. Ремонтировать физические повреждения жестких дисков очень затратно и обычно не имеет смысла. В особенности, если речь идет о стандартных винчестерах (установленных в ПК на момент его покупки) или купленных самостоятельно за небольшие деньги.

    Однако если на диске есть очень важная информация, то специалист поможет «достать» ее и скопировать на новый HDD. При ярко выраженной проблеме щелканий и других звуков рекомендуется обратиться к профессионалам, которые смогут восстановить данные, используя программно-аппаратные комплексы. Самостоятельные действия могут только усугубить ситуацию и привести к полной потере файлов и документов.

Мы разобрали основные проблемы, из-за которых жесткий диск может щелкать. На практике все очень индивидуально, и в вашем случае может возникнуть нестандартная проблема, например, заклинивший двигатель.

Выявить самостоятельно, что же вызвало щелчки, может быть очень нелегко. Если у вас нет достаточных знаний и опыта, мы советуем обратиться к специалистам или же приобрести и установить новый жесткий диск самостоятельно.

Опишите, что у вас не получилось.
Наши специалисты постараются ответить максимально быстро.

Технические характеристики

Самая важная характеристика теплового реле для электродвигателя – это зависимость скорости отключения контактов от величины тока. Она показывает быстродействие устройства при перегрузках и называется время-токовым показателем.

К основным характеристикам относят:

  • Номинальный ток. Это рабочий ток, на который рассчитано срабатывание устройства.
  • Номинальный ток рабочей пластины. Ток, при котором биметалл способен деформироваться в рабочем пределе без необратимых нарушений.
  • Пределы регулировки уставки по току. Диапазон тока, в котором реле будет срабатывать, выполняя защитную функцию.

Что делать, если паспортные данные не известны?

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Кстати, недавно мы рассмотрели , с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Для защиты электродвигателей переменного и постоянного тока от сильного перегрева, который возникает из-за долговременной перегрузки, применяется тепловое реле перегрузки.

Принцип действия данного устройства состоит в том, что при длительном, сильном перегреве, биметаллические пластины, находящиеся внутри реле разогреваются, возникает деформация, которая и воздействует на блок-контакты. После чего блок-контакты, при помощи , полностью отключают электропитание потребителя.

Чтобы обеспечить гарантированную защиту электродвигателя не только от перегрузки тока, но и от перегрева необходимо осуществить оптимальную подборку теплового реле. В таком случае полностью исключается , заклинивание ротора, продолжительный затяжной пуск.

Всегда нужно помнить, что тепловое реле не обеспечивает защиту электродвигателя от короткого замыкания.

Типы схем работы термоэлемента

Тепловое реле действует по двум схемам:

  • коммутирующие контакты обратно замыкаются принудительно;
  • схема возвращается в исходное состояние самостоятельно.

Первый вариант относится к защитным тепловым реле (электромагнитные пускатели, автоматические выключатели и др.). Второй применяется в системах регулирования температурой объектов (холодильник, утюг, теплый пол и др.).

Биметаллическая пластина при прогибе действует на группу контактов, которыми размыкается электрическая цепь. Из-за низкой скорости срабатывания устройство не гасит электрическую дугу с должным эффектом. На современных реле применяются устройства, увеличивающие скорость разрыва цепи.

Особенности выбора теплового реле

Выбор ТР должен начинаться с изучения инструкции. Технический документ аппарата содержит следующую информацию:

  • связь тока нагрузки и периода срабатывания;
  • состояние для старта – охлаждение или перегрев;
  • номинальная нагрузка электромотора – оптимальный показатель перегрузки составляет 20-30 %;
  • время постоянной нагрузки – от 5 до 10 мин;
  • период продолжительной нагрузки – от 40 мин до 1 часа;
  • зависимость нагревания пластины от температуры воздуха.

Релейные приборы теплового типа характеризуются высокой скоростью и большим диапазоном срабатывания. Их легко устанавливать самостоятельно. Для обеспечения своевременного выключения двигателя в случае перегрузки ТР настраивается на специальном стенде.

{SOURCE}

Что такое электромагнитное реле

Это электромеханическое коммутационное устройство, основанное на принципе электромагнитной силы. При подаче электричества, внутри него образуется магнитное поле, благодаря которому, с помощью специального механизма происходит замыкание или размыкание коммутируемой электрической цепи.

Проще говоря, это устройство для управления другой электрической цепью, выполняющее управление через замыкание и размыкание контактов. Бывают реле постоянного и переменного тока, постоянного тока подразделяются на поляризованные и нейтральные, каждое из них предназначено для своих целей. Более подробно обо всем далее.

Конструкция и устройство

Конструкция состоит из трех главных частей, основным элементом которой является электромагнитная медная катушка с закрепленным внутри ферритовым сердечником (соленоидом), выполняющая роль электромагнита, закрепленная на неподвижной площадке – ярмо.

Вторая часть называется якорь, являющая металлической пластиной с контактной площадкой на конце, в разомкнутом положении удерживающейся пружиной. Контактная часть реле является исполнительным изолированным органом, при перемещении которого контакты замыкаются или размыкаются.

Бывают однопарные, двуполярные, многопарные, исходно замкнутые (NC) или разомкнутые (NO).

Три основные элемента:

  1. Первичный или воспринимающий элемент (катушка с сердечником) – воспринимает электричество и преобразует его в магнитное поле.
  2. Промежуточный, подвижный элемент (якорь) – в результате появления магнитного поля возникает ЭДС, изменяющая положение якоря или механического привода механизма, который служит для замыкания контактов.
  3. Исполнительный орган (нормально замкнутый контакт или разомкнутый) – воздействует на другую электрическую схему включая или отключая ее.

Принцип работы

При подаче напряжения на обмотку катушки создается ЭДС, сила магнитного поля притягивает якорь с исходного положения, преодолевая усилие пружины, удерживающей якорь, тем самым замыкая контакт управляющей цепи.

В зависимости от конструкции реле, якорь замыкает или размыкает эклектическую цепь. После прекращения подачи электричества магнитное поле исчезает и якорь возвращается в свое обратное положение обратным сжатием пружины.

Сама катушка соленоид, в зависимости от количества витков проволоки, может срабатывать на разную силу тока, маркировка обычно указана на корпусе.

Примечание. УЗО представляет из себя обычное размыкающееся реле.

Виды реле

Помимо электромагнитных устройств, сегодня существует большое количество видов реле различного назначения и отличного принципа действия, использующихся для управления системами защиты от перепадов напряжения в бесперебойных системах защиты, автоматических приборах, интегральных электросхемах. К таким типам относятся:

  1. Электронные, в качестве ключа используется резистор, не щелкает при переключении
  2. Электротепловые
  3. Герконовые
  4. Времени
  5. Приорита
  6. Твердотельные – отсутствует соленоид, роль якоря выполняет мощный симистор или тиристор
  7. Индукционные
  8. Световые (совместно с датчиком света)

Также их следует различать по виду входящего сигнала, в зависимости от конструкции включение и выключение может происходить под воздействием:

  1. Напряжения
  2. Частоты электрической цепи
  3. Изменения мощности
  4. Света
  5. Температуры
  6. Давления
  7. Звука
  8. Давления газа

Принцип работы теплового реле

На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.

Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.

Необходимые материалы

Прежде чем приступить к самим работам, давайте рассмотрим, какие материалы потребуются в процессе:

  • Гипсокартонные листы. Естественно вам потребуются гипсокартонные листы, чтобы сделать гипсокартонный потолок. Однако тут потребуются специальные потолочные гипсокартонные листы. Длина такого листа составляет двести пятьдесят сантиметров, а его ширина – сто двадцать сантиметров. Толщина – показатель непостоянный. Она может варьироваться от шестидесяти до восьмидесяти миллиметров.
  • Металлические профили. Чтобы закрепить гипсокартонные листы на потолке, потребуется металлический каркас. Делается он из металлических профилей. Нам потребуется два вида профилей: CD и UD. Их длина составляет примерно триста пятьдесят – четыреста сантиметров.
  • Для фиксации элементов потолка потребуются специальные П-образные крепления. Их довольно часто называют пЭшками.
  • Естественно все материалы и элементы, которые были перечислены выше, не обойдутся без крепежа в виде разнообразных дюбелей и шурупов.
  • Для того, чтобы в конце заделать все стыки на швах, углубления от шурупов и другие мелкие дефекты гипсокартонного покрытия, придется использовать шпаклевку.
  • Электрические провода, для того, чтобы провести по потолку проводку, а также светильники. Назначение последних не требует объяснений.
  • Для того чтобы сделать правильную разметку перед установкой каркаса, которая поможет смонтировать конструкцию без ошибок в планировке, потребуется водяной уровень. Идеальным вариантом будет уровень, длина которого превышает на несколько метров длину вашей спальни. Эту нужно для того, чтобы вы могли сделать все важные отметки, опираясь на одну изначальную. Для такой работы, конечно, потребуется напарник, чтобы один мог держать отметку, пока другой отмеряет следующую.

Сборка потолка из гипсокартона для спальни

Схема подключения

Схемы подключения теплового реле в цепь могут существенно отличаться в зависимости от устройства. Однако ТР подключаются последовательным соединением с обмоткой двигателя или катушкой магнитного пускателя к нормально разомкнутому контакту, т. к. подключение такого рода позволяет защитить устройство от перегрузок. При превышении показателей потребления тока ТР отключает устройство от питания электросети.

В большинстве схем при подключении применяется постоянно разомкнутый контакт, который работает при последовательном соединении со стоповой кнопкой на управляющем пульте. В основном этот контакт маркируется буквами NC или Н3.

Нормально замкнутый контакт может применяться при подключении сигнализации о срабатывании защиты. Кроме того, в более сложных схемах этот контакт применяется для осуществления программного управления аварийной остановкой устройства с использованием микропроцессоров и микроконтроллеров.

Термореле подключить достаточно просто. Для этого нужно руководствоваться следующим принципом: ТР размещается после контакторов пускателя, но перед электродвигателем, а постоянно замкнутый контакт включается последовательным соединением со стоповой кнопкой.

No tags for this post.

Что делать, если сработало тепловое реле перегрузки?

  1. Дом
  2. Что делать, если сработало тепловое реле перегрузки?

Если питатель или блендер шнековой разливочной машины не работает, вероятно, сработало (сработало) тепловое реле перегрузки. Так как же определить, сработало ли тепловое реле перегрузки? Вот фото:

Как определить, сработало ли тепловое реле перегрузки?

Как видно из рисунка выше, индикатор отключения поможет визуально определить, сработало ли тепловое реле перегрузки.

  • Если выскочило, значит сработало. Например, буква A в левой части рисунка.
  • Если не выскочило, значит не сработало. Например, буква B в правой части рисунка.

1. Какова цель настройки теплового реле перегрузки?

Все оборудование имеет предел рабочего диапазона, кран, предназначенный для подъема 10 тонн, не может поднять 20 тонн, и если мы попытаемся это сделать, это будет не только небезопасно, но и повредит сам кран. Эту аналогию можно точно применить к электрическому оборудованию. Каждое электрооборудование рассчитано на определенную нагрузку (ток), и любая перегрузка постигнет та же участь, что и кран.

Машина и ток

Тенденция к увеличению производительности неосознанно увеличивает нагрузку сверх своих возможностей, а мощность системы подачи делает ее небезопасной. Более того, поскольку электрические параметры всегда динамичны и изменчивы, становится необходимым использовать реле перегрузки с электрическим оборудованием везде, где это возможно. Здесь мы ограничимся реле перегрузки электрооборудования, такого как двигатели, трансформаторы и т. д.
Другими словами, тепловое реле перегрузки защитит электробезопасность и продлит срок службы двигателя машины.

2. Что такое тепловое реле перегрузки?

Тепловые реле перегрузки представляют собой экономичные электромеханические устройства защиты главной цепи. Они обеспечивают надежную защиту двигателей в случае перегрузки или обрыва фазы. Тепловое реле перегрузки вместе с контакторами может составлять компактное пусковое решение.

Контактор и тепловое реле перегрузки (на фото шкаф управления полуавтоматической шнековой разливочной машиной)

Как показано на рисунке:
Приведенная выше этикетка A — это Контактор .
Нижняя этикетка B: Тепловое реле перегрузки .
Ток течет по кабелю от источника питания к контактору, затем от контактора к тепловому реле перегрузки и, наконец, к двигателю нагрузки.

3. Что вызывает срабатывание теплового реле перегрузки?

Некоторым электродвигателям требуется всплеск электричества при запуске. Эти выбросы могут в три раза превышать ток, потребляемый двигателем при работе на нормальной скорости. Для защиты таких цепей двигателя реле тепловой перегрузки работает лучше, чем обычный автоматический выключатель, потому что оно выдерживает эти скачки напряжения без срабатывания. Тепловое реле перегрузки срабатывает только при возникновении какой-либо другой проблемы.

  • Короткое замыкание в проводке

    Целью любого автоматического выключателя является защита проводки в цепи. Короткое замыкание приведет к срабатыванию любого выключателя, в том числе выключателя перегрузки. Короткое замыкание приведет к потреблению тока, превышающего номинальные значения перегрузки и перенапряжения, и вызовет срабатывание реле.

  • Отказ двигателя

    Некоторые типы отказов двигателя могут привести к тому, что двигатель будет потреблять слишком много тока, что приведет к срабатыванию автоматического выключателя защиты от перегрузки.
    Например:
    Выход из строя подшипника может привести к замерзанию и возгоранию двигателя.
    Короткое замыкание в обмотке якоря потребляет слишком большой ток.
    Отказ редуктора или привода может привести к замерзанию и возгоранию двигателя.
    Основное назначение автоматического выключателя перегрузки — защита цепи при отказе двигателя.

  • Перегрузка двигателя

    Все двигатели имеют номинальную нагрузку или объем работы, который они могут выполнять. Если двигатель должен выполнять больше работы, чем он рассчитан, он будет потреблять слишком много тока при попытке завершить работу. Реле перегрузки можно настроить так, чтобы они выдерживали временные рабочие перегрузки, точно так же, как они выдерживают пусковые токи во время запуска. Но если состояние перегрузки сохраняется, автоматический выключатель сработает.

  • Перегрев двигателя

    Нагрев может привести к перегрузке двигателя. Если двигатель находится в жарком климате или в закрытом помещении без надлежащей вентиляции или охлаждения, со временем он может нагреться. Когда двигатель нагревается, даже если он не перегружен и не поврежден, вероятность повреждения существует и со временем увеличивается. Реле перегрузки определяет увеличение тока из-за перегрева и срабатывает для защиты двигателя.

  • Отказ реле перегрузки

    Регулируемое реле перегрузки может быть настроено неправильно, что приводит к его срабатыванию из-за обычных скачков напряжения или временных перегрузок. Также может выйти из строя само реле перегрузки.

4, Как мы должны сбросить поездку?

Изучение 4 кнопок

4 кнопки показаны на следующем фото:

Название кнопки для теплового реле перегрузки

  • 1). 整 流盘 : 黑色 所 所 指 的 电流 安培值 该 该 过载 保护器 所 设定 最 大 承受 电流值。。
    Регулирующий набор : Значение Ampere, указанное черной линией с помощью теплового реле перегрузки. Регулировочный диск, расположенный на устройстве, позволяет настроить отключение в амперах.
  • 2). 测试按钮(红色) :按下这个按钮,脱扣指示将弹出。
    Кнопка проверки (красная) : Нажмите кнопку проверки, появится индикатор срабатывания.
  • 3). 复位 按钮 (蓝色) : 按下 复位 按钮 , 脱扣 将 复位 , 电机 将 将 会 接通 电源 接续 工作。。
    Кнопка сброса (синий) : нажмите кнопку «Снижение», индикатор отключения будет сброшен , и двигатель будет подключен к источнику питания для продолжения работы.
  • 4). 脱扣指示(绿色) :如果弹出来则表示在脱扣状态。
    Индикатор отключения (зеленый) : Если он выскакивает, это означает, что он находится в отключенном состоянии.
Как решить проблему отключения реле тепловой перегрузки?
  • 1). Питание машины ВЫКЛЮЧЕНО.
  • 2). Проверьте, не блокируют ли какие-либо посторонние предметы нагрузку двигателя, например, конвейерная трубка податчика или лезвие блендера двигателя блендера.
  • 3). Соответствующим образом увеличьте значение регулятора (ток нагрузки).

5, часто задаваемые вопросы

  • 1) Что вызывает срабатывание из-за перегрузки?
    Перегрузка (перегрузка по току) вызывает срабатывание реле перегрузки.
  • 2) Какие существуют два основных типа реле?
    Реле двух основных типов — тепловые реле перегрузки и магнитные реле перегрузки.
  • 3) Как проверить реле перегрузки двигателя?
    Реле перегрузки можно проверить, подав в него заданный ток, а затем зафиксировав время срабатывания. Сравнивая его с требуемыми характеристиками.
  • 4) Какой тип теплового реле перегрузки использует VTOPS?
    Чинт: NR4-12,5; для двигателя блендера шнековой наполнительной машины.
    Подсказка: NR4-25; для двигателя конвейера шнековой наполнительной машины.
  • 5) Может ли пользователь заменить его на новый?
    Да. Вы можете легко купить эту модель теплового реле в Интернете. Пожалуйста, обратите внимание на безопасность при замене.

Другие наши случаи

Клиенты

Решения

Технические чертежи

Видео

Руководство по принципу работы реле тепловой перегрузки

Содержание

Тепловое реле перегрузки — это защитное устройство, используемое в цепях ручного управления. Защита от тепловой перегрузки использует электродвигатель для управления его перегревом при коротком замыкании путем отключения контура нагрева при повышении температуры выше установленного значения. Этот тип теплового реле перегрузки будет использоваться, если существует вероятность короткого замыкания или продолжительных высокотемпературных условий в месте, где оно установлено.

Тепловое реле перегрузки имеет два контакта, один нормально разомкнутый, а другой нормально замкнутый, которые образуют простую электрическую цепь, когда они встречаются вместе для эффективного выполнения своих функций. В этой статье мы обсудим руководство по принципу работы теплового реле перегрузки.

Что такое реле перегрузки?

Реле перегрузки — это защитное устройство, которое защищает цепь от повреждений, вызванных мощными нагрузками. Реле размыкается, если нагрузка превышает определенную величину, защищая цепь от разрушения.

Простейшая версия реле перегрузки представляет собой однополюсный однопозиционный переключатель (SPST). Этот тип реле имеет только одно положение или положение, которое можно установить, и оно реагирует на одноступенчатый входной сигнал от нагрузки или источника.

Чтобы использовать реле, вы должны сначала знать, какой тип цепи вы защищаете. Например, если у вас есть электрическая плита, будет гораздо безопаснее использовать реле, чем второй выключатель рядом с тем местом, где шнур плиты присоединяется к шнуру питания.

Предположим, у вас есть электрическая розетка, через которую проходит несколько цепей. В этом случае вы также можете использовать устройства защиты от перегрузки по току, такие как плавкие предохранители или затворы, чтобы защитить отдельные цепи от повреждений, вызванных их перегрузкой слишком большим током от других цепей, вступающих в контакт с ними одновременно.

Какова функция теплового реле перегрузки?

Тепловое реле перегрузки — это реле, предназначенное для защиты электрических систем от перегрева. Он не отключает питание цепи, а вместо этого определяет, когда ток достигает достаточно высокого уровня, и размыкается, позволяя двигателю продолжать работать.

Тепловые реле перегрузки защищают двигатели, трансформаторы и другие электрические устройства от перегрева. Эти реле часто устанавливаются в точках, где есть электрическая цепь с несколькими устройствами на ней. Если одно из этих устройств перегреется, оно может повредить себя или другие части этой цепи. Тепловое реле перегрузки выполняет три основные функции:

  • Он определяет накопление тепла в двигателях и других электрических устройствах в цепи и активирует сигнал тревоги, если температура достигает заданного уровня.
  • Действует как выключатель, пропускающий электричество из одной части цепи и предотвращающий его прохождение через другую часть. Это предотвращает повреждение, вызванное перегревом или перегрузкой, от повреждения любых других компонентов системы.
  • Защищает от колебаний напряжения, вызванных ударами молнии и перебоями в подаче электроэнергии, которые могут привести к повреждению чувствительного электрооборудования в вашем доме или здании.

Различные типы реле

Тепловые реле перегрузки обычно используются во время опасных и катастрофических скачков напряжения. Если человек или устройство потребляют слишком много выходной мощности, это может привести к неисправности. Тепловые реле перегрузки могут спасти ваши устройства и гарантировать, что системы не перестанут работать. Вот несколько различных типов реле:

Биметаллические тепловые реле

Биметаллические тепловые реле представляют собой электронные реле, в конструкции которых используются два разнородных металла. Эти два металла обычно изготавливаются из никеля и железа или стали, но в зависимости от применения могут использоваться и другие материалы.

Биметаллические тепловые реле имеют много преимуществ по сравнению с другими типами тепловых реле. Одним из преимуществ является то, что биметаллические тепловые реле могут выдерживать более высокие температуры, чем тепловые реле, что делает их идеальными для передачи большой мощности или высокотемпературных источников тепла. Еще одним преимуществом биметаллических тепловых реле является то, что они требуют меньше обслуживания, чем стандартные тепловые реле, поскольку они более долговечны, чем обычные типы. Это упрощает отслеживание вашего биметаллического реле и гарантирует, что оно не будет повреждено или преждевременно изношено из-за неправильного или неправильного использования пользователем.

Твердотельные реле

Твердотельные реле — это твердотельные устройства, в которых в качестве переключателя используется полупроводниковый материал. Тиристор — наиболее распространенное твердотельное реле, трехполюсное устройство без внутреннего сопротивления и движущихся частей. Другими типами твердотельных реле являются симисторы, которые имеют три контакта, но только одну катушку, и SCR, или кремниевый выпрямитель, который также имеет три контакта с двумя катушками. Они используются в приложениях, где важны скорость и надежность.

Твердотельные накопители имеют много преимуществ перед традиционными аналогами. Для их работы требуется меньше энергии, потому что им не нужна механическая энергия, чтобы сделать их проводящими, и ими можно управлять более точно, чем механическими переключателями. Однако использование твердотельных реле вместо механических имеет некоторые недостатки:

  • Они дороже механических реле.
  • Имеют меньшую надежность из-за отсутствия движущихся частей.
  • Они могут одновременно обрабатывать только небольшие количества тока (в отличие от механических реле).

Реле контроля температуры

Реле контроля температуры используются для контроля температуры системы. Эти релейные блоки могут контролировать температуру любого электроприбора, включая системы кондиционирования и отопления.

Реле контроля температуры имеет два выхода, которые можно подключить к двум отдельным цепям. Второй выход будет управлять схемой, получающей питание от первого выхода.

Количество энергии, которую реле контроля температуры отправляет в цепь, определяется его номиналами и током, который оно может выдержать. Наиболее часто встречающиеся номиналы для этих устройств: 5 ампер, 10 ампер, 20 ампер и 30 ампер. Более высокий номинальный ток означает, что он может выдерживать большую мощность, чем более низкий номинальный ток, но это также означает, что для нагрева или охлаждения устройства потребуется больше времени, потому что через него одновременно протекает больший ток.

CHINT Тепловое реле перегрузки

Тепловое реле перегрузки Chint — это защитное устройство для предотвращения пожаров, отключения электрических проблем и защиты кабельных систем. Он предназначен для контроля обратной связи по напряжению, силе тока и коэффициенту мощности (PF) вашей электрической системы. Это устройство отслеживает состояние вспомогательного оборудования и сообщает о любых ненормальных состояниях однофазных, трехфазных или многофазных сетей. Вот какое-то реле тепловой перегрузки.

Тепловое реле перегрузки NXR представляет собой небольшое компактное реле, которое можно установить внутри коробки панели. Тепловое реле перегрузки NXR защищает электрооборудование от перегрузок и сверхтоков.

Тепловое реле перегрузки NXR имеет интегральную схему со встроенным байпасом для обеспечения высокой надежности в агрессивных средах. В NXR используется уникальная конструкция, включающая внутренний переключатель байпаса, исключающий потенциальное повреждение в результате обрыва цепи или короткого замыкания. Эта уникальная конструкция позволяет использовать устройство в приложениях, в которых другие реле не могут справиться с ситуациями, например, в суровых условиях или с короткими рабочими циклами.

Тепловое реле перегрузки Chint NR8 является отличным решением для приложений, где требуется реле для защиты от возможного короткого замыкания. Тепловое реле перегрузки NR8 идеально подходит для промышленного, коммерческого и бытового использования.

Тепловое реле перегрузки Chint NR8 защищает как длительные, так и кратковременные приложения. Тепловое реле перегрузки NR8 было разработано как законченная система со всеми ее компонентами, включенными в комплект. Его можно легко установить, используя существующую проводку, что устраняет необходимость в дополнительной проводке или кабелепроводе.

Завершение

Тепловое реле перегрузки

работает по принципу теплового расширения, т. е. когда реле обнаруживает повышение температуры и расширяется, оно вытягивается из монтажного основания. Таким образом, он освобождает контакт от нажимных контактов, которые замыкаются при отсоединении соединений. В этой статье мы обсудили принцип работы теплового реле перегрузки и CHINT тепловое реле перегрузки.

Рекомендуем к прочтению

Электрический низковольтный

Разница между контактором и реле

Содержание Для чего используется контактор? Итак, что такое контактор? Контактор служит в качестве переключающего устройства с электрическим приводом и используется для

Подробнее »

Автоматика

Все, что вам нужно знать о силовых реле

Содержание Что такое силовое реле? Это переключатель, который поставляется с электромагнитом для замыкания или размыкания цепи. В основном это

Подробнее »

Просмотры сообщений: 923

Твиттер YouTube Фейсбук Линкедин

Вас может заинтересовать

Как продлить срок службы ваших электрических кабелей

2 октября 2022 г.

Подробнее »

CHINT Саудовская Аравия: стратегия локализации для стимулирования развития

26 сентября 2022 г.

Подробнее »

ENLIT ASIA|CHINT дебютирует с новыми измерительными решениями

24 сентября 2022 г.

Подробнее »

Внедрение инноваций в штаб-квартире и инновационной лаборатории CHINT AP

22 сентября 2022 г.

Подробнее »

5 важных фактов о силовых кабелях, о которых вы не знали

21 сентября 2022 г.

Подробнее »

CHINT предлагает решение для электроснабжения в Египте

19 сентября 2022 г.

Подробнее »

Полное объяснение » Инженерный Дост

Друзья, если вы занимаетесь электрикой, то наверняка видели реле перегрузки, подключенное ко всем пускателям двигателя. Итак, в этом посте мы поговорим об этом OLR.

Полная форма OLR: Реле перегрузки

В некоторых местах это называется тепловым реле перегрузки.

Что такое реле перегрузки?

Реле перегрузки — это электрическое устройство, используемое для обеспечения безопасности двигателя. Его работа очень проста. Он чувствует ток, протекающий в двигателе. Предположим, что двигатель потребляет больше установленного тока. В этом случае OLR размыкает цепь. Так что наш мотор останется в безопасности от любой неисправности.

Реле перегрузки работает

Внутри реле перегрузки имеются металлические элементы. Ток, идущий к двигателю, проходит через эти биметаллические элементы. Теперь, если двигатель потребляет больше тока, то этот биметаллический элемент нагревается и изгибается. Как только это происходит, цепь разрывается, и двигатель останавливается.

Реле перегрузки Соединение

В основном с разъемом используется OLR. При использовании реле перегрузки существует два типа подключения.

  1. подключение питания
  2. соединение управления

Силовая проводка: Внутри силовой проводки подключаем трехфазный выход контактора к клемме L1 L2 L3 реле. После этого подаем трехфазное питание на двигатель с клеммы T1 T2 T3 реле.

Проводка управления: В проводке управления вы должны подключить реле последовательно с кнопкой остановки двигателя (кнопка NC). Все мы знаем, что для включения/выключения контактора мы подаем питание с помощью кнопки NO NC. Так что теперь вам не нужно напрямую подключать выходной провод NC без нажатия.

Фаза, поступающая от кнопки NC, сначала поступает на размыкающий контакт реле OLR, а после выхода с размыкающего контакта реле срабатывает от кнопки NO.

Типы реле OLR

Реле перегрузки в основном двух типов:

  1. Тепловое реле перегрузки
  2. магнитное реле перегрузки

Тепловое реле перегрузки- Работа теплового реле перегрузки довольно проста. В этом типе реле ток, проходящий внутри двигателя, сначала проходит через контакт реле. Контакты этого реле нагреваются из-за протекания этого тока, а тепловое реле перегрузки работает от того, насколько сильно оно нагревается.

Магнитное реле перегрузки- магнитное реле перегрузки не работает на нагрев. Он работает на магнитном поле. Как известно, если по проводнику течет ток, вокруг него создается магнитное поле. Вот и работает это магнитное реле перегрузки.

Он измеряет силу магнитного поля, создаваемого током, и определяет, работает ли двигатель с перегрузкой или нет. А при перегрузке сразу срабатывает.

Релейная защита от перегрузки

Реле перегрузки в основном обеспечивает защиту от 3 типов неисправностей:

Ошибка перегрузки- Когда мы подключаем наше оборудование к реле перегрузки. Теперь, если это устройство потребляет больше тока, чем установленный ампер на реле, то в это время реле отключает цепь, считая это ошибкой перегрузки.

Обрыв входной фазы- Эта защита очень важна для электродвигателя. Как мы все знаем, если мы обеспечим двухфазное питание внутри трехфазного двигателя, этот двигатель сгорит за меньшее время. Таким образом, реле перегрузки также обеспечивает защиту от этой неисправности. Если фаза пропущена, то это реле срабатывает при ошибке обрыва входной фазы.

Асимметрия фаз- Если напряжения во всех трех фазах разные, больше в одной и меньше в другой, реле OLR срабатывает и защищает систему. При этом, если наш двигатель также потребляет больший ток в одной фазе и меньший ток в другой, то это реле срабатывает из-за нарушения перекоса фаз.

Может ли OLR защитить от короткого замыкания?

Многие думают, может ли реле перегрузки защитить от короткого замыкания? Итак, ребята, ответ НЕТ. 9Реле перегрузки 0014 обеспечивает только три защиты нашего оборудования от перегрузки, обрыва фазы и перекоса фазы.

Если вам нужна дополнительная защита от короткого замыкания, вы также должны установить MCB вместе с ним, чтобы MCB защищал систему от короткого замыкания.

Детали реле перегрузки

Клемма- Всего внутри реле имеется шесть клемм. При этом фазный провод питания подключается к L1 L2 L3. Наряду с этим есть терминалы T1 T2 T3. На эти клеммы подключается провод двигателя.

Настройка диапазона ампер- Вы обязательно найдете поворотную ручку во всех типах реле перегрузки. С его помощью мы можем настроить реле, насколько оно будет пропускать максимальный ток.

Кнопка сброса — Когда по какой-то причине срабатывает реле перегрузки, мы должны сбросить реле, чтобы использовать его снова. Итак, чтобы сбросить реле OLR, на нем есть кнопка сброса.

Выбор ручного/автоматического сброса- Это кнопка. Вы можете установить его на автоматический или ручной режим. Если установлено ручное управление, вам потребуется самостоятельно сбросить реле в случае возникновения неисправности. Но во время авто это реле автоматически сбрасывается после остывания.

Вспомогательный контакт- Этот вспомогательный контакт имеет замыкающие и размыкающие контакты. Его нормально замкнутый контакт используется в основном для включения и выключения контактора от реле.

Кнопка Test- С помощью этой кнопки мы можем проверить исправность реле.


Мы надеемся, что вы понимаете. Если все еще остаются сомнения или вопросы, не стесняйтесь задавать их в разделе комментариев или задать этот вопрос в Instagram «Electrical Dost»

Если вам нравится смотреть видео об электротехнике на языке хинди. тогда вы можете посетить наш канал на YouTube, «Electrical Dost».

Спасибо 🙂

Тепловые реле перегрузки: Магазин реле перегрузки

Тепловые реле перегрузки: Магазин реле перегрузки | Бэй Пауэр

Магазин не будет работать корректно, если файлы cookie отключены.

Похоже, в вашем браузере отключен JavaScript. Для наилучшего взаимодействия с нашим сайтом обязательно включите Javascript в своем браузере.

Ищете тепловые реле перегрузки? Получите цитату быстро.

Получить предложение

×

Ищете тепловые реле перегрузки? Получите цитату быстро.

2 столбца

Имя

Фамилия

2 столбца

Компания (необязательно)

Телефон

1 Столбец

Адрес электронной почты

Требуемые элементы

Загрузить файлы

Файлы перетаскивания и выпад или нажмите, чтобы выбрать

. Загрузите фотографии вашего существующего оборудования, чтобы показать нам, что вам нужно

.

9999

Защитите двигатель от опасных перегрузок.

Если цепи вашего двигателя не выдерживают нагрева, пришло время приобрести тепловое реле перегрузки. Тепловые реле перегрузки являются одними из самых популярных типов реле в промышленности. В отличие от электронных реле, они используют механизм обнаружения перегрева для размыкания цепей в случае перегрузки. Когда нагревательный элемент внутри реле испытывает резкое повышение температуры, он впоследствии изгибает биметаллическую полосу, открывая и размыкая цепь, предотвращая повреждение двигателя от перегрузки. Затем тепловые реле перегрузки могут быть сброшены вручную или автоматически. Тепловые реле перегрузки, используемые в ряде секторов, используются, в частности, в системах отопления, вентиляции и кондиционирования, горнодобывающих системах, насосных системах и ирригационных системах.

Экономичны и надежны.

Тепловые реле перегрузки, как известно, чрезвычайно надежны и обеспечивают высокий уровень защиты. Реле IEC, в частности, также оборудованы для защиты от обрыва фазы, также известного как однофазность. Это происходит при потере одной из фаз в 3-фазной системе и может быть связано с изношенными контактами, неисправной проводкой и другими причинами. Это создает чрезмерную нагрузку на оставшиеся два контакта и может привести к серьезным повреждениям, если их не обнаружить. Тепловые реле перегрузки могут быть оснащены механизмами, которые предотвращают однофазное замыкание, защищая вас и ваш двигатель от повреждений.


Запросить цену

Возможна доставка в тот же день

Круглосуточная экстренная поддержка

Глобальная сеть поставщиков

1 год гарантии

Откройте для себя обещание Bay Power сегодня.

Делая покупки в Bay Power, вы всегда можете рассчитывать на то, что мы будем такими же надежными, как и наши высококачественные тепловые реле перегрузки. Выберите из нашего обширного ассортимента лучших в отрасли тепловых реле перегрузки, включая реле безопасности Allen Bradley, реле безопасности Jokab, реле безопасности Pilz, защитные реле Schweitzer и многое другое. Мы также предлагаем тепловые реле перегрузки от ABB, Crydom, GE и Thermistor. Совершайте покупки у нас сегодня и воспользуйтесь нашим широким выбором, быстрой доставкой, профессиональным обслуживанием и годовой гарантией замены — это обещание Bay Power.

Запросить предложение

Пожалуйста, заполните следующую информацию или свяжитесь с нами по телефону (800) 699-2980, чтобы запросить бесплатное предложение. Наши дружелюбные сотрудники отдела продаж будут рады помочь вам!

2 Columns

First Name

Last Name

2 Columns

Company (Optional)

Telephone

1 Column

Email Address

Items Needed

Upload Files

Файлы перетаскивания и падения или нажмите, чтобы выбрать

Загрузить фотографии вашего существующего оборудования, чтобы помочь нам показать нам, что вам нужно

Действия

×

Популярные бренды

.

Power

Продайте нам

Наполните свой кошелек, а не выбрасывайте на свалку.

Имеются ли старые или неиспользованные тепловые реле перегрузки? Пока не избавляйтесь от них. Хотя у нас есть широкий ассортимент качественной электротехнической продукции и решений, как новых, так и восстановленных, мы также выкупаем ваше ненужное оборудование . Итак, прежде чем решить, что делать со старыми термореле и компонентами, попросите одного из наших технических специалистов посмотреть, сможем ли мы сэкономить несколько деталей, защитить окружающую среду и сэкономить вам немного денег.

Продайте нам

Гарантия

Отличный сервис не должен заканчиваться после покупки. Мы гордимся отношениями, которые мы строим с нашим менталитетом, ориентированным на клиента, и качеством наших тепловых реле перегрузки и компонентов. Поэтому мы предлагаем Гарантия на замену сроком на 1 год на всю нашу электротехническую продукцию и решения от ведущих производителей. Потому что когда вы покупаете с Bay Power, вы покупаете с уверенностью.

Узнать больше

Состояние продукта Часто задаваемые вопросы

Мы гордимся тем, что располагаем разнообразными новыми и восстановленными компонентами по конкурентоспособным ценам от ведущих производителей тепловых реле перегрузки.

Новый

Благодаря нашему обширному ассортименту реле тепловой защиты и компонентов, наш находчивый и квалифицированный персонал всегда сможет получить необходимую вам продукцию. Благодаря нашей обширной сети поставщиков мы можем поставлять и приобретать огромное количество электротехнической продукции и решений, поэтому есть вероятность, что если вам это нужно, мы можем это получить.

Восстановленное

Приоритетом Bay Power является обеспечение вас надежным и высококачественным электрическим оборудованием. Вот почему наша миссия состоит в том, чтобы наши восстановленные электротехнические изделия и решения функционировали так же безупречно, как и в день их изготовления. Потому что при высоком качестве стоимость тепловых реле перегрузки не должна быть высокой.

Новые излишки

Наш выбор новых излишков Тепловые реле перегрузки могут поставляться не новыми в упаковке, но они работают так же хорошо, и через них никогда не проходило электричество. Все качество, никакой упаковки, всегда с нашей 1-летней гарантией замены.

Общайтесь с нами на платформе LiveChat

Подключение вашей системы Radiant | | Теплый пол своими руками

Стандартные схемы подключения контроллеров I-Link

Содержание

  • Стандартные схемы подключения контроллеров I-Link
    • Мы предлагаем неограниченную техническую поддержку по бесплатному номеру 866-теплые пальцы (927-6863)
    • Базовый контроллер для одной зоны
    • Базовый контроллер для нескольких зон
  • Специальные схемы подключения для контроллеров i-Link
    • Активация котла с помощью однозонного контроллера
    • Активация газового клапана с помощью зонального контроллера
    • Подключение теплообменника/системы первичного контура
  • Подключение термостата
    • Подключение термостата Honeywell Pro 1000 9 00004
    • и настройка термостата Honeywell Pro 1000 (8 клемм)
    • Термостат марки Robert Shaw
  • Управление насосом с помощью «датчика пола»
  • Контроллер солнечного дифференциала
    • Краткое руководство
    • Выбор треугольника T

Важное примечание: Помимо блока электрокотла, t здесь нет прямого электрического соединения между любым реле I-Link и любой моделью по требованию водонагреватель. Единственным электрическим соединением с водонагревателем On Demand / Tankless,… является питание (вилка) к/от устройства (независимо от количества зон) . Водонагреватель срабатывает, когда устройство определяет расход не менее 1/2 галлона в минуту. Водонагреватель активируется, когда какая-либо или все зоны требуют нагрева, а насос(ы) циркулируют жидкость через устройство, таким образом создавая «поток», который сигнализирует о включении водонагревателя!

Краткое руководство по подключению многозонных систем. Для получения более подробной информации прокрутите страницу вниз для получения дополнительных схем.

Мы предлагаем неограниченную техническую поддержку ~ бесплатный номер 866-теплые пальцы ног (927-6863)

Базовый контроллер для одной зоны

Итак….. Подключите реле SP-81 , которое мы поставили вместе с вашей системой, следуя приведенной ниже схеме.

Контроллер одной зоны включает насос, когда термостат требует тепла.

18/2 Провод термостата от термостата в зоне подключается к клеммам R/W. Красный или белый могут идти к любому терминалу. Отодвинув язычок над клеммной колодкой, можно легко вставить провод. Для питания системы лучистого отопления (реле/насос) рекомендуется электрический провод 14/2 Romex.

ПРИМЕЧАНИЕ. «Питание на термостат» на приведенной выше схеме указывает на то, что 24 В переменного тока поступает от контроллера для питания цифрового дисплея термостатов, в которых для этой цели не используются батареи. Термостаты которые мы продаем используйте батареи , поэтому эта функция не требуется для цифрового дисплея на наших термостатах. Но, прежде всего, не подключайте к этим клеммам линию 120 В переменного тока.
(вернуться наверх)


Базовый «многозональный» контроллер

Системы с несколькими зонами обычно управляются одним блоком, содержащим несколько реле. Как и вышеприведенный SP-81, многозональные контроллеры используют одну и ту же базовую конфигурацию клеммной колодки для низкого напряжения (термостат) и сетевого напряжения (работа циркуляционных насосов). Ряд оранжевых выступов вдоль верхней части панели контроллера позволяет вставлять провода термостата, а блок клеммных винтов вдоль нижней части с маркировкой N (нейтраль) и L (нагрузка) упрощает подключение каждого зонального насоса.

Конечно, во всех случаях блок реле должен питаться от линии 110 вольт (см. схему ниже) от щита. Либо это, либо ответвление от существующей цепи может быть проведено к блоку контроллера. Также рекомендуется подключить стандартный выключатель света к цепи контроллера, чтобы всю излучающую систему можно было отключить в одном центральном месте. Если ваш релейный блок подключен через переключатель, вам не придется полагаться только на термостаты, чтобы отключить вашу систему во время сезона охлаждения. Эта функция может помешать кому-то «играть» с вашими термостатами и нагревать ваш пол летом.

В этом примере подключения термостата выполняются в верхнем ряду «Т», клеммы Т1, Т2, Т3 и т. д. Циркуляционные насосы подключаются к нижним высоковольтным клеммам для зон 1, 2, 3 и т. д. на блоке 120 вольт. Линии от источника питания (электрощита) подключаются к N (общий) и L (горячий). Установленная на заводе перемычка не перемещается.

Ниже приведен еще один пример многозонного контроллера (i-Link SP-83), но для очень простой системы. Другими словами, контроллер — это не что иное, как три зоны теплого пола, активируемые тремя термостатами. Нет необходимости использовать клеммы «системный насос», нет необходимости использовать клеммы «ХХ» для включения бойлера и нет «приоритетной зоны» для косвенного водонагревателя.

Базовая проводка практически одинакова для всех многозонных контроллеров. Многозональный контроллер может содержать от двух до шести реле, но процедура подключения остается неизменной. Конечно, контроллер i-Link также может быть подключен для специальных приложений, наиболее распространенные из которых показаны ниже.
(вернуться наверх)


Специальные электрические схемы для контроллеров i-Link

В некоторых ситуациях контроллер i-Link должен делать больше, чем просто активировать циркуляционный насос каждый раз, когда зона требует тепла. Следующие схемы иллюстрируют три общих специальных приложения.

Включение котла с помощью контроллера одной зоны

Контроллер одной зоны включает котел каждый раз, когда зона требует тепла зональный термостат требует тепла. Эти клеммы не подают напряжение на котел. Сам котел содержит трансформатор, который активируется всякий раз, когда замыкается этот контур.
(вернуться наверх)


Используйте приведенную выше схему «мультизон», если у вас более одной зоны и вам нужно использовать «конечный выключатель» ( 9соединения 0695 XX ) на контроллере i-Link для включения котла всякий раз, когда какая-либо из излучающих зон требует тепла.

Активация газового клапана с помощью зонального контроллера

Контроллер активирует газовый котел всякий раз, когда зона требует тепла

Контроллер может взаимодействовать с существующим трансформатором котла и активировать газовый клапан с помощью приведенной выше схемы.
(вернуться наверх)


Электропроводка теплообменника/системы первичного контура

Активация «насоса системы» всякий раз, когда какая-либо зона требует тепла

Это схема для использования с теплообменником или системой первичного контура . Насос, управляющий теплообменником/первичным контуром, называется системным насосом . Очевидно, он должен работать, когда любая зона требует нагрева.

Для (любого) соединения насоса первичного контура или насоса теплообменника, как нейтрали (белый провод), так и нагрузки (черный провод) к соединениям «системного насоса» в нижней части блока реле (эти соединения находятся слева от соединения насосов зоны.  Все провода заземления будут соединены между собой внутри релейной коробки.  Провода заземления будут заземлены на источнике питания или от него, пройдут через релейную коробку (через кабельную гайку) и заканчиваются на каждом насосе.

Установленная на заводе перемычка остается на месте.
(наверх)


Подключение термостата

Термостат Honeywell Pro 1000 (6 клемм)

Pro Th2000 — это универсальный многофункциональный термостат, очень простой в использовании и проводке. Но вы никогда не узнаете об этом, взглянув на РУКОВОДСТВО ПО УСТАНОВКЕ Honeywell. Поэтому мы рекомендуем вам использовать эту страницу и прилагаемую фотографию, чтобы сделать процесс быстрым и простым.

ШАГ 1 : рекомендуется использовать провод термостата калибра 18. Можно использовать три (3) провода (R-W и C), если вы решите использовать функцию питания 24 В от реле и устранить необходимость в батареях для термостата Honeywell. Эти провода подключаются к клеммным соединениям реле и термостата (R-W и C). Снимите переднюю крышку и подключите один из проводов термостата калибра 18/2 к клемме «R», а второй провод — к клемме «W». Провода полностью взаимозаменяемы. Но для простоты подключите «красный» провод термостата к клемме «R», а «белый» провод термостата к клемме «W». 9и v) и удерживая их в течение трех секунд. Это переводит вас в режим «программирования».

B) Находясь в режиме «программирования», одновременно нажмите обе кнопки и переключайтесь между цифрами вверх, чтобы перейти в режим программирования №5.

C) Заводская настройка — «1» (5-минутная задержка «включена»), и вам нужно установить этот режим на «0», чтобы деактивировать функцию 5-минутной задержки.

D) Нажмите кнопку переключения «вниз» («v»), и на экране отобразится «0».

E) Нажмите оба переключателя еще раз, чтобы выйти из режима «программирования». Отобразится текущая «заданная» температура.

ШАГ 4: Используйте кнопки-переключатели, чтобы установить термостат на любую желаемую температуру.

Расположение проводов для Honeywell Pro 1000 (модель с 6 клеммами)

Подключение и установка термостата Honeywell Pro 1000 (8 клемм)

Версия Pro 1000 с «8 клеммами» также проста в использовании. провод и программа, но настроены немного по другому. Вместо (2) 3-контактных блоков, слева и справа, эта версия имеет (1) вертикальный 8-контактный блок посередине. Выглядит так:

Процедура настройки выглядит следующим образом:

ШАГ 1 : Снимите переднюю крышку и подсоедините один из проводов термостата калибра 18/2 к клемме «R», а второй провод к клемме «W». » Терминал. Провода полностью взаимозаменяемы. Но для простоты подключите «красный» провод термостата к клемме «R», а «белый» провод термостата к клемме «W».

ШАГ 2: Установите (2) батареи AAA и установите на место крышку. 9и v) пролистывает различные функции. Переключайтесь, нажимая обе кнопки, пока не дойдете до функции №15. Используйте стрелку вниз, чтобы установить эту функцию на 0 (ноль).

Примечание: Вам не придется переключаться четырнадцать раз, чтобы перейти к функции №15. На самом деле, вам нужно будет переключиться только три раза. Это потому, что разработчики термостатов не считают последовательно, как все мы. Они инженеры, и в их непознаваемом квантовом мире числа представляют эзотерические концепции дизайна, а не упорядоченную систему расположения. Нам, убрав банан из грозди из шести, остается пять бананов. Для инженера Honeywell пять оставшихся бананов представляют «функцию № 13». Добавление банана в связку будет выражаться как «функция № 23», или, говоря простым языком, 6 бананов.

Термостат марки Robert Shaw

Если у вас есть термостат марки Robert Shaw , используйте следующую схему.

Принципиальная схема Роберта Шоу

(возврат наверх)


Управление насосом с помощью «датчика пола»

Термостат/датчик пола AZEL D-508F (показан ниже) может использовать либо окружающий воздух , либо температура пола для контроля зоны. Воспользуйтесь этой ссылкой для получения дополнительной информации и инструкций по установке:  http://azeltec.com/images/D-508Finstruction.pdf

Для напольного датчика/термостата Azel (D-508) необходимы четыре (4) провода (калибр 18). Клеммы «R&C» (питание 24 В) на реле подключаются к клеммным соединениям «R&C» на термостате D-508. Клеммы термостата «R&W/TT» на реле подключаются к клеммам № «1 и 2» на термостате D-508. Важно отметить, что при удлинении проводов датчиков (калибра 22), идущих от клемм «SS» на термостате, рекомендуется использовать многожильный провод. для обеспечения абсолютной непрерывности, так как это устойчивый к омам датчик.

Датчик/реле отключения использует небольшой датчик для включения циркуляционного насоса. Сам датчик представляет собой небольшой термистор, обычно вставленный в короткую трубку из PEX, залитую в излучающую плиту. Конечно, датчик также может быть установлен в полости балки для контроля температуры пола в системе сшивания. Этот датчик контролирует температуру фактического пола и игнорирует температуру воздуха в помещении. Это очень полезно в лучистых зонах с более чем одним источником тепла.

Если система принудительной вентиляции или дровяная печь регулярно используется, например, в зоне излучения, стандартный термостат контроля воздуха, обычно используемый для управления полом, большую часть времени будет выключен. Вместо этого встроенный датчик позволяет пассажирам поддерживать базовую температуру пола.

Johnson Controls «Контроллер заданного значения» Запорный и температурный термистор:

коробка Джонсона
Датчик пола
Схема подключения

Правильно проводной датчик пола

Отключенный датчик/Реле также доступен в низкой модели (24VAC). В этом случае датчик пола не питает напрямую циркуляционный насос. Вместо этого он работает очень похоже на стандартный настенный термостат низкого напряжения — он подключается к реле, которое, в свою очередь, приводит в действие циркуляционный насос. Приложения, использующие низкое напряжение датчик отключения/реле подключены, как показано на фотографиях ниже.

Макет, показывающий низковольтный «датчик пола», подключенный к реле I-Link.
Проводные соединения крупным планом

Другие области применения датчика так же разнообразны, как и ваше воображение. Его можно использовать, например, для контроля температуры воды в накопительном/резервном резервуаре. Датчик крепится к одной из труб, входящих или выходящих из накопительного бака, изолированных пеной или стекловолокном, затем от датчика к реле проходит линия термостата 18 калибра.

Когда температура в баке падает до установленного вами значения, включается циркуляционный насос и забирает тепло из теплообменника. Эта установка будет полезна для системы, в которой используется открытый дровяной котел, подключенный к постоянно активному теплообменнику. В зависимости от заданных вами параметров накопительный бак получает необходимое ему тепло от теплообменника для поддержания постоянной температуры в баке.

Таким способом можно нагреть любой теплоаккумулирующий носитель, включая гидромассажные ванны, теплицы, аквариумы, червячные фермы, полотенцесушители и т.д.

Этот контроллер также можно использовать в обратном направлении. Другими словами, реле может быть активировано, когда температура в баке с водой поднимается до заданного значения, и бак необходимо охладить.

Чаще всего для этого подхода используется «Комплект сброса тепла» , сантехника, которую мы используем для отвода избыточного тепла от солнечного контура. Перемычки внутри A419 настроены на РЕЖИМ ОХЛАЖДЕНИЯ (обе перемычки – перемычка 1 и перемычка 2 – находятся в «снятом» положении на своих штырях), а датчик присоединен к ГОРЯЧЕЙ выходной трубе бака-аккумулятора. При достижении высокой уставки в накопительном баке включается циркуляционный насос сброса тепла.

Пружинный таймер для систем снеготаяния

(наверх)


Дифференциальный контроллер солнечной энергии

Resol DeltaSol BS

Контроллер Resol DeltaSol BS

Специальный контроллер Resol, называемый тепловым реле . Как следует из названия, это реле активирует насос или насосы, когда достигается диапазон (или разница) между двумя температурами. Другими словами, когда температура в солнечном коллекторе на X градусов выше, чем температура на дне резервуара для хранения солнечной энергии, дифференциальный регулятор активирует необходимый(е) насос(ы) и всасывает это полезное тепло в систему.

Перенос тепла из более горячего резервуара в более холодный для выравнивания температуры в обоих резервуарах и увеличения общей накопительной емкости — еще одно распространенное применение дифференциального регулятора.

Два датчика (бак и солнечный) необходимы для правильного «дифференциала». Датчик бака прикреплен к трубе возле дна бака для хранения солнечной энергии или в специальном «колодце» в некоторых баках.

Второй датчик считывает температуру воды на выходе из солнечных коллекторов. Оба датчика должны быть изолированы (стекловолокном или пеной), чтобы температура окружающей среды не влияла на показания. Следует отметить, что датчик, закрепленный на горячей трубе, НЕ будет точно считывать фактическую температуру воды. На самом деле вода обычно на 15–20 градусов теплее, чем показывает датчик.

К счастью, для хорошо функционирующей солнечной системы горячего водоснабжения фактическая температура воды не важна (если, конечно, она не слишком прохладная для горячего душа). Что имеет значение, так это разница между температурами воды в двух точках. В конце концов, если вода на самом деле горячее, чем показывает датчик, тем лучше.

СТАНДАРТНЫЙ РЕЖИМ ОТОБРАЖЕНИЯ

Контроллер Resol активируется тремя кнопками: ВПЕРЕД (крайняя справа), НАЗАД (крайняя левая) и кнопкой SET (в центре).

В СТАНДАРТНОМ РЕЖИМЕ ОТОБРАЖЕНИЯ, то есть не в ПРОГРАММНОМ РЕЖИМЕ, пользователь может переключаться между тремя основными полями:

1. COL (датчик коллектора)
2. TST (температура датчика бака)
3. HP (часы) накопленного солнечного усиления)

ПРОГРАММИРОВАНИЕ

Нажмите и удерживайте кнопку ВПЕРЕД (правая кнопка) в течение ДВУХ секунд. Это переводит RESOL в РЕЖИМ ПРОГРАММИРОВАНИЯ, начиная с DT-O (Delta T, ON).

Примечание. Удерживая кнопку ВПЕРЕД, вы начнете быстро переключаться между всеми опциями программирования, поэтому, если вы пропустите DT-O, просто используйте кнопку НАЗАД, чтобы вернуться назад.

Delta T представляет собой разницу между температурой на ваших солнечных коллекторах и температурой на дне вашего накопительного бака. При достижении Delta T контроллер Resol активирует солнечный насос и обеспечивает циркуляцию нагретой жидкости из солнечных коллекторов.

См. раздел ВЫБОР ДЕЛЬТА-Т (ниже) для получения рекомендаций по оптимальному варианту Дельта-Т для вашей ситуации.

Чтобы установить температуру Delta T ON, войдите в ПРОГРАММНЫЙ РЕЖИМ и нажмите центральную кнопку SET. На экране начнет мигать значок SET. Переключите вверх или вниз до желаемого перепада температур. Нажмите SET еще раз, чтобы зафиксировать программу.

Та же процедура используется для следующего экрана, DT-F, параметра ВЫКЛ насоса.

В этом поле можно решить, когда отключить помпу. Кстати, эта температура должна быть как минимум на 2 градуса ниже температуры насоса ПО
.

Как правило, когда температура жидкости в вашем солнечном контуре всего на несколько градусов выше температуры вашего резервуара, циркуляция жидкости мало что дает. Выключите насос и дайте коллекторам снова нагреться. Перепад температур от 3 до 5 градусов, вероятно, подходит для этого поля.

S MX Следующее поле позволяет установить МАКСИМАЛЬНУЮ ТЕМПЕРАТУРУ В БАКАХ. Заводская настройка по умолчанию — 140 градусов. Это слишком низко. Установите в этом поле значение не менее 180 градусов. Вы можете даже подняться выше. Контроллер Resol позволяет нагревать аквариум до 205 градусов. Это всего лишь 7 градусов от пара, но с правильно установленным регулирующим клапаном (обязательным для любой солнечной системы), чтобы защитить дом от ожогов, вы также можете сохранить столько тепла, сколько сможете.

Однако, если вам нужна более низкая максимальная температура, просто нажмите центральную кнопку SET и переключитесь на желаемую температуру. Нажмите SET еще раз, чтобы зафиксировать предпочтительную температуру.

Следующее поле EM . Это означает аварийное отключение. Если по какой-либо причине в вашем солнечном контуре есть хрупкие, чувствительные к теплу компоненты, эта настройка отключит ваш насос при заданной вами температуре и предотвратит перегрев. Заводская настройка довольно низкая, 285 градусов, потому что ничто в нашей системе даже близко не приближается к опасной зоне при такой температуре (например, циркуляционный насос рассчитан на 400 градусов), поэтому оставить его на заводской температуре по умолчанию должно быть нормально.

ПРИМЕЧАНИЕ. RESOL — это очень продвинутый контроллер, предлагающий множество функций, которые не нужны большинству пользователей. Остальные поля относятся к этой категории и полезны для специальных приложений. Для обычной базовой солнечной системы нагрева воды игнорируйте эти поля. Заводская установка по умолчанию для этих настроек ВЫКЛ.

Тем не менее, внимательное прочтение руководства RESOL может вдохновить некоторых пользователей на эксперименты с этими более продвинутыми функциями.


Краткое руководство

В основном режиме доступны только поля «Температура коллектора» (COL), «Температура бака» (TST) и «Накопленная солнечная энергия» (HP).

Удерживайте кнопку ВПЕРЕД две секунды для входа в режим программирования.

Переключитесь на нужное поле, нажмите SET, используйте ВПЕРЕД или НАЗАД, чтобы найти нужное значение, затем снова нажмите SET для подтверждения.

Примечание. Приблизительно через 45 секунд бездействия подсветка дисплея гаснет. Нажмите кнопку FORWARD, чтобы снова включить дисплей, нажмите еще раз, чтобы переключиться на нужное поле.

Кроме того, через несколько МИНУТ бездействия контроллер RESOL автоматически выйдет из ПРОГРАММНОГО РЕЖИМА и вернется в ОСНОВНОЙ РЕЖИМ.

Если вы хотите выйти из ПРОГРАММНОГО РЕЖИМА до автоматического возврата, просто используйте кнопку НАЗАД и переключитесь обратно в COL (поле номер один).


Выбор треугольника T

Почему широкий дифференциал обычно лучше всего

«Коллекторная петля» представляет собой общую длину медной трубы 3/4″, как подачи, так и возврата, которая соединяет солнечную батарею с механические компоненты, т. е. теплообменник, накопительный бак и т. д. Эта петля может быть довольно короткой (коллекторы, расположенные на крыше гаража с механическим оборудованием всего в пятнадцати футах ниже) или довольно длинной (коллекторы, установленные на земле в шестидесяти футах от дома). ). Длина трубы в коротком контуре составляет тридцать футов (0,8 галлона жидкости). Длинная петля, сто двадцать (3,2 галлона жидкости).

В обоих этих случаях жидкость в контуре коллектора должна быть доведена до температуры, прежде чем система будет «работать» в течение любого промежутка времени. Причина в том, что рано утром, когда солнце начинает нагревать коллекторы, большая часть жидкости в контуре коллектора еще холодная. Однако, как только солнце попадает на панели, жидкость в верхней части коллектора, ближайшая к датчику коллектора, быстро нагревается и запускает систему. Но, как только более холодная жидкость в контуре циркулирует мимо датчика, она снова остывает.

Это способствует совершенно нормальному состоянию, известному как «короткий цикл». Ожидайте, что солнечный насос выполнит короткий цикл, пока вода в общем контуре коллектора не нагреется. Если контур коллектора длинный, а солнце слабое, многие галлоны холодной жидкости должны нагреться, прежде чем какое-либо полезное тепло может быть передано в резервуар для хранения. Это может занять время.

Практическое правило: петля коллектора должна быть короткой… и хорошо ее изолировать.

Из вышеприведенного описания видно, что «узкий» дифференциал (от 8 до 15 градусов) увеличивает эффект короткого цикла. Особенно, если контур коллектора длинный, а массив небольшой (т.е. ограниченная теплопроизводительность). Максимально возможный дифференциал в этой ситуации сведет к минимуму склонность системы к выключению и включению каждые несколько секунд.

Однако, если ваша система имеет высокую производительность (много плоских коллекторов или более 48 вакуумных трубок), а контур коллектора короткий , то более тесная разность активирует систему раньше и получает больше полезного тепла.

Большая теплопроизводительность и короткий контур коллектора = небольшой перепад (от 8 до 15 градусов)

Малая теплопроизводительность и длинный контур коллектора = широкий перепад (от 20 до 24 градусов)

(вернуться наверх)

Как починить залипшее реле на вашем кондиционере

Если ваш кондиционер не включается, но вы убедились, что переменный ток подается от вашего автоматического выключателя, у вас может залипнуть реле. Залипшее реле может привести к внезапному выходу из строя вашего блока переменного тока в жару Техаса, поэтому важно починить его как можно скорее. В этом сообщении блога мы покажем вам, как починить залипшее реле на блоке переменного тока в Арлингтоне, штат Техас.

Что такое реле и что оно делает в блоке переменного тока?

Реле — это переключатель, который управляет подачей электроэнергии к вашему кондиционеру, позволяя вам включать и выключать двигатель кондиционера, обеспечивая вас холодным воздухом, когда вам это нужно. Ваш центральный кондиционер, тепловой насос и печь используют контактор или реле переменного тока.

Когда кондиционер включен , реле замыкается и позволяет электричеству поступать на блок.

Когда кондиционер выключен реле размыкается и разрывает цепь, препятствуя поступлению электричества к кондиционеру.

Вы можете найти реле, расположенное в наружном блоке вашей системы HVAC. К реле подключены три провода:

  • Входной провод от платы управления
  • Провод питания муфты компрессора кондиционера
  • Провод заземления 

Реле играет большую роль в энергоэффективности вашего кондиционера, в зависимости от типа реле и того, насколько хорошо вы обслуживаете свой блок HVAC.

Если реле застревает в одном положении, это может помешать включению кондиционера или вызвать его неожиданное выключение, так как вентилятор переменного тока и двигатель вентилятора не получат необходимой мощности для работы. Неисправное реле является основной причиной проблем с электропитанием вашего блока HVAC. Однако потенциально могут быть задействованы и другие факторы. Например, проблема может быть в электронной плате управления или в поврежденном вентиляторе.

Посмотрите следующее видео, чтобы узнать больше о том, почему ваш компрессорно-конденсаторный блок может работать с короткими циклами:

Если у вас дует теплый воздух из центрального кондиционера или проблема с потоком воздуха, или вы заметили, что ваш кондиционер замерзает, проблема, вероятно, кроется где-то еще в вашей системе HVAC. Попросите профессионального специалиста по HVAC помочь вам диагностировать проблему.

Как узнать, что ваше реле застряло и нуждается в ремонте?

Учитывая все возможные причины проблем с системой переменного тока, как узнать, что у вас заело реле? Признаки отказа реле переменного тока включают:

  • Кондиционер не включается при попытке его использования
  • Кондиционер неожиданно выключается
  • Вы слышите щелкающий звук из кондиционера
  • Видимые повреждения или мусор на реле

Если вы заметили какие-либо из этих признаков, вы можете проверить реле с помощью мультиметра для дополнительной уверенности перед завершением этапа диагностики.

Залипшее реле само по себе снова не начнет нормально работать. Он потребует ремонта или замены. Хотя мы поддерживаем домовладельцев, которые узнают об их системе HVAC, подумайте о том, чтобы нанять профессиональную компанию по ремонту кондиционеров, если у вас заело реле, особенно учитывая, что это связано с электричеством в вашем доме. Не подвергайте себя излишне шокирующему и небезопасному опыту.

Как исправить залипание реле на блоке переменного тока

Специалисты по вентиляции и кондиционирования в Арлингтоне, штат Техас, могут исправить залипание реле несколькими способами:

***Предупреждение***

Если вы рискуете самостоятельно отремонтировать реле кондиционера (что мы не рекомендуем), всегда отключайте питание устройства автоматическим выключателем перед началом работы.

1. Очистите реле 

Если контакты реле загрязнились, они могут залипнуть. Реле могут загрязняться из-за пыли, органических материалов и другого мусора в воздухе снаружи.

Снимите реле и осторожно очистите разъемы спиртом или уксусом и тряпкой. Прежде чем чистить реле, наклейте на провода защитную ленту, чтобы предотвратить повреждение. Не перенасыщайте реле спиртом и тщательно смойте весь оставшийся спирт на реле. Дайте реле полностью высохнуть перед заменой.

2. Замените реле

Если очистка реле не помогла или вы заметили поврежденный провод термостата, вам может потребоваться замена всего компонента.

Вам нужно будет купить точную замену реле, предназначенную для вашего устройства. Как только вы получите новую деталь, вы удалите старое реле и установите его в том же положении, что и новое. У старого реле могут быть винты, удерживающие его на месте, так что отвертка понадобится позже.

Для получения дополнительной информации об устранении неполадок реле HVAC посмотрите следующее видео:

Если у вас заело реле на блоке переменного тока, свяжитесь со All Masters для ремонта кондиционера в Арлингтоне, штат Техас, сегодня!

Советы по предотвращению заедания реле в первую очередь

Предотвратите проблему до того, как она возникнет, используя эти простые советы, как избежать заедания реле в блоке кондиционера.

1. Экономно используйте кондиционер

Чрезмерное использование кондиционера приведет к зависанию реле. Во время работы кондиционеры выделяют тепло. Слишком сильный нагрев может привести к тому, что материал реле расплавится и слипнется, в результате чего они застрянут.

Чтобы предотвратить эту проблему, не оставляйте кондиционер включенным без необходимости. Вы также можете инвестировать в программируемый термостат (также известный как интеллектуальный термостат), чтобы автоматизировать кондиционер, сводя к минимуму возможность человеческой ошибки.

2. Содержите внешний блок в чистоте

Невозможно предотвратить попадание всего мусора в внешний блок. Тем не менее, вы можете сделать все возможное, чтобы поддерживать чистоту вокруг него. Кроме того, очистка змеевиков в вашем внешнем блоке и замена воздушного фильтра вашей системы HVAC должны быть частью вашей регулярной программы обслуживания HVAC, которую вы выполняете один раз в год или каждую весну и осень.

Очистка катушек предотвратит загрязнение реле.

Обратитесь в All Masters Plumbing для ремонта ОВКВ в Арлингтоне, штат Техас

Если ваш кондиционер не работает должным образом или вы считаете, что у вас заело реле, не стесняйтесь звонить в All Masters Plumbing. Мы являемся профессиональной компанией по ремонту HVAC и AC в Арлингтоне, штат Техас, которая обслуживает всю территорию DFW. Мы с удовольствием выезжаем, осматриваем ваш кондиционер и озвучиваем стоимость ремонта.

Дополнительные услуги по ОВиК и сантехнике в Арлингтоне включают:

  • Ремонт ОВК
  • Замена HVAC
  • Установка ОВКВ
  • Качество воздуха в помещении
  • Прочистка канализации
  • Ремонт течи плиты
  • Ремонт газопровода

Не уверены, сможем ли мы вам помочь? Осуществляем ремонт по следующим направлениям.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *